
Maestro: Quality-of-Service in Large Disk Arrays

Arif Merchant∗
Google

aamerchant@google.com

Mustafa Uysal∗
VMware

muysal@vmware.com

Pradeep Padala∗

DOCOMO USA Labs
ppadala@docomolabs-usa.com

Xiaoyun Zhu∗

VMware
xzhu@vmware.com

Sharad Singhal
HP Labs

sharad.singhal@hp.com

Kang Shin
University of Michigan
kgshin@eecs.umich.edu

ABSTRACT
Provisioning storage in disk arrays is a difficult problem be-
cause many applications with different workload character-
istics and priorities share resources provided by the array.
Currently, storage in disk arrays is statically partitioned,
leading to difficult choices between over-provisioning to meet
peak demands and resource sharing to meet efficiency tar-
gets. In this paper, we present Maestro, a feedback con-
troller that can manage resources on large disk arrays to
provide performance differentiation among multiple appli-
cations. Maestro monitors the performance of each applica-
tion and dynamically allocates the array resources so that
diverse performance requirements can be met without static
partitioning. It supports multiple performance metrics (e.g.,
latency and throughput) and application priorities so that
important applications receive better performance in case of
resource contention. By ensuring that high-priority appli-
cations sharing storage with other applications obtain the
performance levels they require, Maestro makes it possible
to use storage resources efficiently. We evaluate Maestro
using both synthetic and real-world workloads on a large,
commercial disk array. Our experiments indicate that Mae-
stro can reliably adjust the allocation of disk array resources
to achieve application performance targets.

1. INTRODUCTION
Consolidated storage environments typically have multi-

ple applications store their data on shared, large disk arrays.
For virtualized data centers, in particular, multiplexing ap-
plication workloads on shared storage resources is the norm.
This results in improved resource utilization, easier storage
management, and lower cost. However, the applications us-
ing the shared storage present very different storage loads
and have different performance requirements. For example,
Online Transaction Processing (OLTP) applications typi-
cally present bursty loads and require bounded I/O response

∗This work was done while the author was with HP Labs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAC-11, June 14-18, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-59593-998-2/09/06 ...$10.00.

time; business analytics applications require high through-
put; and back-up applications usually present intense, highly
sequential workloads with high throughput requirements. In
addition, some applications are more important from a busi-
ness perspective and therefore have higher priority. It is crit-
ical to ensure that each application receives a performance
commensurate with its needs and priority.

A shared storage system should ideally be able to provide
each application with the performance it requires and keep
one application from harming the performance of another.
First, it should support performance differentiation between
applications using per-application metrics and targets most
appropriate to the applications. For example, one should be
able to specify throughput targets for throughput-sensitive
applications and latency targets for latency-sensitive appli-
cations. Second, since the applications can have different
importance or urgency, the storage system should support
prioritization among the applications, to be applied when
the resources are not adequate to meet all the application
requirements. For example, meeting the I/O response time
requirement of an interactive system may take precedence
over the throughput requirement of a backup system. Third,
most large disk arrays have multiple I/O ports, and clients
can be configured to access data through some or all of the
ports. The performance differentiation and priorities should
apply to the applications regardless of which ports they use.
Finally, the mechanism must be simple, predictable, and ro-
bust, not requiring continual manual adjustment and tuning,
even as workloads vary over time. Unfortunately, the meth-
ods reported to date in the literature are ineffective or do
not support multiple application-specific performance met-
rics, explicit performance targets, and application priorities
for overload conditions (see Section 2).

The main contribution of this paper is a new design, us-
ing adaptive feedback-control, for a storage QoS controller
called Maestro that satisfies all of the requirements above.
It supports application performance differentiation based on
per-application metrics and targets, application priorities,
and disk arrays with multiple ports. Since administrators
need only to determine the requirements of individual ap-
plications and the priorities relative to the other applica-
tions, it is also simple to configure and use. Maestro mon-
itors the performance of each application and periodically
adjusts the allocation of I/O resources to applications to
make sure that each application meets its performance tar-
get. If the resources available are insufficient to provide all
the applications with their requested performance, Maestro
sets the resource allocations so that each application’s per-

*

Scheduler

Throughput Latency Overload Performance
target target priority insulation

SFQ(D) Relative No No No
Zygaria Relative No No No
AQuA Relative No No No
mClock Relative No No No
Avatar Relative Yes No No
PARDA Relative No No No
Triage No Yes No No
Façade No Yes No No
Argon No No No Yes

Fahrrad No No No Yes
Maestro Absolute Yes Yes No
Table 1: Comparison of storage scheduler features.

formance is reduced (relative to its target) in inverse propor-
tion to its priority. We evaluated Maestro using an exten-
sive set of synthetic benchmarks and trace workloads shar-
ing a large commercial disk array. The results indicate that
Maestro performs very well, maintaining application perfor-
mance levels at or above the specified targets when there
are adequate resources, and reducing the performance in
accordance with each application’s priority when there are
inadequate resources.

The remainder of this paper is organized as follows. We
describe the related work and how our contribution com-
pares to it in Section 2. Section 3 explains the system model
and the design of Maestro. Section 4 describes our prototype
implementation. The experimental evaluation of Maestro is
detailed in Section 5, and Section 6 presents our conclusions.

