1068

TEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 4, AUGUST 2012

DSASync: Managing End-to-End Connections in
Dynamic Spectrum Access Wireless LANs

Ashwini Kumar, Member, [EEE, and Kang G. Shin, Fellow, IEEE, ACM

Abstract—Wireless LANs (WLANSs) have been widely deployed
as edge access networks that provide the important service of
Internet access to wireless devices. Therefore, performance of
end-to-end connections to/from such WLANSs is of great impor-
tance. The advent of Dynamic Spectrum Access (DSA) technology
is expected to play a key role in improving wireless communi-
cation. With DSA capability, WLANs opportunistically access
licensed channels in order to improve spectrum-usage efficiency
and provide better network performance. In this paper, we
identify the key issues that impact end-to-end connection per-
formance when a DSA-enabled WLAN is integrated with the
wired cloud. We propose a new network management framework,
called DSASync, to mitigate the identified performance issues.
DSASync achieves this objective by managing the connections
at the transport layer as a third-party supervisor and targets
both TCP streams and UDP flows. DSASync requires no mod-
ifications to the network infrastructure or the existing network
stack and protocols while ensuring transport protocol (TCP or
UDP) semantics to be obeyed. It mainly consists of a combina-
tion of buffering and traffic-shaping algorithms to minimize the
adverse side-effects of DSA on active connections. DSASync is
evaluated using a prototype implementation and deployment in a
testbed. The results show significant improvement in end-to-end
connection performance, with substantial gains on QoS metrics
like goodput, delay, and jitter. Thus, DSASync is a promising step
toward applying DSA technology in consumer WLAN:s.

Index Terms—Approximate entropy, cognitive radio (CR),
Dynamic Spectrum Access (DSA), TCP, UDP, Wi-Fi.

I. INTRODUCTION

HE PRIMARY function served by a majority of IEEE

802.11 wireless LANs (WLANs)—e.g., home or office
wireless networks—is to serve as the first/last-mile access net-
work to the wired network cloud or the Internet, thus enabling
the end devices to avail of networking services over the wire-
less medium. However, rapid proliferation in wireless coverage
has exacerbated the unwanted side-effect of interference and
congestion on the consumer spectrum bands, resulting in poor

Manuscript received December 13, 2010; revised July 20, 2011; accepted
October 03, 2011; approved by IEEE/ACM TRANSACTIONS ON NETWORKING
Editor K. Papagiannaki. Date of publication January 09, 2012; date of current
version August 14, 2012. The preliminary work of this paper appeared in the
Proceedings of the IEEE Communications Society Conference on Sensor and
Ad Hoc Communications and Networks (SECON), Boston, MA, June 21-25,
2010.

A. Kumar was with the University of Michigan, Ann Arbor, MI 48109
USA. He is now with Juniper Networks, Sunnyvale, CA 94086 USA (e-mail:
ashwinik@eecs.umich.edu).

K. G. Shin is with the University of Michigan, Ann Arbor, MI 48109 USA
(e-mail: kgshin@eecs.umich.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNET.2011.2178264

wireless networking performance. Moreover, the popularity of
bandwidth-intensive and QoS-sensitive networking services
(like video streaming) is also growing, which further stresses
the performance on consumer WLANSs. Unlicensed wireless
operation, called Dynamic Spectrum Access (DSA) [2], is
emerging as an important solution to this potential performance
shortfall in WLANS.

With DSA capability,a WLAN can opportunistically commu-
nicate on spectrum bands that are licensed to a different service
or operator/owner, subject to certain constraints like incumbent
protection. A WLAN with DSA capability is referred to as a
DSA network (DSAN). DSA is witnessing active research and
standardization (e.g., IEEE 802.22 [3]), with the FCC’s approval
of commercial unlicensed operations in the TV spectrum [4].
We argue that effective integration of DSANs with existing net-
working infrastructure is important for the success of DSA and
a key step forward toward fully cognitive wireless networks [5].

Need for Connection Management in DSANs: DSANSs are ex-
pected to be utilized by consumers in a similar manner as most
existing WLANSs are—as edge access networks. Thus, DSANs
must match and exceed the end-to-end performance of tradi-
tional WLANSs in order to be commercially viable. Currently,
there is a lack of “end-to-end” insights into DSA. In this paper,
we investigate issues of integrating a DSAN with the wired
network.

DSA entails additional operational constraints in a rapidly
changing spectrum environment. Therefore, it involves a
number of functions and events that can be disruptive to on-
going network traffic. Examples include spectrum sensing,
channel switching, spectrum management and coordination,
and incumbent activity. Apart from performance degradation
at the lower link/PHY layers, such disruptive DSA-related phe-
nomena can make long-term adverse impacts on the end-to-end
communication. From a networking viewpoint, the transport
layer is the first layer (from bottom of the networking stack)
with true end-to-end semantics. We observe that the adverse
impact of DSA on end-to-end connections is primarily a con-
sequence of its negative side-effects at the transport layer.
The main reason for this undesirable reaction is the ignorance
of higher-layer transport protocols about lower-layer DSA
semantics, as we discuss next.

TCP Streams: Consider the example of incumbent activity on
the licensed channel. A TCP connection between a server host
in the cloud and a client on the DSAN can experience time-
outs when the client cannot send out ACK packets in time be-
cause of an ongoing DSA-induced quiet period on incumbent
detection. Consequently, TCP’s congestion control mechanism
will be unnecessarily invoked leading to further performance

10A.AAQY/R7A NN @ 2011 TRRER

KUMAR AND SHIN: DSASync

degradation. Other fundamental DSA functions like spectrum
sensing and channel-switching also contribute to this negative
impact. Such interruptions can be frequent, given: 1) the reg-
ulatory restrictions imposed on unlicensed operations; 2) DSA
service provider requirements; as well as 3) unforeseen incum-
bent activity.

Techniques have been proposed in the past to address perfor-
mance problems arising due to packet loss in the presence of
high bit error rate experienced on wireless medium, particularly
for TCP [6], [7]. In modern WLANSs, random wireless errors
are not a significant problem, as the quirks of early-era wire-
less protocols have been addressed through more sophisticated
error detection/correction schemes. In the context of DSANS,
delays and losses arise due to DSA-related events, and the dis-
ruption could last significantly longer. Unlike random wireless
errors, knowledge about many of the disruptive DSA events can
be deterministically obtained, thus making a proactive approach
feasible in masking their side-effects at the transport level.

UDP Flows: While there have been few TCP connection
management schemes for WLANSs in the past (as noted ear-
lier), not much work has been done for UDP-based network
connections. UDP is a connectionless protocol, and by design,
it does not address packet errors, delays, or losses. Thus, man-
aging UDP flows was not considered of particular importance
because applications requiring ordered delivery and reliability
should use TCP instead. However, we argue that UDP connec-
tion management is now very important as UDP flows carry a
significant portion of network traffic. The reason behind this is
the tremendous growth in popularity of multimedia-based net-
work services, e.g., video streaming, voice/video conferencing,
etc., which typically use UDP to ensure timeliness of delivery.
While such applications can tolerate some disruptions/losses,
they are highly QoS-sensitive.

Summary of Our Approach: We propose DSASync to ad-
dress the end-to-end performance issues when integrating a
DSAN with the wired Internet. DSASync is a network man-
agement framework for regulating TCP and UDP connections
traversing the wired—wireless boundary. DSASync comprises
algorithms based on buffering and traffic shaping to minimize
adverse impacts on TCP/UDP connections. During DSA-re-
lated disruptions (e.g., due to incumbent activity) the packets
are buffered in order to minimize losses. Also, the traffic rate is
shaped based on the expected amount of disruptions to elimi-
nate undesirable changes to connection behavior. There are two
main advantages of DSASync—it maintains the end-to-end
semantics of the standard transport protocols (TCP/UDP) and
ensures compatibility by not requiring any changes to their
existing implementations.

DSASync exploits several built-in control knobs of TCP
to provide a complete TCP connection management solution.
For example, the receive window advertisement is set to 0 to
throttle a prolific sender when the buffer space is full. Also, fast
retransmit/recovery is utilized to signal any sudden decrease
in channel capacity in case of a channel switch. Unfortunately,
UDP flows, being stateless, do not provide such ready-made
hooks. Therefore, it is significantly more challenging to provide
complete and nonintrusive connection management for UDP
flows. In DSASync, we take the higher-layer approach to

1069

address this problem by utilizing Real-time Transport Pro-
tocol (RTP) [8] features to manage the UDP-based connection.
For example, RTP control packets are used to signal changes
in channel capacity or to throttle the remote sender. Although
not all UDP flows use RTP, RTP over UDP is predominantly
used for most real-time streaming applications like VoIP, where
100% reliability or in-order delivery is not required, but QoS
is still important. In fact, our solution can be generalized for
managing any connection that uses RTP, irrespective of the
underlying transport protocol.

To the best of our knowledge, this is the first attempt to con-
sider integration issues with deployment of DSANs. DSASync
is designed to be compatible, scalable, and practical—a pro-
totype implementation is also developed and evaluated in a
testbed as part of this work.

