
Pack Sizing and Reconfiguration for Management
of Large-scale Batteries

Fangjian Jin and Kang G. Shin
Real-Time Computing Laboratory

Department of Electrical Engineering and Computer Science
The University of Michigan, Ann Arbor, MI 48109-2121

Email: {askme,kgshin}@umich.edu

Abstract—Battery systems for electric vehicles (EVs) or un-
interruptible micro-grids—prototypical cyber-physical systems
(CPSs)—are usually built with several hundreds/thousands of
battery cells. How to deal with the inevitable failure of cells
quickly and cost-effectively for vehicle warranty or uninterrupt-
ible service, for instance, is key to the development of large-
scale battery systems. Use of extra (redundant/backup) cells to
cope with cell failures must be minimized so as to make the
target systems cheaper and lighter, while meeting the reliability
requirement that is directly related to, for example, the vehicle
warranty. Existing reconfigurable battery systems do not scale
well because they incur a long delay in properly setting a
large number of switches to bypass faulty cells or adapting to
dynamically changing power demands in large battery systems
for such applications as EVs.

In this paper, we propose a scalable solution, not only to reduce
the required number of backup cells and the total cost of a
battery system, but also to facilitate recovery from cell failures
and adapt to changing power demands while increasing battery
utilization. Specifically, we optimize the pack-size by striking a
balance between various types of cost in order to reduce the
overall cost. We also configure battery packs and optimize their
connection topology, reducing delays in failure recovery and
power reallocation. Our in-depth evaluation has shown that the
time to recover from cell failures remains constant irrespective
of the number of cells involved, which is important to scalability.
The proposed pack-sizing also reduces the cost and the size of
battery systems. Moreover, fast power reallocation is achieved by
utilizing prior knowledge of power usage patterns.

I. INTRODUCTION

Seen as a promising way to reduce use of fossil fuel,
electric vehicles (EVs) are gaining popularity as a solution
to the global warming problem. A recent sharp increase in
fuel price has also accelerated the demand for EVs worldwide.
Respondents to a recent survey [15] stated their strong interest
in EVs, with 44% of them expressing their strong desire to
purchase an EV. Twenty-nine million EVs were sold in 2010
alone and the number is predicted to rise 69% to 49 million
in the next decade [14]. An EV is often powered by hundreds
or thousands of battery cells.

Facing the battery performance challenges in EVs, Balch
et al. [3] proposed a design of battery packs and a choice of
appropriate chemical material according to vehicle type and
zero-emission range in order to lower the costs and maxi-
mize the vehicle performance. However, this solution did not
account for fault-tolerance, another key battery management
issue.

The non-negligible cell failure rate in large-scale battery
systems has become the roadblock in the development of cost-
effective EVs. For example, the failure and replacement rate

of batteries in Honda hybrids is reported to be as high as 1%
[5], [12].

Vehicle manufacturers usually duplicate every battery pack
to avoid deep-discharge of battery cells designed for starting
engines, since repeated deep-discharges will cause capacity
loss and, eventually, premature failure as a result of electrode
disintegration due to mechanical stresses arising from cycling
[20]. Although this solution can reduce the battery failure rate,
it makes batteries both bulky and expensive. According to the
report in [19], a battery with a 100-mile range is as bulky as
a large gas tank. A much larger battery, such as the one in the
Tesla Motors S-model, with a 300-mile range costs, $43,500
in 2011.

To reduce battery failures caused by cell voltage imbalance,
Stuart et al. [17] proposed a modular battery management
system with equalizers, which balance the State-of-Charge
(SoC) of cells in order to prevent excessively high/low voltages
that can virtually damage all types of batteries. This solution,
however, does not work when cells connected in series become
faulty since it cannot bypass faulty cells.

To tolerate the failure of battery cells connected in se-
ries, researchers proposed addition of programmable switches
around battery cells to bypass faulty cells [1], [6], [18]. While
these methods work well for small-scale batteries via static
configuration, they are not designed to reconfigure large-scale
batteries in real time.

Another popular battery-management function is to provide
dynamic power in real time. For example, on a steep up-
slope road, the vehicle’s motor must have a higher torque
and fairly high power output, while for flat or down-slope
terrains, the motor is required to supply lower power [9]. While
transformers only work for AC [8], the conventional solution
is to use a DC-DC converter, which is not very power-efficient
unless the difference between input and output voltages is
small [13]. Besides such a limited range of voltage, the leakage
of power is also a major problem in using a DC-DC converter
[7].

To achieve fault-tolerance and deliver dynamic power, Kim
and Shin [10] proposed a framework to reconfigure and control
a large number of battery packs, achieving resilience to cell
failures and outputting diverse levels of power. By placing
programmable switches around each cell, this reconfigurable
framework can bypass faulty cells. While this reconfiguration
framework may extend battery life, it has not accounted for
the following important issues/problems.

1) Inflexible connectivity under-utilizes battery cells. Exist-

ing reconfiguration frameworks, including the one in [10],
restrict the way in which battery cells and packs are
connected via programmable switches. For example, they
require homogeneous configuration of cells and packs.
All parallel branches have the same number of packs, all
of which provide the same level of voltage and current.
In addition, they only support at most two-level hierarchy
of connections. As a result, even if there are a sufficient
number of battery cells in the system, they could not be
utilized to provide the required power. Such a restriction
results in using more battery cells than necessary and
an imbalanced SoC. Thus, we need more flexible battery
connectivity that enables full utilization of cells to meet
the dynamic power requirements.

2) Long reconfiguration time prolongs failure recovery and
power reallocation. Due to the hazard and risk in switch
operations, one may have to turn on/off switches se-
quentially, making the reconfiguration time proportional
to the number of switches used in the system. In a
large-scale battery system, this can become a serious
problem. Long delays in bypassing faulty cells may cause
not only overheat but also high self-discharge, rendering
healthy cells to be overcharged [4]. Time-consuming re-
configuration also fails to meet the dynamically changing
power demands in a timely manner. To overcome these
undesirable effects of reconfiguration, we need speedy
failure recovery and power reallocation.