2. RELATED WORK
Existing QoS schedulers for shared storage can be divided

into three categories: schedulers providing relative through-
put allocations, schedulers providing per-application latency
targets, and schedulers providing performance insulation.

Relative throughput: Proportional-share schedulers [?,
?, ?, ?, ?] provide relative throughput guarantees to active
applications. These schedulers are mainly based on weighted
fair queueing [?]. Typically, a weight is attached to each ap-
plication, usually by the system administrator, and the avail-
able throughput from the storage device is shared between
the active applications in proportion to the weights. Since
storage throughput varies enormously depending upon the
combination of workloads presented, absolute throughput
targets cannot be supported by these schedulers. However,
some schedulers, such as Zygaria [?] and AQuA [?], addi-
tionally support minimum throughput reservations based on
a conservative estimate of the device throughput. mClock [?]
supports both minimum throughput reservations and max-
imum throughput limits. PARDA [?] uses a single target
for the device-level latency seen by all the hosts sharing the
device and does not support per-application latency target.
It uses a feedback control algorithm to tune the per-host
maximum concurrency and employs proportional sharing to
allocate individual application (VM) concurrencies within
each host.

Latency targets: A few schedulers provide support for
per-application I/O latency targets. Façade [?] enforces
user-defined latency targets using the Earliest Deadline First
(EDF) scheduler; it assumes that there is adequate I/O ca-
pacity to support all active workloads, and does not han-
dle overload conditions. Triage [?] uses feedback-control
to throttle all applications so that the most restrictive la-
tency target is met. SLED [?] enforces per-application

latency bounds by heuristically throttling applications re-
ceiving better than requested performance in favor of under-
served applications. SARC-Avatar [?] straddles the relative-
throughput and latency-target categories: it selects a group
of I/Os to be scheduled using proportional sharing, but then
orders those I/Os using the EDF policy to meet latency tar-
gets.

Performance insulation: Argon [?] provides each ap-
plication with a fixed fraction of the performance it would
receive if it had sole use of the device, by time-slicing the de-
vice appropriately and using cache partitioning. Fahrrad [?]
allows applications to reserve a fixed fraction of a disk’s uti-
lization and enforces it efficiently via careful disk scheduling.

How Maestro is different: In discussions with storage
system administrators, we found that, the properties of ex-
isting QoS schedulers were useful but not sufficient. Since
the set of applications running on large arrays can be highly
time-varying, it is not practical to use relative throughput
allocations, since they would need to be adjusted very fre-
quently. Performance insulation is extremely useful when
the stand-alone performance of an application is known, but
hard to use when initially provisioning an application. It
is easier for administrators to specify absolute performance
targets per application, since these do not change and are
easy to reason about. Moreover, some applications have
throughput requirements while others have latency require-
ments; thus, it is necessary to support both throughput and
latency targets. Finally, while the load on arrays is arranged
so that the targets can be met normally, the system must al-
low overload priorities that apply when not all performance
targets can be met. The priority scheme needs to be flex-
ible, to allow differing degrees of performance degradation
under overload, without shutting out some workloads com-
pletely. Based on these requirements, we designed Maestro
to support absolute throughput and latency targets of ap-
plications, as well a a flexible priority scheme. Table 1 com-
pares the features of existing schedulers and Maestro.

Related techniques: Maestro uses adaptive feedback
control to achieve the specified throughput and latency tar-
gets, and the desired prioritization under overload. Several
researchers have applied control theory to computer systems
for resource management and performance control [?, ?].
Examples of its application include performance assurances
for web servers [?], dynamic adjustment of the cache size for
multiple request classes [?], CPU and memory utilization
control in web servers [?], admission control for 3-tiered web
sites [?], adjustment of resource demands of virtual machines
based on resource availability [?], dynamic CPU allocations
for multi-tier applications [?, ?], and mitigation of perfor-
mance interference among colocated cloud applications [?].
AutoControl [?] uses a MIMO controller to adjust resource
shares for multiple virtual machines to achieve application
performance targets. Our work builds upon techniques from
this body of work.

3. STORAGE CONTROLLER DESIGN
This section first presents our system model, which is

based on the typical design of large commercial disk arrays
and their usage. It then describes the design of Maestro and
details its components.

3.1 System model
Our system (Figure 1) consists of a disk array with a num-

Figure 1: Storage system consists of a shared disk
array with an independent proportional-share I/O
scheduler running at each port.

ber of input ports where applications submit their I/O re-
quests. Each application using the system has a specified
performance target (either an I/O throughput or a latency)
and a priority level. The performance target of the applica-
tion is supplied by the application’s user. Its priority level,
which is relative to the other applications in the system, is
specified by a system administrator; alternatively, the sys-
tem administrator may assign a priority level to the user,
which will apply to all his applications. The goal of Maestro
is to enable each application to achieve its target perfor-
mance or better when it is possible to do so. However, it is
generally not possible to guarantee application performance
levels without severely under-utilizing the array, because the
performance depends so strongly upon the workload char-
acteristics (such as temporal and spatial locality). When it
is not possible to meet all the application performance tar-
gets, Maestro’s goal is to deviate from the specified targets
in inverse proportion to the application priorities. Note that
this is a very flexible QoS framework, capable of emulating
many other priority schemes; for example, one application
can effectively be given absolute priority over another by
making its priority level much higher.