Contributions: The contributions of this paper are threefold.
First, we identify the key challenges for the mainstream inte-
gration of DSA-based WLANS. The causes for various perfor-
mance problems are identified. Second, we propose DSASync
to address the identified issues in the context of TCP and UDP
connections. Third, DSASync is shown to better enable DSAN
integration with the Internet via a testbed-based evaluation.

Organization: The paper is organized as follows. Related
work is discussed in Section II. We present the background
and description of the problem in Section III. DSASync de-
tails are presented in Section IV, with an implementation in
Section V. Experimental evaluation of DSASync is presented
in Section VI. The paper concludes with Section VII.

II. RELATED WORK

There have been significant research efforts into the chal-
lenges and development of DSA. References [2] and [9] pro-
vide general surveys about the state-of-art in the field. Various
aspects of DSA, as enabled by cognitive radios, have been dis-
cussed in [5] and [10]-[12].

Spectrum-occupancy studies [13], [14] have shown the
existence of abundant spectrum white spaces across most of
the licensed spectrum despite diversity in channel and incum-
bent characteristics. The FCC has already issued preliminary
guidelines for DSA operations in TV bands [4]. Several DSA
MAC/PHY protocols have already been proposed in literature,
especially for TV bands [15]-[17]. Also, standardization efforts
for DSA protocols are currently in progress [3], [18].

However, there have been very few publications on the
end-to-end impact of DSA during actual deployment in
WLANS. Adaptation to application requirements in DSA has
been proposed in [19]. However, that approach is node-centric
rather than network-centric and does not account for impacts
on the end-to-end connections. The authors of [20] identified
the important issues affecting TCP in a DSAN. They proposed
a novel reliable transport protocol for DSA ad hoc networks,
called TP-CRAHN. However, TP-CRAHN does not address
the issues when a DSA network acts as an access network to the
Internet. Another key shortcoming of this work is its deploy-
ment incompatibility—it requires a completely new transport
protocol to be linked and loaded on the devices. On the other
hand, DSASync integrates DSANs with the Internet without
any changes to the existing applications or the protocol stack

1070

and is also comprehensive in its approach by incorporating
both TCP and UDP connection management.

As mentioned earlier, there have been several prior efforts
on improving TCP performance (albeit very little in context of
UDP) in wireless environments [6], [7], [21]. The key ideas pro-
posed were: 1) splitting of wired and wireless TCP connections;
or 2) localized caching and retransmissions when a packet loss
was identified on the wireless link. These efforts were motivated
by the high error rate in wireless medium, which caused substan-
tial performance drop in TCP connections. Such concerns have
mitigated with the advent of stronger error-correction schemes
and higher data-rate standards [22]. However, from these re-
sults, DSASync borrows the concept of packet buffering and
utilizing a proxy (e.g., the base station on the wired—wireless
boundary) as the central entity in executing its functions.

Our solution is related to the area of power management
and wireless network selection [23], [24], where traffic flows
must be protected from disruptions caused by power-saving
optimization algorithms. Such power-saving mechanisms pro-
duce adverse side-effects similar to DSA, and DSASync—Ilike
buffering and traffic shaping—can be very useful in such
scenarios.

III. ISSUES, SYSTEM MODEL, AND NOTATION

A. Integration Issues

As briefly mentioned earlier, unlicensed operation exhibits
several characteristics that adversely impacts a DSAN’s effec-
tiveness in functioning as an edge access network. The major
issues are listed as follows.

Sensing Interruptions: Spectrum sensing is performed to de-
tect channel characteristics, including incumbent presence or
absence. For reliable spectrum sensing, there must be no un-
licensed traffic on the channel. Thus, every sensing event in-
volves scheduling of a quiet period (QP), during which packet
transmission is halted.! Typically, the underlying DSA MAC
protocol schedules QPs [25]. Depending on the sensing tech-
nology and the channel characteristics, a QP typically lasts for
tens of milliseconds (ms) or more and can be scheduled as fre-
quently as every few hundred milliseconds. In general, DSA
protocols schedule sensing with a higher frequency than reg-
ulatory requirement in order to improve sensing accuracy and,
hence, improve DSA performance. For example, nodes can in-
dependently sense out-of-band channels proactively to get a
better picture of spectrum conditions. While an external sensing
infrastructure (e.g., geolocation sensing database) may reduce
the sensing overhead, online real-time sensing will be needed
for accuracy and correctness.

Channel-Switch Delays: Channel-switches can occur fre-
quently during DSA. Depending on the underlying DSA
protocol semantics, a channel-switch may be made to exploit
a better channel, or in the event of incumbent transmission on
the current channel. Each channel-switch can incur delay (e.g.,
due to the interface reset, coordination between nodes, etc.) of
22100 ms. Channel-switches (and sensing) also contribute to
the problem of “bandwidth fluctuation.”

IThough single wireless data interface is assumed for cost and simplicity rea-
sons, this problem is independent of the number of interfaces in the nodes for
in-band sensing.

TEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 4, AUGUST 2012

Bandwidth Fluctuation: During DSA, nodes can experience
wide variations in available bandwidth for several reasons.
Spectrum available for unlicensed usage on the current channel
depends on an incumbent utilization fraction, which can change
dynamically and substantially. Presence of additional WLANSs
in the vicinity (on the same channel) further decreases available
bandwidth for application traffic in a DSAN. Furthermore,
channel-switches may also contribute to bandwidth variability.
This can occur because of: 1) different amount of channel
usage opportunities available on the new channel; 2) different
channel-access strategy resulting in more/less throughput effi-
ciency; and 3) different spectrum widths of the new channel.

Incumbent Activity: Incumbent transmissions must be pro-
tected while a DSAN operates on a licensed channel. Thus,
when a Primary User (PU) transmission is detected (via
sensing), the DSAN nodes must not transmit and stop any
ongoing transmission within a very short time. If incumbent ac-
tivity on the channel is high, the DSAN’s communication traffic
will suffer greater delay and reduction in available bandwidth.
Although the underlying DSA protocol is typically designed
to take corrective actions when such a situation persists (e.g.,
by switching to a different channel), an incumbent activity still
results in significant disruption to ongoing communication.

Note that sensing/switching may not be independent of
incumbent behavior. For example, in WiMAX-type channels
(e.g., upcoming 802.16h draft), the white spaces (and incum-
bent activities) are short (=20 ms) but abundant, which require
frequent sensing to exploit for DSA.

DSA is fundamentally disruptive for ongoing wireless com-
munication, especially on a short-term scale, which cannot be
fully eliminated. Therefore, the design principle of DSASync
is to carefully manage end-to-end connection flows in order to
minimize the impact of the aforementioned disruptive events
experienced when DSA is active on the WLAN. Since trans-
port layer forms the basis of end-to-end connections and directly
impact application performance, our solution targets two core
transport protocols—TCP and UDP.

B. System Model and Notation

The system under consideration is a single-hop WLAN
with wireless devices (e.g., a Wi-Fi hotspot) that connect to
the wired network (e.g., Internet) through a base station (or
a designated node that interfaces with the wired network), as
shown in Fig. 1. This edge WLAN has DSA capability and,
hence, is also a DSAN. Each wireless device is equipped with
a DSA-enabled wireless interface card and necessary hardware
components, together with a DSA protocol. As is typical of
edge wireless access networks, the base station coordinates
association, authentication, and traffic to/from other nodes.
Hence, it has knowledge about other nodes’ important DSA
MAC parameters (e.g., sleep/awake cycles or independent
spectrum sensing schedules, if any). No restriction on DSA
MAC protocol or spectrum sensing is assumed to retain the
generality of DSASync.

We will use the following acronyms throughout the paper:

» wired network (WN): the network cloud (e.g., the Internet)

to which the wireless end-devices communicate to avail of
network services;

KUMAR AND SHIN: DSASync

Wired Network (WN)

Correspondent
Host (CH)

TCP/UDP Cormection S :

(wireless segment)

% Spectrum Agile
Host(SH) .°

Fig. 1. System model for a DSAN.

Network Stack

Application

DSASync_TCP

| DSASync_LL "

DSASync

> Transport (TCP/UDP)

Routing

Link/MAC

Physical

il

Fig. 2. Architectural overview of DSASync.

* DSA network (DSAN): a DSA-based wireless network that
is connected to the WN;

» spectrum-agile host (SH): a DSA-enabled end-device in
the DSAN that communicates with a device in the WN;

» correspondent host (CH): an end-device in the WN that
communicates with an SH;

* base station (BS): the designated device (or access point)
that connects the DSAN to the WN. All communications
from DSAN to WN and vice versa must pass through BS;

* transmission freeze period (TFP): the duration during
which packet transmission is halted by one or more SHs
or by the entire DSAN due to DSA-related events.

IV. DSASYNC

DSASync is logically a link-layer (LL) network management
protocol (similar to Snoop Agent [6]). However, DSASync
manages TCP/UDP connections—Fig. 2 shows DSASync’s
architecture schema.

