Design of SMS Commanded-and-Controlled and
P2P-Structured Mobile Botnets

Yuanyuan Zeng
Perimeter E-Security
Raleigh, North Carolina

ABSTRACT

Botnets are one of the most serious security threats to the
Internet and personal computer (PC) users. Although bot-
nets have not yet caused major outbreaks in the mobile
world, with the rapidly-growing popularity of smartphones
such as Apple’s iPhone and Android-based phones that store
more personal data and gain more capabilities than earlier-
generation handsets, botnets are expected to become a se-
vere threat to smartphones soon. In this paper, we propose
the design of a mobile botnet that makes the most of mobile
services and is resilient to disruption. The mobile botnet
utilizes SMS messages for C&C and a P2P structure as its
topology. Our simulation results demonstrate that a modi-
fied Kademlia—a structured architecture—is a better choice
for the mobile botnet’s topology. In addition, we discuss po-
tential countermeasures to defend against this mobile botnet
threat.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—
Security and Protection; D.4.6 [Operating Systems]: Se-
curity and Protection—Invasive Software

General Terms
Security

Keywords
Smartphone Security, Malware, Mobile Botnets

1. INTRODUCTION

Botnets are one of the most serious security threats to
the Internet and the personal computer (PC) world, but
they are still rare for the mobile world. Recently, with
the rapidly-growing popularity of smartphones, such as the
iPhone and Android-based phones, attacks on cellular net-
works and devices have grown in number and sophistication.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WiSec’12, April 16-18, 2012, Tucson, Arizona, USA.

Copyright 2012 ACM 978-1-4503-1265-3/12/04 ...$10.00.

Kang G. Shin
University of Michigan
Ann Arbor, Michigan
yzeng@perimeterusa.com kgshin@eecs.umich.edu

Xin Hu
IBM Research
Hawthorne, New York
huxin@us.ibm.com

A drastic increase in downloading and sharing of third-party
applications and user-generated content makes smartphones
vulnerable to various types of malware. Smartphone-based
banking services have also become popular without protec-
tion features comparable to those on PCs, enticing cyber
crimes. There are already a number of reports on malicious
applications in the Android Market [1]. Although the An-
droid platform requires that applications should be certified
before their installation, its control policy is rather loose—
allowing developers to sign their own applications—so that
attackers can easily get their malware into the Android Mar-
ket. The iPhone’s application store controls its content more
tightly, but it fails to contain jailbroken iPhones which can
install any application and even run processes in the back-
ground. As smartphones are increasingly used to handle
more private information with more computing power and
capabilities, but without adequate security and privacy pro-
tection, attacks targeting mobile devices are becoming more
sophisticated. Since the appearance of the first, proof-of-
concept mobile worm, Cabir, in 2004, we have witnessed
a significant evolution of mobile malware. The early mal-
ware performed tasks, such as infecting files, replacing sys-
tem applications and sending out SMS or MMS messages.
One malicious program is usually capable of only one or two
functions. Although the number of mobile malware families
and their variants has been growing steadily in recent years,
their functionalities have remained simple until recently.
SymbOS.Exy.A trojan [2] was discovered in early 2009
and its variant SymbOS.Exy.C resurfaced in July 2009. This
mobile worm, which is said to have “botnet-esque” behavior
patterns, differs from other mobile malware, because after
infection, it connects back to a malicious HTTP server and
reports information of the device and its user. The Ikee.B
worm [3] that appeared late 2009 targets jailbroken iPhones,
and has behavior similar to SymbOS.Exy. Ikee.B also con-
nects to a control server via HTTP, downloads additional
components and sends back the user’s information. With
this remote connection, it is possible for attackers to pe-
riodically issue commands to and coordinate the infected
devices to launch large-scale attacks. In March 2011, over
50 applications found to contain a type of malware called
“DroidDream” were removed from the Android Market. This
malware is able to root the infected device and steal sensi-
tive information. It was speculated that the end goal of
DroidDream was to create a botnet [4]. In February 2012,
RootSmart [5], a malicious application in third party An-
droid markets in China, was reported to create a botnet con-
taining thousands of Android devices. Once started, RootS-

mart connects to a remote server to send various informa-
tion of the infected phone and fetches a root exploit from
the server to obtain escalated privilege to the phone. The in-
fected phone is configured to send premium SMS messages
and use other premium telephony services without users’
knowledge, generating profits for the botmaster. Observing
the trend of recent mobile malware, we expect that mobile
botnets will become a serious threat to smartphones soon.

