FAST: Quick Application Launch on Solid-State Drives

Yongsoo Jog, Junhee Ryii Sangsoo Patk and Kang G. Shift
TEwha Womans University, 11-1 Daehyun-dong Seodaemuneapyl320-750, Korea
1Seoul National University, 599 Kwanak-Gu Kwanak Rd., Se&il-744, Korea
* University of Michigan, 2260 Hayward St., Ann Arbor, Ml 481,0USA

Abstract release, their launch takes longer even if a new, power-
L .) ful machine equipped with high-speed multi-core CPUs
Application launch performance is of great importance 4 several GBs of main memory is used. This undesir-
to system platform developers and vendors as it greatlypje trend is known to stem from the poor random access
affects the degree of users’ satisfaction. The single mosﬁerformance of hard disk drives (HDDs). When an ap-
effective way to improve application launch pen‘ormancemicaﬁOn stored in a HDD is launched, up to thousands

Is to replace a hard disk drive (HDD) with a solid state ot 1.y requests are sent to the HDD, and a significant
drive (SSD), which has recently become affordable and,,iqn of its launch time is spent on moving the disk
popular. A natural question is then whether or not ©ope4q 1o proper track and sector positions, seekand
replace the traditional HDD-aware application launchersationa latencies. Unfortunately, the HDD seek and
with a new SSD-f';\ware o_ptlmlzer. . o rotational latencies have not been improved much over
We address this quest_lon_by analyzing the inefficiencyne |ast few decades, especially compared to the CPU
of the HDD-aware application launchers on SSDs andypeeq improvement. In spite of the various optimizations
then proposing a new SSQ—avyare application prefetCh'nﬁbroposed to improve the HDD performance in launch-
scheme, called théast Application Shrter (FAST). The g appications, users must often wait tens of seconds

key idea of FAST is to overlap the computation (CPU) ¢4 the completion of launching frequently-used applica-
time with the SSD access (I/O) time during an applica-tions. such as Windows Outlook.

tion launch. FAST is composed of a set of user-level

components and svstem debugaing tools provided by the A quick and easy solution to eliminate the HDD’s seek
P y gging P Y N&nd rotational latencies during an application launch is to

Linux OS (operating system). In. addition, FAST uses areplace the HDD with a solid state drive (SSD). A SSD
system-call wrapper to automatically detect application

launches. Hence. EAST can be easilv deploved in an consists of a number of NAND flash memory modules,
- , . y deploye ¥ind does not use any mechanical parts, unlike disk heads

recent Linux versions without kernel recompilation. We and arms of a conventional HDD. While the HDD ac-

implemented FAST on a desktop PC with a SSD unning: ess latency—which is the sum of seek and rotational

Linux 2.6.32 OS and evaluated it by launching a set of ; .
: o : tencies—ranges up to a few tens of milliseconds (ms),
widely-used applications, demonstrating an average OP

) T . epending on the seek distance, the SSD shows a rather
28% reduction of application launch time as compared .
: uniform access latency of about a few hundred micro-
to PC without a prefetcher.

secondss). Replacing a HDD with a SSD is, there-
fore, the single most effective way to improve applica-
1 Introduction tion launch performance.

Until recently, using SSDs as the secondary storage of
Application launch performance is one of the impor- desktops or laptops has not been an option for most users
tant metrics for the design or selection of a desktop omue to the high cost-per-bit of NAND flash memories.
a laptop PC as it critically affects the user-perceivedHowever, the rapid advance of semiconductor technol-
performance. Unfortunately, application launch perfor-ogy has continuously driven the SSD price down, and at
mance has not kept up with the remarkable progress ahe end of 2009, the price of an 80 GB SSD has fallen be-
CPU performance that has thus far evolved according téow 300 US dollars. Furthermore, SSDs can be installed
Moore’s law. As frequently-used or popular applicationsin existing systems without additional hardware or soft-
get “heavier” (by adding new functions) with each new ware support because they are usually equipped with the

same interface as HDDs, and OSes see a SSD as a blopkr, and system debugging tools provided by the Linux

device just like a HDD. Thus, end-users begin to use &S. FAST can be easily deployed in most recent Linux

SSD as their system disk to install the OS image and apversions without kernel recompilation. We have imple-

plications. mented and evaluated FAST on a desktop PC with a SSD
Although a SSD can significantly reduce the applica-running Linux 2.6.32, demonstrating an average of 28%

tion launch time, it does not give users ultimate satisfacteduction of application launch time as compared to PC

tion for all applications. For example, using a SSD re-without a prefetcher.

duces the launch time of a heavy application from tens of This paper makes the following contributions:

seconds to several seconds. However, users will soon be- 4 Qualitative and quantitative evaluation of the ineffi-

come used to the _SSD launch performance, a_md will then ciency of traditional HDD-aware application launch

want the I_aunch tlme _to be reduced further, just as they optimizers on SSDs:

see from light applications. Furthermore, users will keep .

on adding functions to applications, making them heav- *® Develop_ment of a new SSD—a_ware application

ier with each release and their launch time greater. Ac- prefetching scheme, called FAST; and

cording to a recent report [24], the growth of software is ® Implementation and evaluation of FAST, demon-

rapid and limited only by the ability of hardware. These strating its superiority and deployability.

call for the need to further improve application launch \ynile EAST can be also applied to HDDs, its per-
performance on SSDs. formance improvements are only limited to high I/O re-
Unfortunately, most previous optimizers for applica- quirements of application launches on HDDs. We ob-
tion launch performance are intended for HDDs and haveserved that existing application prefetchers outperfarme
not accounted for the SSD characteristics. FurthermorezAST on HDDs by effectively optimizing disk head
some of them may rather be detrimental to SSDs. For exmovements, which will be discussed further in Section 5.
ample, running a disk defragmentation tool on a SSD is The paper is organized as follows. In Section 2, we re-
not beneficial at all because changing the physical locayiew other related efforts and discuss their performance
tion of data in the SSD does not affect its access latencyn optimizing application launch on SSDs. Section 3
Rather, it generates unnecessary write and erase opergescribes the key idea of FAST and presents an upper
tions, thus shortening the SSD’s lifetime. bound for its performance. Section 4 details the imple-
In view of these, the first step toward SSD-aware op-mentation of FAST on the Linux OS, while Section 5
timization may be to simply disable the traditional op- evaluates its performance using various real-world appli-
timizers designed for HDDs. For example, Windows 7 cations. Section 6 discusses the applicability of FAST to
disables many functions, such as disk defragmentatiorsmartphones and Section 7 compares FAST with tradi-
application prefetch, Superfetch, and Readyboost whertional I/O prefetching techniques. We conclude the paper
it detects a SSD being used as a system disk [27]. Let'svith Section 8.
consider another example. Linux is equipped with four
disk I/O schedulers: NOOP, anticipatory, deadline, and12
completely fair queueing. The NOOP scheduler almos Background
does nothing to improve HDD access performance, thu
providing the worst performance on a HDD. Surpris-
ingly, it has been reported that NOOP shows better perApplication-level optimization. Application developers
formance than the other three sophisticated schedulers aire usually advised to optimize their applications for fast
a SSD [11]. startup. For example, they may be advised to postpone
To the best of our knowledge, this is the first attemptloading non-critical functions or libraries so as to make
to focus entirely on improving application launch perfor- applications respond as fast as possible [2, 30]. They
mance on SSDs. Specifically, we propose a new appliare also advised to reduce the number of symbol reloca-
cation prefetching method, called ti@ast Application tions while loading libraries, and to use dynamic library
STarter (FAST), to improve application launch time on loading. There have been numerous case studies—based
SSDs. The key idea of FAST is to overlap the compu-on in-depth analyses and manual optimizations—of vari-
tation (CPU) time with the SSD access (I/O) time dur- ous target applications/platforms, such as Linux desktop
ing each application launch. To achieve this, we monitorsuite platform [8], a digital TV [17], and a digital still
the sequence of block requests in each application, andamera [33]. However, such an approach requires the
launch the application simultaneously with a prefetcherexperts’ manual optimizations for each and every appli-
that generates I/O requests according tatheori mon- cation. Hence, it is economically infeasible for general-
itored application’s I/0 request sequence. FAST consistpurpose systems with many (dynamic) application pro-
of a set of user-level components, a system-call wrapgrams.