The disk array allows control of the performance avail-
able to applications through QoS schedulers at the ports.
Applications may submit their I/O requests to any subset
of ports, in any proportion. The ports all share the same
back-end resources. The QoS schedulers can be implemented
in the disk array firmware or in an external “shim” device
through which all I/O accesses pass. The port’s QoS sched-
uler controls the resource sharing among the applications by
limiting how many I/O requests each application can have
outstanding at the disk array back-end from that port, and
delaying some requests, if necessary. The number of I/O
requests allowed outstanding is an adjustable parameter for
each application and is set by an external controller. Once
scheduled, an I/O request is released to the back-end of the
disk array to access a shared array cache and disk devices.
In order to meet the QoS targets of the applications, an
external feedback controller periodically polls the port I/O
controllers to determine the performance each application
is receiving and then adjusts the parameters of all the port
QoS schedulers to meet the performance targets.

In our system, the port QoS schedulers have a single
parameter, concurrency bound, for each application. The
scheduler limits the number of I/O requests outstanding at
the disk array back-end from each application to its con-
currency bound. For example, if an application has a con-
currency bound of 2, and it has 2 I/O requests pending
at the back-end, the scheduler will not send any more re-
quests from that application to the back-end until at least
one of the pending requests finishes. The total concurrency

Figure 2: Architecture of Maestro.

of the array (i.e., the total number of I/Os permitted at the
back-end from all ports) is limited, either by the system, or
by an administrative setting; we call this constant the total

concurrency bound, denoted by C. C is chosen by making
a tradeoff between maximizing the array’s throughput and
making Maestro more responsive to workload changes. Al-
lowing more simultaneous I/O requests into the array back-
end means that there can be more I/O requests at each disk,
which improves the disk throughput. On the other hand, be-
cause of the architecture of the array, once the requests are
released to the array back-end, they proceed independently
of Maestro. Hence, a large value of C limits the ability of
Maestro to respond quickly to workload changes. Since we
have found in the past that queueing 4 I/O requests per disk
extracts most of the available throughput from the disk, we
typically set C to 4 times the number of disks in the array.

3.2 The design of Maestro
Maestro consists of three layers that implements the QoS

controller and uses the QoS schedulers to implement the
controller’s decisions, as shown in the Figure 2. The first
layer is a set of application controllers that estimate the con-
currency bound settings for each application to achieve its
performance target. Application controllers also produce a
model that estimates the relationship between the concur-
rency and the application performance. The second layer
is an arbiter, which uses the application priorities with the
concurrency requests and performance models generated by
the application controllers to determine their global concur-
rency allocations. Finally, the port allocator determines the
per-port concurrency setting for each application based on
its global concurrency allocation and the recent distribution
of its I/O requests across the ports.

3.2.1 Application controller
Each application has a separate controller that computes

the scheduler concurrency setting required to achieve its tar-
get. The application controller consists of two modules: a
model estimator and a requirement estimator. The model
estimator dynamically estimates a linear model for the dy-
namic relationship between the concurrency allocated to the
application and its performance. This linear estimation is
designed to capture approximately the behavior of the sys-
tem in the vicinity of the current operating point, where

Symbols description

N number of applications
M number of ports
C total permitted outstanding requests
ai the ith application
pi priority
yi(t) normalized I/O performance
Ui(t) concurrency limit

Ûi(t) estimated concurrency requirement
Ui,j(t) concurrency limit at port j
di,j(t) demand at port j
ci current normalized concurrency
ui normalized concurrency for next interval
βi(t) slope of linear model for yi

fi model of performance as function of ui

l limit on change of Ui in one control interval

Table 2: Notation used. All parameters with subscript

i are for application ai, and argument t means it applies

to control time interval t.

the changes in the workload characteristics and the concur-
rencies allocated are small. The requirement estimator uses
the model to compute how much concurrency the applica-
tion requires to meet its target. This estimate is sent to
the arbiter as the application’s requested allocation. Next,
we describe the model and requirement estimator below in
greater detail.

Model estimator: Suppose there are N applications, de-
noted as a1, a2, . . ., aN . (The notation we use in this paper
is summarized in Table 2 for convenient reference.) Since
the applications can have different performance metrics and
targets, we first define a normalized performance metric that
allows us to compare the performance of different applica-
tions in a uniform way. The normalized performance yi(t)
received by application ai in control interval t is defined as

yi(t) =

8

>

>

>

>

<

>

>

>

>

:

throughput for ai in interval t
throughput target for ai

if ai uses a throughput metric;
latency target for ai

latency for ai in interval t
if ai uses a latency metric.

While it is primarily for notational convenience, this normal-
ization has several other advantages: the normalized metric
grows higher as the application performance improves, re-
gardless of whether the performance metric is throughput
or latency; the performance of different applications relative
to their target values can be easily compared (e.g., yi = 0.9
means that the application ai is getting performance 10% be-
low its target); and optimization with the normalized metric
is more numerically stable.

Maestro requires a model to predict the effect of differ-
ent concurrency allocations in the application performance.
While there are a number of existing techniques for predict-
ing storage performance [?, ?], they are primarily focused on
providing long-term, steady-state performance predictions,
while we require predictions of how the performance will
change immediately after a concurrency allocations changed.
The transient performance varies quite non-linearly with the
concurrency allocation, but it can be approximated locally
with a linear model if the changes in allocation are small.

We therefore use a linear auto-regressive model that is re-
computed in each control interval.