In this paper, we propose the design of a mobile botnet
that makes the most of mobile services and is resilient to
disruption. Within this mobile botnet, all C&C communi-
cations are done via SMS messages since SMS is available
to almost every mobile phone. To hide the identity of the
botmaster, there are no central servers dedicated to com-
mand dissemination that is easy to be identified and then
removed. Instead, we adopt a P2P topology that allows
botmasters and bots to publish and search for commands
in a P2P fashion, making their detection and disruption
much harder. Our contributions are three-fold. First, to
the best of our knowledge, we are the first to design mo-
bile botnets with focuses on both C&C protocol and topol-
ogy by integrating the SMS service and the P2P topology.
The main purpose of this work is to shed light on potential
botnet threats targeting smartphones. Since current tech-
niques against PC botnets may not be applied directly to
mobile botnets, our proposed mobile botnet design makes it
possible for security researchers to investigate and develop
new countermeasures before mobile botnets become a major
threat. Second, we present a method to carefully disguise
C&C content in spam-looking SMS messages. Using this
approach, the botnet can stealthily transmit C&C messages
without being noticed by phone users. Third, we test and
compare two P2P architectures that can be used to construct
the topology of our mobile botnet on an overlay simulation
framework, and finally propose the architecture that best
suits mobile botnets.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the related work. Section 3 details the proof-
of-concept design of our mobile botnet. Section 4 presents
our simulation and evaluation results. Section 5 discusses
potential countermeasures against the mobile botnets. The
paper concludes with Section 6.

2. RELATED WORK

The research areas most relevant to our work are P2P-
based botnets and botnet C&C evaluation. Wang et al. [6]
proposed the design of an advanced hybrid P2P botnet that
implemented both push and pull C&C mechanisms and stud-
ied its resilience. In [7] they conducted a systematic study
on P2P botnets including bot candidate selection and net-
work construction, and focused on index poisoning and Sybil
attacks. Overbot [8] is a botnet protocol based on Kadem-
lia. The strength of this protocol lies in its stealth in the
communication between the bots and the botmaster, which
leverages a public-key model. Davis et al. [9] compared
the performance of Overnet with that of Gnutella and other
complex network models under three disinfection strategies.
Singh et al. [10] evaluated the viability of email communi-
cation for botnet C&C. Nappa et al. [11] proposed a botnet
model exploiting Skype’s overlay network to make botnet
traffic undistinguishable with legitimate Skype traffic. All
of these dealt with botnets in the PC world, while our work
targets mobile botnets, in which C&C channel and network

structure requirements are different, in view of unique ser-
vices and resource constraints on smartphones. Dagon et
al. [12] proposed key metrics to measure botnets’ utility for
conducting malicious activities and considered the ability of
different response techniques to disrupt botnets.

There are numerous efforts on mobile malware focusing
on vulnerability analysis and attack measurements. The
former investigates ways of exploiting vulnerable mobile ser-
vices, such as Bluetooth and MMS [13, 14], while the latter
characterizes the feasibility and impact of large-scale attacks
targeting mobile networks, mostly Denial of Service (DoS)
attacks [15]. There are a few recent papers treating the idea
of mobile botnets. In [16], the focus is on the attack aspect—
whether compromised mobile phones can generate sufficient
traffic to launch a DoS attack. Singh et al. [17] investigated
using Bluetooth as a C&C to construct mobile botnets with-
out any analysis on their network structure. Hua et al. [18]
proposed a SMS-based mobile botnet using a flooding algo-
rithm to propagate commands with the help of an internet
server. The use of the central server, however, may lead to
single-point-of-failure. Mulliner et al. [19] demonstrated the
ways to command and control botnets via SMS or IP-based
P2P networks using a tree topology. Under such topology,
when a node fails, all of its subnodes will be isolated from
the botnet, difficult to get commands. Weidman [20] also
considered utilizing SMS messages for botnet C&C and pre-
sented a method to conceal malicious SMS messages from
users on smartphones. It is worth noting that, different
from all these works, our SMS-based botnet is built upon
a decentralized P2P topology, without assistance from any
central servers. The integration of SMS and P2P makes our
botnet stealthy and resilient to disruption.

