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Abstract—Geometry-based optimal power control was pro-
posed in [14] to transform the power-control problem to a new
geometrical problem on the position relationship between a line
and some points. This scheme provides a novel visual perspective
and lowers the complexity of optimization. We generalize this
scheme to a larger class of power-control optimization problems
so as to maximize the network utility with multiple average
and peak power constraints in wireless networks. To facilitate
the handling of the geometrical model, we define a subset of
geometrical models with specified characteristics, called a regular
geometrical model, and derive the type of power-control problems
eligible for the regular geometrical model. For such a type of
problems, two strategies are proposed for the construction of
the regular geometrical model. Utilizing geometrical properties,
we propose a novel geometry-based optimization scheme for the
general power-control problem. Its computational complexity is
significantly lower than the conventional algorithms. We also
provide a further discussion on irregular geometrical model cases.
Finally, we provide two examples of deploying the proposed
geometry-based power-control scheme.

I. INTRODUCTION

Power control plays a key role in interference coordination

and energy management in wireless networks. In case of voice

communications, for example, power control is used to meet

the users’ required signal to interference plus noise ratios

(SINR) [1]. Each user adjusts its transmit power just to meet

the SINR requirement. A unified framework is proposed in

[2] for the convergence conditions of distributed power-control

algorithms.

For data communications, a user can increase its transmit

power to achieve a higher data rate by using adaptive modula-

tion and coding schemes [3]. The power-control framework

proposed in [2] is extended for data communications in

[4]. In these papers, power control was used to combat the

interference among the users and achieve high throughput in

wireless networks.
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Over the recent decades, there have been various techniques

proposed to mitigate the interference. In the presence of inter-

node interferences, the Successive Interference Cancelation

(SIC)[5] at the receivers is an efficient approach for multiple

simultaneous transmitters. For interference-free transmissions,

Orthogonal Frequency Division Multiplexing (OFDM) [6]

provides orthogonal subcarriers without inter-carrier inter-

ference. Multiple-Input and Multiple-Output (MIMO)[7] can

also provide multiple parallel channels by decomposing the

channel matrix between the antennas of the transmitter and the

receiver. In these scenarios mentioned above, the achievable

total throughput would be an increasing and concave function

of its transmit power according to the Shannon’s capacity

formula.

As the objective functions of most power-control problems

in wireless networks are concave, numerous researchers [8],

[9], [10] adopted convex optimization, which is an effective

mathematical tool to minimize a convex function subject to

convex constraints. There are two types of power-control

optimization. The first is to approach the optimum based on

Lagrangian duality by numerical search methods, such as the

steepest descent method [11], [12]. The complexity of this type

of optimization depends on the initial point and the required

accuracy of optimal solution. Also, the complexity increases

significantly with the number of Lagrangian multipliers. The

second type of optimization is to obtain the best directly

by comparing the objective values for all possible optimal

solutions, i.e., the vertices of the convex feasible region

[13]. By this type of algorithms, the optimal solution can be

obtained deterministically, and its complexity depends mainly

on the number of possible optimal solutions.

In our earlier work [14], a geometrical model was con-

structed to transform a power-control problem to a new ge-

ometrical problem on the position relationship between a line

and multiple points. This geometrical model is used to obtain

an optimal solution by comparing possible optimal solutions,

which belong to the second type of optimization mentioned

above. The geometrical properties are utilized to reduce the

number of possible solutions, thus lowering the computational



complexity. Note that the algorithm in [14] was designed only

for the special optimization problem. This motivates us to

study how to deploy the geometry-based scheme for more

general power-control problems, and the type of problems for

which the geometry-based scheme is suitable.

In this paper, we generalize the geometry-based optimal

power-control scheme in [14] and establish a new framework

that can be applied to a much larger class of algorithms

in wireless networks, including multiple access channels,

broadcast channels, and multiple parallel channels with the

consideration of multiple average and peak power constraints.

The main contributions of this paper are as follows.

• A class of power-control optimization problems can be

transformed to geometrical problems on the position re-

lationship between a line and some points, which provide

a novel visual and intuitive perspective of power-control

optimization.

• The geometrical model is easier to handle if it is regular.1

We propose two strategies for constructing regular geo-

metrical models and derive two conditions to determine

if the power-control problem is eligible to be modeled as

a regular geometrical model.

• We develop the optimization methods for both regular

and irregular geometrical models. Especially, for the

regular case, it reduces the computational complexity

significantly as compared to the conventional algorithms.

In addition, both multiple access channels and multiple

parallel channels are discussed as deployment examples

of the proposed geometry-based power-control scheme.