3) Inadequate pack-sizing incurs high cost. Pack-sizing de-
termines not only the number of cells in a pack but also
the total number of cells. Existing solutions [1], [18] do
not account for the effect of pack size on the cost. They
also fail to compute the number of necessary backup
battery cells, thereby either compromising the ability to
provide the required power reliably, or requiring more
backups than needed in order to maintain the required
level of power in the presence of cell failures. Our goal
is to reduce the number of cells while providing the
required power reliably. It is also important to optimally
distribute backup cells over different packs and determine
the optimal number of cells in each pack.

In this paper, we address the above problems as follows.
• The connections of battery cells and packs are modeled

using Power Trees (PTs), which enable flexible connec-
tivity of cells and packs, and are used to optimize battery
connections in order to fully utilize battery cells in the
system and provide the required power.

• The reconfiguration strategy is optimized to adapt the
battery system to load changes and cell failures in a
timely manner. Specifically, our solution sets up battery
connections in order to minimize the number of switch
operations in coping with load changes and/or cell fail-
ures.

• The pack size is optimized by considering the design
and the connections of packs as a whole. Thus, the total
required number of backup cells is minimized at the
meantime meeting the required reliability. The optimal
pack size and the number of packs are also calculated
efficiently by using a heuristic to lower the total system
costs.

The rest of the paper is organized as follows. Section II
covers the background of reconfigurable battery management,
and motivates our work. Section III describes the model for
battery connection topology, and states the problem that we are
trying to solve. Section IV describes how to configure battery
packs to recover from cell failures, reallocate power and lower
the overall system costs. Section V evaluates the performance
of our pack sizing and configuration. Finally, we conclude the
paper in Section VI.

II. SYSTEM ARCHITECTURE AND MOTIVATION

A. Reconfigurable Battery System

The battery system under consideration is based on the
reconfigurable battery system proposed in [10]. Each battery
pack consists of a group of control units under a local
controller and an array of battery cells. These control units
are designed for turning on/off switches around each battery
cell so that the connections of these cells can be reconfigured
online in series, parallel, or a combination of both. For
example, in Fig. 1, when we want to connect cells in parallel,
switches (1) and (4) will be turned on by the associated control
units. Meanwhile, turning on switches (5) and (6) allows more
cells to be connected in parallel. When only switch (3) is
turned on, the cells will be connected in series. We can also
make multiple parallel groups by turning on switches (1) and
(3) around the first cell, and switch (4) around the following
cell. We can add more cells in between. Terminal switches (5)
and (6) are separating this group from other cells. Terminals
are connected/disconnected to the load. With the switches in
packs, we can organize cells in series, parallel or many parallel
branches of series. The design details of switches, controllers
and sensors of SoC can be found in [10], [11]. We can treat
a battery pack as a module, just like a single cell, and to
use switches around packs to reconfigure them. For flexible
reconfiguration, we can use switches to connect all pairs of
battery packs’ terminals, the number of which is much smaller
than that of the cells. Such configuration enables hierarchical
connection of the packs. The number of switches around the
cells is linear in that of the cells, while the number of those
around packs is the square of that of packs.

This architecture suffers from hazards and risks that limit
the ability to parallelize the switch operations. For example,
when a cell is bypassed, switch (2) in Fig. 1 is turned on. If
the system is changed to connect this bypassed cell in series,
we have to turn off switch (2) and turn on switch (3). If we
operate on these two switches at the same time, switch (3)
can possibly be turned on before turning off switch (2) due
to random delays and an uncertain order of operations, thus
short-circuiting this cell. In case of dangerous connection of
batteries, we have to impose restrictions on the order of turning
on/off switches. One can simply operate switches sequentially
in order to avoid hazards and risks. Complex scheduling of
switch (on/off) operations can be done but is left as our future.

B. Motivation

1) Fully Utilize Battery Cells: Existing reconfiguration
schemes restrict battery connections and the number of cells
that can be used in each pack. For example, in Fig. 2, each
of two packs contains three cells. One of the packs contains

Fig. 1. Schematic diagram of a reconfigurable battery system [10]

Fig. 2. Existing reconfiguration schemes (e.g., [10]) cannot fully utilize
available healthy cells

a faulty cell. In the existing schemes, all packs are required
to use the same number of cells and bypass the rest. Thus,
the other pack, although containing three healthy cells, only
uses two cells and bypasses one. In this configuration, we
cannot provide the cumulative power of the remaining five
healthy cells. Moreover, the scheme in [10] only allows a
simple combination of connections, such as connections of
parallel branches, each of which is a series chain.

To enhance battery utilization, we need to improve the
existing reconfiguration schemes in the following two aspects:

1) Allow an arbitrary number of cells to be used in each
pack; and

2) Allow sophisticated hierarchical connections of batteries,
which are more flexible than the existing schemes.

Heterogeneous solutions are more cost-effective than the
conventional homogeneous solutions. In Fig. 2, assuming 6V
output voltage, the homogeneous solutions require two more
cells, while the heterogeneous ones only need one more
cell. This flexibility usually results in high complexity in
arranging the connection of battery cells/packs. As a result,
the main challenge lies in searching for a solution to the
problem of dynamically connecting/disconnecting cells/packs.
We meet this challenge by developing a new model of battery
connections, called Power Tree (PT).

2) Fast Reconfiguration: When a cell fails, existing
schemes first compute the number of cells that will be used
in each pack, and bypass the rest of the cells. Based on the
number of cells per pack, the number of packs in series and
the number of parallel branches are then calculated. Finally,
switches are turned on/off to change battery connections. The
resulting system operates all switches around all cells and all
packs, which would be time-consuming in the case of large-
scale battery systems.

To reduce the reconfiguration time, we improve the recon-
figuration strategy as follows.

1) Limit the reconfiguration to a small area in order to

reduce switch operations that affect the performance of
the entire system.

2) Optimize battery connections for reconfiguration based
on the knowledge of power patterns.

We make use of the hierarchy of PT to select an appropriate
part of the battery system to be reconfigured.