3. MOBILE BOTNET DESIGN

We now present the detailed design of a proof-of-concept
mobile botnet. The botnet design requires three main com-
ponents: (1) vectors to spread the bot code to smartphones;
(2) a channel to issue commands; (3) a topology to organize
the botnet. We will briefly overview approaches that can be
used to propagate malicious code and then focus on C&C
and topology construction.

3.1 Propagation

The main approaches used to propagate malicious code to
smartphones are user-involved propagation and vulnerabil-
ity exploits.

In the first approach, the most popular vector is social en-
gineering. Like their PC counterparts, current smartphones
have frequent access to the Internet, becoming targets of ma-
licious attacks. Thus, spam emails and MMS messages with
malicious content attachments, or spam emails and SMS
messages with embedded links pointing to websites hosting
the malicious code, can easily find their way into a mobile
phone’s inbox. Without enough caution or warning, a mo-
bile phone user is likely to execute the attachments or click
those links to download malicious programs. The advantage
of such schemes is that they can reach a large number of
phones. Nevertheless, as smartphones run on a variety of
operating systems, we expect multiple versions of bot code
prepared to guarantee its execution. Another user-involved
propagation vector can be Bluetooth, which utilizes mobil-
ity. Mobile phone users move around so that the compro-
mised phones can use Bluetooth to search for devices nearby

and after pairing with them successfully, try to send them
malicious files.

Exploiting vulnerabilities to spread malicious code is com-
mon in the PC world. However, since there are various mo-
bile platforms and most of them are closed-source, it is rel-
atively difficult to find vulnerabilities in mobile devices. To
date, some vulnerabilities have been discovered. For exam-
ple, the HTC’s Bluetooth vulnerability, which allows an at-
tacker to gain access to all files on a phone by connecting to it
via Bluetooth, was disclosed by a Spanish security researcher
[21]. Mulliner et al. [22] discovered a way of directly manipu-
lating SMS messages on different mobile platforms, without
necessarily going through the mobile provider’s network. In
both cases, OS vendors immediately released patches to the
public after the vulnerabilities were publicized, leaving few
opportunities for a real exploit in the wild. Once launched
in their targets, vulnerability exploits always have a higher
success rate than that of user-involved approaches. As mo-
bile platforms open up and mobile applications and services
become abundant, vulnerability exploits will play a major
role in mobile malware propagation.

3.2 Command and Control

In our mobile botnet, SMS is utilized as the C&C chan-
nel, i.e., compromised mobile bots communicate with bot-
masters and among themselves via SMS messages. Botnets
in the PC world mostly rely on IP-based C&C delivery. For
example, traditional botnets use centralized IRC or HTTP
protocol, whereas newly-emerged botnets take advantage of
P2P communication. Unlike their PC counterparts, smart-
phones can hardly establish and maintain steady IP-based
connections with one another. One reason is that they move
around frequently. Another reason is that private IPs are
normally used when smartphones access networks such as
EDGE, 3G and 4G networks, meaning that accepting incom-
ing connections directly from other smartphones is a difficult
task. Given this limitation, if a mobile botnet considers an
IP-based channel as C&C, it needs to resort to centralized
approaches in which bots connect to central servers to ob-
tain commands. Such approaches, however, are vulnerable
to disruption because the servers are easy to be identified
by defenders. Thus, to construct a mobile botnet in a more
resilient manner, a non-IP-based C&C is needed.