The rest of this paper is organized as follows. Section II

describes the problem formulation. In Section III, the power-

control optimization problem is modeled as a geometrical

model. Section IV investigates the regularity of geometrical

models. Section V proposes a geometry-based optimal power-

control scheme. Irregular geometrical models are discussed in

Section VI. Two deployment examples are provided in Section

VII. Finally, the paper concludes with Section VIII.

II. PROBLEM FORMULATION

Consider a general power-control optimization problem

in which N users communicate with their respective re-

ceivers. Let N be the set of users. Independent variables

of the optimization problem are the power vector P =
{P1, P2, · · · , PN}, where Pi is user i’s transmit power.

The objective of general power-control optimization is to

maximize the long-term network utility E[U(P)] by adjusting

P, where E(·) is the mathematical expectation. The utility

U(P) increases and the marginal utility ∂U(P)/∂P decreases

with the increase of transmit power in a lot of scenarios.

It is assumed in this problem that U(P) is an increasing

and concave function of P. The network utility U(P) can

be one of many functions, such as the weighted sum-rate

for multiple access channels, broadcast channels and multiple

parallel channels.

1The definition of regular geometrical model will be provided in Section IV.

In the optimization problem, there are two types of linear

constraints: J average and K peak power constraints. The

constraints can be set to the transmit power limit for an

individual user, the total transmit power limit for all users,

and the interference at some measurement points, in average

and/or peak sense. The power-control optimization problem

can be formulated as

max E[U(P)] (1)

s.t. Pi ≥ 0, ∀i ∈ N (2)

E

[∑
i

aijPi

]
≤ cj , ∀j ∈ {1, 2, · · · , J} (3)

∑
i

bikPi ≤ dk, ∀k ∈ {1, 2, · · · , K} (4)

where aij and bik are the random coefficients of linear con-

straints, cj and dk are the limits of constraints. It is assumed

that the probability density functions (p.d.f.) of aij and bik are

known. All of the coefficients aij , bik, cj and dk are assumed

to be greater than, or equal to 0.

III. GEOMETRICAL ANALYSIS

A. Lagrangian Optimality

The above general power-control problem takes into account

both average and peak power constraints. We first treat the

average power constraints by the Lagrangian optimality and

divide the original problem into multiple subproblems for

each snapshot, which is an instant with a sample of random

coefficients aij and bik.

Let = {λ1, · · · , λJ} be the vector of the Lagrangian

multipliers corresponding to the average power constraints.

The optimal solution of the power-control problem can then

be obtained if and only if there exist and a power-control

scheme P such that the power P is a solution of the optimiza-

tion problem for each snapshot [15]:

max U(P)−
∑

j

λj

(∑
i

aijPi − cj

)
(5)

s.t. λj

(
E

[∑
i

aijPi

]
− cj

)
= 0,∀j ∈ {1, 2, · · · , J} (6)

∑
i

bikPi ≤ dk,∀k ∈ {1, 2, · · · , K}. (7)

Let L denote the Lagrangian function for each snapshot and

= {β1, β2, · · · , βK} be the vector of the Lagrangian multi-

pliers corresponding to the peak power constraints. According

to the Karush-Kuhn-Tucker (KKT) condition [11], the above

problem is transformed to:

max L = U(P) −
∑

j

λj

(∑
i

aijPi − cj

)

−
∑

k

βk

(∑
i

bikPi − dk

)
(8)



s.t. λj

(
E

[∑
i

aijPi

]
− cj

)
= 0, ∀j ∈ {1, 2, · · · , J} (9)

βk

(∑
i

bikPi − dk

)
= 0,∀k ∈ {1, 2, · · · , K}. (10)

Note that the Lagrangian multipliers and have dif-

ferent features. is adjusted to meet the average power

constraints, and hence is unique for all snapshots. Unlike

, the Lagrangian multiplier for peak power constraints

is determined for each snapshot to ensure the peak power

constraints are satisfied for all snapshots, which indicates the

difference between average constraints and peak constraints.

Because of the inherent feature of and , the Lagrangian

multipliers should be adjusted hierarchically. is adjusted for

average power constraints and is unique for all snapshots. In

the subproblem of each snapshot, the independent variables P
and are adjusted for optimization with given .

To obtain the optimality condition, we calculate the partial

derivative of the Lagrangian function L with respect to Pi as

∂L

∂Pi
=

∂U(P)
∂Pi

−
∑

j

λjaij −
∑

k

βkbik. (11)

Let P ∗
i be user i’s optimal power and Pmax

i be the user

i’s maximum power restricted by the peak power constraints,

which can be calculated as Pmax
i = min

k
(dk/bik). For the

users transmitting data with P ∗
i > 0, the optimality condition

is specified by the following theorem.

Theorem 1: In the general power-control optimization prob-

lem, the sufficient and necessary optimality condition is that

∂L/∂Pi = 0 for the users transmitting with P ∗
i > 0 and

∂L/∂Pi < 0 for the users who are not transmitting.