3) Reduce Cost via Pack-Sizing: Existing schemes do not
take into account the number of cells necessary for the required
power level over a given period of operation. The resulting
system also fails to consider how to distribute battery cells to
different packs. However, all of these factors are crucial to the
reliability and the costs of a battery system.

To minimize costs without compromising reliability, we
analyze the major cost components of a battery system by
considering the following factors.
• Cell cost depends on the total number of battery cells.
• Fixed pack cost, such as the cost of controllers, is

independent of the number of cells in a pack.
• Variable pack cost, such as the cost of sensors, depends

on the number of cells in each pack.
The main challenge in pack-sizing lies in the inter-
dependencies of pack size, reliability, and battery connections.
We treat these factors as a whole to strike a balance between
them.

III. MODELING AND PROBLEM FORMULATION

When load changes or some cells in a battery system fail,
it must be reconfigured to provide the required level of power.
To achieve this goal, we must answer the following three
important questions.

Q1. How can we configure battery connections to meet
the power requirements?

Q2. When cell failures occur or load changes, can we
reconfigure battery connections as inexpensively and
quickly as possible?

Q3. Over a given period of time, while providing the
required power reliably, can we build such battery
systems inexpensively?

In this section, we use a new model called, the Power Tree
(PT), to represent the connection topology of battery packs.
Based on the PT model, we formally define the problems
mapped from the above questions.

A. Model
Suppose the underlying load requires voltage VL, allowing

over-voltage of no more than Vo, and current CL, allowing
over-current of no more than Co. A single battery cell is
assumed to be able to provide over-voltage Vo and over-current
Co. We can thus calculate ns, the number of cells connected
in series, and np, the number of parallel branches.{

ns = dVLVo e
np = dCLCo e

The notation (ns × np) is used to represent the fact that
a battery pack contains np parallel branches each of which
consists of ns cells in series. We can also divide a battery pack
into sub-packs which can be connected in series or in parallel.
For example, a load is powered by a (3× 2) pack consisting

of 2 parallel branches, each with 3 cells connected in series.
This pack can be divided into series or parallel connections of
cells as follows.
• In the case of series connection, the (3 × 2) pack can

be divided into two sub-packs, one of which is (2 × 2)
and the other sub-pack is (1 × 2). We get (3 × 2) by
connecting (2× 2) and (1× 2) in series.

(3× 2) = (2× 2) + (1× 2).

• In the case of parallel connection, the (3 × 2) pack can
be divided into two sub-packs, both of which are (3×1).
We get (3 × 2) by connecting (3 × 1) and (3 × 1) in
parallel.

(3× 2) = (3× 1) + (3× 1).

Formally, we can define the division of an (ns × np) pack
into a set of N sub-packs {(nsi × npi), i = 1, 2, · · · , N}:
• In the case of series connection, we obtain the (ns ×
np) pack by connecting N sub-packs {(nsi × npi), i =
1, 2, · · · , N} in series. ns =

∑N
i=1 nsi

np = np1 = np2 = · · · = npN
(ns × np) =

∑N
i=1(nsi × npi).

(1)

• In the case of parallel connection, we get the (ns × np)
pack by connecting N sub-packs {(nsi × npi), i =
1, 2, · · · , N} in parallel.

ns = ns1 = ns2 = · · · = nsN
np =

∑N
i=1 npi

(ns × np) =
∑N
i=1(nsi × npi).

(2)

A pack can also be divided further recursively. For example,
a (4× 2) pack can be divided into two sub-packs (3× 2) and
(1× 2) connected in series. One can continue the division of
the first sub-pack in parallel into two sub-packs (3 × 1) and
(3×1). Likewise, we can divide the second sub-pack into two
sub-packs (1× 1) and (1× 1) in parallel. (4× 2) = (3× 2) + (1× 2)

(3× 2) = (3× 1) + (3× 1)
(1× 2) = (1× 1) + (1× 1).

These divisions can be organized into a tree structure, which
we call a Power Tree (PT). In a PT, children are the sub-packs
of their parent node. For example, Fig. 3 shows the PT of
recursive division of a (4×2) pack. According to Eq. (III-A),
a (4 × 2) pack is divided into two serially connected sub-
packs, (3 × 2) and (1 × 2). Thus, the node (4 × 2) has two
children, (3× 2) and (1× 2). Similarly, the node (3× 2) has
two children, (3×1) and (3×1), and the node (1×2) has two
children, (1× 1) and (1× 1). A circle in the figure represents
division in series while a box represents division in parallel
and an oval represents atomic packs that are not divisible.

Formally, we can describe the PT structure as follows.
• A node represents a pack and its children represent its

sub-packs.
• A node belongs to one of the following three types.

Fig. 3. PT of (4× 2)

1) Series: children are connected in series to inherit
their parent’s power. Their quantitative relation satisfies
Eq. (1).

2) Parallel: children are connected in parallel to inherit
their parent’s power. Their quantitative relation meets
Eq. (2).

3) Atomic: an atomic node is a leaf node in the PT and
is not divisible.

• The root of PT is the total power requirement of a given
load.

• An atomic node is powered by a single battery pack.
• All but atomic nodes have each no less than two children.

B. Problems and Approaches

Using the PT structure, we would like to (i) organize
batteries to provide enough power, (ii) reduce the battery re-
configuration time, and (iii) determine pack size by minimizing
the total cost of a battery system.

1) Suitable Connection of Batteries: In the first question in
Section III, the problem is how to connect batteries to meet the
power requirements. PT is used to check if a certain connection
of battery packs can meet the load requirement. For example,
in Fig. 3, a battery pack of 3 cells can be used to support the
power of the node (3× 1) by connecting the 3 cells in series
inside the battery pack. Similarly, we can use a pack of 1 cell
to support the power of the node (1×1). Thus, if we have two
packs of 3 cells and two packs of 1 cell, we can connect these
four packs as shown in Fig. 3 to support the power (4× 2).