2.1 Application Launch Optimization

Snapshot technique. A snapshot boot technique has [26], which is connected to the mother board of a desk-
also been suggested for fast startup of embedded systertap or laptop PC. As neither seek nor rotational latency is
[19], which is different from the traditional hibernate incurred while accessing data in the flash cache, we can
shutdown function in that a snapshot of the main mem-accelerate application launch by storing the code blocks
ory after booting an OS is captured only once, and usef frequently-used applications, which is calledianed
repeatedly for every subsequent booting of the systemset Due to the small capacity of flash cache, how to
However, applying this approach for application launchdetermine the optimal pinned set subject to the capacity
is not practical for the following reasons. First, the pageconstraint is a key to making performance improvement,
cache in main memory is shared by all applications, andind a few results of addressing this problem have been
separating only the portion of the cache content that iseported [16, 18, 22]. We expect that FAST can be in-
related to a certain application is not possible withouttegrated with the flash cache for further improvement of
extensive modification of the page cache. Furthermoreperformance, but leave it as part of our future work.

once an application is updated, its snapshot should be in-

validated immediately, which incurs runtime overhead.
Prediction-based prefetch. Modern desktops are
equipped with large (up to several GBs) main memory,SSDs have become affordable and begun to be deployed
and often have abundant free space available in the maiim desktop and laptop PCs, but their performance char-
memory. Prediction-based prefetching, such as Supemcteristics have not yet been understood well. So, re-
fetch [28] and Preload [12], loads an application’s codesearchers conducted in-depth analyses of their perfor-
blocks in the free space even if the user does not exmance characteristics, and suggested ways to improve
plicitly express his intent to execute that particular ap-their runtime performance. Extensive experiments have
plication. These techniques monitor and analyze thébeen carried out to understand the performance dynam-
users’ access patterns to predict which applications to bigs of commercially-available SSDs under various work-
launched in future. Consequently, the improvement ofioads, without knowledge of their internal implementa-
launch performance depends strongly on prediction actions [7]. Also, SSD design space has been explored
curacy. and some guidelines to improve the SSD performance
Sorted prefetch. The Windows OS is equipped with have been suggested [10]. A new write buffer manage-
an application prefetcher [36] that prefetches appli-ment scheme has also been suggested to improve the ran-
cation code blocks in a sorted order of their logical dom write performance of SSDs [20]. Traditional 1/0O
block addresses (LBAs) to minimize disk head move-schedulers optimized for HDDs have been revisited in
ments. A similar idea has also been implemented fororder to evaluate their performance on SSDs, and then
Linux OS [15, 25]. We call these approachesrted a new I/O scheduler optimized for SSDs has been pro-
prefetch It monitors HDD activities to maintain a list posed [11, 21].

of blocks accessed during the launch of each application.
Upon detection of an application launch, the application2
prefetcher immediately pauses its execution and beginS
to fetch the blocks in the list in an order sorted by their As discussed in Section 2.1, various approaches have
LBAs. The application launch is resumed after fetchingbeen developed and deployed to improve the applica-
all the blocks, and hence, no page miss occurs during thgon launch performance on HDDs. On one hand, many
launch. of them are effective on SSDs as well, and orthogo-
Application defragmentation. The block list informa- nal to FAST. For example, application-level optimiza-
tion can also be used in a different way to further reducetion and prediction-based prefetch can be used together
the seek distance during an application launch. Moderwith FAST to further improve application launch perfor-
OSes commonly support a HDD defragmentation toolmance.

that reorganizes the HDD layout so as to place eachfilein On the other hand, some of them exploit the HDD
a contiguous disk space. In contrast, the defragmentatiopharacteristics to reduce the seek and rotational delay
tool can relocate the blocks in the list of each applicationduring an application launch, such as the sorted prefetch
by their access order [36], which helps reduce the totahnd the application defragmentation. Such methods are
HDD seek distance during the launch. ineffective for SSDs because the internal structure of a
Data pinning on flash cachesRecently, flash cache has SSD is very different from that of a HDD. A SSD typi-
been introduced to exploit the advantage of SSDs at a&ally consists of multiple NAND flash memory modules,
cost comparable to HDDs. A flash cache can be inteand does not have any mechanical moving part. Hence,
grated into traditional HDDs, which is calledhgbrid unlike a HDD, the access latency of a SSD is irrelevant to
HDD [37]. Also, a PCI card-type flash cache is availablethe LBA distance between the last and the current block

2.2 SSD Performance Optimization

.3 Launch Optimization on SSDs

Application |S1| e |32| ¢ |s3| 3 |S4| ca the secondary storage.

0 TE— Let the time spent fog; andc; be denoted by(s;) and
(a) Cold start scenario m t(c;), respectively. Then, the computation (CPU) time,
tepus IS EXPressed as
Application | Cl | (&) | c3 | cq | .
0 Haunch Time t = tlc; 1
(b) Warm start scenario et Zl (ei), (1)
=
Application | 1 | ¢ | 3 | s | and the SSD access (I/O) timtg, 4, is expressed as
! Tim; n
Prefetcher s1|s2 | 3|84 ! toeg = Zt(si)~)

0 Haunch Ti mg i=1
(c) Proposed prefetching (#pu > t5a)

3.2 The Proposed Application Prefetcher

Application ITII |C_2| IZI IEI —> The rationale behind FAST is that the 1/O request se-
Prefetcher | 51 | 52 | 53 | 84 | T'mf quence generated during an application launch does not
Tlaunch Time change over repeated launches of the application in case

(d) Proposed prefetching (Zcpu < Zssa) of cold-start. The key idea of FAST is to overlap the SSD

access (I/0O) time with the computation (CPU) time by
running the application prefetcher concurrently with the
application itself. The application prefetcher replays th
requests. Thus, prefetching the application code block§O request sequence of the original application, which
according to the sorted order of their LBAs or changingwe call anapplication launch sequencé\n application
their physical locations will not make any significant per- launch sequencé can be expressed &s, . .., 5,,).
formance improvement on SSDs. As the sorted prefetch Figure 1(c) illustrates how FAST works, whexg,, >
has the most similar structure to FAST, we will quanti- ¢,., is assumed. At the beginning, the target applica-
tatively compare its performance with FAST in Section tion and the prefetcher start simultaneously, and compete
5. with each other to send their first block request to the
SSD. However, the SSD always receives the same block
requests; regardless of which process gets the bus grant
first. After s, is fetched, the application can proceed with
. L . . its launch by the time(c;), while the prefetcher keeps
This section !Ilustrates the main idea of FAS.T W.'th eX""m'issuing the subsequent block requests to the SSD. After
p_les and_derlves a lower bound of the application IauncrEompletingcl, the application accesses the code block
time achievable with FAST. corresponding t@2, but no page miss occurs feg be-
cause it has already been fetched by the prefetcher. It is
3.1 Cold and Warm Starts the same for the remaining block requests, and thus, the

resulting application launch time, ..., becomes
We focus on the performance improvement in case of

a cold start, or the first launch of an application upon tiaunch = t(s1) + tepu- 3

system bootup, representing the worst-case applicatiopigyre 1(d) shows another possible scenario where
launch performance. Figure 1(a) shows an example cold_ ¢ _, 'In this case, the prefetcher cannot complete
start scenario, where; is thei-th block request gener- fetching s, before the application finishes computation
ated during the launch andthe total number of block ., “However,s, can be fetched by(c;) earlier than that
requests. Aftes; is completed, the CPU proceeds with of the cold start, and this improvement is accumulated for

the launch process until another page miss takes placgy| of the remaining block requests, resultingifmes:
Let ¢; denote this computation.