Proof: Since the network utility U(P) is an increasing

and concave function of Pi, the following condition is always

met:
∂2L

∂P 2
i

≤ 0. (12)

According to this equation, if ∂L/∂Pi ≤ 0 when Pi = 0,

then ∂L/∂Pi ≤ 0 for any Pi ∈ [0, Pmax
i ], so the objective

is maximized when Pi = 0. Similarly, if ∂L/∂Pi ≥ 0 when

Pi = Pmax
i , then ∂L/∂Pi ≥ 0 for any Pi ∈ [0, Pmax

i ], so

the objective is maximized when Pi = Pmax
i . If ∂L/∂Pi > 0

when Pi = 0 and ∂L/∂Pi < 0 when Pi = Pmax
i , there must

exist a point Pi ∈ (0, Pmax
i ) such that ∂L/∂Pi = 0, which is

the optimal solution in this case.

Based on the above analysis, the optimal power P ∗
i is

achieved at either local maxima or the vertices of its feasi-

ble region. Because of the increasing and concave objective

function, the sufficient and necessary optimality conditions of

the general power-control problem are:⎧⎨
⎩

∂L
∂Pi

|Pi=0 ≤ 0 ⇒ P ∗
i = 0

∂L
∂Pi

|Pi=P∗
i

= 0 ⇒ 0 < P ∗
i < Pmax

i
∂L
∂Pi

|Pi=Pmax
i

≥ 0 ⇒ P ∗
i = Pmax

i .

(13)

When P ∗
i = Pmax

i , the Lagrangian multiplier can be

adjusted for each snapshot to make ∂L/∂Pi = 0 when

Pi = Pmax
i . Therefore, the optimality condition for the users

transmitting with P ∗
i > 0 is ∂L/∂Pi = 0.

B. Geometrical Model

To provide a visual and intuitive perspective, we propose

a novel geometrical model to transform the general power-

control optimization problem to a new geometrical problem

associated with the position relationship of points and lines.

According to Theorem 1 and Eq. (11), the optimality

condition of the transmitting users in the general power-control

optimization problem can be rewritten as an expression of a

line in a two-dimensional space.

∂L

∂Pi
= Axi + B − yi = 0 (14)

where

Axi =
∂U(P)

∂Pi
(15)

yi =
∑

j

λjaij (16)

B = −
∑

k

βkbik. (17)

Considering the power-control problem from a geometrical

viewpoint, the line is expressed as y = Ax + B, where A
and B are the slope and intercept of the line, respectively.

Each user i has a corresponding point Si(xi, yi) in a two-

dimensional space, where xi and yi as the horizontal and

vertical coordinates of the point Si. Define S as the set of

all points Si,∀i ∈ N .

This way, the problem is transformed to a new geometrical

problem on the position relationship of points Si ∈ S and

the line y = Ax + B. The geometrical model is to adjust the

position relationship of the line y = Ax + B and the points

Si ∈ S to satisfy the following optimality condition.

Theorem 2: Define NT as a set of the users whose cor-

responding points are on the line y = Ax + B, NT ⊆ N
and NT �= φ. The optimal solution of the geometrical model

is achieved when the points Si,∀i ∈ NT are on the line

y = Ax + B and all the other points Si,∀i ∈ N \ NT are

above the line.

Proof: In a two-dimensional space, since the line y =
Ax + B goes through all the points Si(xi, yi),∀i ∈ NT , and

all the other points are above the line, the following should

be satisfied:

yi = Axi + B, ∀i ∈ NT (18)

yi > Axi + B, ∀i ∈ N \ NT . (19)

The above equations and inequalities can be rewritten using

the geometrical model Eq. (14), as

∂L

∂Pi

∣∣∣∣
Pi=P∗

i

= 0, ∀i ∈ NT (20)

∂L

∂Pi

∣∣∣∣
Pi=P∗

i

< 0, ∀i ∈ N \ NT . (21)



One can observe that the optimality condition in the geomet-

rical model satisfies the optimality conditions in the general

power-control problem in Theorem 1 and NT is just the set

of the users who transmit simultaneously at the snapshot.

IV. REGULARITY OF GEOMETRICAL MODELS

In a geometrical model, the positions of both the line Y =
Ax + B and the points Si ∈ S are dependent on the power

P. In such a case, it is difficult2 to adjust P to satisfy the

optimality condition of the position relationship in Theorem 2.
Here, we focus on a subset of geometrical models, called

regular geometrical models.
Definition 1 (Regular Geometrical Model): A geometrical

model is said to be regular if it satisfies the following two

conditions: (1) the point coordinates xi and yi are fixed, and

(2) the line parameters A and B are unique for all i ∈ N .