Formally, given the load requirement (ns × np), we need
to construct a PT rooted at node (ns × np). In this PT,
there are M leaf nodes {(nsi × npi), i = 1, 2, · · · ,M}.
We have a set of N battery packs in which the number of
cells is {bi, i = 1, 2, · · · , N}. This set of battery packs can
meet the load requirement if we can construct a set of M
pairs {(bi, (nsj × npj)), i ∈ 1, 2, · · · , N ; j = 1, 2, · · · ,M},
meeting the following battery-PT conditions.
(a) M ≤ N .
(b) The first item in a pair is a battery pack and the second

item in the pair is a leaf node in the PT.
(c) In a pair, battery pack bi can support the power of the leaf

node (nsj × npj), i.e., bi ≥ nsj × npj .
(d) Each leaf node (nsi×npi) appears exactly once in the set

of M pairs.
(e) Each battery pack bi appears at most once in the set of

M pairs.

2) Fast Reconfiguration: In the second question in Section
III, the problem is how to make battery systems responsive to
failures and load changes. As mentioned earlier, we must be
able to change the connection of batteries to tolerate failures
and meet the power requirements. When a cell becomes
faulty, we need to reconfigure battery packs. It can be done
quickly if we only need to reconfigure a small part of the
battery system. Likewise, to reconfigure batteries to meet new
power requirements, we can build from scratch with individual
battery packs, but this can be done more efficiently by reusing
parts of the existing connection arrangement. To quantify this
efficiency, we define the reconfiguration effort as the number
of battery packs to be reconfigured. Assume Bo is the packs
used in the original arrangement and Bn the packs used in
the new arrangement. If the reconfiguration algorithm does
not reuse parts of the old arrangement, Bo = ∅.

There are three types of pack reconfiguration:
1) A battery pack, which exists in the old arrangement, has

been removed in the new arrangement.

Set1 = {bi|bi ∈ Bo, bi /∈ Bn}.

2) A battery pack, which is not in Bo, has been added to
Bn.

Set2 = {bi|bi /∈ Bo, bi ∈ Bn}.

3) A battery pack, which exists in both Bo and Bn, has been
updated its connections inside or outside the pack.

Set3 = {bi|bi ∈ Bo, bi ∈ Bn, bi updated}.

The reconfiguration effort is measured with the number of
packs in these sets: R = |Set1|+|Set2|+|Set3|. Thus, for fast
reconfiguration of a battery system, we would like to minimize
R subject to the constraint of valid connections.

3) Pack-Sizing: In the third question in Section III, the
problem is how to reduce the cost of building a battery system.
Pack-sizing determines the number of cells in a pack and
the number of packs in the system to lower the overall cost
while guaranteeing the required reliability. Based on battery-
PT conditions, we can derive the conditions of achieving the
required reliability. Suppose N battery packs uniformly contain
b cells per pack. Given the battery system lifetime T, we can
estimate the number of faulty cells Nf (T) up to the lifetimeT
according to the failure distribution of battery cells.

Assuming the faulty cells are distributed uniformly among
battery packs, we can construct an N -ary vector τ̄ =
(τ1, τ2, · · · , τN), where τi is the number of faulty cells in the
i-th battery pack. This vector meets the following constraints:{

b ≥ τi ≥ 0, i = 1, 2, · · · , N∑N
i=1 τi = Nf

Then, we can get the N -ary vector of the remaining healthy
cells b̄τ = (b − τ1, b − τ2, · · · , b − τN). Given the load
requirement (ns×np), the reliability condition of this battery
system is

∀τ̄ , ∃ PT rooted with (ns×np) , s.t. b̄τ and PT meet
the battery-PT conditions in Section III-A.

If our battery packs meet this reliability condition when
the number of faulty cells is Nf , the packs can also meet

this condition when the number of faulty cells is less than
Nf . Thus, the reliability is P (x ≤ Nf) = F (Nf), where
P (x ≤ Nf) is the probability that the number of faulty cells
is no more than Nf . F (Nf) is the cumulative distribution of
the number of faulty cells.

If the reliability F (Nf) is higher than the required value, N
packs containing b cells per pack can guarantee the required
reliability during the lifetime T. Otherwise, we need to adjust
N and b. Under the constraint that the pair of N and b values
should meet the required reliability, our goal is to minimize
the total cost C (i.e., the cost of cells, sensors and controllers):

C = N × b× cc +N × (cf + cv) (3)

where
• cc is the cost of a single cell, and N × b× cc is the total

cell cost.
• cf is the fixed pack cost, independent of the number of

cells in a pack.
• cv is the variable pack cost, dependent on the number of

cells in a pack.

IV. SOLUTION ALGORITHMS

A. Construction of PT
We need to arrange the connection of battery packs to

meet the load requirement. From the perspective of PT that
represents connections of battery packs, to meet the load re-
quirement (ns×np), we try all possible PTs rooted at (ns×np)
until we find a valid PT that represents valid connections. To
try as many PTs as possible, we can recursively divide leaf
nodes in PTs into series or parallel groups. To divide nodes in
PT into series groups, the parent node and its children must
meet Eq. (1). Lines 10–16 in Algorithm 1 are used to divide
nodes in series. The function partition(n) is the number of all
possible integer partitions of n. To divide nodes in parallel,
the parent node and its children must satisfy Eq. (2). Lines
17–23 in Algorithm 1 are used to divide nodes in parallel.

However, the construction of PT is computationally ex-
pensive. The total number of partitions for an integer n is

approximately e
π
√

2n
3

4n
√

3
[2]. For each node in PT, its number

of partitions is e
π

√
2ns
3

4ns
√

3
+ e

π

r
2np
3

4np
√

3
, since nodes can be divided

in parallel or series. The recursive division of nodes results in
the complexity being the product of the numbers of partitions.
To reduce this complexity, we propose Fast Failure Recovery
(FFR) and Fast Power Reallocation (FPR), both of which also
reduce the number of switch operations.

Algorithm 2 can be used to check the validity of PTs. To
check a PT’s validity, we first sort all leaf nodes in descending
order of the number of cells required. To meet the power
requirement at a leaf node, we select the minimum battery
pack that is not used and has no less cells than this leaf node
requires. This process is applied to each leaf node sequentially
in descending order of the number of cells required.