The opposite extreme is a warm start in which all the tiaunch = tssa + t(cn)- (4)

code blocks necessary for launch have bgen found in thg Jio thatn ranges up to a few thousands for typical ap-
page cache, and thus, no block request is generated, ﬁﬁcations, and thust(s1) < fepu andi(cy) < tosa.

shown in Figure 1(b). This occurs when the applicationcOnsequently Egs. (3) and (4) can be combined into a
is launched again shortly after its closure. The warm stargingle equatio,n as:

represents an upper-bound of the application launch per-
formance improvement achievable with optimization of tiaunch = Max(tssd, tepu), (5)

Figure 1: Various application launch scenarias 4).

3 Application Prefetching on SSDs

application il] ef] ef[es [ew [er | es | 4.1 Application Launch Sequence

Prefetcher|] | 52 | 53 | 54 |||||<@Jt""’“‘”ft”"”“'”d§ Time 4.1.1 Disk I/O Profiler
0 §5...88 lexpected Lactual Time

The disk 1/O profiler is used to track the block re-
quests generated during an application launch. We used
Bl kt r ace [3], a built-in Linux kernel 1/O-tracing tool
that monitors the details of I/O behavior for the evalua-
tion of 1/0 performanceBl kt r ace can profile various

I/0 events: inserting an item into the block layer, merg-
ing the item with a previous request in the queue, remap-

Figure 2: A worst-case examplé.f, = tssq)-

Raw block
request
sequences

application

Application launch | Apﬁlication LBA-to-inode ping onto another device, issuing a request to the device
—1 aunch sequence
manager extrac“to, reverse mapper driver, and a completion signal from the device. From
Il ! these events, we collect the trace of device-completion
[System call profier |-+ (Applicalon > < Lenio > events, each of which consists of a device number, a
. : | sequence mode map LBA, the I/O size, and completion time.
(D T0 pofler_}-—
1
1 - T
_) i P hor 4.1.2 Application Launch Sequence Extractor
prefetcher ! generator .) .
£ ! Ideally, the application launch sequence should include
i all of the block requests that are generated every time the
< Launch time processes > | < Idle time processes >

i e) application is launched in the cold start scenario, with-
Figure 3: The proposed application prefetching. oyt including any block requests that are not relevant to
the application launch. We observed that the raw block

which represents a lower bound of the application launcH€duest sequence capturedBiykt r ace does not vary
time achievable with FAST. from one launch to another, i.e., deterministic for mul-

However, FAST may not achieve application IaunchtigIe Iaugcues oLthe same application. H%wevelr., we
performance close to Eq. (5) when there is a significanP served that other processes (e.g., OS and application

variation of 1/0O intensiveness, especially if the begimgnin daei\mons) slome_zt;]mﬁs genlgrat_e th|e|r ov:}n !I{Ohrqulesf_ Sk
of the launch process is more 1/O intensive than the othefNutaneously with the application launch. To handle this
Figure 2 illustrates an extreme example of such a cas&ase the application launch sequence extractor collects
where the first half of this example is SSD-bound andWo or more raw block request sequences to extract a
the second half is CPU-bound. In this examplg, is common sequence, which is then used as a launch se-
. 273
equal tot,,4, and thus the expected launch timg,..eq quence of the corresponding application. The imple-
is given to bet,.q + t(cs), according to Eq. (4). How- mentation of the application launch sequence extractor
S8 1
ever, the actual launch tim.;,.; is much larger than is S|mp!e: |t. searches for and removes any blocklrequests
teapected. The CPU usage in the first half of the launch appearing in some of the input sequences. This proce-

time is kept quite low despite the fact that there are lotsdure makes all the input sequences the same, so we use
of remaining CPU computations (i.es, . .., cs) due to a1y ©f them as an application launch sequence.

the dependency between andc;. We will provide a

detailed analysis for this case using real applications i4.2 LBA-to-Inode Map

Section 5. 4.2.1 LBA-to-Inode Reverse Mapper

Our goal is to create an application prefetcher that gen-
4 Implementation erates exactly the same block request sequence as the

obtained application launch sequence, where each block
We chose the Linux OS to demonstrate the feasibility andequest is represented as a tuple of starting LBA and
the superior performance of FAST. The implementationsize. Since the application prefetcher is implemented as
of FAST consists of a set of components: an applicatiora user-level program, every disk access should be made
launch manager, a system-call profiler, a disk /0O pro-via system calls with a file name and an offset in that file.
filer, an application launch sequence extractor, a LBA-Hence, we must obtain the file name and the offset of
to-inode reverse mapper, and an application prefetchezach block request in an application launch sequence.
generator. Figure 3 shows how these components inter- Most file systems, including EXT3, do not support
act with each other. In what follows, we detail the imple- such a reverse mapping from LBA to file name and off-
mentation of each of these components. set. However, for a given file name, we can easily find

the LBA of all of the blocks that belong to the file and Table 1: System calls to replay access of blocks in an
their relative offset in the file. Hence, we can build a @Pplication launch sequence

LBA-to-inode map by gathering this information for ev-
ery file. However, building such a map of the entire file | Block type | System call |
system is time-consuming and impractical because a file n°de table open() _
system, in general, contains tens of thousands of files a gData block: a directory | opendir () andreaddir ()

their block locations on the disk change very often. Data block: aregularfile | read() orposi x_fadvi se()
Data block: a symbolic| readlink()

Therefore, we build a separate LBA-to-inode map| link file
for each application, which can significantly reduce the
overhead of creating a LBA-to-inode map because (1)
the number of applications and the number of files useql
in launching each application are very small compared
to the number of files in the entire file system; and (2)4.3.1 Application Prefetcher Generator
most of them are shared libraries and application code
blocks, so their block locations remain unchanged unles$he application prefetcher is a user-level program that

they are updated or disk defragmentation is performed. replays the disk access requests made by a target appli-
cation. We implemented the application prefetcher gen-

Wg |mp|e-ment Fhe LBA'tO'dee reverse mapper thaterator to automatically create an application prefetcher
receives a list of file names as input and creates a LBA;

. . i - for each target application. It performs the following op-
to-inode map as output. A LBA-to-inode map is built . getapp P gop
) X . erations.
using a red-black tree in order to reduce the search time.
Each node in the red-black _tree has the LBA of a block_ as 1. Reads; one-by-one frons of the target application.
its key, and a block type as its data by default. According .)) . .
to the block type, different types of data are added to 2. Converts; into its associated data items stored in
the node. A block type includes a super block, a group ~ the LBA-to-inode map, e.g.,
descriptor, an inode block bitmap, a data block bitmap, (dev, LBA, size) —(databl k, fil enane, of f set, si ze) OF
an inode table, and a data block. For example, a node for ~ (dev, LBA size) —(i node, start_i node, end_i node) .

a data block has a block type, a device number, an inode 3. pepending on the type of block, generate an appro-

number, an offset, and a size. Also, for a data block, @ priate system call using the converted disk access
table is created to keep the mapping information between jnformation.

an inode number and its file name.