Otherwise, it is an irregular geometrical model.
Remark 1: In the regular geometrical model, the coordi-

nates xi and yi are determinate with given , the positions

of the points Si ∈ S are fixed. In such a case, the original

geometrical model can be simplified to adjust the position

of only the line y = Ax + B by changing the independent

variables P and .
Obviously, not all geometrical models are regular, and

hence it is necessary to investigate which type of power-

control optimization problems can be modeled as a regular

geometrical model.
Lemma 1: If xi is independent of P for all i ∈ N , the

positions of the points Si ∈ S are fixed.
Proof: Since linear constraints are considered here, the

independent variables P and do not affect the value of yi

according to Eq. (16). Given in a specified snapshot, yi is

fixed.
is the vector of the Lagrangian multipliers for peak power

constraints, which do not appear in the expression of xi. Thus,

xi will depend on the power P only. If xi is independent of

P, xi is fixed.
Based on Eq. (15), A and xi are decomposed from

∂U(P)/∂Pj . To obtain a regular geometrical model, we

must consider the following two rules when designing the

decomposition strategy.

• A is unique for all i ∈ N (according to the second

condition of Definition 1).

• xi is independent of P (according to Lemma 1).

Using the above two rules, we design a strategy of decom-

posing A and xi as follows.

Strategy 1 (Decomposition of A and xi):

A = g.c.d.

(
∂U(P)
∂P1

,
∂U(P)
∂P2

, · · · ,
∂U(P)
∂PN

)
(22)

xi =
∂U(P)

∂Pi

/
A, ∀i ∈ N (23)

where g.c.d.(n) is the greatest common divisor of n.

2Here, the word “difficult” is used from the computation complexity view.
It is difficult if the complexity is high.

Remark 2: Direct calculation of the g.c.d. is not always

easy when ∂U(P)/∂Pi is not an integer polynomial. We can

thus use an intuitive approach for the decomposition of A and

xi. Let P−
i be the power vector of all but user i. Due to the

assumed homogeneity of users, all elements of P−
i should

have the same style in the expression of ∂U(P)/∂Pi. The

difficulty of decomposition is caused by the presence of P in

∂U(P)/∂Pi. If the partial derivative includes only Pi or P−
i ,

there exists P in xi that makes the geometrical model irregular.

If the partial derivative includes all the elements of P, the

symmetric parts in the expression of ∂U(P)/∂Pi, ∀i ∈ N
are decomposed into A and the other parts are into xi.

According to the intuitive method in Remark 2, the resulting

A is a common divisor but not always the greatest, because

the constant in ∂U(P)/∂Pi can be decomposed into either A
or xi. The following lemma states that the decomposition of

the constant does not affect the optimal solution.

Lemma 2: For two different decomposition results satisfy-

ing A′ = Ac and x′
i = xi/c where c is independent of P

and i, the optimization solutions of A–xi decomposition and

A′–x′
i decomposition are the same.

Proof: From a geometrical view, if the slope of the line

changes as A′ = Ac and the horizontal coordinates of points

change as x′
i = xi/c,∀i ∈ N , it is obvious that the position

relationship of the line and the points does not change.

Based on the optimization conditions (18) and (19), the

product of A and xi is not affected by the decomposition

strategy,

Axi = A′x′
i =

∂U(P)
∂Pi

, (24)

so the optimal solutions based on these two decomposition

results are the same.

Assuming adoption of the above decomposition strategy, the

following lemma discusses the type of power-control problems

that can satisfy the decomposition rule on xi for construction

of the regular geometrical model.

Lemma 3: If
∂U(P)

∂Pi
/∂U(P)

∂Pj
is independent of P, ∀i, j ∈ N ,

the decomposition with Strategy 1 makes A unique for all

i ∈ N and xi independent of P.

Proof: By the proposed decomposition strategy, A should

be the same for the decomposition of any ∂U(P)/∂Pi, ∀i ∈
N , because it is the g.c.d. of these partial derivatives.

We prove the independence of xi from P by contradiction.

Suppose there exists xi that is dependent on P, then xi can

be considered as the product of two factors:

xi = δi(P) · εi (25)

where δi(P) is the part dependent on P and εi is the part

independent of P.

According to Eqs. (22) and (23),

∂U(P)
∂Pi

/
∂U(P)
∂Pj

=
Axi

Axj
=

xi

xj
. (26)

Because
∂U(P)

∂Pi
/∂U(P)

∂Pj
is independent of P, xi/xj is indepen-

dent of P, ∀i, j ∈ N .



Case 1 Case 2 Case 3

y=Ax+B y=Ax+B
y=Ax+B

Si Si Si

O

Fig. 1. Possible optimal solutions for the regular geometrical model

As xi is dependent on P and xi/xj is independent of P,

vi(P) should be a common factor of xi and xj . Because xi/xj

is independent of P for all j ∈ N , δi(P) is a common factor

of all the partial derivatives. In that case, δi(P) should be a

part of A rather than xi based on Eq. (22) in the proposed

decomposition strategy, which is a contradiction.