There are a few advantages for choosing SMS as a C&C
channel. First, SMS is ubiquitous. It is reported that SMS
text messaging is the most widely used data application on
the planet, with 2.4 billion active users, or 74% of all mobile
phone subscribers sending and receiving text messages on
their phones [23]. When a mobile phone is turned on, this
application always remains active. Second, SMS can accom-
modate offline bots easily. For example, if a phone is turned
off or has poor signal reception in certain areas, its SMS
communication messages will be stored in a service center
and delivered once the phone is turned back on or the sig-
nal becomes available. Third, malicious content in the C&C
communication can be hidden in SMS messages. According
to a survey in China [24], 88% of the phone users polled re-
ported they had been plagued by SMS spamming. As SMS
spamming becomes prevalent, bots can encode commands
into spam-looking messages so that users will not suspect.
Last but not least, currently there are multiple ways to send
and receive free SMS messages directly on smartphones [25,
26] or through some web interfaces. We will describe such

methods in Section 3.2.2. Even when the free texting is un-
available, as many phone users use SMS plans to avoid per-
message charge and incoming messages are free of charge in
some countries, with the design goal of minimizing the num-
ber of SMS messages we expect that using SMS as C&C will
not incur considerable costs.

3.2.1 Protocol Design

Our goal is to let a phone that has installed our bot code
perform activities according to the commands in SMS mes-
sages without being noticed by the user. In our design, ev-
ery compromised phone has an 8-byte passcode. Only by
including this passcode into the SMS messages, can other
phones successfully deliver C&C information to this partic-
ular phone. Upon receipt of a SMS message, this phone
searches for its passcode and pre-defined commands embed-
ded in the message to tell if it is a C&C message. If found,
the commands are immediately executed by the phone. Two
issues need to be addressed here. First, how are passcodes al-
located among compromised phones? Second, how to make
C&C SMS messages appear harmless so that users may not
notice the malicious content?

In our botnet, passcodes are allocated by botmasters to
segment a botnet into sub-botnets, each with a different
function. For example, one sub-botnet is responsible for
sending out spam messages, while another is in charge of
stealing personal data and transferring them to a malicious
server. KEach sub-botnet will be identified by its unique
passcode that is hard-coded into the bot’s binary. In other
words, all bots within the same sub-botnet share the same
passcode so that they can communicate with one another
and also with the botmaster. Using a unique passcode for
each bot will be more secure than using one passcode for an
entire sub-botnet because in the latter case, the passcode
will be discovered more easily. However, there is a trade-
off: using a unique passcode will add more overhead due
to the pairwise passcode exchange before each communica-
tion. The additional cost is undesirable since our goal is to
minimize the number of SMS messages to be sent.

Not only do we require a passcode included in each SMS
communication message, but also we encode commands to
make it difficult for a user to figure them out. In fact, on the
Android platform, it is possible for an application to send
out SMS messages stealthily, to get immediate notification
of every incoming SMS message by registering itself as a
background service and to read and execute commands or
even delete the message before the user sees it. We still want
to hide the C&C messages because other mobile platforms
are more restricted than Android; they may not allow our
bots to both send and receive SMS messages without noti-
fying the user. If malicious messages show contents directly,
they will be easily captured and manipulated by defend-
ers. To evade such detection, we want to make a command-
embedded SMS message look like a common message such as
a spam message. There are benefits of using spam-like mes-
sages to transmit C&C. As pointed out in [27], cellular car-
riers cannot simply block offending SMS messages because
the senders have paid for the messages and the carriers fear
permanent deletion of legitimate messages when there are
no spam folders available. We will present a real-world ex-
periment in Section 4.3. Even if in the future the carriers
filter out spam messages and dump them into spam folders,
similar to the email filtering, spam messages can still reach

Your paypal account was hijacked (Err msg:
NzkxM;jAzNDIXODExMDUyM183Mz).
Respond to http://www.bhocxx.paypal.com
using code Q3MDk2NDUyXzEyMzQ1Njc4

Free ringtones download at
www.myringtone.com, using
username VIP, password
YTJINGQxMWw to log on

FIND_NODE
7912034218110523 _7347096452
12345678

SEND_SYSINFO
a2b4diil

Figure 1: Disguised SMS messages

the target phones by going to the spam directory, which
actually helps hide the C&C because users tend to ignore
spam.