Let Ui(t) be the corresponding concurrency allocated to
ai in interval t, and recall that the total concurrency of the
system is C. We then estimate a linear auto-regressive model
for the normalized performance:

yi(t) ≈ yi(t − 1) + βi(t)(Ui(t) − Ui(t − 1))/C. (1)

The value of the slope βi(t) is re-estimated through lin-
ear regression in every control interval using the past sev-
eral measured values of application ai’s performance. These
adjustments allow an application’s model to incorporate im-
plicitly the effects of the changing workload characteristics of
all the applications (including itself). Using a linear model
is a reasonable approximation of the underlying system so
long as the workload characteristics and the resource allo-
cations do not change very much. These conditions apply
because we re-estimate the model in every control inter-
val, and hence, the workload characteristics generally do
not change very much, and we constrain the controller to
make only small changes to the concurrency allocations in
each interval. We keep the duration of the control interval
short, 2 seconds in our implementation, to frequently in-
corporate the changes in the workload conditions into the
performance estimates. It is possible to use yet shorter con-
trol intervals, but we did not see any gain from doing so
in our experiments. In actual use, we found that the linear
model (1) captures the behavior of the system reasonably
well when workload characteristics change slowly, but can
be inaccurate if the workload changes abruptly. In addition,
the application performance, which is used in the regression
for the gradient βi(t), can vary due to many reasons and, as
a result, the data used to measure βi(t) is noisy. To com-
pensate for this, we monitor the linear regression used to
estimate βi(t), and revert to the default model βi(t) = 1
if the fit in the regression is poor, or if the value found for
βi(t) is not within reasonable bounds (for example, if βi(t)
is negative). The default model allows us to enforce the
basic constraint that when a concurrency allocation for an
application is increased, we expect a positive change in its
normalized performance, and the slope of 1 gives a conser-
vative prediction for the change in the performance metric.
The application’s performance in the next interval can be
estimated by approximating βi(t + 1) ≈ βi(t), which gives:

yi(t + 1) ≈ yi(t) + βi(t)(Ui(t + 1) − Ui(t))/C (2)

We also experimented with more sophisticated models, in-
cluding higher-order auto-regressive models and quadratic
models, but found that they were no more effective than
this simple, linear, auto-regressive model.

Requirement estimator: The requirement estimator
computes the concurrency required by the application, based
on the model (2), and sends it to the arbiter as the applica-
tion’s requested allocation.

More specifically, the model (2) is used to compute the

concurrency Ûi(t + 1) the application requires for the next
interval (i.e., to make the normalized metric yi(t+1) >= 1):

Ûi(t + 1) = Ui(t) + C(1 − yi(t))/βi(t) (3)

This estimate is then modified, as described below, using two
constraints, one to maintain high utilization and the other
to limit the degree of change in the resource allocation.

In some situations, an application does not generate as
many concurrent I/O requests as its requested allocation
from the requirement estimator. This can happen, for ex-
ample, if the number of I/O generating threads in the appli-
cation is low or there are dependencies between successive
I/O requests that limit the number of I/O requests the ap-
plication can have pending at a time. If the application ai

used, on average, less than 80% of its allocated concurrency
in the previous control interval, then the request estimator
adjusts the value of Ûi(t + 1), based on the number of con-
current I/O requests issued in the previous interval, so that
the average concurrency utilization of ai is at least 80% in
the next interval. This constraint ensures that the appli-
cation is not allocated more concurrency than it can use,
allowing the unused concurrency resource to be allocated to
the other applications in the system.

The second constraint applied to the requested concur-
rency is that the change from the previous allocation is lim-
ited. This constraint can override the minimum utilization
constraint, if needed. The limit is 5% in our current imple-
mentation; in other words, if necessary, we change Ûi(t + 1)
to fit in the range [Ui(t) − 0.05C, Ui(t) + 0.05C]. This limit
ensures that the system remains close to the current oper-
ating point, where the estimated linear model still applies.
Also, the data from which the model is estimated are often
noisy as workload patterns change, and the resulting mod-
els can occasionally be inaccurate until the workload behav-
ior stabilizes. Limiting the change in concurrency within a
control interval limits the harm caused by temporarily in-
accurate models. The cost of this limit is that convergence
to a new operating point is slowed down when application
characteristics change, but we found rate of convergence ad-
equate in empirical tests.

3.2.2 Arbiter
The arbiter computes the applications’ actual global con-

currency settings for the next control interval based on their
priorities. In each control interval, the arbiter receives the
concurrency requests and the models used to derive them
from each of the application controllers. There are two cases,
(1) the underload case, where the total concurrency bound is
large enough to meet the independent requests submitted by
the application controllers, and (2) the overload case, where
the total concurrency bound is smaller than the sum of the
requests. In the case of underload, the scheduler parameters
are set based on the application controllers’ requests, and
any excess concurrency available is distributed in proportion
to the applications’ priorities. In the overload case, the ar-
biter uses a linear optimization to find concurrency settings
that will degrade each application’s performance (relative
to its target) in inverse proportion to its priority, as far as
possible. As in the application controllers, the arbiter also
limits the deviation from the previous allocations so that the
estimated linear model is applicable.