3 Application Prefetcher

4. Repeat Steps 1-3 until processingsall

Table 1 shows the kind of system calls used for each

block type. There are two system calls that can be

4.2.2 System-Call Profiler used to replay the disk access for data blocks of a reg-
ular file. If we user ead(), data is first moved from

The system-call profiler obtains a full list of file names the SSD to the page cache, and then copying takes
that are accessed during an application lahemd Place from the page cache to the user buffer. The sec-
passes it to the LBA-to-inode reverse mapper. Weond step is unnecessary for our purpose, as the pro-
usedst race for the system-call profiler, which is a cess that actually manipulates the data is not the ap-
debugging tool in Linux. We can specify the argumentplication prefetcher but the target application. Hence,
of strace so that it may monitor only the system We choseposi x_f advi se() that performs only the
calls that have a file name as their argument. Adfirst step, from which we can avoid the overhead of
many of these system calls are rarely called during €ad(). We use thePOSI X_.FADV_W LLNEED pa-

an app“cation launch, we monitor 0n|y the fo||owing rameter, which informs the OS that the Specified data

system calls that frequently occur during applicationWill be used in the near future. When to issue the

launches:open(), creat (), execve(), stat(), corresponding disk access affarsi x _f advi se() is

stat64(), Istat(), |Istat64(), access(), called depends on the OS implementation. We con-
truncate(), truncat e64(), statfs(), firmed that the current version of Linux we used issues
statfs64(),readlink(),andunlink(). a block request immediately after receiving the infor-

mation throughposi x_f advi se() , thus meeting our
need. A symbolic-linked file name is stored in data block
IFiles mounted on pseudo file systems suchrascf s andsysfs ~ Pointers in an inode entry when the length of the file
are not processed because they never generate any diskjl€ste name is less than or equal to 60 bytes (c.f., the space of

int main(void) { Table 2: Variables and parameters used by the applica-

readlink("/etc/fonts/conf.dl 90-ttf-arphic-uni ng-enb tion launch manager
ol den. conf", 1inkbuf, 256);
int fd423;

fd423 = open("/etc/fonts/conf.d/90-ttf-arphic-uning

- embol den. conf", O RDONLY); l Type ‘ Description ‘

posi x_fadvi se(fd423, 0, 4096, POSI X _FADV_W LLNEED); Ninit A counter to record the number of application
posi ;(_f advi se(fd351, 286720, 114688, POSI X_FADV_WL launches done in the initial launch phase
LNEED) ;
int fd424; npref | A counter to record the number of launches
fd424 = open("/usr/share/fontconfig/conf.avail/90-tt done in the application prefetch phase after the
f - ar phi c- um ng- enbol den. conf", O RDONLY);
posi x_f advi se(fd424, 0, 4096, POSI X_FADV_W LLNEED); last check of the miss ratio of the application
int fd42s; prefetcher
fd425 = open("/root/.gnupg/trustdb.gpg", O RDONLY);
posi x_fadvi se(fd425, 0. 4096, POSI X FADV W LLNEED) - Nrawsely The number of raw block request sequences that
dirp = opendir("/var/cache/"); are to be captured at the launch profiling phase
i f(dirp)while(readdir(dirp)); Neonie | The period to check the miss ratio of the applida-
return 0: tion prefetcher
} Rniss | Athreshold value for the prefetcher miss ratio that
. o is used to determine if an update of the application
Figure 4. An example application prefetcher. or shared libraries has taken place
Tidie A threshold value for the idle time period that |s
. . . . used to determine if an application launch is com-
data block pointers is 60 bytes, 4*12 for direct, 4 for sin- pleted op
gle indirect, another 4 for double indirect, and last 4 for T —The maximum amount of ime allowed for tHe
triple indirect data block pointer). If the length of linked disk I/O profiler to capture block requests

file name is more than 60 bytes, the name is stored in the
data blocks pointed to by data block pointers in the inode

entry. We use eadl i nk() toreplay the data block ac- L
cess of symbolic-link file names that are longer than 60%-4 ~ Application Launch Manager

bytes. The role of the application launch manager is to detect
Figure 4 is an example of automatically-generated apthe launch of an application and to take an appropriate
plication prefetcher. Unlike the target application, the action. We can detect the beginning of an application
application prefetcher successively fetches all the Idocklaunch by monitoringexecve() system call, which
as soon as possible to minimize the time between adjas implemented using a system-call wrapper. There are
cent block requests. three phases with which the application launch manager
deals: a launch profiling phase, a prefetcher generation
phase, and an application prefetch phase. The applica-
4.3.2 Implicitly-Prefetched Blocks tion launch manager uses a set of variables and param-
eters for each application to decide when to change its
In the EXT3 file system, the inode of a file includes phase. These are summarized in Table 2.
pointers of up to 12 data blocks, so these blocks can Here we describe the operations performed in each
be found immediately after accessing the inode. If thephase:
file size exceeds 12 blocks, indirect, double indirect, and1) Launch profiling. If no application prefetcher is
triple indirect pointer blocks are used to store the point-found for that application, the application launch man-
ers to the data blocks. Therefore, requests for indirecager regards the current launch as the first launch of this
pointer blocks may occur in the cold start scenario wherapplication, and enters the initial launch phase. In this
the application is accessing files larger than 12 blocksphase, the application launch manager performs the fol-
We cannot explicitly load those indirect pointer blocks in lowing operations in addition to the launch of the target
the application prefetcher because there is no such syspplication:
tem call. However, th@osi x_f advi se() call for a
data block will first make a request for the indirect block
when needed, so it can be fetched in a timely manner by 2.
running the application prefetcher. 3. Flush the page cache, dentries (directory entries),

The following types of block request are not listed in ~ @ndinodes in the main memory to ensure a cold start
Table 1: a superblock, a group descriptor, an inode entry ~ Scénario, which is done by the following command:
bitmap, a data block bitmap. We found that requests to echo 3 > /proc/sys/vni drop_caches
these types of blocks seldom occur during an application 4. Run the disk I/O profiler. Terminate the disk 1/0O
launch, so we did not consider their prefetching. profiler when any of the following conditions are

1. Increase;,;; of the current application by 1.
If n;nie = 1, run the system call profiler.

met: (1) if no block request occurs during the last user interfaces and requires user interaction immediately
T;4 Seconds or (2) the elapsed time since the starafter completing its launch. Applications like gcc and
of the disk I/O profiler exceeds,;,,co.: S€CONS. gzip are not included in our set of benchmarks as launch
enter the prefetcher generation performqnce is not an is§ue fpr them. .Ou_r benchmark
set consists of the following Linux applications: Acro-
bat reader, Designer-qt4, Eclipse, F-Spot, Firefox, Gimp,
(2) Prefetcher generation. Once application launch Gpome, Houdini, Kdevdesigner, Kdevelop, Konqueror,
profiling is done, it is ready to generate an application| gpview, Matlab, OpenOffice, Skype, Thunderbird, and
prefetcher using the information obtained from the firstxilinx|SE. In addition to these, we used Wine [1], which
phase. This can be performed either immediately aftefs an implementation of the Windows API running on the
the application launch is completed, or when the systen jnux OsS, to test Access, Excel, Powerpoint, Visio, and
is idle. The following operations are performed: Word—typical Windows applications.

1. Run the application launch sequence extractor. ~ Test scenarios. For each benchmark application, we
measured its launch time for the following scenarios.

5. If Ninit = Nrawseq:
phase after the current launch is completed.

2. Run the LBA-to-inode reverse mapper.
3. Run the application prefetcher generator. o Cold start The application is launched immediately
after flushing the page cache, using the method de-
scribed in Section 4.4. The resulting launch time is
(3) Application prefetch. If the application prefetcher denoted byt o14.

for the current application is found, the application o \warm start We first run the application prefetcher
launch manager runs the prefetcher simultaneously with only to load all the blocks in the application launch

the target application. It also periodically checks theamis sequence to the page cache, and then launch the ap-
ratio of the prefetcher to determine if there has been any plication. Lett denote the resulting launch

update of the application or shared libraries. Specifically time.
the following operations are performed:

4. Reset the values af;,,;; andn,,..s to 0.

e Sorted prefetchTo evaluate the performance of the

1. Increasen,,. s of the current application by 1. sorted prefetch [15, 25, 36] on SSDs, we modify the

2. If nyref = Nenk, reset the value of,,..r to 0 and application prefetcher to fetch the block requests in
run the disk 1/O profiler. Its termination conditions the application launch sequence in the sorted order
are the same as those in the first phase. of their LBAs. After flushing the page cache, we

first run the modified application prefetcher, then
immediately run the application. Lét,,;.q denote
the resulting launch time.

e FAST We flush the page cache, and then run
the application simultaneously with the application
prefetcher. The resulting launch time is denoted by
trpAST-

e Prefetcher only We flush the page cache and run
the application prefetcher. The completion time of
the application prefetcher is denoted hy,. It

3. Run the application prefetcher simultaneously with
the target application.

4. If a raw block request sequence is captured, use
it to calculate the miss ratio of the application
prefetcher. If it exceed®,,;s, delete the applica-
tion prefetcher.