Using the proposed decomposition strategy, A and xi are

obtained for construction of the regular geometrical model. yi

satisfies the condition of regular geometrical model because

all the average power constraints are linear. The remaining

problem for constructing the regular geometrical model is the

condition on the intercept of the line B.

According to Eq. (17), bik is contained in B, which causes

different B’s to be obtained from Eq. (14) for different i ∈ N .

Let B be the matrix of the coefficients bik, ∀i ∈ N , ∀k ∈
{1, 2, · · · , K}. We consider only one constraint first, then the

corresponding coefficients are denoted as b∗i , ∀i ∈ N . In order

to construct the regular geometrical model, B is normalized for

obtaining a unique B for all i ∈ N .

Strategy 2 (Normalization of B):
By dividing Eq. (14) by b∗i , the coefficients b∗i in

the original geometrical model is considered in xi

and yi instead of B in the geometrical model. The

parameters of the geometrical model can be written

as

Axi =
∂U(P)/∂Pi

b∗i
(27)

yi =
∑

j

λjaij

b∗i
(28)

B = −
∑

k

βk. (29)

Lemma 4: By Strategy 2, B is unique for all i ∈ N if the

rank of B is 1.

Proof: If the rank of B is 1, all the peak power constraints

are linear correlations with each other. In that case, only the

strictest constraint is effective. Assume the k-th peak constraint

is strict without loss of generality. It implies that only one

line of B needs to be considered. There are two cases of the

coefficients: (1) in the line k of B, all the bik are equal for

all i, so B = −βkbik is unique for all i; (2) the values of bik

are not equal. In such a case, some adjustments are needed to

make B unique. By the proposed normalization strategy, B is

unique for all i ∈ N for the latter case.

In summary, based on Lemmas 1, 3 and 4, the following

theorem states the conditions of transforming the power-

control optimization problems to the regular geometric model.

Theorem 3: The power-control optimization problem can

be transformed to a regular geometrical model if it satisfies

the following conditions:

(1)
∂U(P)

∂Pi
/∂U(P)

∂Pj
is independent of P, ∀i, j ∈ N ,

(2) the rank of B is 1.

V. OPTIMAL POWER-CONTROL BASED ON REGULAR

GEOMETRICAL MODELS

A. Optimal Solution

We propose a geometry-based optimization by utilizing

the geometrical properties of the regular geometrical model.

Note that the proposed algorithm can be applied for not

only the general power-control optimization but also other

optimizations using the regular geometrical model.

In a regular geometrical model, the positions of the points

Si ∈ S are fixed. For the optimal power control, only the

position of the line y = Ax + B is adjusted. From the above

analysis, A is found to include the power vector P and B to

include the Lagrangian multiplier . Since is configurable

for each snapshot, we can adjust P to change the slope A with

an arbitrary (and appropriate) intercept B such that some of

the points Si,∀i ∈ NT on the line and all the other points

above the line.

All the points Si ∈ S can construct an external polygon

whose vertices are a subset of S and all the points of S are

inside the polygon. To guarantee all the points either on or

above the line, we can find a line tangent to the polygon and

the tangent point should be in the lower side of the polygon,

which is composed by the edges from the point with minimum

xi to the point with maximum xi in counter-clockwise order.

Define E as the number of vertices in the lower side of the

polygon, then these vertices can be represented by a sequence

SV1 , SV2 , · · · , SVE
beginning from the point with minimum

xi.

To investigate the tangency of a line and a polygon, the

slopes of the edges of the polygon are analyzed and compared

with the slope of the line y = Ax + B. Based on the



KKT condition (10), if the power PVj
makes at least one of

the peak power constraints tight, e.g., the s-th constraint, its

corresponding multiplier βs can be set to any value to make the

line tangent to the polygon. If all the peak power constraints

are not tight, the multipliers must be set to 0, indicating that

B = 0.

Based on the above analysis, there can be three cases of

possible optimal solutions.

Case 1: Only one user transmits when the line y = Ax+B
is tangent to the polygon at a vertex in the lower side

of the polygon.

Case 2: Two or more users transmit simultaneously when

the line y = Ax + B is tangent to the polygon at an

edge in the lower side of the polygon.

Case 3: The line y = Ax + B with the intercept at the

original point is tangent to the polygon.

By comparing the objective functions of all possible optimal

solutions, we obtain the optimal solution. Fig. 1 illustrates the

three cases of possible optimal solutions, respectively.

In Case 1, only one user transmits, so his transmit power Pi

should be set to the maximum value inside its feasible region.