We can use a battery-leaf pair (B,L) to represent that
battery B is used to power the leaf node L. Algorithm 2 is
“optimal” in the sense that if there exists a connection of
batteries to provide the required powers (specified by the PT),
Algorithm 2 can always find such a connection.

Algorithm 1: Generate PT
Input: (Ns ×Np), the load requirement
Input: BatteryArray, an array of battery packs
Output: PT , a valid PT to meet the load requirement

1 Q← Queue(∅)
2 PT ← InitTree(root← (Ns ×Np))
3 Q.Enqueue(PT)
4 while Q not empty do
5 PT ← Dequeue(Q)
6 if CheckValid(PT,BatteryArray).Validity=True then
7 return PT
8 end
9 for ∀Node ∈PT’s leaf nodes do

10 for ∀{ns1, ns2, · · · , nsm} ∈ Partition(Node.ns)
do

11 NewPT ← PT
12 for i← 1 : m do
13 NewPT.Node.addChild(nsi, np)
14 end
15 Q.Enqueue(NewPT)
16 end
17 for {np1, np2, · · · , npm} ∈ Partition(Node.np)

do
18 NewPT ← PT
19 for i← 1 : m do
20 NewPT.Node.addChild(ns, npi)
21 end
22 Q.Enqueue(NewPT)
23 end
24 end
25 end

Algorithm 2: Check the validity of a PT
Input: PowerTree, the PT under test
Input: BatteryArray, an array of battery packs
Output: Pair, battery-leaf pairs.

1 Used← ∅
2 Pair ← ∅
3 LeafArray ← leaf nodes of PT
4 Sort LeafArray in descending order
5 for ∀Node ∈ LeafArray do
6 V alidBattery ← {∀Battery >

Node and Battery /∈ Used}
7 if V alidBattery = ∅ then
8 return ∅
9 end

10 else
11 min←Min(V alidBattery)
12 Used.add(min)
13 Pair.add(Node,min)
14 end
15 end
16 return Pair

Theorem 1. Algorithm 2 is optimal in that given PT and a
set of battery packs, if there exists a set of battery-leaf pairs
meeting the battery-PT conditions in Section III-A, Algorithm
2 can always find a set of pairs.

Proof: Equivalently, we can prove that if Algorithm 2
cannot find a set of pairs, there is no solution for this set of
battery packs to meet the power requirement. Given a set of N
battery packs, {b1, b2, · · · , bN}, bi is the number of cells in the
i-th battery pack. Arrange leaf nodes of the PT in descending
order:

(ns1 × np1) ≥ (ns2 × np2) ≥ · · · ≥ (nsM × npM).

We sequentially pair a leaf node with a battery pack. A
battery pack can support a leaf node’s power if the number of
cells in the pack is no less than the number of required cells
in that node. If the k-th leaf node cannot be supported by any
available battery packs, there are only two cases to consider:

1) If ∀bi < nsk × npk, no solution exists.
2) Suppose {bi|bi ≥ nsk×npk} are all used to support other

leaf nodes, and bi is used to support node j, (j < k). If
bi is to cover node k, we need to find an available battery
pack for node j. However, because {bi|bi ≥ nsk × npk}
are unavailable and nsk × npk ≤ nsj × npj , {bi|bi ≥
nsj × npj} are also unavailable. Thus, there does not
exist any solution.

That is, if we cannot obtain a solution using Algorithm 2,
there is no solution at all. Thus, Theorem 1 follows.

B. Fast Failure Recovery

The core idea of FFR is to limit the impact of faulty cells,
and hence reduce the number of packs to be reconfigured.

In Algorithm 3, we try to reconfigure from the faulty
pack’s inside to its neighbors, and finally, to the whole battery
system. In a PT, we first try the faulty leaf node, and then
the last ancestor, then second to the last ancestor, and so on,
eventually the root of PT. To reconfigure a node in the PT, we
generate a new PT rooted at the same power as that of the
reconfiguring node. Based on this new PT, we can connect
battery cells, which are idle/unused or have already been used
in the leaf nodes, to meet the power requirement. In Algorithm
3, “GenPt” is the function to use Algorithm 1.

C. Fast Power Reallocation

1) Basic Algorithm: We assume that, when the required
power increases, both voltage and current must increase. If the
circuit to provide low power is a sub-circuit of the circuit that
provides high power, we can easily switch to provide these two
power-levels without modifying the circuit topology. Thus, to
make quicker adaptation to dynamic loads, we try to organize
smaller circuits to be sub-circuits of a larger one. In general,
we can extend a smaller circuit to support higher power in two
steps. Assuming nsm < nsM , npn < npN , we can change the
battery’s output power from (nsm×npn) to (nsM ×npN) by:

1) connect (nsm×npn) with ((nsM −nsm)×npn) in series
to get (nsM × npn);

2) connect (nsM×npn) with (nsM×(npN−npn)) in parallel
to get (nsM × npN).

Algorithm 3: Adjust PT with faulty cells
Input: PT , the original PT
Input: FaultyLeaf , the faulty leaf node
Output: NewPT , the new PT

1 Current← FaultyLeaf
2 while Current 6= ∅ do
3 BatteryArray is the array of packs that cover the

leaf nodes of Current as well as idle packs.
4 (ns × np)← Current
5 NewPT ← GenPT ((ns × np), BatteryArray)
6 if NewPT 6= ∅ then
7 Merge NewPT into old PT.
8 Return PT
9 end

10 else
11 Current← Current.Parent
12 end
13 end

When we need the higher power (nsM×npN), batteries are
connected based on the entire PT; when we need the lower
power (nsm × npn), we only use the node (nsm × npn).

If more than two power levels are required, we sort the
power levels in ascending order and apply the above method
to every two adjacent power-levels.

2) Dealing with Uncertain Power in FPR: Power is not
always known a priori and hence, we also have to deal with
unexpected power. In this case, we have to consider two
transitions:

1) For transiting to an unknown power-level, our topology is
not optimized for this unknown power. Thus, we have to
reconfigure the entire circuit to provide this unexpected
power. We can only optimize the circuit for expected
power-levels.