To accomplish traffic management, DSASync sniffs the
packets in transit (at the BS), and maintains state information
(e.g., last ACK copy, sequence numbers, etc.) for each ongoing
TCP stream it detects. Similarly, it maintains some state infor-
mation (e.g., copies of latest sender report and receiver report
packets) for each RTP-based UDP flow identified.

A. DSASync: Link Layer

The DSASync LL component (DSASync_LL) is the “infor-
mation monitoring” unit of DSASync, which collects and main-

1071

tains information about DSA parameters required by DSASync.
The parameters of interest are as follows.

1) N = total number of wireless nodes associated with the
BS in the DSAN.

2) f58% (t) = the frequency of spectrum sensing by the en-
tire DSAN. This parameter usually corresponds to the co-
operative sensing schedule in which all nodes participate.

3) t35835 () = the duration of each spectrum sensing event
scheduled by the DSAN.

4) frmse(t) = the frequency of additional sensing (e.g.,
out-of-band) sensing performed by node .

5) £3°"¢(t) = the duration of each node-specific sensing
event at node ¢.

6) fouitch(t) = the frequency (rate) of channel switches.

7) thateh(t) = the delay involved in each channel switch.

8) grr,on(t) = the PU’s ON time distribution.

9) Spsan = the Boolean parameter indicating if sensing is
currently ongoing in the DSAN.

10) SWpgan = the Boolean parameter indicating if the
DSAN is currently performing a channel-switch.

11) S; = the Boolean parameter indicating if sensing is cur-
rently ongoing at node :.

12) PUgn = the Boolean parameter indicating if there is cur-
rently a PU activity on the current channel.

These parameters are part of any DSA MAC/PHY protocol
and are typically available at the link layer. For example,
most DSA protocols (specifically their sensing components)
estimate PU ON/OFF distribution in order to enhance DSA
performance [25]-[27].

B. TCP Management

The main task of the TCP management component,
DSASync_TCP, is to utilize the information collected by
DSASync_LL in managing both downlink (from CH to
SH) and uplink (from SH to CH) TCP traffic. The objective
is threefold: 1) to minimize packet loss; 2) to minimize
timeouts and, hence, retransmissions; 3) to adjust TCP
connection parameters in response to changes in available
bandwidth. In the basic design, DSASync_TCP executes
only at the BS, as the BS has all the necessary information
and the incoming/outgoing traffic must pass through it (see
Sections III-B and IV-D). DSASync_TCP consists of three
modules—DSASync_TCP_CH-SH, DSASync_TCP_SH-CH,
and DSASync_TCP_CAP.

1) DSASync TCP_CH-SH: This module buffers the
downlink (CH-SH) TCP packets for destination wireless nodes
during the TFPs. The current state of the destination node (w.r.t.
its packet-reception capability) is known from DSASync_LL.
The buffered packets are then transmitted from the BS to the
SH when the transmission can be resumed.

Due to limited buffer space at the BS, it is possible to run out
of space before the transmission is resumed. To prevent this sit-
uation, DSASync_TCP attempts to proactively pause the sender
by exploiting the built-in flow control mechanism of TCP.

Let the allocated space (at the BS) for buffering downlink
TCP packets be B'? B! and B}tlfgh are the configuration

alloc® “low
parameters for TCP buffer space thresholds, where BIP = >
ByP > B BiP s the current free buffer space for TCP

low* “free

1072

Algorithm 1: Algorithm TCP_CH-SH-a: Handler for downlink
TCP traffic

Require: B[, BIP hold

free> “low?

l: p «+ incoming CH-SH pkt

2: dest <« destination SH of p
3: src « source CH of p
4: conn « p’s TCP connection identifier
5: TFP « SWpsan|Spsan |Sdest|PUon
6: if TFP = 0 then
7: Add p to transmit queue
8: else
9: Buffer pkt
10: if hold = false then
11: if B> < B® then
12: hold = true
13: for cach TCP connection do
14: Advt. zero rwin to sender CH
15: end for
16: else
17: if SN{OW = SNY2L" 4 rwin®“™" then
18: Advt. zero rwin src for conn
19: end if
20: end if
21: else
22: if p = window update request then
23: Advt. zero rwin to src for conn
24: end if
25: end if
26: end if

packets. For the TCP connection conn, SNioh" is the latest se-

last

quence number acknowledged by the SH, SN2 specifies the
sequence number of the latest data packet (coming from CH)
buffered at BS, and rwin®°™" is the latest advertised receive
window.

The BS uses the procedure outlined in Algorithms 1 and
2—both executed in parallel—in order to manage CH-SH
TCP traffic. Algorithm 1 is executed when a TCP packet is
received from the CH. Algorithm 2 is executed periodically,
based on a sufficiently frequent timer interrupt. A separate
process updates buffer sizes (when a packet is added/removed)
and also overwrites the rwin field to 0 in outgoing packets, if
hold parameter (see Algorithms 1 and 2) is true.

Algorithm 1 checks for existence of a TFP currently (line 5)
and buffers the incoming packet in such a scenario (line 9).
Furthermore, to manage buffer space, it exploits the TCP
flow control mechanism to avoid buffer overflow (and hence
dropped packets) at the BS. The BS advertises a zero-size
receive window on behalf of the SH when the buffer threshold
is reached (lines 11-15). The same strategy is used to prevent
retransmissions (due to timeouts at the sender CH) when the
receive window becomes full during TFP (lines 17-19). During
TFP, a window update request from CH is handled by sending
out a zero-size rwin advertisement (lines 22-23). The algorithm
does not prevent timeouts or retransmissions at the endpoints
due to non-DSA factors, such as congestion in the network.

TEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 4, AUGUST 2012

Algorithm 2: Algorithm TCP_CH-SH-b: Buffering manager
for downlink TCP traffic

Require: B;" B}tﬁgh, hold

free>

1: if hold = true then
2: ifBYP > ijgh then

free

3: hold « false

4: end if

5: end if

6: fori «— 1to N do

7 TEP «— SWDSAN|SDSAN|Si|PUON

8: if TFP = 0 then

9: Unbuffer any ¢’s pkt to transmit queue
10: else

11: Buffer any ¢’s pkt from transmit queue
12: end if

13: end for

However, an older packet is replaced with a newly arrived
packet with the same sequence number, i.e., when a duplicate
packet arrives.

It is also possible to manage CH-SH TCP traffic by sending
out ACKs to the CH on behalf of the SH, or even splitting TCP
connections at the BS. However, DSASync does not take these
approaches for two reasons. First, it will violate end-to-end se-
mantics of TCP data flow, e.g., a successful reception of ACK at
CH (the source) will no longer imply that the packet has success-
fully reached SH (the destination). Second, sending ACKs will
likely result in receiving more packets during the TFP, which
may lead to buffer space getting filled up earlier. Furthermore,
the resource overhead of DSASync will be higher.

2) DSASync TCP SH-CH: TCP performance degrades due
to irregular behavior in the reception stream. For example, we
observe timeouts and retransmissions when a TFP sets in, as
CH often does not receive ACKs in time according to its RTT
estimate—which is typically quite low as it was based on con-
tinuous packet reception during the past non-TFP period. Fur-
thermore, a “start-and-stop” type of data packet reception also
contributes to other QoS issues, such as increased application
jitter.

To minimize this connection degradation for the uplink
(SH-CH) TCP stream, the BS attempts to “smooth” the out-
going flow. The key idea is to spread the uplink packets over
the TFPs, so that the CH sees a relatively steady stream of
packets despite the disruption at the source SH.

Given the information available from DSASync_LL, the av-
erage fraction of TFPs for node ¢ can be estimated. Consider a
time interval, say [T — AT, T). The total TFP for node ¢ during
this AT time window is the sum of delays (on average) due to
sensing, switching and PU activity interruptions

avg sernse sense t=T
TEP; .= E[f3san(®) - thsax () 't]t:TfAT
+F [fisense(t) . t?ense(t) . t]iingT

switch switch t=T
+ B [fREAR (1) - thaan(t) - 1] ST AT

+ Elgpe,on() - i ar

KUMAR AND SHIN: DSASync

Algorithm 3: Algorithm TCP_SH-CH: Smoothes data rate of
uplink TCP traffic

. sut, te)
Require: o, DY)y, T;, dequeue; (Vi € N)

1: while SH-CH queue is nonempty do
2: p « 1st TCP pkt in queue

3: done « false

4: count «— 1

5: while done = false and count < N do

6: src «— source of p

7 if dequeue,,. = false then

8: ﬂsrc — HlELX(OéSl-C, amin)

9: Tsre + timestamp of src’s last TCP pkt
dequeue

10: Teurr < current timestamp

11: elapsed «— Teurr — Ture

12: if {size(p)/(elapsed) < B DIEHYP} then

13: dequeue,. < true

14: done «— true

15: end if

16: end if

17: count <« count + 1

18: p « next TCP pkt in queue

19: end while
20: end while

Therefore, the fraction of non-TFP period for node i during [T —
AT, T] is given by

1 TFPI'E 1
@ = AT (1)
In practice, historical information on TFP durations during a
moving time-window of size AT can be utilized to compute
the «; value for each 7.