PVi
= max

{
d1

bVi1
,

d2

bVi2
, · · · ,

dK

bViK

}
. (30)

Since A is dependent on P and only user Vi transmits in that

case, the slope of line y = Ax + B at xVi can be denoted as

A(PVi
). If A(PVi

) is between the slopes of line SVi−1SVi
and

line SVi
SVi+1 ,

yVi
− yVi−1

xVi
− xVi−1

< A(PVi) <
yVi+1 − yVi

xVi+1 − xVi

. (31)

The line is tangent to the polygon at SVi
and all the other

points Si ∈ S are above the line. Therefore, it is a local

optimal solution that the user corresponding to SVi
transmits

with the maximal power P ∗
i .

In Case 2, multiple users transmit simultaneously when

the line is tangent to the polygon and goes through all the

corresponding points. As the polygon is external to all the

points Si ∈ S, it is a convex polygon. In that case, the

points corresponding to the transmitting users are neighbors

at the edges of the polygon. If more than two users transmit

simultaneously, these points must lie on a line. If multiple

users transmit simultaneously, all the vertices of the feasible

region are possible optimal solutions.

In Case 3, the intercept of the line y = Ax+B is the original

point O, which is a fixed point. From the geometrical view in

Fig. 1, at most two tangent lines of the polygon go through

a fixed point. Therefore, at most two possible local optimal

solutions in that case. Since = 0, it is not necessary to

make some of the peak power constraints tight. The problem

is degenerated to a simple one-dimensional optimum search

problem in which the independent variable is the power of the

user corresponding to the tangent points.

For the general power-control problem at each snapshot, it

is assumed that the objective function U(P) is an increasing

function of Pi, so possible optimal solutions are achieved

only when one or more constraints are tight. Case 3 can be

considered as a subcase of Case 1 and Case 2, depending on

how many points the line y = Ax + B goes through.

The geometry-based power-control optimization algorithm

can be described as follows.

Geometry-based Power Control Algorithm:
Step 1: Check if the optimization problem can be

modeled as a regular geometrical model based on the

conditions in Theorem 3.

Step 2: Decompose Axi by using Strategy 1 and

normalize B by using Strategy 2 if necessary for

constructing the regular geometrical model.

Step 3: For given , calculate the objective functions

of possible optimal solutions in the three cases and

compare them to obtain the optimal solution.

Step 4: Calculate the gap between the allocated power

and average power constraints. If the current gap is

smaller than the given threshold, stop the algorithm.

Otherwise, adjust using the steepest descent method,

and repeat Step 3.

B. Complexity Analysis

Because there are both average and peak constraints in the

optimization problem, two kinds of Lagrangian multipliers

are needed to transform this problem to another optimization

problem without any constraint. With the above optimization

scheme utilizing the geometrical properties, the power vector

P and the Lagrangian multipliers can be optimized in a

deterministic manner for given in the subproblem for each

snapshot. The deterministic method lowers the computational

complexity significantly compared to the classic numerical

search method (e.g., the steepest descent method) for de-

termining the Lagrangian multipliers. In addition, utilizing

the properties of a geometrical model, the computational

complexity of the power-control optimization problem can be

reduced further; next, we will detail the complexity analysis.

Lemma 5: If x users transmit simultaneously, at most
2(K+x)!
x!(K+1)! possible optimal solutions need to be considered for

optimality.

Proof: The possible optimal solution appears at the ver-

tices of the x-dimensional polytope feasible region only when

x users transmit simultaneously. The maximum number of

vertices of the polytope is provided in [17].

According to the result in [14], at most two users transmit

simultaneously for optimality with probability 1 if the coeffi-

cients in the general power-control optimization problem are

random continuous variables, which is common in practical

wireless networks. Here, we consider the complexity when

at most two users transmit simultaneously, as stated in the

following theorem.

Theorem 4: If at most two users transmit simultaneously,

the computational complexity of the proposed geometry-based

power-control algorithm is O(N(K + N)2).
Proof: The possible optimal solutions are at the vertices

of the feasible region. Thus, we should first obtain the vertices



of the feasible region, and then calculate the utility functions

of the vertices.
For the calculation of vertices, there are K peak constraints

and Pi ≥ 0,∀i ∈ N , so the total number of peak constraints

should be considered as K+N here. If only one user transmits

as in Case 1, at most N possible optimal solutions need to be

considered. If two users transmit simultaneously as in Case 2,

the N -dimensional polytope feasible region degenerates to the

two-dimensional polygon region for each pair of users. Con-

sidering these two constraints can obtain a possible vertex of

the feasible region, so there are C2
K+N = (K+N)(K+N−1)

pairs of constraints for two simultaneously transmitting users.

Since the points corresponding to the two simultaneously

transmitting users are neighbors at the edges of the polygon,

at most N − 1 cases are considered. The computational

complexity of Case 3 can be ignored because only 2 possible

optimal solutions exist, even if this case is not included in

Case 1 and Case 2. The complexity for calculation of vertices

is O(N(K + N)2).
For the calculation of utility functions, there are at most

(N − 1)(K + 2) possible optimal solutions when x = 2
according to Lemma 5. The complexity is O(NK).