2) For transitioning from an unknown power-level to a
known one, our topology for the unknown power-levels
may be unsuitable for the known power-levels (e.g., too
small). Thus, we have to reconfigure the entire circuit
to meet the known power requirements. We have two
reconfiguration choices:

a) Aggressive approach reconfigures the topology to
meet the maximum known power-level, so that we may
not have to do more reconfiguration when loads change
to lower known power-levels.

b) Lazy approach only reconfigures the topology to
meet the current known power-level and optimizes this
topology according to the power-levels that are not
higher than the current known power-level. So, we do
not have to do more reconfiguration when loads change
to lower known power-levels, but we have to extend
reconfiguration when loads increase to higher power-
levels.

Theorem 2. The lazy approach requires no more reconfigu-
ration effort than the aggressive one.

Proof: Power levels are measured by the number of cells
in use. Suppose n1, n2, · · · , nN are the sequence of known

power-levels between two unknown power-levels. n0 = 0.
nmax is the maximum known power-level. An extension from
ni to nj can be represented as Extend(ni, nj). If ni < nj <
nk, Extend(ni, nk) = Extend(ni, nj) + Extend(nj , nk)
• The aggressive approach reconfigures the entire cir-

cuit once, and directly uses its sub-circuits to sup-
port lower power-levels. So, its reconfiguration effort is
Extend(0, nmax) + 0×N .

• The lazy approach reconfigures the circuit to meet
the current power-level, and gradually extends it to
meet higher power-levels. We extract a subsequence
nk1, nk2, nkm from n1, n2, · · · , nN . Each power-level in
this subsequence is higher than all the power-levels before
this in the sequence. Thus, each element between nki and
nk(i+1) is not higher than nki so that we can directly use a
sub-circuit of the circuit for nki without reconfiguring the
whole circuit. The lazy approach’s reconfiguration effort
is, therefore,

m∑
i=1

Extend(nk(i−1), nki) + 0× (N −m)

= Extend(0, nkm).

Since nkm ≤ nmax, the lazy approach’s reconfiguration
effort is not larger than the aggressive one’s. We can apply
this calculation to all sequences between two unknown power-
levels so that the lazy approach’s total reconfiguration effort
is also no more than than the aggressive one’s.

3) Estimation of Reconfiguration Effort: Suppose power-
levels are independent of each other. We can then estimate
the reconfiguration effort using Markov chains. States in the
Markov chains represent the highest known power-level that
the circuit can afford and be optimized. Assume there are
n+1 states: the first n states are for known power-levels (in
ascending order) and group all unknown power-levels into the
last state, n+1.
• State transition matrix

P (n+1)×(n+1) =
[
Pn×n1 Pn×1

2

P 1×n
3 P 1×1

4

]
Pn×n1 is the transition matrix, each element of which
represents the probability of transiting from one known
power-level to another known power-level. It is an upper
triangular matrix, because the circuit for low power
can be extended to support high power, but the circuit
for high power cannot be reduced to only support low
power. Pn×1

2 , P 1×n
3 and P 1×1

4 represent, respectively, the
probabilities of transiting from (i) known power-levels to
unknown ones, (ii) unknown power-levels to known ones,
and (iii) unknown power-levels to unknown ones.

• The reconfiguration effort of transitions is

R(n+1)×(n+1) =
[
Rn×n1 Rn×1

2

R1×n
3 R1×1

4

]
where Rn×n1 represents the reconfiguration effort of tran-
siting from a known power-level to another known one. It
is an upper triangular matrix, because the circuit for high
power does not incur any additional reconfiguration effort

Fig. 4. An example pack-sizing graph

to support low power. Rn×1
2 , R1×n

3 , and R1×1
4 represent,

respectively, the reconfiguration efforts of transiting from
(i) a known power-level to an unknown one, (ii) an un-
known power-level to a known one, and (iii) an unknown
power-level to another unknown one.

• The stationary distribution π̄:

lim
m→∞

π̄(P (n+1)×(n+1))m = π̄ = [π1, π2, · · · , πn+1]

where P (n+1)×(n+1) is the power transition matrix.
With these components, we can estimate the reconfiguration

effort of FPR as:

E(R) =
∑
i

∑
j

πipijrij

where πi is the stationary probability of state i, pij is the
probability of transiting from state i to state j, and rij is the
(reconfiguration) effort of transiting from state i to j.

D. Pack-Sizing
Packs are usually homogeneous for ease of manufacturing,

containing an identical number of cells. If there are not enough
battery cells to meet the requirement, we add more packs to
the system or more cells in each pack. If we treat (the number
of packs, the number of cells in each pack) as a state, the
transition from one state to another can be achieved by adding
packs/cells. For example, in Fig.4, we begin with state (1 pack,
1 cell). If there is not enough power, we can transit to state (2
packs, 1 cell) by adding 1 pack, or to state (1 pack, 2 cells)
by adding 1 cell per pack. If the power is still not enough, we
can transit to state (3 packs, 1 cell), (2 packs, 2 cells) or (1
pack, 3 cells) by adding more packs/cells.

We can formally define the Pack-Sizing Graph (PSG) as
follows.
• It is a directed graph.
• Each node in this graph represents a state (the number of

packs, the number of cells per pack).
• Each node (np, nc) has two edges pointing to nodes (np+

1, nc) and (np, nc + 1).
• There is only one node with 0 indegree. This node is the

starting node (1, 1).
We can search the PSG for the best state to reduce the cost

in Eq. (3). This is computationally expensive since we have to
enumerate all pack-sizes and the numbers of packs. To reduce
this complexity, we can design a heuristic by using a relaxed
problem with fewer restrictions on actions to take. We relax
the constraint that packs have to be homogeneous. Thus, we

need not add one more cell in every pack or add a pack of
the same size to meet the power requirement; instead, we only
have to add packs of a single cell each. Then, the cost of a
state is f(s) = g(s) + h(s) where s is a state in PSG, g(s)
is the actual cost calculated using Eq. (3), and h(s) is the
heuristic function. It is the number of extra single-cell packs
necessary to meet the power requirement. This cost function
is both admissible and consistent, and hence, we can use the
A* algorithm [16] to find an optimal solution.