The miss ratio is defined as the ratio of the number of
block requests not issued by the prefetcher to the total
number of block requests in the application launch se-

quence. is used to calculate a lower bound of the applica-
_ tion launch timetyoung = max(tssd, tepu), Where
5 Performance Evaluation tepu = twarm 1S assumed.

Launch-time measurement. We start an application
launch by clicking an icon or inputting a command, and
Experimental platform. We used a desktop PC can accurately measure the launch start time by monitor-
equipped with an Intel i7-860 2.8 GHz CPU, 4GB of ing whenexecve() is called. Although it is difficult
PC12800 DDR3 SDRAM and an Intel 80GB SSD (X25- to clearly define the completion of a launch, a reasonable
M G2 Mainstream). We installed a Fedora 12 with Linux definition is the first moment the application becomes re-
kernel 2.6.32 on the desktop, in which we set NOOPsponsive to the user [2]. However, it is difficult to accu-
as the default 1/O scheduler. For benchmark applicarately and automatically measure that moment. So, as an
tions, we chose frequently used user-interactive applialternative, we measured the completion time of the last
cations, for which application launch performance mat-block request in an application launch sequence using
ters much. Such an application typically uses graphicaBl kt r ace, assuming that the launch will be completed

5.1 Experimental Setup

400000 Table 3: Collected launch sequencé {,seq = 2)

0
‘EC; E 300000 Application # of block | # of fetched | # of used
35 requests | blocks files
§- 200000 Access 1296 106 992 555
88 Acrobat reader 960 73784 178
‘5 g 100000 Designer-qt4 2400 138608 410
. 2 s 4 5 s 7 5 s 1 Excel 1610 169112 583
Number of input block request sequences F_'SpOt 1180 49968 304
. . L Firefox 1566 60944 433
Figure 5: The size of application launch sequences. Gimp 1939 66928 799
Gnome 4739 228872 538
- - Houdini 4836 290320 724
very soon after issuing the last blo_ck reque;t. For the Kdevdesigner 1537 44,904 467
warm start scenario, we executpdsi x_f advi se()

. . Kdevelop 1970 63104 372
with POSI X_FADV_DONTNEED parameter to evict the Kongueror 1780 62216 206
last block request from the page cache. For the sorted| | zpview 2927 154768 354
prefetch and the FAST scenarios, we modified the appli- | matlab 6125 267312 742
cation prefetcher so that it skips prefetching of the last | OpenOffice 1425 104 600 308
block request. Powerpoint 1405 120808 576

Skype 892 41560 197

. Thunderbird 1533 64784 429

52 EXperImental Results Visio 1769 168832 662
Application launch sequence generationWe captured Word 1715 181496 613
pp 9 9 P Xilinx ISE 4718| 328768 351

10 raw block request sequences during the cold start
launch of each application. We ran the application launch
sequence extractor with a various number of input blockion immediately after running the application prefetcher
request sequences, and observed the size of the resulduring the application launch, we captured all the block
ing application launch sequences. Figure 5 shows thatequests generated usi kt r ace, and counted the

for all the applications we tested, there is no significantnumber of missed block requests. The average number of
reduction of the application launch sequence size whilenissed block requests was 1.6% of the number of block
increasing the number of inputs from 2 to 10. Hence, werequests in the application launch sequence, but varied
set the value ofV,.,.se, in Table 2 to 2 in this paper. We among repeated launches, e.g., from 0% to 6.1% in the
used the size of the first captured input sequence as thexperiments we performed.

number of inputs one in Figure 5 (the application launch . .
sequence extractor requires at least two input sequencejﬁ).By examining the missed block requests, we could cat-

For some applications, there are noticeable differences i gorize them into three types: (1) f"?’s o.pene_d by QS
size between the number of inputs one and two. This i aemons and user daemons at boot time; (2) journaling

because the first raw input request sequence includesdaata or swap partiion accesses; and (3) files dynamically

set of bursty 1/0 requests generated by OS and user da [r(]aa;gdt(?[r renamed abt every Iaun(;h (G'%ff H1e()). he t
mons that are irrelevant to the application launch. Fig- € hirst lype occurs because we force the page cache (o

ure 5 shows that such 1/O requests can be e1‘fectivelfe flushed in the experiment. In reality, they are highly
i

excluded from the resulting application launch sequenc k_ely o res'de in the page cache, and thus, thls_type of
misses will not be a problem. The second type is irrel-

using just two input request sequences. C o
9! P q q evant to the application, and observed even during idle

The second and third columns of Table 3 summanzc(aBi e. The third type occurs more or less often, depend-

the total number of block requests and accessed blocks m Lo)
the thus-obtained application launch sequences, respe'(p-g on the application. FAST does not prefetch this type
tively. The last column shows the total number of files Of block requests as they change at every launch.

used during the launch of each application. Experiments for the test scenarios.We measured the
Testing of the application prefetcher. Application launch time of the benchmark applications for each test
prefetchers are automatically generated for the benchscenario listed in Section 5.1. Figure 6 shows that the
mark applications using the application launch sequenceaverage launch time reduction of FAST is 28% over the
in Table 3. In order to see if the application prefetch-cold start scenario. The performance of FAST varies
ers fetch all the blocks used by an application, weconsiderably among applications, ranging from 16% to

first flushed the page cache, and launched each applicd6% reduction of launch time. In particular, FAST shows

120.0% 1.6s 0.8s 19s 4.8s 21s 1.1s 09s 23s 26s 56s 18s 16s 1.2s 2.7s 51s 09s 1.9s 1.0s 1.0s 3.7s 2.6s 6.6s 93%

100.0% 72%
80.0% 6%
o,
60.0% &7
. B lcold
40.0% Osorted
20.0% Spast
0.0% Otwarm
o 0 = < [K}] X =% [} E s a 5 2 o o b] ° o ° w [} Wissa
g & 5 2 ¢ 2 & £ £ § & 9o g &3 s & § & £ @ 5 o B B tpouna
Q © T = i}] o 5} 2 = 2 o g > ® bS] a = = S = X 5
< £ 8 3 Lo 6 & % g z 8 = & g © 3 £ ¢
1 % (N B U B <
o v 3 c o [
&) [a] X

Figure 6: Measured application launch time (normalizeti.JQ).

Cold CPU ill ‘\ " i III‘\‘\lll‘ﬂll\f\ll‘llll\l[l-JVII!I’IIIH\lllfllllﬁll\l \‘Illl\IIIIII‘I\IHIIII“\III\HIIUIIIIII-\H‘I‘\‘\l\IPII-I‘IIIII-I\II‘\NIIIIIIIH‘IIII.I‘IF\II‘I\‘\’I\IEHI\‘I-\IIIIIIUIIMI\‘-I\IIIIIIIIII

start SSD [l
Warm CPU g]
start SSD {N-~ !

CPU %
FAST SSD
Sorted CPU I T A R T, D 0 g,
prefetch SSD] '
1 2 3 twarm tEAST 4 torte te 5
warm LFAST sorted cold (s60)

Low CPU usage Application: Eclipse

o S50 | TR e e L

start SSD (c) |

1

!

!