Considering the fact that each SMS message only contains
up to 160 characters, commands in our botnet are concise.
For example, “FIND_NODE” instructs a bot to return the
phone numbers of certain nodes; “SEND_SYSINFO” asks a
bot to reply with system information. To disguise messages,
each command is mapped to one spam template. Additional
information such as the phone number and the aforemen-
tioned passcode are variables in the templates, and they
are Base64-encoded. Figure 1 shows two disguised SMS
messages. The first one is a “FIND_NODE” message (146
characters) with passcode 12345678 requiring the recipient
to locate a bot whose ID is 7912034218110523, and the re-
sult should be returned to the bot whose phone number
is (734)7096452. NzkxMjAzNDIxODExMDUyM183Mz and

Q3MDk2NDUyXzEyMzQ1Njcd—two random strings together

—are the Base64-encrypted 7912034218110523_7347096452
_12345678. The entire encoded string is split into two—
disguising one as an error message and the other as a code—
making it resemble a spam message. The second exam-
ple is a “SEND_SYSINFO” message (98 characters) with a
passcode a2b4d11l. This template is different from that of
the “FIND_NODE” message. The passcode is also Base64-
encoded and appears as a password in the disguised message.
To decode messages, each bot keeps a command-template
mapping list. Only tens of commands are needed in our bot-
net, so this list is not long. To make detection harder, one
command message can correspond to different spam tem-
plates and the templates can be updated periodically. As
just shown, a command along with additional information
can be easily embedded into one SMS message which ap-
pears to be a spam, familiar to today’s phone users, so users
are likely to ignore such messages even if they open and
read them. If users choose to delete these messages, it will
not cause any problem to the botnet because the commands
have already been executed upon their receipt.

3.2.2 Sending SMS Through the Internet

Although sending SMS messages through the cellular net-
works is always possible, the botmasters want to hide their
identity and lower costs as much as possible. To achieve this
goal, botmasters can use the Internet to disseminate C&C
messages to the mobile botnet. There are several ways to do
this. Many advertisement-based websites provide free SMS
services. Botmasters can type in messages via these websites
and have them sent to mobile bots, feasible for low-volume
messaging. Using such services does not require the sender’s

mobile number, an email address is sufficient if a reply is ex-
pected. If the botnet is large, botmasters need to create an
account with mobile operators or SMS service providers to
make high-volume messaging possible at the lowest price.
Usually, this can be done by sending and/or receiving SMS
messages via email through a SMS gateway connecting di-
rectly to a Mobile Operator’s SMSC (Short Message Service
Center). Currently, smartphone applications such as [25, 26]
offer free domestic and international text messaging when
the phone is connected to a WiFi and support both one-on-
one and group texting. The user only needs to provide a
screen name to send and receive messages without revealing
its identity. Both the botmasters and bots can take advan-
tage of such a service whenever possible to avoid messaging
costs.

To sum up, using SMS messages as the C&C is a viable
solution for a mobile botnet. Not only is SMS ubiquitous
to every mobile phone, but botmasters and bots are also
able to disguise SMS messages, send bulk messages from
the Internet at very low cost while hiding their identities.
Thus, using SMS is both economical and efficient for the
botnet.

3.3 Mobile Botnet Topology

In the previous section we have described the way SMS
messages form the C&C communication in our mobile bot-
net. In what follows, we introduce P2P topologies that may
be utilized to organize the botmaster and bots for publishing
and retrieving commands, and describe how to leverage ex-
isting P2P architectures to meet the need for mobile botnet
construction.

3.3.1 Possible Topologies

Similar to botnets in the PC world, a mobile botnet can
be structured in a traditional centralized way or in a newly-
emerged decentralized P2P fashion. In the first approach,
botmasters hard-code into each bot’s executable a set of
phone numbers that are under their direct control. When a
mobile phone is converted to a bot, it contacts those hard-
coded phones to request commands or wait for commands
to be pushed to them. Such a centralized topology is easy to
implement but not resilient to disruption. Obviously, once
defenders obtain these phone numbers, they can track down
the botmasters and then disable the botnet. To make our
botnet robust to defenses, we adopt a P2P structure instead.