V. EVALUATION

We first describe our method for evaluating the proposed re-
configuration and pack-sizing, and then present the evaluation
results in comparison with the simple scheme in [10] that only
configures the battery-cell connectivity without optimization.

A. Evaluation Method

We simulate both the simple and the PT-based optimization
schemes. Battery utilization—the ratio of the number cells in
use to the total number of cells—is used to compare the battery
connections of the simple scheme and those optimized via
PT. We also evaluate the effectiveness of failure recovery and
power reallocation using the reconfiguration effort, measured
in number of battery packs to be reconfigured, which is
proportional to the number of switch operations. The proposed
FFR (Fast Failure Recovery) and FPR (Fast Power Relocation)
are evaluated under the assumption that the required power and
faulty cells in a system are uniformly distributed. We compute
the reconfiguration effort upon failure of a single cell and also
upon change of the required power. Moreover, the pack-sizing
is assessed with the total cost of a battery system that consists
of cell cost, fixed and variable pack costs. We set the required
power and reliability for a given period of operation, and then
compare the costs of the optimized and the other pack-sizes.

B. Battery Utilization

Since the simple reconfiguring scheme restricts the config-
uration of batteries (e.g., the number of cells in use in each
pack and connections of packs), it cannot fully utilize cells in
a pack, and thus, often cannot meet the power requirements
even if there are enough cells in the pack. In contrast, the
PT-based optimization provides more flexible intra- and inter-
pack connections so that the battery system can provide the
required power while the simple scheme cannot. Fig. 5 plots
the results of comparing the battery utilization of the simple
and PT schemes.

In Fig. 5, the utilization of both the simple and PT schemes
decreases as the pack-size increases, since a larger pack-size
bypasses more healthy cells. The utilization of the simple
scheme is lower than that of the PT scheme because the PT
scheme attempts to exploit more possible connections, unlike
the simple scheme that considers only one type of connection.
Specifically, in Fig. 5, the utilization of PT scheme remains
high when the pack-size is not greater than 11, while that of
the simple scheme decreases monotonically as the pack-size
increases.

Fig. 5. Utilization of simple and PT schemes

C. Fast Failure Recovery

While the simple scheme reconfigures the entire battery
system upon failure of a cell, FFR effectively limits the
impact of failed packs to a small area, thus reducing the
reconfiguration effort. Clearly, a larger reconfiguration area
requires more reconfiguration effort and time. Fig. 6 plots the
results of comparing the reconfiguration efforts of the simple
and FFR schemes, where “Mean,” “Min,” and “Max” represent
the mean, minimum and maximum reconfiguration efforts of
the PT scheme.

The reconfiguration effort of the simple scheme increases
linearly with the power requirement since it has to reconfigure
the entire battery system even upon failure of a single cell,
and the number of packs in the battery system is proportional
to the power requirement. By contrast, FFR’s reconfiguration
effort nearly remains constant irrespective of the increase of
power requirement. The reason for this is that FFR usually
reconfigures cell connectivity only in a small area around the
failed packs (e.g., inside or in the vicinity of the failed pack)
and keeps the other parts intact. The number of packs in this
limited reconfiguration area nearly remains constant regardless
of the size of the battery system, and the reconfiguration effort
is nearly constant even if the load increases. This characteristic
makes FFR scalable. In Fig. 6, in the worst case, FFR has to
reconfigure all packs, so that the maximum reconfiguration
effort is close to the total number of packs. However, in most
cases, FFR only reconfigures a small part of the battery system
so that the mean of reconfiguration effort is much lower than
that in the worst case. Moreover, the minimum reconfiguration
effort is always 1 because we can reconfigure inside a pack if
the pack has enough backup cells. There is a wavy pattern on
the mean line, resulting from the randomness of cell failures.
In the experiment, we randomly choose a cell to fail and repeat
the process many times, but the number of cells is so large
that the randomness may become obvious. In addition, the
amplitude of the wave is so negligible that one may treat the
wave as a line.

Fig. 6. Reconfiguration efforts of simple and FFR schemes

D. Fast Power Reallocation

Based on prior knowledge of power patterns, FPR optimizes
the topology of a battery system, reducing the number of
packs to be reconfigured when the load changes, while the
simple scheme simply reconfigures the entire battery system
to meet the various power requirements. Obviously, the better
the battery packs are organized, the less the reconfiguration
effort is required when the load changes. Fig. 7 plots the
reconfiguration efforts when the load changes, where “Lazy”
and “Aggressive” represent the lazy and aggressive strategies
of our PT scheme, and “Estimate” is the estimated reconfigu-
ration of PT scheme using a Markov chain.

The reconfiguration effort of the simple scheme nearly
remains constant irrespective of prior knowledge of power
patterns, because the simple scheme does not exploit this
prior knowledge to improve its efficiency. By contrast, prior
knowledge about power patterns, if available, is exploited
to reduce the reconfiguration effort of lazy FPR. Without
any prior knowledge of power patterns, lazy FPR works in
the same way as the simple scheme. In Fig. 7, the portion
of unknown power represents the knowledge about power
patterns. The simple scheme’s reconfiguration effort remains
high irrespective of the knowledge of power pattern. However,
when the unknown portion is 0% (i.e., perfect knowledge),
lazy FPR optimizes perfectly the battery system topology,
making only a very small reconfiguration effort. When the
unknown portion is 100% (i.e., no knowledge), lazy FPR
works as poorly as the simple scheme and any other schemes.
The last point of four lines coincide in Fig. 7 . The aggressive
FPR performs well when the unknown portion is small, but
worse than the simple scheme when the unknown portion is
large because it takes time to reconfigure the circuit to support
the largest power requirement, which does not always appears.
Our estimation of lazy FPR with Markov chains is close to
the actual lazy FPR. We also found that FPR only requires
less than 0.2% more cells than the simple scheme, making it
an efficient and low-cost solution.