More precisely, say, the arbiter is running at the end of
control interval t and needs to compute the next concur-
rency allocation Ui(t + 1) for application ai. We elide the
underload case, since it is trivial. Suppose that the system
is overloaded, or

P

j
Ûj(t + 1) > C. We define ci = Ui(t)/C

as the current normalized concurrency allocation to appli-
cation ai and ui = Ui(t + 1)/C as its next normalized al-
location. Let fi be the linear model estimating the perfor-
mance of application ai in terms of ui, based on Eq. (2):

fi(ui) = yi(t) + βi(t)(ui − ci). Let pi be the priority of ap-
plication ai. In order to compute the future allocations ui,
the arbiter solves the following Linear Program (LP):

Find u1, . . . , uN to minimize ǫ subject to:

pi(1 − fi(ui))−pj(1 − fj(uj)) < ǫ

for 1 ≤ i 6= j ≤ n

|ui − ci| ≤ l for 1 ≤ i ≤ n

u1 + · · · + uN = 1.

Note that the allocation for the previous control interval
satisfies the constraints of this optimization, and hence it
always has a feasible solution.

In the above LP, pi(1 − fi(ui)) is the priority-weighted

fractional tracking error (PWFTE) for application ai, which
measures how much below target its performance will be,
weighted by its priority. ǫ is the maximum difference be-
tween the PWFTEs for different applications, and the ob-
jective function tries to minimize this maximum difference;
note that ǫ is produced from the LP optimization, and is
not user-supplied. In the limit, ǫ = 0, all the PWFTEs
are equal, and the fractional performance reduction of each
application, relative to its target, is in inverse proportion
to its priority. For example, consider a scenario with two
applications, a1, with priority p1 = 1 and a2, with priority
p2 = 2. If the performance of a1 is 10% below its target, its
PWFTE is 0.1. If ǫ = 0, then a2 has an equal PWFTE, and
its performance should be 0.1/p2, or 5% below its target.

3.2.3 Port allocator
The arbiter computes the aggregate concurrency setting

for each application, but this concurrency has to be trans-
lated into per-port settings. Since application workloads
may be dynamic and non-uniform across the ports, the port
allocator uses the recently-observed demand from each ap-
plication at the ports to determine how much of the applica-
tion’s concurrency should be allocated to a port. We define
an application’s demand at a port as the mean number of
I/O requests outstanding from the application at the port
during the previous control interval.

More precisely, let di,j(t) denote the the demand of appli-
cation ai through port j during the current interval t, and
Ui(t+1) = C ·ui its aggregate concurrency for the next inter-
val as determined by the arbiter. Then, the corresponding
per-port concurrencies are given by:

Ui,j(t + 1) = Ui(t + 1)

di,j(t)
PM

k=1
di,k(t)

!

(4)

where M is the number of ports. These concurrency values
are rounded up to determine the number of simultaneous
application I/Os permitted from that port. In addition, we
set the concurrency setting to be at least one for all applica-
tions at all ports, even if the applications do not access the
port, in order to avoid blocking an application that begins
sending I/Os to a port during the next control interval.

4. PROTOTYPE IMPLEMENTATION
Our prototype implementation of Maestro consists of two

parts: a controller and a scheduler. The controller imple-
ments the three layers that are responsible for dynamically
allocating the available concurrency in the disk array: appli-
cation controllers, arbiter, and port allocator. The scheduler

implements the concurrency limiting mechanism that the
controller uses to enforce its allocations. In addition, the
scheduler collects the low-level performance statistics used
by the controller.

We implemented the controller in Java as a user-level pro-
cess in the Linux operating system. The scheduler is im-
plemented in C as a Linux kernel module. The scheduler
creates pseudo devices (entries in /dev), each representing a
different service level. The scheduler module intercepts the
requests made to the pseudo devices and passes them to the
disk array so long as the number of outstanding requests are
less than the concurrency limit. The scheduler also provides
an ioctl interface for the controller to poll the performance
statistics and set the concurrency limits of each application.
The controller polls the scheduler at each control interval
(every 2 seconds in our experiments) and gathers the statis-
tics to determine overall performance levels achieved by all
the applications. It then computes the concurrency alloca-
tions for the next interval and sets the concurrency limit for
each pseudo device.

We used four HP BL460c blade servers and a high-end XP-
1024 disk array for our experiments. The blade servers were
connected to separate ports of the XP-1024 disk array via
4 Gbit/s QLogic Fibre channel adapters. Each server had
8GB RAM, two 3GHz dual-core Intel Xeon processors and
used the Linux kernel version 2.6.18-8.el5 as its operating
system. Each server ran the scheduler independently and the
scheduler parameters were set once in every control interval.
We ran the controller on one of the servers and used TCP
sockets to communicate with the other schedulers.

We used 40 logical disk groups in the XP-1024, 29 of which
were configured as RAID-5 and the remaining 11 as RAID-
1. Each of the logical disk groups contained 4 disk drives.
In total, we used 160 disk drives in our experimental setup.
We created several logical volumes at each of the hosts us-
ing these disk groups: for the experiments with synthetic
workloads (described in Section 5), we created a logical vol-
ume from 7 disk groups, and for the experiments with trace
workloads, we created a logical volume out of 32 disk groups.

5. EVALUATION
We now evaluate Maestro using a variety of workloads.

We first describe the workloads and then outline our evalu-
ation methodology. Then, we present our results from the
experiments we conducted. The experiments are divided
into three categories: evaluating the functionality of Mae-
stro, evaluating its robustness to different types of workloads
and specifications, and testing with real-world workloads.