{ 1

FasT 25 e A e —— !
7 1

Sorted CPU il [| |] ||| || \ --l_ i

prefetch SSD h—f-nhﬁﬁﬁmqu. | - !) '

0

twarm tFAST Isorted Teold (sec;

Application: Firefox
Figure 7: Usage of CPU and SSD (sampling rate = 1 KHz).

performance very close tg,,,4 for some applications, of whichtg g7 is close to and far fron,,,.4, respec-
such as Eclipse, Ghome, and Houdini. On the other handijvely. We modified the OS kernel to sample the number
the gap betweety,...q andtr 4 s is relatively larger for of CPU cores having runnable processes and to count the
such applications as Acrobat reader, Firefox, OpenOfnumber of cores in the I/O wait state. Figure 7 shows
fice, and Labview. the CPU and SSD usage of the two applications, where
the entire CPU is regarded as busy if at least one of its
ores is active. Similarly, the SSD is assumed busy if
here are one or more cores in the 1/0O wait state. In the
cold start scenario, there is almost no overlap between
EPU computation and SSD access for both applications.

Launch time behavior. We conducted experiments to

see if the application prefetcher works well as expecte
when it is simultaneously run with the application. We
chose Firefox because it shows a large gap betwee

n . We monitor h ner lock . .
thouna @Ndtrasr. We monitored the generated block | " * oL o scenario, the CPU stays fully active
requests during the launch of Firefox with the applica-

until the launch is completed as there is no wait. One

tion prefetcher, and observed that the first 12 of the entireexCe tion we observed is the time period marked with
1566 block requests were issued by Firefox, which tookCirclg (a), during which the CPU s%ems i be in the
about 15 ms. As the application prefetcher itself should 9 .)
event-waiting state. FAST is shown to be successful in
be launched as well, FAST cannot prefetch these blocK . ; .
overlapping CPU computation with SSD access as we

requests unti finishing its launch. However, we Ob_i tended. However, CPU usage is observed to be low at

served that all the remaining block requests were issue(g_le beginning of launch for both applications, which can
by FAST, meaning that they are successfully prefetche e explained with the example in Figure 2. As Eclipse

before the CPU needs them. shows a shorter such time period (Circle (b)) than Fire-
CPU and SSD usage patternsWe performed another fox (Circle (c)), trasr can reach closer té,ynqg. In
experiment to observe the CPU and SSD usage patternie case of Firefox, however, the ratio f,, t0 ¢s.4 iS

in each test scenario. We chose two applications, Eclipselose to 1:1, allowing FAST to achieve more reduction
and Firefox, representing the two groups of applications

10

Table 4: Runtime overhead (application: Firefox)

5 12
o
gg 8 E;‘M Running processes Runtime (sec)
ET.E? 4 m m m P 1. Application only (cold start scenario) 0.86
gz [trasT 2.strace + bl kt race + application 1.21
© 0 3. bl kt race + application 0.88
5 Nu;(:)er ofappI:csations 20 4. Prefetcher generation 5.01
5. Prefetcher + application 0.56
Figure 8: Simultaneous launch of multiple applications. | 6. prefetcher bl kt r ace + application 0.59
7. Miss ratio calculation 0.90

of launch time for Firefox than for Eclipse.

Performance of sorted prefetch. Figure 6 shows that
the sorted prefetch reduces the application launch tim
by an average of 7%, which is less efficient than FAST,
but non-negligible. One reason for this improvement is
the difference in 1/O burstiness between the cold starf
and the sorted prefetch. Most SSDs (including the on
we used) support the native command queueing (NCQ
feature, which allows up to 31 block requests to be sen
to a SSD controller. Using this information, the SSD

controller can read as many NAND flash chips as post th licati fetchoh d tedl
sible, effectively increasing read throughput. The av- o theapplication prefetciphase, and repeatedly occur

erage queue depth in the cold start scenario is close tBntiI the application prefetcher is invalidated. Cases 6
1, meaning that for most of time there is only one out-and 7 occur only whem,,,..; reachesV.,, and Case 7

standing request in case of SSD. In contrast, in the sortef" be run in background.
prefetch scenario, the queue depth will likely grow larger FAST creates temporary files such as system call log
than 1 because the prefetcher may successively issi#ées and I/O traces, but these can be deleted after FAST
asynchronous 1/O requests usipgsi x_f advi se(), completes creating application prefetchers. However, the
at small inter-issue intervals. generated prefetchers occupy disk space as far as ap-
On the other hand, we could not find a clear evidencePlication prefetching is used. In addition, application
that sorting block requests in their LBA order is advan-launch sequences are stored to check the miss ratio of
tageous in case of SSD. Rather, the execution time ofhe corresponding application prefetcher. In our exper-
the sorted prefetcher was slightly longer than its unsortedment, the total size of the application prefetchers and
version for most of the applications we tested. Also, theapplication launch sequences for all 22 applications was
sorted prefetch shows worse performance than the cold-2 MB.
start for Excel, Powerpoint, Skype, and Word. AlthoughFAST applicability. While previous examples clearly
these observations were consistent over repeated testsgamonstrated the benefits of FAST for a wide range of
further investigation is necessary to understand such applications, FAST does not guarantee improvements for
behavior. all cases. One such a scenario is when a target ap-
Simultaneous launch of applications. We performed plication is too small to offset the overhead of loading
experiments to see how well FAST can scale up forthe prefetcher. We tested FAST with the Linux utility
launching multiple applications. We launched multiple uname, which displays the name of the OS. It generated
applications starting from the top of Table 3, adding five 3 I/O requests whose total size was 32 KB. The measured
at a time, and measured the launch completion time of_,;; was 2.2 ms, antlz 4 57 was 2.3 ms, 5% longer than
all launched applicatiods Figure 8 shows that FAST the cold start time.
could reduce the launch completion time for all the tests, apother possible scenario is when the target applica-
whereas the sorted prefetch does not scale beyond 10 ags, experiences a major update. In this scenario, FAST
plications. Note that the FAST |mproyem§nt qecreaseqnay fetch data that will not be used by the newly up-
from 20% to 7% as the number of applications increaseqjteq application until it detects the application update
from 5 to 20. and enters a new launch profiling phase. We modified
Runtime and space overhead.We analyzed the run- e application prefetcher so that it fetches the same size
time overhead of FAST for seven possible combinationg;¢ gata from the same file but from another offset that
of running processes, and summarized the results in Tag ot used by the application. We tested the modi-
2Except for Gnome that cannot be launched with other appioati fied prefetcher with Firefox. Even in this case, FAST
and Houdini whose license had expired. reduced application launch time by 4%, because FAST

gle 4. Cases 2 and 3 belong to thanch profilingphase,
which was described in Section 4.4. During this phase,
Case 2 occurs only once, and Case 3 0CQWfS,seq
imes. Case 4 corresponds to thvefetcher generation
hase (the right side of Figure 3), and shows a relatively
ong runtime. However, we can hide it from users by run-
ing it in background. Also, since we primarily focused
on functionality in the current implementation, there is
room for further optimization. Cases 5, 6, and 7 belong

11

could still prefetch some of the metadata used by theap 15
plication. Assuming most of the file names are changec
after the update, we ran Firefox with the prefetcher for g
Gimp, which fetches a similar number of blocks as Fire-
fox. In this experiment, the measured application launct
time was 7% longer than the cold start time, but the per-
formance degradation was not drastic due to the interne
parallelism of the SSD we used (10 channels).