Let a5, be the administrative configuration parameter to
limit the extent of traffic shaping. In order to manage uplink
TCP traffic the BS executes Algorithm 3. Algorithm 3 outlines
the dequeueing process for the outgoing queue at the BS’s wired
interface. The algorithm modifies the rate of a wireless node
src’s outgoing TCP packets as

Def‘f,src - /Bsrc : D;it?mp (2)
where By = mar(tgre, Crin), and D2USEP ig the actual data
rate at which src’s outgoing TCP packets are received at the
BS. Thus, linear traffic shaping is applied to the uplink TCP
traffic. Algorithm 3 maintains the timestamp of last dequeue for
each src (line 9) and dequeues a packet if the elapsed time since
then will not violate the “smoothed” data rate (lines 11-15). The
i configuration parameter provides administrative control
over: 1) excessive delays (and hence very high response-times
for applications); and 2) buffer space runout.

DOUtteP g easily estimated by monitoring the rate at which
node src’s TCP data packets enter the BS’s outgoing queue (at
its wired interface) in the moving time-window AT'. Similarly,
T, and dequeueg,. are local variables (used in Algorithm 3)

1073

Algorithm 4: Algorithm TCP_SH-CH-OPT: Optimized
version of uplink TCP traffic shaping

. out,tcp ;
Reqlﬂl’e- Xdsan» Ddsan 5 Tdsan: dequeuedsan

1: while SH-CH queue is nonempty do
2: if dequeueqgs, = true then
Wait for dequeue to complete
end if
p « 1st TCP pkt in queue
Basan — max(dsan, Cmin)
Tasan — timestamp of last TCP pkt dequeue
Teurr < current timestamp
9: elapsed — Tcurr - Tdsa‘n
10: if {size(p)/(clapsed) < Basan DS P} then

RN AED

11: dequeuegea, — true e

12: else

13: Wait {(size(p)/Basan DoeritP) — (elapsed)
interval

14: end if

15: end while

that are updated by monitoring the dequeue events. Note that the
packets enter the queue in the temporal order they are received,
as before.

In practice, the node-specific sensing duration will not vary
significantly for different nodes. This is because the sensing
technology across devices is expected to be similar, and the
spectrum environment is also similar across the single-hop edge
DSAN. It may also turn out to be the least dominating frac-
tion in the c; calculation (1)—E[ffeme(t) - ¢2emse(t) 4]I=T 1
can be very small compared to other terms like incumbent ac-
tivity and collective sensing duration. Thus, each «;, Vi € N,
can be closely approximated by the average of «; values, say
(¥dsan- Furthermore, since the packets from nodes are queued
on a first-come—first-served basis, the individual data rates can
now also be replaced by the overall incoming data rate D P

Hence, Algorithm 3 can be further optimized to yield Algo-
rithm 4. The revised algorithm has a lower implementation and
runtime overhead because it has to maintain fewer state vari-
ables. However, the most significant gain is due to reverting
back to traditional queue semantics (which has an O(1) de-
queueing process, albeit at the “traffic-shaped” rate) for the up-
link (SH-CH) queue in Algorithm 4.

3) DSASync_TCP_CAP: TCP’s flow and congestion control
mechanism allows its adaptation to gradual capacity changes
in the network. Thus, small capacity fluctuations, typically
encountered on the same channel, do not warrant any special
handling. However, during channel-switches—where substan-
tial and sudden capacity decrease may occur, this adaptation
can be prolonged. When there is a significant loss of capacity,
there can be substantial packet losses and retransmissions in
the process.2

For the downlink (CH-SH) traffic, the procedure outlined in
Algorithm 5 is executed when a channel-switch event is

2When the channel capacity increases, the TCP performance gradually im-
proves by itself. Therefore, DSASync does not take any action in this case.

1074

TEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 4, AUGUST 2012

Algorithm 5: Algorithm TCP_CAP: Signaling unsustainable
decrease in local capacity to a remote TCP sender

Require: C, ¢, DI™'P (Vi € N)
1: fori — 1to N do
2 if D;"’mp > e4epC then

3: Send 3 duplicate ACKs to :’s CHs
4: end if
5: end for

indicated (through DSASync_LL component). In this al-
gorithm, C is the raw physical-layer bandwidth on the new
channel, while e, is the data transfer efficiency for TCP with
the DSA MAC/PHY protocol to be used in the new channel.
For example, various studies have shown that e, ~ 0.5 over
802.11. D;™*°" denotes the downlink TCP data rate for node 4.
DI™*P is calculated by a sliding time-window-based historical
averaging of TCP packets received for node 7 at the BS.

Algorithm 5 triggers TCP’s fast retransmit/recovery by
sending at least three duplicate ACKs to the CH if the current
downlink data rate for a node cannot be sustained on the new
channel (lines 2—4). The objective is to prevent slow recovery
where cwnd is reduced to 1 instead of half of the current value
as in fast recovery. Thus, the sender will automatically reduce
its data rate, resulting in lesser impact than would otherwise
occur. Note that we avoided the TCP window scale option to
manage such capacity changes, as they are optional—many
network routers and firewalls do not implement this feature. In
contrast, fast retransmit/recovery feature is a part of most TCP
implementations (e.g., TCP Reno) that are commonly used in
modern operating systems.

C. UDP Management

UDP traffic is managed along similar lines as TCP streams,
through the DSASync_UDP component. Although certain TCP
connection management techniques like packet buffering are
applicable to UDP flows, UDP connections cannot be managed
intrinsically because they are stateless and do not provide
built-in connection management knobs (unlike TCP). We do
not wish to modify the UDP protocol itself (or introduce a new
one), as it goes against DSASync’s key design principles of
compatibility and easy deployment.

We observe that most QoS-sensitive UDP-based network ap-
plications rely on the Real-time Transport Protocol [8]. RTP
is an application-layer component that consists of two com-
ponents: 1) RTP Data Transfer Protocol is responsible for ap-
plication-level framing and delivery; 2) RTP Control Protocol
(RTCP) provides QoS feedback of the data stream. Clearly, for
UDP flows that are part of RTP-based communication, we can
utilize the higher-layer RTP information to manage the connec-
tions to a significant extent.

DSASync_UDP manages UDP connections by using a com-
bination of buffering at the BS and opportunistic modification/
generation of RTCP packets—Receiver Report (RR) and Sender
Report (SR) (for those UDP flows that are based on RTP). Like
DSASync_TCP, DSASync_UDP sniffs packets in transit to

Algorithm 6: Algorithm UDP_CH-SH-a: Handler for
downlink UDP traffic

... pudp
Require: B; .

1: p < incoming CH-SH UDP pkt

dest «— destination SH of p

sre «— source CH of p

conn < p’s RTP connection id, if RTP-based flow
ctime <« current time

rr_time < timestamp of last RR for conn

rr_int < avg. RR transmit interval for conn

TFP «— SWpgan|Spsan|Sdest[PUon

9: if TFP = 0 then

10: Add p to transmit queue to DSAN

11: else

12: if B = 0 then

13: Flush oldest packets from buffer, to accommodate p

14: Update any SRs, RRs in the outgoing SH-CH queue

15: if conn is valid then

16: if ctime — rr_time > rr_int then

17: if No RR for conn exist in SH-CH outgoing
queue then

18: Generate a new RR for conn

19: end if

20: end if

21: end if

22: else

23: Buffer p

24: end if

25: end if

identify active RTP sessions and maintains their metadata. This
passive RTP connection identification has some limitations,
which we discuss in Section IV-E.

Note that unlike TCP, RTCP cannot directly influence the on-
going UDP-based connection. It is a passive feedback mecha-
nism, and it is up to the applications themselves to take any ac-
tion in the event of RTCP feedback. Thus, the connection man-
agement for RTP-based UDP flows cannot be as responsive as
that for TCP streams.

DSASync_UDP consists of
DSASync_UDP_CH-SH,
DSASync_UDP_CAP.

1) DSASync UDP _CH-SH: DSASync_UDP_CH-SH
module manages the downlink UDP traffic by using the
procedure outlined in Algorithm 6. Like its TCP counter-
part, Algorithm 6 is executed when a new UDP packet
is received from the CH. Like DSASync_TCP_CH-SH,
DSASync_UDP_CH-SH buffers (and later transmits) the in-
coming UDP packets during the TFPs, based on information
available from DSASync_LL. However, there is a key differ-
ence in buffering semantics between DSASync_TCP_CH-SH
and DSASync_UDP_CH-SH. As stated earlier, applications
using UDP traffic emphasize timeliness and are somewhat
loss-tolerant. Thus, Algorithm 6 favors new packets over the
older (and already buffered) packets when the buffer space gets

three modules:
DSASync_UDP_SH-CH, and

KUMAR AND SHIN: DSASync

Algorithm 7: Algorithm UDP_CAP: Signaling unsustainable
decrease in local capacity to remote UDP sender

Require: C, e,4p, Df’i’"’“’dp, (Vie N)
I: fori < 1to N do
2: if D > ¢,4,C then
3: Update loss parameters for :’s RRs/SRs in outgoing
(CH-SH) queue
4: end if
5: end for

full. Therefore, the oldest packets are purged from the buffer to
create space for the newly arrived packets (lines 12 and 13).