We used a variety of synthetic and trace-driven work-
loads in our experiments. Our reference synthetic workload,
called light, consists of 16KB fixed size accesses generated
by 25 independent threads. These accesses were made to
locations selected at random. 90% of these accesses were
reads and 10% were writes. We also generated additional
workloads based on light by varying the number of I/O
generating threads and the size of the I/O requests in our
evaluation. The heavy workload used 100 threads with the
same characteristics as light. The last synthetic workload
is called change, where the workload starts as heavy, but
later changes its characteristics as described in the experi-
ments. It, too, uses a 90:10 mix of reads and writes.

We also used traces gathered from real-world applications
in our evaluations by replaying the workloads in these traces

on our XP-1024 disk array. We used two traces for this pur-
pose: a trace of the TPC-C benchmark and a trace of an
SAP system supporting more than 3000 users. Both of these
are database workloads and the traces were obtained at the
block I/O layer. The TPC-C workload was originally run on
a mid-range HP EVA disk array; it consists of 60% reads of
small (4 KB to 8 KB), random requests. The SAP bench-
mark originally used an XP-512 disk array with 16GB cache
and 40 RAID groups with 4 disks each (160 disk drives).
We replayed these traces on our XP-1024 disk array using
32 RAID groups of 4 disks each, spread across a total of 128
disk drives.

5.1 Evaluating functionality
Our first set of experiments are designed to validate the

basic functionality of Maestro. We used synthetic workloads
for these experiments. The three experiments test, respec-
tively, that the Maestro achieves the desired performance
differentiation, that it can simultaneously handle latency
and throughput targets, and that it correctly differentiates
performance based on the application priorities.

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350

Time (seconds)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Target:Change

Target:Light

Change

Light

Figure 3: Performance differentiation.

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250 300 350

Time (seconds)

N
o

rm
a
li
ze

d
 P

e
rf

o
rm

a
n

c
e

Target

Light

Change

Figure 4: Workloads with different target metrics.
The light workload has 20MB/s throughput target
and the change workload has 10ms latency target.

Performance differentiation: To test that the Maestro
achieves and maintains the desired performance differentia-
tion, we ran an experiment with two equal-priority work-
loads with different throughput targets. The first workload
is the previously described light workload, with a target of
20 MB/s. The second workload is change, a heavier work-
load with a changing I/O size, and a target of 25 MB/s.
The change workload has 100 threads that initially generate
16KB I/Os and switch to small 4KB I/Os midway through

the experiment. Figure 3 plots the resulting throughputs.
Both workloads initially meet their targets. However, when
the request size of change drops, it is unable to meet its
target, which now demands a higher I/O rate. Since the
priorities of the two workloads are equal, Maestro moves re-
sources from light to change, so that the performance of
both drops proportionately, which is the specified behavior.

Different target metrics: In the second experiment,
we used two equal-priority workloads with different target
metrics: the light workload with a throughput target of 25
MB/s and a different variant of the change workload with
a latency target of 10ms. In this experiment, the change

workload varies the number of I/O-generating threads in
three phases: it uses 100 threads in the first phase, 25
threads in the second phase, and 5 threads in the third
phase. Figure 4 plots the normalized performance of both
workloads: (throughput/target-throughput) for light and
(target-latency/latency) for change. The target value for
both workloads is 1, and higher is better; ideally, both should
be at or above 1 and, since they have equal priorities, su-
perposed when they are below 1. In the first phase of the
experiment, neither of the two workloads is able to meet its
target due to the high intensity (100 threads) of the change

workload. In the second phase, change reduces its intensity
to 25 threads and as a result, both workloads are able to
meet their respective targets: light achieves a throughput
of about 25 MB/s and change experiences a reduction in its
latency to about 10ms. Finally, in the last phase of the work-
load change reduces its intensity by using only five threads,
and as a result, the light workload is able to further boost
its throughput to about 38 MB/s without hurting the la-
tency goals of the change workload. Note that the change

workload cannot reduce its latency further as its requests
are no longer queued (but instead dispatched directly); as
a result, Maestro allocates the excess concurrency not used
by the change workload to the light workload.

Priorities: In the last experiment of this set, we used
two workloads light and heavy; the latter workload uses
100 threads to issue I/O requests. We set the target for
light as 15 MB/s and the heavy for 45 MB/s. In this
experiment, both heavy and light workloads started with
equal priorities. After 180 seconds, we adjusted the priority
of the heavy workload to be four times that of the light

workload. Figure 5 shows the effects of the priority change.
The normalized throughputs of both workloads are initially
equal, reflecting the equal priorities. When the priority of
the heavy workload is increased, Maestro throttles the light
workload so that the heavy workload is approximately four
times closer to its target compared to the light workload,
which, again, matches the specified priorities.

5.2 Evaluating robustness
We evaluated the behavior of Maestro in three aspects

to determine its robustness: 1) with increasing numbers of
workloads, 2) with bursty workloads, and 3) with workloads
with non-uniform load distribution across the array ports.