Combining the complexities of both parts, the total worst-

case computational complexity is O(N(K + N)2).
Remark 3: Without considering the properties of a geomet-

rical model, the conventional algorithm finds the vertices of the

N -dimensional feasible region. For the calculation of vertices,

there are CN
K+N combinations with the complexity O(2K+N ).

Solving N -dimensional linear equations incurs O(N3) com-

putational cost by using Gaussian Elimination for each combi-

nation [18]. For the calculation of utility functions, according

to Lemma 5, there are
2(K+N)!
N !(K+1)! vertices with complexity

O(2K+N ). When only two users transmit simultaneously,

the complexity of calculation of utility functions reduces to

O(NK). Combining both parts, the total complexity of the

conventional algorithm is O(N32K+N ).
Fig. 2 compares the complexity of the proposed algorithm

and that of the conventional algorithm using the number of

operations during the calculation of both vertices and utility

functions. The complexity of utility calculation is dependent

on the utility function. It is assumed to be N operations

in the numerical analysis for simplicity. From the results,

the computational complexity of the proposed geometry-based

algorithm is much lower than the conventional algorithm, and

increases slowly with the increase of the number of users N
and the number of peak constraints K. One of the advantages

of the proposed algorithm is degenerating the N -dimensional

polytope feasible region to multiple two-dimensional polygon

regions, and thus reduce the computational complexity. It

cannot reduce the complexity when N = 2, so an exception

exists.
According to the characteristics of the geometrical model,

the global optimal solution can be obtained directly for the

concave utility functions. The existence and uniqueness of

the optimal solution are obtained as stated in the following

theorem.

Fig. 2. Complexity comparison

Theorem 5: A unique optimal solution exists if A is de-

creasing monotonically in x.

Proof: The slopes of the edges in the counter-clockwise

order increase from −90o to 90o monotonically at the lower

side of the polygon. Let L be a piece-wise curve composed

with the slopes of the edges at the lower side of the polygon

and M be a folding line composed by the slopes of line y =
Ax + B. If A is decreasing monotonically in x, there exists

a unique intersection between M and L exists, so does the

unique solution.

Remark 4: In this case, the optimal transmitting users can

be determined directly by comparing L and M at the points

SVi
,∀i ∈ {1, 2, · · · , E}, which results in low complexity.

VI. DISCUSSION ON IRREGULAR GEOMETRICAL MODELS

There are two possible reasons to make the geometrical

model irregular. First, xi changes with different P’s. Second,

B is not unique for different i’s. For the latter case, an

alternative way is to set B to 0 and place its expression in

yi as

yi =
∑

j

λjaij +
∑

k

βkbik. (32)

This way, the non-unique B can be transformed to yi which

varies with the independent variable . Therefore, compared to

the regular geometrical model, the main challenge associated

with the irregular geometrical model is that the position of

Si ∈ S varies with different P’s. In such a case, when the

independent variable P is adjusted, the positions of both the

line y = Ax + B and the points Si ∈ S change, making

the irregular geometrical model difficult to find the optimal

solution and have the same-order computational complexity

as the conventional methods.

Here, we define a condition for the subset of irregular

geometrical models which can adopt the proposed geometry-

based power-control scheme.

Definition 2 (Monotonic Distance Condition): The

distance between the line y = Ax + B and the point Si

increases with the increase of Pi.



y=Ax+B

Si

y=Ax+B

Si

y=Ax+B

Si

Fig. 3. An example irregular geometrical model

For the cases in which the monotonic distance condition is

satisfied, the point Si tries to move far away from the line y =
Ax + B when the power Pi increases. According to Theorem

2, the points corresponding to transmitting users should just

be on the line y = Ax+B. To keep the line goes through the

point Si, we continue to move the line for tracking the point

by adjusting . The proposed geometry-based power-control

scheme can be deployed with some modifications in Step 3.

Modification for Irregular Geometrical Model:
1. The positions of the points in S are initially set to

the case of Pi = 0,∀i ∈ N . Find the tangent point

of the line and the external polygon composed by all

the points in S. Add the user corresponding to the

tangent point into NT .

2. Increase the power of user i, i ∈ NT , whose

corresponding point is on the line. Adjust P and

for to make the line always goes through all these

points Si,∀i ∈ NT .

3. If the line goes through another point, add the

corresponding user into NT and increase its power

along with other users with non-zero power.

4. If all the users on the line cannot increase power

any more without violating the constraints, stop the

algorithm. The users corresponding to the points on

the line should transmit simultaneously.

Fig. 3 provides an example procedure of geometry-based

optimal power-control for the irregular geometrical model.