Apart from buffering (as seen from Algorithm 6),
DSASync_UDP_CH-SH provides quick feedback to the
sender CH about ongoing QoS degradation on a RTP session,
whenever feasible,? to limit the packet losses when the buffer
space fills. This feedback is provided by updating an existing
RR in the outgoing queue toward CH (line 14), or in its ab-
sence, generating a completely new RR (lines 17-19). To avoid
unnecessary overhead during packet reception, only the RR
for the session corresponding to the newly received packet is
generated. Also, a separate process periodically updates all
the uplink RRs to accurately reflect the loss, delay, and jitter
encountered in the DSAN.

Updates of RTCP feedback packets are done without vio-
lating RTP semantics and its end-to-end principle. The proce-
dure to update the parameters in SR/RR packets is based on the
formulas described in [8].

2) DSASync UDP SH-CH: The strategy for the uplink
RTP-based UDP flows is identical to that for TCP streams.
The key idea is to apply linear traffic-shaping to UDP flows in
order to mask the DSA-induced interruptions. The goal is to
improve the QoS metrics, especially jitter, for the uplink flow.
This is particularly useful when the SH is the main sender of
the end-to-end connection.

The traffic-shaping algorithm employed is same as that for
TCP (described in Section IV-B.2, Algorithm 3) and is based
on (1) and (2). The optimized version of the algorithm is also
identical (see Algorithm 4). We leave out the pseudocode in the
interest of space.

3) DSASync UDP_CAP: Algorithm 7 is executed for UDP
flows (that are RTP-based) on a channel-switch, along similar
lines as Algorithm 5 for TCP. The difference lies in the ca-
pacity change feedback mechanism. While it is possible to ex-
ploit fast retransmit/recovery mechanism for TCP, we rely on
RTCP’s feedback mechanism for UDP. When the current UDP
data rate for a node is found to be definitely unsustainable on the
new channel (line 2 of Algorithm 7), then its outgoing SRs and
RRs are proactively updated by the predicted increase in loss
due to reduced bandwidth, i.e., by a factor of e,q,C/ D;’"’"dp.
Here, 4, 1s the data transfer efficiency for UDP over the DSA
MAC/PHY protocol being used in the new channel. The ob-
jective is to provide quick notification to the sender CH about

3There are limits on the amount of RTCP feedback (RR/SR packets), typically
limited to 5% of the session bandwidth [8].

1075

imminent losses, so that it can take corrective action. Other op-
timizations for this algorithm are discussed in Section IV-D.

D. Extensions

Several additional optimizations and enhancements can be
built upon the basic DSASync platform presented earlier. We
discuss two such possible extensions.

1) Per-Node DSASync: DSASync agents on wireless client
nodes in the DSAN can further help in minimizing losses
and improving other QoS metrics. This approach essentially
amounts to a distributed architecture of DSASync. Per-node
DSASync agents can be implemented using a similar buffer
management strategy as the DSASync buffer on the BS. Local
DSASync agents will help uplink (SH-CH) traffic bandwidth
in particular, as the outgoing packets will not be as easily lost
or dropped at the SH itself (during TFPs). However, wireless
client nodes can have significantly low resource availability
(e.g., a basic smartphone), and this feature may not be feasible
or be very limited in usefulness.

2) QoS Feedback Optimization: Depending on the traffic
characteristics of the DSAN, the QoS feedback policy of
DSASync can be optimized. For example, if there is a substan-
tial presence of non-TCP (or non-UDP) type of traffic through
a DSAN, then their data rate must be taken into account in
determining if the channel capacity is sufficient in Algorithms 5
and 7 (line 2). This is useful and more accurate because the
channel capacity is shared between TCP (or UDP) and other
types of traffic. Along similar reasoning, if the amount of both
TCP and UDP traffic are seen to be similar (and in majority)
for a particular DSAN, then their cumulative data rate (i.e.,
DI"P 4 PPy should be used for comparison with new
channel capacity in Algorithms 5 and 7.

E. Limitations

While DSASync’s architecture as a nonintrusive network
management entity has numerous important benefits like
compatibility and ease of deployment, it also leads to certain
limitations. We discuss two key limitations with the current
design of DSASync.

1) Identifying RTP-Based UDP Flows: Proactive con-
nection management for the QoS-sensitive RTP-based UDP
flows is an important feature of DSASync. However, in
practice, DSASync’s passive connection identification—by
sniffing packets-in-transit—may not be able to identify all the
RTP-based UDP flows. Though it is trivial to check for a UDP
or TCP packet using the protocol or next header field of 1P
header, no such standard mechanism exists for identifying RTP
header that is part of application layer payload. RTP packets
do not have preassigned specific port number and do not have
standard signature, which further limits the ability to identify
RTP sessions. In our implementation, we use a method similar
to that of packet sniffing tool Ethereal [28], which uses packets
seen earlier (e.g., SIP or RTSP packets) during the setup of
connection to identify the RTP sessions. We improve this
approach by looking for specific port ranges that are typically
used by applications for RTP session setup and subsequent
data transfer. Though this approach works fairly well, it cannot
capture all RTP-based UDP flows.

1076

2) Connections With Encrypted Traffic: DSASync, in its
current form, cannot be utilized for traffic that is based on en-
cryption below the transport layer, e.g., IPSec—which encrypts
IP payload including transport/application headers. Since the
encryption is end-to-end, DSASync, as a third entity, cannot
sniff or classify the packet in transit. Thus, it is unable to rec-
ognize and manage such connections comprehensively, though
buffering strategy can still be used. Most applications, however,
utilize encryption at higher layers (e.g., TLS/SSL), which has no
impact on DSASync’s connection identification process. How-
ever, RTP-based connection management strategy for UDP may
not be feasible because application payload is encrypted, and
hence, RTP headers cannot be identified.

V. IMPLEMENTATION

We evaluate DSASync by implementing it as a Linux kernel
module. The MadWifi device driver (madwifi-0.9.4) [29] is
augmented to emulate DSA protocol features (e.g., spectrum
sensing and channel-switches) over 802.11 MAC. Incum-
bent transmissions are also emulated through a modified
MadWifi-based 802.11 MAC, but with backoff features dis-
abled (e.g., TXOP backoff is 0). We implemented a generic
functional abstraction of DSA protocols rather than a specific
DSA protocol because currently no DSA standard exists.
However, the emulation is mainly derived from the 802.22
draft [3]. Note that a consensus on DSA protocol proposals is
yet to emerge in the wireless networking research community.
An advantage of this evaluation methodology is that it shows
our solution to be generic and applicable to any DSA protocol.
Also, we use Wi-Fi channels for experiments due to lack of
transmission license on licensed channels.

The implementation of DSASync is simplified, as it has
been developed with realistic deployment as a key design
goal. Since the DSAN is a single homogeneous wireless
cell (see Section III-B) with nodes operating on the same
DSA MAC/PHY protocol, both DSASync_LL as well as
DSASync_TCP and DSASync_UDP need to execute only at
the BS. There are two factors enabling this. First, as mentioned
earlier, the required parameters are easily accessible from the
link-layer module. Second, the BS, in its role as the “manager”
of the DSAN, has necessary knowledge about the network state
(including the state of other nodes).4

The key challenge faced during the implementation involves
sniffing of RTP connections transiting through the BS, which
is required by DSASync_UDP. As discussed in Section IV-E,
we rely on detection of session setup packets (e.g., SIP/SDP
packets) and typical port numbers used by VoIP applications to
identify RTP-based UDP connections.

VI. EVALUATION

A. Testbed Setup

A testbed is built according to our system model (see Fig. 1)
and consists of a WLAN cell with six client laptops (the SHs),
each equipped with an Atheros-based Linksys WPC 55AG

“In the case where all the required information is unavailable at BS, the
DSASync_LL component may need to be deployed at the wireless nodes.
Control packets can then be used to transmit information to the BS.

TEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 4, AUGUST 2012

wireless card. Another laptop acts as the AP (the BS) that
interfaces with the wired LAN of our university. The CH is
deployed on the wired segment of the university LAN. Though
both the SH and CH are part of the same local network, re-
sulting in lower end-to-end latencies than what is typically
experienced on the Internet, this setup is adequate for testing
DSASync. An additional laptop, acting as the incumbent
transmitter, is placed in the vicinity of the WLAN. To further
ensure correct incumbent operation, we establish transmission
range asymmetry—secondary WLAN nodes can hear incum-
bent node’s transmissions, but not vice versa. The incumbent
produces ON/OFF patterns of random durations according to
an exponential distribution.> The average of ON/OFF duration
for the distribution is varied to change the incumbent channel
utilization (e.g., avg. ON/OFF = 100 ms/400 ms for 20%
utilization). As mentioned earlier, the DSA parameters are
derived mainly from the 802.22 draft [3], e.g., we keep the
sensing duration in the range of 5-100 ms, and its frequency is
every 200 ms to 2 s.