Currently, there are several structures for P2P networks;
they can be divided into three categories: centralized, decen-
tralized but structured, and unstructured. Centralized P2P
networks have a constantly-updated directory hosted at cen-

tral locations. Peers query the central directory to get the
addresses of peers having the desired content. This structure
is similar to the traditional centralized botnet architecture
and hence vulnerable to the central-point-of failure. Decen-
tralized but structured P2P networks have no central di-
rectory and contents are not placed at random nodes but
at specific locations. The most common systems in this
category are Distributed-Hash-Table (DHT)-based P2P net-
works, ensuring that any peer can efficiently route a search
to some peer with the desired content. One notable im-
plementation is Kademlia [28], used by several current P2P
applications, such as eMule and BitTorrent. Decentralized
and unstructured P2P networks have neither central direc-
tories nor control over content placement. If a peer wants
to find certain content in the network in old protocols such
as Gnutella, it has to flood its query to the entire network
to find peers sharing the data. To address the scalability
issues, current unstructured networks adopt different query
strategies to avoid flooding. There have also been extensive
studies on how to make Gnutella-like systems scalable. One
such design is Gia [29].

3.3.2 Design

Both structured and unstructured P2P architectures can
be modified to suit our need for the mobile botnet because
their decentralized nature hides the botmaster’s identity.
Since the mobile botnet design should consider not only ro-
bustness but also feasibility and efficiency on smartphones,
we need to compare these two architectures to see which
is more suitable. Specifically, we base our structured and
unstructured botnet topology on Kademlia and Gia, respec-
tively, for comparison. Note that in our botnet, bots obtain
commands mainly in a pull style, i.e., the botmaster pub-
lishes commands and bots are designed to actively search for
these commands. The other possible mechanism for com-
mand transfer is push, meaning that bots passively wait for
commands. We prefer pull to push because push will get ma-
licious activities exposed easily. That is, under push many
SMS messages are sent out from one or a few central nodes,
whereas pull can be implemented in a more distributed fash-
ion. In what follows, we overview each protocol and describe
our design.

Kademlia is DHT-based and has a structured overlay topol-
ogy, in which nodes are identified by node IDs generated ran-
domly and data items are identified by keys generated from
a hash function. Node IDs and keys are of the same length
(128-bit). Data items are stored in nodes whose IDs are
close to data items’ keys. The distance between two iden-
tifiers, and y, is calculated by bitwise exclusive or (XOR)
operation: d(z,y) = z @ y. For each 0 < ¢ < 128, each node
keeps a list for nodes of distance between 2 and 2! from
itself. This list is called a k-bucket, and can store up to k el-
ements. There are four types of RPC messages in Kademlia:
PING, STORE, FIND_NODE and FIND_VALUE. PING
checks whether a node is online. STORE asks a node to
store data. FIND_NODE provides an ID as an argument
and requests the recipient to return k nodes closest to the
ID. FIND_VALUE behaves similarly to FIND_NODE. The
only exception is that when a node has the data item asso-
ciated with the key, it returns the data item. Since there
is no central sever, each node has a hard-coded peer list in
order to bootstrap into the network.

Considering the differences between smartphones and per-

sonal computers as well as the SMS C&C channel we adopt,
we modify Kademlia’s design to be suitable for our mobile
botnet’s structured overlay construction. First, we do not
use PING messages to query whether a node is alive and
should be removed from its k-bucket. One reason for this
is that SMS messages transmitting C&C can always reach
their recipients even if these phones are not online (messages
are stored in the SMSC for later delivery). The other reason
is that our design tries to minimize the number of messages
sent and received. Removing PING messages effectively re-
duces C&C traffic and thus, the possibility of being noticed
by phone users and defenders. Second, instead of being ran-
domly generated, a node ID is constructed by hashing its
phone number, similar to the notion in Chord [30] that a
node ID is the hash of its IP address. Doing so can under-
mine the effectiveness of Sybil attacks in which defenders
add nodes to join the botnet to disrupt C&C transmission.
Evidently, if node IDs are allowed to be randomly chosen,
defenders will take advantage of this by selecting IDs close
to command-related keys to ensure a high probability that
these sybil nodes are on the route of command search and
publish queries. In addition, the absence of an authenti-
cation mechanism in Kademlia, meaning that anyone can
insert values under specific keys, presents an opportunity
for defenders to launch index poisoning attacks by publish-
ing fake values under command-related keys once they know
these keys, in order to disrupt C&C. We thus use a public
key algorithm to secure the command content. While pub-
lishing a command, the publisher (the botmaster) needs to
attach a digital signature to that command. The signature
is the hash value of the command signed by the botmaster’s
private key. Its corresponding public key is hard-coded in
each bot’s binary. In this way, bots that will store the com-
mand are able to verify that the command is indeed from
the botmaster not anyone else.