Increasing workloads: To evaluate the effectiveness of
the optimization-based resource allocation as the number of
workloads increases, we ran experiments with 2, 4, 8, and
16 light workload instances sharing the disk array. In each
case, we set the priorities of half of the workloads to 4 and
half to 1. Figure 6 shows the normalized performance of
the high priority workloads and the low priority workloads

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350

Time (seconds)

N
o

rm
a

li
ze

d
 P

e
rf

o
rm

a
n

c
e

Target

light

heavy

Figure 5: Effects of workload priorities.

for each of the workload mixes. The error bars indicate
the standard deviation of the normalized performance dur-
ing the experiment. Recall that, for the normalized per-
formance, the performance of applications should either be
above 1 (higher is better), or when it is below 1, the discrep-
ancy for each application should be inversely proportional to
the priority. As the figure shows, Maestro provides higher
performance to high priority applications regardless of the
number of workloads present. Second, the variation in the
normalized performance generally stays low as the number
of workloads increases. In the case of the 16-workload mix,
the array is extremely overloaded, and Maestro allocates
the per-port minimum resources allowed to the low-priority
workloads. As a result, the performance of the low work-
loads is higher than their priorities would require. In the
case of the 2-workload mix, the array is underloaded and
the high workloads already get their maximum performance
limit, and as a result, the 4:1 priority ratio does not lead to
equivalent differentiation in performance. The low work-
loads had substantial variation in their performance. This
is because they are allocated close to mimimum concurrency
(1%, the minimum setting we used in this experiment), as
a result, even a small change in the concurrency allocation
causes the performance of the corresponding low workload
to jump. For example, for a concurrency allocation of 1,
increasing the allocation by one additional I/O concurrency
is a 100% increase in allocated resources.

0

0.5

1

1.5

2

2.5

3

2 workloads 4 workloads 8 workloads 16 workloads

N
o

rm
a

li
ze

d
 P

e
rf

o
rm

a
n

c
e

High Low

Figure 6: Increasing number of applications.

Bursty workloads: Next, we use a bursty workload to
determine whether the controller allocations are robust to
large peaks in workload demand. Figure 5.2 shows the nor-
malized performance of the light workload sharing the ar-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 40 80 120 160 200

Time (seconds)

N
o

rm
a

li
ze

d
 P

e
rf

o
rm

a
n

c
e

burst

light

Figure 7: Impact of bursty workloads.

ray with a workload that has periodic bursts. The light

workload has priority over the bursty workload (4:1). The
bursty workload alternates between 50 and 200 I/O-generating
threads every 20 seconds. Maestro is able to quickly change
the concurrency allocation, closely following the peaks of the
bursty workload while still keeping the performance of the
high priority light workload close to its target.

Non-uniform workloads: Finally, we evaluate the im-
pact of the port allocator in the presence of non-uniform,
changing workloads across the multiple ports. For this ex-
periment, we use 4 hosts and start 2 light workloads, light1
and light2, at each host. Initially, each host generates equal
load on its respective array port. After 140 seconds, the
light2 workload ceases generating requests at two of the
ports, and simultaneously transfers the load to the other two
ports. The overall load on the array is not changed. At 280
seconds after the experiment begins, the light1 workload
reallocates its workload similar to the light2 workload. At
this time, two ports receive all the requests, and two ports
are entirely idle, but the overall workload is not changed.
Figure 8 shows the fractional allocation of available concur-
rency (combined for both workloads) across the four ports
during this experiment. In the first phase, when each port
receives equal load, the concurrency allocation across ports
is correspondingly equal. As the workload shifts its load
from ports 1 and 3 to ports 0 and 2, the port allocator also
shifts the allocated concurrency to these ports without any
impact on the application performance.

0

20

40

60

80

100

120

140

160

180

200

0 40 80 120 160 200 240 280 320 360 400

Time (seconds)

C
o

n
c

u
rr

e
n

c
y

 A
ll

o
c

a
ti

o
n

port 3

port 2

port 1

port 0

Figure 8: Changing workloads across multiple ports.

5.3 Real-World Workloads and Overload
In this section, we describe our results from a set of experi-

ments that involve replaying traces gathered from real-world
applications. To test the behavior of Maestro in overload
conditions, we set targets that cannot all be met. We used
two traces for this purpose: a trace of the TPC-C bench-
mark and a trace of a production SAP system supporting
more than 3000 users. In our first set of experiments, we re-
played these two traces with a background workload called
DP using a workload generator with 200 independent threads
generating 64K random reads. For each of the trace work-
loads, we set a response time target of 50ms. We used a
throughput target for the background target for a sustained
I/O rate of 100 MB/s.

0.4

0.6

0.8

1

C
D
F

No control

Target

TPCC:DP = 2:1

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250

C
D
F

TPC C response time

No control

Target

TPCC:DP = 2:1

(a) TPC-C

0.4

0.6

0.8

1

C
D
F

No control

Target

TPCC:DP = 2:1

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125 150

C
D
F

DP throughput (MB/s)

No control

Target

TPCC:DP = 2:1

(b) DP
Figure 9: Replaying the TPC-C trace with a back-
ground workload on the XP disk array.

Figure 9 shows the distributions of the performance met-
rics of the TPC-C workload and the background workload,
running with and without Maestro. The targets of 50ms la-
tency for the TPC-C workload and 100 MB/s for the back-
ground workload were chosen to drive the storage system
into overload, where it is not possible to meet both require-
ments. The TPC-C trace is a very bursty workload with pe-
riods of low utilization alternating with periods of high I/O
intensity. We measured the latency of the TPC-C workload
and the throughput of the background workload, averaged
over 2-second intervals, and plotted the resulting cumula-
tive distribution functions (CDFs). Without any control,
the background workload achieved a maximum throughput
of around 115 MB/s and its performance was above its tar-
get about 90% of time during the experiment. On the other
hand, the TPC-C workload exceeded its target latency of
50ms about 90% of the time, with latencies in the range of
70ms to 120ms for 80% of the time during the experiment.
This experiment shows that the high priority TPC-C work-

load was not able to meet its service-level objectives due to
the interference from the heavy background workload.