There are five 802.11a channels in our spectrum, and we
initiate experiments with the secondary WLAN in channel 36.
There is one PU transmitter (as described above) in each
channel. Iperf (ver. 2.0.4) [30], a commonly used open source
network testing tool, is used to generate TCP/UDP traffic
for microbenchmark experiments. For macrobenchmarks in-
volving RTP-based UDP connections, we use the open source
VolIP application ekiga (ver. 3.2.6) [31]. Ekiga (formerly known
as GnomeMeeting) is a feature-rich softphone and supports
multiple signaling protocols (like SIP, H.323) and commonly
used audio/video codecs. We instrumented the ekiga source
code, which allows us to exercise fine-grained control over
connection parameters as well as observe key events and statis-
tical information about its ongoing connections. Tepdump [32]
is also used to observe the traffic and verify statistics.

The default PHY data rate is 24 Mb/s, while the buffer ca-
pacity at the AP is kept at 500 MB each for both TCP and UDP.
The default average incumbent channel utilization is 20%, and
the average sensing overhead for each Secondary User (SU) is
5% of the runtime. The initial TCP send and receive window
size is 256 kB, and each experiment run lasts 20 s. Other default
values are: omin = 0.5, ijgh = 500 MB, and Blt(;}: = 400
MB. Saturation level traffic is used for both TCP and UDP, un-
less otherwise noted.

B. Performance Metrics

Application-layer goodput is the fundamental performance
metric used to evaluate DSASync. End-to-end delay and
jitter are other metrics used for analysis. Our metrics are of
a higher-layer focus (application traffic performance), as the
goal of DSASync is to manage the adverse impact of DSA
on ongoing communication. Since DSA (and the underlying
protocol) is unaffected, we do not consider DSA-related met-
rics directly. For each of the experiments, we compare the
performance metrics for two cases: 1) DSA operating with
DSASync (“DSASync”); 2) DSA operating without DSASync
(“Regular”).

SResults were statistically similar when other types of probability distribu-
tions, like uniform or log-normal distributions were used.

KUMAR AND SHIN: DSASync

+Regular SH-CH [
20 ~&DSASync SH-CH

->Regular CH-SH
==DSASyncCH-SH|
e A

=
e
I

-
N
|

0
L

TCP Goodput (Mbps)

0 5 10 15 20
Time (s)

Fig. 3. Average goodput for TCP, each over last 1-s period, during
0-20-s intervals.

C. Results and Discussion

1) Overhead Characterization: To analyze DSASync’s run-
time overhead, we compare the goodput achieved using unmod-
ified 802.11a with the scenario where DSASync agent is active
at the BS. On the basis of 100 experimental runs, the extra over-
head with DSASync is found to result in an average of 1.9% re-
duction in goodput compared to the best case, i.e., the goodput
when there is zero DSA overhead. The overhead on end-to-end
delay is found to be very minor (1.1 ms). However, we ob-
serve that gains from using DSASync when DSA is employed
(which are discussed next in Section VI-C.2) far outweighs its
overhead impact. Thus, DSASync must be activated only when
the edge DSAN is actively using DSA.

2) Microbenchmarks: To establish the basic performance
trends with DSASync, we first evaluate it using a single wire-
less client in the WLAN cell. Fig. 3 shows the average TCP
goodput variation in the time window of 0-20 s. UDP traffic
is found exhibit a similar pattern, though the absolute values
for goodput are higher because of greater efficiency of UDP re-
sulting from its connectionless nature (no retransmissions, con-
gestion backoff, etc.).

It is seen that employment of DSASync results in better
goodput as compared to regular DSA, especially in downlink
CH-SH direction. For this scenario, the average TCP goodput
improvement is 74% over regular DSA (see Fig. 4). This is
a result of DSASync’s ability to effectively mask the TFPs
(which is 25% of the total runtime) by buffering the incoming
packets at the BS and proactively signaling the sender to cease
transmission when necessary (see Algorithms 1 and 2). Thus,
unnecessary reduction in the send window at CH is avoided,
and there is negligible packet loss. Consequently, there is very
little retransmission overhead (0.018 Mb/s), contributing to a
much improved goodput. Through a packet-level analysis in
tcpdump, we notice that the downlink data stream (CH—SH)
also benefits from the traffic shaping in the reverse direction
(SH-CH). This is because the ACKs are sent to the CH at a
lower but steady rate, even during TFPs, which allows CH
to continue sending the data packets by advancing its send
window.

On the other hand, in absence of DSASync, packets get
dropped at the BS during the TFPs. This results in reduction

1077

20

@ TCP Retrans. Rate

B TCP Goodput

16 -

12 A
«
-3
2
=
8 -
4
0 - T
Regular SH-CH DSASync SH-CH Regular CH-SH DSASync CH-SH
Fig. 4. Average TCP goodput and retransmission rate.
20
16
I
s
s 124
s
3
o
-]
(<]
3
a 87
a
=]
4 -
0 - T T
RegularSH-CH DSASync SH-CH RegularCH-SH DSASync CH-SH
Fig. 5. Average UDP goodput.

of send window (the sender perceives losses as congestion)
and significant retransmission overhead (3.1 Mb/s). Thus, the
goodput is much lower.

As seen in Fig. 4, the gains associated with DSASync for up-
link (SH-CH) data stream is lower as compared to the downlink
direction. Here, the goodput improves by 10% on average. This
is because during the TFPs, the data packets originating from
the SH side are essentially lost at the SH itself. Thus, the packets
do not even reach the BS during interruptions. However, there is
still some improvement because the BS shapes the uplink traffic
(see Algorithm 4) and also buffers the inbound ACKs for SH.

Similar observations are made for UDP connections, where
the average goodput comparison is shown in Fig. 5. Again, the
improvement is much higher in the downlink direction (about
38%) as compared to uplink direction due to reasons mentioned
above. Since there is no extra burden of retransmissions (even if
packets are lost) in UDP, the absolute percentage improvement
is lower. Newer packets continue to be transmitted and con-
tribute to UDP goodput. Note that we are not using RTP-based
UDP flows for these microbenchmark experiments to eliminate
the application-dependent behavior in these results. Thus, only
generic and always-guaranteed UDP management benefits are
visible here. Depending on how the higher-layer application
chooses to respond to RTCP control messages, the advantages
of DSASync can be greater, as we evaluate in Section VI-C.3.

1078
30
mTCP
m=UDP
25
20
)
£
T 15+
v
E
10
54
0 T T T
Regular SH-CH DSASync SH-CH Regular CH-SH DSASync CH-SH
Fig. 6. Average end-to-end jitter at the receiver.

An interesting trend is seen with the delay variation, which
is shown in Fig. 6. Variation in delay (at the receiver’s end) is
a direct indicator of the level of jitter at the application level,
which is an important QoS metric. Deployment of DSASync
produces a significant reduction in the average jitter at the re-
ceiving CH for the uplink traffic, for both TCP and UDP. This
is, again, as a result of managing the uplink traffic at the BS.
Note that the jitter for downlink data stream remains high, de-
spite substantial improvement in corresponding goodput. This is
expected because the SH cannot receive any data packet during
TFPs, even though the BS buffers them for it. Also, note that
jitter performance for RTP-based UDP connections (not used in
this microbenchmark experiment) can be even better, depending
on the application-specific behavior.

These observations suggest that deploying a local DSASync
agent at each WLAN node would help in reducing the CH-SH
delay variation while also improving SH-CH goodput. Our
preliminary results with per-node DSASync agent indicate the
validity of above conclusion. However, there are also some
drawbacks associated with distributed DSASync model, as
discussed earlier in Section IV-D.2. We treat this as an optional
extension. Note that a DSASync agent at the BS will still be
required in the distributed DSASync architecture.

Figs. 7 and 8 show the goodput variation with changes in the
magnitude of DSA-related interruptions. The DSA impact is
represented by “utilization,” which includes sensing overhead
and incumbent activity. As expected, the goodput decreases
when the DSA behavior becomes more aggressive. However,
we note that with DSASync, CH-SH goodput improvement
is even better at higher utilizations. The goodput drops sig-
nificantly only when the utilization factor is greater than 0.5.
Note that DSA is not suitable for channels that exhibit very
high incumbent utilization. Thus, a good DSA MAC protocol
would not select such channels anyway (or would switch away
from such channels). DSASync leads to marginally better
performance (/210%) for the uplink data stream. However, the
performance drops quickly with increase in utilization, which
again highlights the usefulness of a local DSASync agent at
each WLAN node. Our experiments also reveal that larger
buffer space at the BS improves the resilience provided by
DSASync, especially for UDP flows.

TEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 4, AUGUST 2012

20

=-RegularSH-CH

-©-DSASync SH-CH
16

—>-Regular CH-SH

=-DSASync CH-SH

DN
| N

4 \b\a\s_—v
0 T T T T T T T {

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8
Utilization

-
N}

TCP Goodput (Mbps)

Fig. 7. TCP goodput with varying amount of DSA disruptions.