The utility function U(P) of the general power-control

optimization problem is an increasing concave function of

P, so ∂U(P)/∂Pi is decreasing with Pi. Obviously, with an

increase of Pi, the distance between the line y = Ax + B
and the point Si increases. Therefore, the geometry-based

power-control scheme is always suitable for the general power-

control optimization because the monotonic distance condition

is satisfied.

VII. EXAMPLES

In this section, we discuss two power-control problems with

known optimal solutions as examples, providing an insight into

the deployment of the proposed geometry-based scheme.

Example 1 (Multiple access channels with average and peak

power constraints [14]):

max U(P) = E

[
1
2

log

(
1 +

∑N
i=1 Pigi

σ2

)]
(33)

s.t. Pi ≥ 0,∀i ∈ N (34)

E[Pi] ≤ Pmax
i ,∀i ∈ N (35)∑

i∈N
Pihi ≤Q (36)

where U(P) is represented by the sum-rate of multiple access

channels, Q is the interference limit at the measuring point, σ2

is the power of thermal noise, gi and hi are the path gains from

user i to the receiver and the measurement point, respectively.

By checking the two conditions of Theorem 3, this problem

is found to be solvable by using a regular geometrical model.

To normalize B under Strategy 2 for constructing the regular

geometrical model, we define ωj = Pjhj/Q, which is consid-

ered as a new independent variable, instead of Pj . The partial

derivative of the Lagrangian function with respect to ωj is

∂L

∂ωj
=

Qgj/hj

1 +
∑

i∈N ωiQgi/hi
− λjQ/hj − β. (37)

By using Strategy 1, we found the denominator part of

∂U/∂ωj is symmetric for all ωj . Accordingly, A and xi is

decomposed as the approach in Remark 2. The coefficients of

the regular geometrical model are listed as:

xj = Qgj/hj (38)

yj = λjQ/hj (39)

A =
1

1 +
∑

i∈N ωiQgi/hi
. (40)

B = −β. (41)

To find the optimal solution, the power P is adjusted to

make the line tangent to the polygon. One or two users

can transmit simultaneously. This regular geometric model is

found to satisfy the condition in Theorem 5, so the optimal

solution can be obtained directly with a low computational

complexity.

Remark 5: Due to the duality of multiple access channels

and broadcast channels [19], the proposed geometry-based

power-control scheme can also be adopted for broadcast

channels.



Example 2 (Multiple parallel channels with peak total and

and individual power constraints [20], [21]):

max U(P) =
∑
i∈N

log(1 +
Pigi

σ2
) (42)

s.t. Pi ≥ 0,∀i ∈ N (43)

Pi ≤ Pmax
i ,∀i ∈ N (44)∑

i∈N
Pi ≤ P (45)

where U(P) is represented by the total throughput of N
parallel channels.

The partial derivative of Lagrangian function with respect

to Pi is
∂L

∂Pi
=

gi

N0 + Pigi
− β −

∑
k∈N

βk (46)

From the expression of the derivative, it is an irregular geo-

metrical model by checking the two conditions in Theorem 3.

As ∂U(P)/∂Pi does not have any symmetric part for all Pi,

we set A = 1 and xi = ∂U(P)/∂Pi. Since there exist only

peak constraints, yi = 0,∀i, indicating that all the points lay

on a horizonal line. The geometrical power-control model can

be written as

xi =
gi

N0 + Pigi
(47)

yi = 0 (48)

A = 1 (49)

B = −β −
∑
k∈N

βk. (50)

From the geometrical model, one can observe that the slope

of the line y = Ax + B is 1 and yi for all i ∈ N is 0. By

the proposed geometry-based optimal power-control algorithm

for the irregular geometrical model, the users’ power values

increase with the line y = Ax + B going through the points

which correspond to the transmitting users. In such a case,

the partial derivatives ∂U(P)/∂Pi are equal to 0 for the

transmitting users. The algorithm stops when all the users

cannot increase their power. The result is consistent with the

water-filling power allocation with the limits for individual

users in [20], [21].

VIII. CONCLUSIONS

In this paper, we have generalized the geometry-based

optimal power-control scheme to a larger class of power-

control optimization problems in wireless networks, including

multiple access channels, broadcast channels, and multiple

parallel channels. Computational complexity is reduced signif-

icantly by exploiting the geometrical properties on the position

relationship between the line y = Ax + B and the points

Si ∈ S.

For construction of a regular geometrical model, we have

proposed strategies for the decomposition of A and xi and

the normalization of B. If the two conditions are satisfied, the

power-control optimization problem can be modeled as a reg-

ular geometrical model using the two construction strategies.

For the optimization of regular geometrical model, the line is

adjusted to be tangent to the polygon composed by the points

Si ∈ S. The computational complexity is O(N(K + N)2),
which is much lower than that of the conventional algorithm.

In addition, some modifications are made to the proposed

geometry-based algorithm for irregular geometrical models.

Finally, two examples are provided for deployment of the

proposed scheme.
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