Fig. 7. Reconfiguration effort of the simple scheme and the fast power
reallocation

Fig. 8. Costs of different pack-sizes

E. Pack-Sizing

Pack-sizing covers the total number of cells and the number
of cells per pack. One must determine the best pack size
to minimize the total cost by balancing the various sources
of cost, including cell cost, fixed and variable costs in a
pack. The cost is modeled in Eq. (3) and its coefficients are
calculated according to the costs of components. Since it is
intractable to search all possible pack-sizes in order to find the
optimal size, we use a heuristic algorithm that selects pack-
sizes based on the sum of current cost and expected additional
cost. Fig. 8 shows the costs of different pack-sizes under the
uniformly-distributed failure rate of 3%. The medium pack-
size is attractive, because a large pack-size incurs a high
variable pack cost, while a small pack-size requires many
packs and thus incurs a high fixed pack cost. In Fig. 8, the
pack-size of 5 has the minimum cost while the pack-sizes of
1, 7, 8, and 9 have the highest cost, because the pack-size of
1 results in too many packs, thus too many controllers, while
the pack-sizes of 7, 8, 9 result in very complex packs and
high per-pack costs. In Fig. 8, the curve does not resemble
a U-shaped bowl, as the pack size must be an integer value.
Thus, the curve cannot be a smooth U-shaped bowl.

VI. CONCLUSION

It is important to recover from cell failures inexpensively
and quickly since the cost and the recovery speed have become
the main roadblock in the development of large-scale battery
systems for such applications as EVs and uninterruptible
power grids. We propose a new dynamic reconfiguration
framework in which we develop algorithms for pack-sizing,
failure recovery, and power reallocation to (1) improve bat-
tery utilization, (2) facilitate recovery from battery cell/pack
failures and power reallocation, and (3) reduce the total cost of
battery systems. We evaluated the performance of this frame-
work in comparison with a popular existing scheme in terms of
the utilization of available battery cells, the required cost and
the reconfiguration effort. While enhancing the cell utilization,
our algorithms for failure recovery and power reallocation are
shown to dramatically reduce the reconfiguration effort that
nearly remains constant irrespective of battery system size.
Our optimal pack-sizing also reduces the cost and the size of
a battery system. These solutions are expected to play key roles
in (1) lowering the cost of large-scale battery systems, and (2)
reducing the delays in operating a large number of switches
necessary for reconfigurable (and hence fault-tolerant) battery
systems.

ACKNOWLEDGMENT

The work reported in this paper was supported in part by
the National Science Foundation under Grants CNS-0930813
and CNS-113820.

REFERENCES

[1] Mahmoud Alahmad, Herb Hess, Mohammad Mojarradi, William West,
and Jay Whitacre. Battery switch array system with application for
jpl’s rechargeable micro-scale batteries. Journal of Power Sources,
177(2):566 – 578, 2008.

[2] Sci-tech dictionary: asymptotic formula.
http://www.answers.com/topic/asymptotic-formula, May 2010.

[3] R. C. Balch, A. Burke, and A. A. Frank. The affect of battery pack
technology and size choices on hybrid electric vehicle performance and
fuel economy. In Proceeding 16th Annual Battery Conference, 2001.

[4] L. Benini, A. Macii, E. Macii, and M. Poncino. Discharge current
steering for battery lifetime optimization. In Low Power Electronics
and Design, 2002. ISLPED ’02. Proceedings of the 2002 International
Symposium on, pages 118 – 123, 2002.

[5] Hybrid Cars. First numbers on hybrid battery failure, May 2008.
[6] Song Ci, Jiucai Zhang, H. Sharif, and M. Alahmad. A novel design

of adaptive reconfigurable multicell battery for power-aware embedded
networked sensing systems. In Global Telecommunications Conference,
2007. GLOBECOM ’07. IEEE, pages 1043 –1047, Nov. 2007.

[7] Robert W. Erickson. Dc-dc power converters. Technical report, Depart-
ment of Electrical and Computer Engineering, University of Colorado.

[8] William Flanagan. Handbook of Transformer Design and Applications.
McGraw-Hill, 1993.

[9] J.W.K.K. Jayasundara and R. Munasinghe. Electric vehicle simulator
to determine motor and battery specifications. In Industrial and
Information Systems (ICIIS), 2009 International Conference on, pages
540 –545, Dec. 2009.

[10] Hahnsang Kim and Kang G. Shin. On dynamic reconfiguration of
a large-scale battery system. In IEEE Real-Time and Embedded
Technology and Applications Symposium, pages 87–96, Los Alamitos,
CA, USA, 2009. IEEE Computer Society.

[11] Hahnsang Kim and Kang G. Shin. Dependable, efficient, scalable
architecture for management of large-scale batteries. In ACM/IEEE
International Conference on Cyber-Physical Systems (ICCPS), April
2010.

[12] Hybrid car battery problems. www.livestrong.com.
[13] Maxim. Source resistance: The efficiency killer in dc-dc converter

circuits. http://www.maxim-ic.com/appnotes.cfm/an pk/3166, 2004.
[14] IDTechEx Research. Electric vehicles 2010-2020 new market research

study, 2010.

[15] Pike Research. Electric vehicle consumer survey, 2010.
[16] Stuart Russel and Peter Norvig. Artificial Intelligence: A Modern

Approach. Prentice Hall Series, 2002.
[17] T. Stuart, F. Fang, X. Wang, C. Ashtiani, and A. Pesaran. A modular

battery management system for hevs. In Future Car Congress, June
2002.

[18] Vinesh Sukumar, Mahmoud Alahmad, Kevin Buck, Herbert Hess, Harry
Li, Dave Cox, Fadi Nessir Zghoul, Jeremy Jackson, Stephen Terry, Ben
Blalock, M. M. Mojarradi, W. C. West, and J. F. Whitacre. Switch array
system for thin film lithium microbatteries. Journal of Power Sources,
136(2):401 – 407, 2004. Selected papers presented at the International
Power Sources Symposium.

[19] Techpulse360. The failure of lithium ion electric car batteries.
[20] The U.S. Department of Energy. Primer On Lead-Acid Storage Batter-

ies, 1995.