M Cold start
[J Warm start

Lnhl

Q Qo Q
Q o a o

< < < <

Application
launch time (sec
o (6] 8
App1 r
App2 r
App3 [
App4 [
App5 [

App6 [F—

App7

e}
Q.
=%

<

Appy [

App10 ==

Figure 9: Measured application launch time on iPhone 4
Configuring application launch manager. The appli- (CPU: 1 GHz, SDRAM: 512 MB, NAND flash: 32 GB).
cation launch manager has a set of parameters to be

configured, as shown in Table 2. N,q,scq iS S€t t0O 6 Applicability of EAST to Smartphones
large, users will experience the cold-start performance

during the initialization phase. |If it is set too small, The similarity between modern smartphones and PCs
unnecessary blocks may be included in the applicationyith SSDs in terms of the internal structure and the us-
prefetcher. Figure 5 shows that setting it between 2 anglge pattern, as summarized below, makes smartphones a

4 iS a gOOd ChOi(?e. The pI’OpeI’ VaIUeNE}Lk W|” de' good Candidate to Wh|Ch we can app|y FAST:
pend on the runtime overhead BFf kt r ace; if FAST

is placed in the OS kernel, the miss ratio of the ap- ® Unlike other mobile embedded systems, smart-
plication prefetcher may be checked upon every launch ~ Phones run different applications at different times,

(N = 1) without noticeable overhead. Also, setting making application launch performance matter
R,.iss t0 0.1 is reasonable, but it needs to be adjusted =~ MOre,

after gaining enough experience in using FAST. To find e Smartphones use NAND flash as their secondary
the proper value df’ 4., we investigated the SSD’s max- storage, of which the performance characteristics
imum idle time during the cold-start of applications, and are basically the same as the SSD; and

found it to range from 24 ms (Thunderbird) to 826 ms
(Xilinx ISE). Hence, settind’;4;. to 2 seconds is proper

in practice. As the maximum cold-start launch time is
observed to be less than 10 seconds, 30 seconds may be
reasonable fol};.cout- All these values may need to be

adjusted, depending on the underlying OS and applicaFurthermore, a smartphone has the characteristics that
tions. enhance the benefit of using FAST as follows:

e Smartphones often use slightly customized (if not
the same) OSes and file systems that are designed
for PCs, reducing the effort to port FAST to smart-
phones.

e Users tend to launch and quit applications more fre-
Running FAST on HDDs. To see how FAST works on guently on smartphones than on PCs;

a HDD, we replaced the SSD with a Seagate 3.5" 1 TB
HDD (ST31000528AS) and measured the launch time of
the same set of benchmark applications. Although FAST
worked well as expected by hiding most of CPU com-)
putation from the application launch, the average launch ® !t refatively slower CPU and flash storage speed
time reduction was only 16%. It is because the applica- ~ MaY increase the absolute reduction of application
tion launch on a HDD is mostly I/O bound; in the cold launch time by applying FAST.

start scenario, we observed that about 85% of the appli- Although we have not yet implemented FAST on a
cation launch time was spent on accessing the HDD. Ismartphone, we could measure the launch time of some
contrast, the sorted prefetch was shown to be more elsmartphone applications by simply using a stopwatch.
fective; it could reduce the application launch time by anwe randomly chose 14 applications installed on the
average of 40% by optimizing disk head movements. iPhone 4 to compare their cold and warm start times, of
which the results are plotted in Figure 9. The average
We performed another experiment by modifying the cold start time of the smartphone applications is 6.1 sec-
sorted prefetch so that the prefetcher starts simultaneands, which is more than twice of the average cold start
ously with the original application, like FAST. However, time of the PC applications (2.4 seconds) shown in Fig-
the resulting launch time reduction was only 19%, whichure 6. Figure 9 also shows that the average warm start
is worse than that of the unmodified sorted prefetch. Theaime is 63% of the cold start time (almost the same ra-
performance degradation is due to the 1/0 contention betio as in Figure 6), implying that we can achieve similar
tween the prefetcher and the application. benefits from applying FAST to smartphones.

e Due to relatively smaller main memory of a smart-
phone, users will experience cold start performance
more frequently; and

12

7 Comparison of FAST with Traditional 7.2 When to Prefetch

Prefetching FAST is not activated until an application is launched,

. . . - . which is as conservative as demand paging. Thus, un-
FAST is a special type of prefetching optimized for appli- like prediction-based application prefetching schemes

cation launch, whereas most of the traditional prefetch- : .)
. ; . [12, 28], there is no cache-pollution problem or addi-
ing schemes focus on runtime performance improve-

ment. We compare FAST with the traditional prefetchingtlor.]"JlI disk 1/O activity durlng idle period. However,_onFe_
; ; : . “activated, FAST aggressively performs prefetching: it
algorithms by answering the following three questions

that are inspired by previous work [32]. keeps on fetching subsequent bloclfs in the application
launch sequencasynchronouslgven in the absence of

page misses. As the prefetched blocks are mostly (if not

7.1 What to Prefetch all) used by the application, the performance improve-

] ~_ ment of FAST is comparable to that of the prediction-
FAST prefetches the blocks appeared in the applicatiopssed schemes when their prediction is accurate.
launch sequence. While many prediction-based prefetch-

ing schemes [9, 23, 39] suffer from the low hit ratio of
the prefetched data, FAST can achieve near 100% hif -3 What to Replace

ratio. This is because the application launch sequeNCeasT does not modify the replacement algorithm of
changes little over rgpeated launches of an applicatiorbage cache in main memory, so the default page replace-
as observed by previous work [4, 18, 34]. ment algorithm is used to determine which page to evict
Sequential pattern detection schemes like readaheag order to secure free space for the prefetched blocks.
[13, 31] can achieve a fairly good hit ratio when acti- |, general, prefetching may significantly affect the
vated, but they are applicable only when such a patteryerformance of page replacement. Thus, previous work
is detegted. By contrast, FAST gugran_tees stable perfoTS’ 14, 35] emphasized the need for integrated prefetch-
mance improvement for every application launch. ing and caching. However, FAST differs from the tradi-
One way to enhance the prefetch hit ratio for a com-tjona| prefetching schemes since it prefetches only those
plicated disk 1/O pattern is to analyze the applicationp|ocks that will be referenced before the application
source code to extract its access pattern. Using the thugynch completes (e.g., in next few seconds). If the page
obtained pattern, prefetching can be done by either ingache in the main memory is large enough to store all
serting prefetch codes into the application source codgne plocks in the application launch sequence, which is
[29, 38] or converting the source code into a computaommonly the case, FAST will have minimal effect on

an approach does not work well for application launch

optimization because many of the block requests gener- .
ated during an application launch are not from the ap8 Conclusion

plication itself but from other sources, such as loading))
shared libraries, which cannot be analyzed by examinY/e_Proposed a new |/O prefetching technique called

ing the application source code. Furthermore, both rePAST for the reduction of application launch time on

quire modification of the source code, which is usuallySSPS- We implemented and evaluated FAST on the
not available for most commercial applications. EvenLiNuXx OS, demonstrating its deployability and perfor-
if the source code is available, modifying and recompi

|.mance superiority. While the HDD-aware application
ing every application would be very tedious and incon-

launcher showed only 7% of launch time reduction on
venient. In contrast, FAST does not require applicationSSDS’ FAST achieved a 28% reduction with no addi-
source code and is thus applicable for any commercial

ional overhead, demonstrating the need for, and the
application.

utility of, a new SSD-aware optimizer. FAST with a
Another relevant approach [6] is to deploy a shaoloWwell-designed entry-level SSD can provide end-users the
process that speculatively executes the copy of the origf-

astest application launch performance. It also incurs
inal application to get hints for the future 1/0 requests.falrly I(_)W |mpl_e_me_ntat_|on qverhead and ha_s exc_ellent
It does not require any source modification, but Ccm_portablllty, facilitating its wide deployment in various
sumes non-negligible CPU and memory resources for thglatforms.
shadow process. Although it is acceptable when CPU
is otherwise stalled waiting for the I/O completion, em- Acknowledgments
ploying such a shadow process in FAST may degrade ap-
plication launch performance as there is not enough CPWe deeply appreciate Prof. Heonshik Shin for his sup-
idle period as shown in Figure 7. port and providing research facility. We also thank our

13

shepherd Arkady Kanevsky, and the anonymous reviewi6]
ers for their invaluable comments that improved this pa-
per. This research was supported by WCU (World Class
University) program through National Research Founda{l7]
tion of Korea funded by the Ministry of Education, Sci-
ence and Technology (R33-10085), and RP-Grant 2010
of Ewha Womans University. Sangsoo Park is the correlt
sponding author (email: sangsoo.park@ewha.ac.kr).