20

=-Regular SH-CH
= S -e-DSASyncSH-CH
16 >¢Regular CH-SH
—=~DSASync CH-SH
7
Q
2
S 12 4
=
2
E 3
o
o
© 84
-3
o
=
44
i
0 : ‘ ‘ ‘ ‘ ‘ :
0 0.1 0.2 03 0.4 05 06 0.7 0.8
Utilization
Fig. 8. UDP goodput with varying amount of DSA disruptions.

16

-=-Regular CH-SH
-e-DSASync CH-SH

7
o
£2
E
PR = e
H WM%W
o
o
o
(-9
o
4 W]
0 . : .
0 5 10 15 20

Time (s)

Fig. 9. Effect of PHY capacity change on TCP connection.

Fig. 9 shows the effect of reducing the network capacity,
which can occur when the DSAN changes channels. Here, the
PHY-layer capacity is reduced to 12 Mb/s from 24 Mb/s at 5 s.
As seen in the plot, without DSASync, the CH-SH goodput re-
duces by almost 70% (the capacity reduction is 50%) and takes
some time (6—7 s) to recover. However, with DSASync, there
is no perceptible extra reduction in throughput beyond the ex-
pected decrease. This is attributed to proactive sender notifica-
tion through Algorithm 5.

On the other hand, there is no appreciable difference in be-
havior for UDP connections between the Regular and DSASync

KUMAR AND SHIN: DSASync

20

16 \
" E'—EI—B-Q

=-Regular CH-SH
--DSASync CH-SH

UDP Goodput (Mbps)

0 5 10 15 20
Time (s)

Fig. 10. Effect of PHY capacity change on UDP flow.

0.4
B TCP Retrans. Rate
W TCP Goodput

0.3 4

0.2 1
0.1
0 T T T

RegularSH-CH DSASync SH-CH Regular CH-SH DSASync CH-SH

Mbps

Fig. 11. Average goodput across multiple TCP connections.

case, as seen from Fig. 10. This is because the UDP goodput
metric is decreased by an equal amount in both cases (note
that here losses and retransmissions do not matter), although
the buffering mechanism and traffic shaping contribute to
higher goodput values when DSASync is used. Again, the
RTCP-based proactive feedback mechanism is not active in this
microbenchmark experiment. If RTP-based UDP connections
are present, such feedback (Algorithm 7) may lead to change in
UDP connection behavior depending on application’s reaction,
e.g., changing to a low-bandwidth codec, etc. We observe this
phenomena with ekiga during our macrobenchmark experi-
ments discussed next.

3) Macrobenchmarks: To check the scalability of DSASync,
four TCP and four UDP connections are started on each of the
six clients—thus, there are 48 parallel ongoing connections.
Fig. 11 shows the average performance experienced by TCP
connections in terms of goodput and retransmission rate. Fig. 12
shows the performance for UDP connections. The trends are
similar to those noted in Figs. 4 and 5. DSASync is found to
perform even better in a larger-scale situation, especially in the
downlink CH-SH direction where goodput improves by about
102% for TCP and 51% for UDP. Similar results, as those noted
for microbenchmarks, are observed for other corresponding
experiments.

To see the benefits of the DSASync in action, especially for
the QoS-sensitive RTP-based UDP traffic, we use ekiga [31]

1079

0.4

0.3

0.2
0.1 4
0 T T T

RegularSH-CH DSASync SH-CH Regular CH-SH DSASync CH-SH

UDP Goodput (Mbps)

Fig. 12. Average goodput across multiple UDP connections.

500

M Regular/Standard
DSASync
@ With Per-Node DSASync

400 +

300 -

200

VolP Session Goodput (Mbps)

100 +

RegularSH-CH

DSASyncSH-CH Regular CH-SH DSASync CH-SH

Fig. 13. Average connection goodput for ekiga VoIP sessions.

softphone to generate videoconferencing sessions using G.711
(audio) and H.261 (video) codecs with the call speed at 384 kb/s.
This requires an actual link bandwidth of around 460 kb/s each
way with low jitter for optimum performance. We randomly
create between 5—15 sessions in each experiment run, which are
distributed among six wireless nodes in the DSAN, with each
node communicating with a fixed host in the university network.

Fig. 13 shows the average goodput achieved for the commu-
nication sessions, while Fig. 14 shows the average jitter encoun-
tered. Deploying DSASync enables better overall bandwidth
and significantly lower jitter for the videoconferencing session,
which confirms our end-user experience during the active ses-
sion. Both audio and video quality were found to be percep-
tibly better when DSASync was active. However, the advan-
tage is skewed toward the downlink (CH-SH) direction, and
DSASync can achieve very close to the required bandwidth
(460 kb/s) despite DSA disruptions.

The graphs also shows the benefits of deploying a per-node
DSASync agent. For this purpose, we implemented and de-
ployed a local DSASync agent at each of the wireless node
to manage the downlink/uplink traffic at the node itself. The
goodput for uplink (SH-CH) traffic is found to improve, while
also reducing jitter substantially for downlink (CH-SH) traffic.
Thus, BS-based central DSASync agent together with local
DSASync agents seem to be a complete solution to manage
DSA-related disruptions on application traffic.

1080
20
W Regular/Standard
DSASync
@ With Per-Node DSASync
16
@
E
5 12
E
e
E-]
a
8 8-
<
2
4
0 T T T

RegularSH-CH DSASync SH-CH Regular CH-SH DSASync CH-SH

Fig. 14. Average jitter experience by ekiga VoIP sessions.

We conducted a limited set of experiments with Ekiga over
the open Internet, where the remote host is on a different ISP.
The results obtained were very similar to those described above
and supported our observations and inferences obtained on our
local testbed.

4) Remarks: Many results have been omitted in view of
space. But we mention some important observations below.

The usefulness of DSASync is more prominent when DSA-
related disruptions are frequent (as seen in Figs. 7 and 8). How-
ever, DSASync is designed to gracefully handle DSA side-ef-
fects whenever they occur, especially in the short-term before
(and during) any generic DSA response (e.g., a channel switch)
that kicks in. This property of DSASync is useful in any spec-
trum environment where DSA is deployed, regardless of the
amount, or rate, of disruptions.

Our experiments indicate that the scalability of DSASync de-
pends on the amount of resources, especially buffer space, at the
BS. Modern base stations/access points are increasingly getting
powerful, and memory is getting cheaper, so it is not a signif-
icant constraint. Large buffers will still be very important for
supporting large DSANs and would constitute a part of network
planning. To optimize this aspect, the buffer size at the BS can
be established based on the expected amount of DSA overhead
as well as traffic characteristics. A simple dynamic buffer allo-
cation scheme can also be applied for this task.

Furthermore, as seen from the results, there is a good case for
deploying local per-node DSASync agents, in addition to the
proxy-type DSASync agent at the BS. However, we consider it
to be an optional extension of DSASync because it is difficult
to ensure that all the wireless clients of a DSAN (like a wireless
hotspot) implement this feature. Furthermore, limited resources
on many mobile devices (e.g., cellphones) may prevent its de-
ployment. For consumer-oriented WLANS, surveys show that
the majority traffic is inbound (downlink) due to dominance of
downloads [33]. Thus, standard DSASync platform will still be
sufficient for most deployments.

In conclusion, we argue that with the trend of increasing
computing power and memory availability at low cost, the extra
space/computation overhead associated in running DSASync
is insignificant, especially considering the impressive per-
formance gains achieved in this process. More importantly,

TEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 4, AUGUST 2012

DSASync accomplishes this with 100% compatibility to ex-
isting protocols. Thus, DSASync promises to be an effective
network management tool to improve end-to-end connection
performance in edge DSANS.

VII. CONCLUDING REMARKS

We identified the important end-to-end communication
performance issues when an edge WLAN features DSA capa-
bility. In this context, we studied the impact of DSA-related
disruptions on TCP/UDP connections to/from the wired cloud.
To address the identified problems, we have proposed a novel
network management framework called DSASync. DSASync
primarily comprises an agent on the wired—wireless interface
node (e.g., the base station) of the WLAN, which executes
algorithms based on buffering and traffic shaping to minimize
the adverse effect on ongoing connections. DSASync features
compatibility and ease of deployment as its chief design goals.
Consequently, DSASync requires no changes to the TCP/UDP
protocols or their existing implementation and maintains the
end-to-end semantics. We evaluated DSASync in a testbed
based on our prototype implementation for Linux kernel. The
testbed consists of an edge DSA-based WLAN interfaced
with our university’s wired network. The evaluation results
indicate that DSASync makes a significant improvement of
performance for end-to-end connections, e.g., the downlink
goodput increases by 74% for TCP and 38% for UDP in a
single-connection environment, with even greater gains (102%
for TCP and 51% for UDP) when multiple connections are
active in the DSAN. Other QoS metrics are also found to
improve significantly, e.g., jitter is reduced by more than 75%
for VoIP sessions. Furthermore, DSASync shows resilience
in maintaining good end-to-end connection performance with
increase in DSA-related disruptions.

We plan to study the possible extensions of the basic
DSASync architecture in order to further optimize connection
management. We would also like to study QoS-control issues,
such as prioritizing connections based on QoS demands of the
nodes or applications.