Gia improves Gnutella protocol and has an unstructured
overlay topology. Since Gnutella has a scaling problem due
to the flooding search algorithm, Gia modifies Gnutella’s
design and improves its scalability significantly. There are
four key components in Gia’s design: (1) a topology adapta-
tion protocol to put most nodes within short reach of high-
capacity (able to handle more queries) nodes by searching
and adding high-capacity and high-degree nodes as neigh-
bors; (2) an active flow control scheme to avoid overloaded
nodes by assigning flow-control tokens to nodes based on ca-
pacity; (3) one-hop replication to maintain pointers to the
content offered by immediate neighbors; (4) a search algo-
rithm based on biased random walks directing queries to
nodes that are likely to answer the queries.

Our design of unstructured overlay topology is based on
Gia as mentioned before. Our design removes the one-hop
replication scheme because it requires each node to index
the content of its neighbors and to exchange this informa-
tion periodically. This scheme may help reduce the number
of hops for locating a command, but will incur additional
storage and computation overheads. Moreover, each SMS
message has a limited length so that the exchange of in-
dex information cannot be done with a single message but
requires multiple messages, increasing the number of mes-
sages generated. In our mobile botnet, the drawbacks of
using such a scheme will outweigh its benefits, and we thus
opt out of this scheme. Three other components are impor-
tant to our botnet because their combination ensures queries

to be directed to high-capacity nodes that can provide useful
responses without getting overloaded. This is desirable, es-
pecially in a mobile phone network, since smartphones also
have different capacities under different situations. For ex-
ample, in a poor-signal area or when the phone is on a voice
call (SMS messages use the same control channel as voice
calls for delivery), the phone’s capability of handling SMS
messages is lowered, so it can only answer fewer queries.
Overloading mobile bots is also a concern. If one bot re-
ceives/sends a large number of SMS messages during a short
period of time, its battery can be drained quickly, and draw
the user’s attention. Overloading can be prevented using
the flow-control scheme in Gia. Another design choice worth
mentioning is that similar to the modified Kademila, a digi-
tal signature is attached to every command to be published.

4. EVALUATION
4.1 Comparing Two P2P Structures

We now describe our simulation study of structured and
unstructured P2P architectures for mobile botnets and com-
pare their performances. In the simulation, all nodes are
assumed to have already been infected by the vectors de-
scribed in Section 3.1. Our evaluation focus is not on how
the malicious bot code propagates, but on how the botnet
performs under two different P2P structures.

We modified OverSim [31], an open-source overlay net-
work simulation framework, to simulate mobile botnets with
the two P2P structures. While comparing P2P structures’
performances, logical connections (SMS activities) among
mobile nodes matter most, i.e., what we care is the overlay
network not the underlying physical network. For example,
the fact that mobile bots move around is not important in
our simulation because the change of geographic location
hardly affects bots’ SMS message sending/receiving.

The metrics we use to measure performance are: number
of overlay hops needed for a command lookup; total num-
ber of SMS messages sent (number of those sent = number
of those received) when a botmaster-issued command is ac-
quired by every node; percentage of total number of SMS
messages sent by each node during this entire command-
lookup; and message delay (from the start of the query until
a command is received). These metrics reflect how well each
architecture meets the requirement of our mobile botnet,
namely, minimizing the number of SMS messages sent and
received, load-balancing and locating commands in a timely
manner.