[19]
References
[20]
[1] Wine User Guide http://www.winehg.org/docs/wineusr-guide/
index, Last accessed on: 17 November 2010.

[2] APPLE INC. Launch Time Performance Guidelineshttp:// [21]
developer.apple.com/documentation/Performance/Coredéptu
LaunchTime/LaunchTime.pdf, 2006.

[3] AxBOE, J. Block 10 Tracing http://www.kernel.org/git/?p= [22]
linux/kernel/git/axboe/blktrace.qgit;a=blob;F=README006.

[4] BHADKAMKAR , M., GUERRA, J., USECHE L., BURNETT, S.,
LIPTAK, J., RANGASWAMI, R., AND HRISTIDIS, V. BORG:
Block-reORGanization for self-optimizing storage systentis. [23]
Proc. FAST(2009), pp. 183-196.

[5] Cao, P., FELTEN, E. W., KARLIN, A. R.,AND LI, K. Astudy [24]
of integrated prefetching and caching strategies.Pioc. SIG-
METRICS(1995), pp. 188-197. [25]

[6] CHANG, F.,AND GIBSON, G. A. Automatic I/O hint generation
through speculative execution. Broc. OSDI(1999), pp. 1-14.

[7] CHEN, F., KOUFATY, D. A., AND ZHANG, X. Understanding [26]
intrinsic characteristics and system implications of flasinoey
based solid state drives. Rroc. SIGMETRIC$2009), pp. 181—
192.
[27]

[8] CouiTTl, L. Analyzing and improving GNOME startup time. In
Proc. SANK2006), pp. 1-11.

[9] CUREWITZ, K. M., KRISHNAN, P.,AND VITTER, J. S. Practi- (28]
cal prefetching via data compressi@GMOD Rec. 222 (1993),
257-266.

[10] Dirik, C., AND JacoB, B. The performance of PC solid-state [29]
disks (SSDs) as a function of bandwidth, concurrency, @evic
architecture, and system organization. Rroc. ISCA(2009),
pp. 279-289.

[11] DuUNN, M., AND REDDY, A. L. N. A new I/O scheduler for
solid state devices. Tech. Rep. TAMU-ECE-2009-02, Depart-
ment of Electrical and Computer Engineering, Texas A&M Uni-
versity, 2009.

(30]

(31]

[12] ESFAHBOD, B. Preload—An adaptive prefetching daemon. Mas-
ter’s thesis, Graduate Department of Computer Science, WUnive [32]
sity of Toronto, Canada, 2006.

[13] FENGGUANG, W., HONGSHENG X., AND CHENFENG, X. On [33]
the design of a new Linux readahead framew@kGOPS Oper.
Syst. Rev. 45 (2008), 75-84.

[14] GILL, B. S.,AND MODHA, D. S. SARC: Sequential prefetching [34]
in adaptive replacement cache Aroc. USENIX2005), pp. 293—
308.

[15] HUBERT, B. On faster application startup times: Cache stuff- [35]
ing, seek profiling, adaptive preloading. Rroc. OLS(2005),
pp. 245-248.

14

INTEL. Intel Turbo Memory with User Pinning Intel,
http://www.intel.com/design/flash/nand/turbomemory/item,
Last accessed on: 17 November 2010.

Jo, H., KiM, H., EONG, J., LEE, J.,AND MAENG, S. Optimiz-
ing the startup time of embedded systems: A case study of digital
TV. IEEE Trans. Consumer Electron. 55(2009), 2242—-2247.

8] Joo, Y., CHO, Y., LEE, K., AND CHANG, N. Improving ap-

plication launch times with hybrid disks. Proc. CODES+ISSS
(2009), pp. 373-382.

KAMINAGA, H. Improving Linux startup time using software
resume. IrProc. OLS(2006), pp. 25—-34.

KiM, H., AND AHN, S. BPLRU: A buffer management scheme
for improving random writes in flash storage. Rroc. FAST
(2008), pp. 1-14.

Kim, J., AH, Y., Kim, E., CHol, J., LEE, D., AND NOH, S. H.
Disk schedulers for solid state drivers.Rroc. EMSOFT(2009),
pp. 295-304.

Kim, Y.-J., LEE, S.-J., HANG, K., AND Kim, J. I/O perfor-
mance optimization techniques for hybrid hard disk-based imobi
consumer device$EEE Trans. Consumer Electron. 58(2007),
1469-1476.

KoTtz, D., AND ELLIS, C. S. Practical prefetching techniques
for parallel file systems. IRroc. PDIS(1991), pp. 182-189.

LARUS, J. Spending Moore’s dividendCommun. ACM 525
(2009), 62-69.

LicHOTA, K. Prefetch: Linux solution for prefetching necessary
data during application and system startupttp://code.google.
com/p/prefetch/, 2007.

MATTHEWS, J., TRIKA, S., HENSGEN D., CouLsoN, R.,

AND GRIMSRUD, K. Intel®Turbo Memory: Nonvolatile disk
caches in the storage hierarchy of mainstream computer systems
ACM Trans. Storage,£ (2008), 1-24.

MICROSOFT Support and Q&A for Solid-State DrivesMi-
crosoft, http://blogs.msdn.com/e7/archive/2009/05/Q%gert-
and-g-a-for-solid-state-drives-and.aspx, 2009.

MiIcROSOFT Windows PC Acceleratorshttp://www.microsoft.
com/whdc/system/sysperf/perfaccel.mspx, Last accessedon:
November 2010.

MowRy, T. C., DEMKE, A. K., AND KRIEGER, O. Automatic
compiler-inserted 1/O prefetching for out-of-core appfioas. In
Proc. OSDI(1996), pp. 3-17.

NEELAKANTH NADGIR. Reducing Application Startup Time
in the Solaris 8 OS http://developers.sun.com/solaris/articles/
reducingapp.html, 2002.

Pal, R., PULAVARTY, B., AND CAO, M. Linux 2.6 perfor-
mance improvement through readahead optimizationPrbt.
OLS(2004), pp. 105-116.

PAPATHANASIOU, A. E., AND ScoOTT, M. L. Energy efficient
prefetching and caching. lroc. USENIX(2004), pp. 22-22.

PARK, C., KiM, K., JANG, Y., AND HYUN, K. Linux bootup
time reduction for digital still camera. IRroc. OLS(2006),
pp. 239-248.

PARUSH, N., PELLEG, D., BEN-YEHUDA, M., AND TA-SHMA,
P. Out-of-band detection of boot-sequence terminationtevém
Proc. ICAC(2009), pp. 71-72.

PATTERSON, R. H., GBSON, G. A., GINTING, E., SroboL-
SKY, D., AND ZELENKA, J. Informed prefetching and caching.
In Proc. SOSK1995), pp. 79-95.

[36]

(37

(38]

(39]

[40]

RussINOVICH, M. E., AND SOLOMON, D. Microsoft Windows
Internals 4th ed. Microsoft Press, 2004, pp. 458-462.

SAMSUNG SEMICONDUCTOR Samsung Hybrid Hard Drive
http://Iwww.samsung.com/global/business/semiconducionsrt/
brochures/downloads/hdd/ftthtashee200708.pdf, 2007.

VANDEBOGART, S., RROST, C., AND KOHLER, E. Reducing
seek overhead with application-directed prefetching. Ptac.
USENIX(2009).

VELLANKI, V., AND CHERVENAK, A. L. A cost-benefit scheme
for high performance predictive prefetching.Rroc. SC(1999).

YANG, C.-K., MITRA, T., AND CHIUEH, T.-Cc. A decoupled
architecture for application-specific file prefetching. Fmoc.
USENIX(2002), pp. 157-170.

15