We then ran the two workloads with Maestro, setting the
priority of the TPC-C workload to be 2 times that of the
background workload. We found that Maestro allocated
more of the available concurrency to the higher priority
TPC-C workload during periods of high I/O intensity. As a
result, the TPC-C workload met its latency target of 50ms
42% of the time, as opposed to 10% of the time without con-
trol. The throughput of the background workload was still
at or above its target for about half of the experiment, but
Maestro favored TPC-C during periods of contention. Recall
that there are not enough I/O resources for both workloads
to meet their targets simultaneously all the time, and as a
result, both workloads are unable to meet their targets for
about half of the experiment duration. However, during pe-
riods of contention, the performance degradation of TPC-C
was much lower than the performance degradation of the
background workload.

0.4

0.6

0.8

1

C
D
F

Target

No control

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125 150

C
D
F

SAP response time (ms)

Target

SAP:DP= 5:1

No control

(a) SAP

0.8

1

0.6

0.8

1

C
D
F

Target
No control

0.4

0.6

0.8

1

C
D
F

Target
No control

0

0.2

0.4

0.6

0.8

1

C
D
F

Target

SAP:DP = 5:1

No control

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

C
D
F

DP throughput (MB/s)

Target

SAP:DP = 5:1

No control

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120

C
D
F

DP throughput (MB/s)

Target

SAP:DP = 5:1

No control

(b) DP
Figure 10: Replaying the SAP trace against a back-
ground workload on an XP disk array.

In Figure 10, we show the performance of the SAP work-
load and the DP workload, with and without Maestro. The
SAP workload has a latency target of 50ms and the back-
ground workload has a throughput target of 100 MB/s. This
is, again, an overload scenario, where storage system cannot
give either SAP or the background workload enough perfor-
mance to achieve its performance target. The background
workload achieves about 90 MB/s throughput and the me-
dian latency of the SAP workload is around 80ms (with a
long tail), well above its target. When we ran the same
workload mix with Maestro, we set the priority of the SAP
workload to be 5 times that of the DP workload. With Mae-

stro enabled, the SAP workload received enough resources
to satisfy its latency goal, while the background workload
saw a small performance degradation (Figure 10(b)).

0.4

0.6

0.8

1

C
D
F

TPCC

SAPTarget

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700

C
D
F

Response time (ms)

TPCC

SAPTarget

(a) No Controller

0.4

0.6

0.8

1

C
D
F

TPCC SAP

Target

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100

C
D
F

Response time (ms)

TPCC SAP

Target

(b) Maestro
Figure 11: Replaying the SAP trace and the TPCC
trace together on the XP disk array.

So far, we used trace workloads together with a synthetic
background workload in our evaluation. We now show the
TPC-C workload and the SAP workload running together to
emulate the consolidated storage scenario where an OLTP
application and a business analytics application share a disk
array. Both applications have a response time target of
50ms. Figure 11(a) shows the performance of both appli-
cations running together, with no control, on the XP disk
array. The performance of the SAP workload was heavily
impacted by the presence of the TPC-C workload on the
same array: with a median latency of 500 ms, it missed its
latency target by an order of magnitude. On the other hand,
the latency of the TPC-C workload was around 10ms most
of the time, with occasional spikes up in the 30ms range,
well below its 50ms target.

Figure 11(b) shows the performance of the SAP and the
TPC-C workloads with Maestro. The priority of TPC-C
was set to 2 and the priority of SAP was 1. Both appli-
cations met their performance targets for over 80% of the
experiment duration. There was a slight degradation in the
performance of the TPC-C workload compared with the un-
controlled case, but it still performed within the bounds of
its target. In contrast, the performance of the SAP workload
improved substantially, as Maestro gave it the resources to
allow it to complete its I/Os quickly, despite the competing
high-concurrency workload. Furthermore, the performance
of the TPC-C workload remained strictly better than the

performance of the SAP workload, correctly reflecting its
higher priority.

6. CONCLUSIONS
In this paper, we presented Maestro, a storage controller

that dynamically allocates storage resources to multiple com-
peting applications accessing data on a shared multi-port
disk array. Maestro allows a user to specify the applica-
tion’s preferred metric (I/O throughput or latency), an ex-
plicit target value, and its priority. Maestro uses adaptive
feedback to provide each application with its desired per-
formance if possible. If the system is overloaded, and not
all performance targets can be met, it reduces each applica-
tion’s performance, relative to its target, in inverse propor-
tion to its priority. We argued that this is a simple, easily
understood specification, which does not require users to
know about the other applications sharing the storage sys-
tem, unlike existing mechanisms that require considerable
tuning. We presented an experimental evaluation of Mae-
stro using both synthetic and real-world workload traces on
a large, commercial disk array. Our experimental evaluation
showed that Maestro can reliably achieve application per-
formance requirements, and that it is robust in the face of
diverse requirements, and variable, bursty workloads, even
when the disk array is overloaded.