REFERENCES

[1] A. Kumar and K. G. Shin, “Managing TCP connections in dynamic
spectrum access based wireless LANS,” in Proc. 7th IEEE SECON,
Jun. 2010, pp. 100-108.

[2] 1. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “NeXt gen-
eration/dynamic spectrum access/cognitive radio wireless networks: A
survey,” Comput. Netw. J., vol. 50, pp. 2127-2159, Sep. 2006.

[3] “IEEE 802 LAN/MAN Standards Committee 802.22 WG on
WRANS,” 2011 [Online]. Available: http://www.ieee802.org/22/

[4] “Unlicensed operation in the TV broadcast bands: Second memo-
randum opinion and order,” FCC, Washington, DC, ET Docket No.
FCC 10-174, Sep. 2010.

[5] R. W. Thomas, L. A. DaSilva, and A. B. MacKenzie, “Cognitive net-
works,” in Proc. Ist IEEE DySPAN, Nov. 2005, pp. 352-360.

[6] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz, “Improving
TCP/IP performance over wireless networks,” in Proc. Ist ACM
MobiCom, Nov. 1995, pp. 2—-11.

[7] A.Bakre and B. R. Badrinath, “I-TCP: Indirect TCP for mobile hosts,”
in Proc. 15th IEEE ICDCS, May 1995, pp. 136-143.

[8] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A
transport protocol for real-time applications,” Internet RFC 3550, Jul.
2003 [Online]. Available: http://www.ietf.org/rfc/rfc3550.txt

KUMAR AND SHIN: DSASync

[9] M. Buddhikot, “Understanding dynamic spectrum access: Models,
taxonomy and challenges,” in Proc. IEEE DySPAN, Apr. 2007, pp.
649—663.

[10] S. Haykin, “Cognitive radio: Brain-empowered wireless communica-
tions,” IEEE J. Sel. Areas Commun., vol. 23, no. 2, pp. 201-220, Feb.
2005.

[11] S. Shankar, C. Cordeiro, and K. Challapali, “Spectrum agile radios:
Utilization and sensing architectures,” in Proc. IEEE DySPAN, Nov.
2005, pp. 160-169.

[12] S.Hamoudaand B. Hamdaoui, “Dynamic spectrum access in heteroge-
neous networks: HSDPA and WiMAX,” in Proc. IEEE IWCMC, Jun.
2009, pp. 1253-1257.

[13] M. A. McHenry and K. Steadman, “Spectrum occupancy measure-
ments,” Shared Spectrum Company, Vienna, VA, 2004 [Online]. Avail-
able: http://www.sharedspectrum.com/measurements

[14] D. Chen, S. Yin, Q. Zhang, M. Liu, and S. Li, “Mining spectrum usage
data: A large-scale spectrum measurement study,” in Proc. ACM Mo-
biCom, Sep. 2009, pp. 13-24.

[15] B. Hamdaoui and K. G. Shin, “OS-MAC: An efficient MAC protocol
for spectrum-agile wireless networks,” IEEE Trans. Mobile Comput.,
vol. 7, no. 8, pp. 915-930, Aug. 2008.

[16] P. Bahl, R. Chandra, T. Moscibroda, R. Murty, and M. Welsh, “White
space networking with Wi-Fi like connectivity,” in Proc. ACM SIG-
COMM, Aug. 2009, pp. 27-38.

[17] C. Cordeiro and K. Challapali, “C-MAC: A cognitive MAC protocol
for multi-channel wireless network,” in Proc. IEEE DySPAN, Apr.
2007, pp. 147-157.

[18] “IEEE Standards Coordinating Committee 41 (Dynamic spectrum ac-
cess networks),” [Online]. Available: http://www.ieeep1900.org

[19] A.Kumar and K. G. Shin, “Extended abstract: Towards context-aware
wireless spectrum agility,” in Proc. 13th ACM MobiCom, Sep. 2007,
pp. 318-321.

[20] K. R. Chowdhury, M. Di Felice, and L. F. Akyildiz, “TP-CRAHN: A
transport protocol for cognitive radio ad-hoc networks,” in Proc. 28th
IEEE INFOCOM, Apr. 2009, pp. 2482-2490.

[21] H. Balakrishnan, S. Seshan, and R. H. Katz, “Improving reliable trans-
port and handoff performance in cellular wireless networks,” Wireless
Netw., vol. 1, no. 4, pp. 469481, Dec. 1995.

[22] LAN/MAN Committee of IEEE Computer Society, 1EEE Std
802.11-2007, Mar. 2007 [Online]. Available: http://standards.ieee.org/
getieee802/download/802.11-2007.pdf

[23] M. Anand, E. B. Nightingale, and J. Flinn, “Ghosts in the machine:
Interfaces for better power management,” in Proc. 2nd Annu. MobiSys,
2004, pp. 23-35.

[24] B. Higgins, A. Reda, T. Alperovich, J. Flinn, T. J. Giuli, B. Noble,
and D. Watson, “Intentional networking: Opportunistic exploitation of
mobile network diversity,” in Proc. 16th ACM MobiCom, Sep. 2010,
pp. 73-84.

[25] H.Kim and K. G. Shin, “Efficient discovery of spectrum opportunities
with MAC-layer sensing in cognitive radio networks,” IEEE Trans.
Mobile Comput., vol. 7, no. 5, pp. 533-545, May 2008.

[26] M. Gandetto and C. Regazzoni, “Spectrum sensing: A distributed ap-
proach for cognitive terminals,” IEEE J. Sel. Areas Commun., vol. 25,
no. 3, pp. 546557, Apr. 2007.

[27] N. B. Chang and M. Liu, “Optimal channel probing and transmission
scheduling for opportunistic spectrum access,” in Proc. 13th ACM Mo-
biCom, Sep. 2007, pp. 27-38.

[28] “Ethereal,” 2007 [Online]. Available: http://www.ethereal.com/

[29] “The MadWifi project,” 2009 [Online]. Available:
http://madwifi-project.org

1081

[30] “Iperf,” 2011 [Online]. Available: http://sourceforge.net/projects/iperf
[31] “Ekiga,” 2011 [Online]. Available: http://ekiga.org

[32] “Tepdump,” 2011 [Online]. Available: http://www.tcpdump.org/

[33] “Advanced RF management for wireless grids,” Aruba Networks,

San Jose, CA, 2004 [Online]. Available: http:/www.
reacttechnologies.com/cgi-script/csNews/news_upload/React
20News_2edb.RF-for-Grids.pdf

Ashwini Kumar (M’11) received the Ph.D. degree
in computer science and engineering from the Uni-
versity of Michigan, Ann Arbor, in 2010.

He currently works with Juniper Networks, Inc.,
Sunnyvale, CA. His research interests are QoS issues
and resource management in wireless networks, in-
cluding cognitive radio networks.

Kang G. Shin (S’75-M’78-SM’83-F’92) received
the B.S. degree in electronics engineering from Seoul
National University, Seoul, Korea, in 1970, and the
M.S. and Ph.D. degrees in electrical engineering
from Cornell University, Ithaca, NY, in 1976 and
1978, respectively.

He is the Kevin and Nancy O’Connor Professor of
Computer Science with the Department of Electrical
Engineering and Computer Science, University
of Michigan, Ann Arbor. He has supervised the
completion of 68 Ph.D.’s and authored or coauthored
about 760 technical articles, one textbook, and more than 20 patents or
invention disclosures. He has also cofounded a couple of startups. His current
research focuses on computing systems and networks as well as on embedded
real-time and cyber-physical systems, all with emphasis on timeliness, security,
and dependability.

Prof. Shin is a Fellow of the Association for Computing Machinery (ACM).
He served on Editorial Boards, including the IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED SYSTEMS and the Transactions on Embedded
Systems. He has also served or is serving on numerous government committees,
such as the US NSF Cyber-Physical Systems Executive Committee and the
Korean Government R&D Strategy Advisory Committee. He has chaired
several major conferences, including ACM MobiCom 2009, IEEE SECON
2008, ACM/USENIX MobiSys 2005, IEEE RTAS 2000, and IEEE RTSS 1987.
He has received numerous best paper awards, including the Best Paper Awards
from the 2011 IEEE International Conference on Autonomic Computing,
the 2010 and 2000 USENIX Annual Technical Conferences, as well as the
2003 IEEE Communications Society William R. Bennett Prize Paper Award
and the 1987 Outstanding IEEE TRANSACTIONS OF AUTOMATIC CONTROL
Paper Award. He has also received several institutional awards, including the
Research Excellence Award in 1989, the Outstanding Achievement Award in
1999, the Distinguished Faculty Achievement Award in 2001, and the Stephen
Attwood Award in 2004 from the University of Michigan (the highest honor
bestowed to Michigan Engineering faculty); a Distinguished Alumni Award
from the College of Engineering, Seoul National University, in 2002; the 2003
IEEE RTC Technical Achievement Award; and the 2006 Ho-Am Prize in
Engineering (the highest honor bestowed to Korean-origin engineers).