The churn (participant turnover) model we adopted in the
simulation is the lifetime churn. In this model, on creation of
a node, its lifetime will be drawn randomly from a Weibull
distribution which is widely used to characterize a node’s
lifetime. When the lifetime is reached, the node is removed
from the network. A new node will be created after a dead
time drawn from the same probability distribution function.
We set the mean lifetime to 8%3600=28800s, assuming that
each phone will stay connected to the botnet for an average
of 8 hours. Considering the unavailability of real field data
on mobile phones’ online behavior, we made this rough es-
timate. We will later evaluate the effect of different mean
lifetimes on the botnet performance.

Besides the aforementioned performance metrics, another
important metric is scalability for which we simulated two
botnets with 200 and 2000 nodes, respectively. In each bot-

net, a command from the botmaster is published, and every
node is designed to locate this command by issuing lookup
queries. The simulation ends when all nodes successfully re-
trieve the command. In the structured botnet case, we ran
the modified Kademlia protocol, with k-bucket size k = 8
and the number of nodes to ask in parallel @« = 3. In the
unstructured botnet case, we ran the modified Gia protocol,
with minimum number of neighbors min_nbrs = 3, maxi-
mum number of neighbors maz_nbrs = 10 and maximum
number of responses max_responses = 1.

Now, we present and discuss the comparison results. For
each metric, we first look at the 200-node botnet and then
the 2000-node botnet. Figure 2 plots the CDFs of the num-
ber of hops needed to retrieve a targeted command. In
the 200-node botnet, for the structured architecture, 97%
of lookups can be completed within 3 hops. The corre-
sponding number for the unstructured botnet is 5 hops. In
the 2000-node botnet, despite the increased network size,
99% of lookups under the structured architecture are ful-
filled within 4 hops, but under the unstructured 8 hops are
required. Figure 3 shows the CDFs of the total number
of SMS messages sent from each node when the command
spreads to the entire botnet, which is the total communi-
cation overhead. In the 200-node botnet, under the struc-
tured architecture, about 80% of nodes generate fewer than
15 messages during the entire period, while under the un-
structured architecture 69% of nodes can do so. The aver-
age number of messages sent is 11 for the structured and 15
for the unstructured, respectively. In the 2000-node botnet,
with more nodes and more lookups, the message overhead
unsurprisingly increases. 80% of nodes send fewer than 20
messages (51% of nodes send fewer than 10 messages) for
the structured architecture with an average of 22 messages
sent by each node. Only 40% of nodes send fewer than 20
messages for the unstructured architecture with an average
of 44 messages.

From the above observations, we can see that the struc-
tured botnet, in general, requires fewer number of hops to
locate a command and incurs a lower message overhead (15
to 20 messages) on each node than the unstructured one does
in both 200- and 2000-node cases. Compared to the unstruc-
tured botnet, the structured architecture also scales better,
considering its slight increases in the number of hops and
messages when the botnet becomes large. This is expected
because in a structured network, data items are placed at de-
terministic locations so that fewer hops and query messages
are required to locate the targeted data and the network
can accommodate a large number of nodes. As mentioned
before, on smartphones such as Android-based phones, bots
are able to send and receive C&C SMS messages stealthily
without notifying users. Users may figure that out while
seeing the monthly bills, but by then bots have already
performed malicious tasks. KEven if users are able to see
them on the phone, since the C&C messages are disguised
as spam, they cause little suspicion. Even so, one may still
wonder: would SMSC observe a surge of messages among
infected phones and raise alerts? SMS market statistics
show that: “In 2009, U.S. cell phone subscribers sent and
received on average 390 text messages per month according
to the Mobile Business Statistics [32].” We believe that tens
of messages overhead per phone may not draw much atten-
tion from the SMSC considering a phone’s normal messaging
volume. Also, since most attacks such as information steal-

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

2000 Nodes

=8=Structured
=&=Unstructured

0o 1 2 3 4 5 6 7 8 9
Number of Hops for a Command Lookup

Figure 2: CDF's of the number of hops needed for a command-lookup

0.9 -
0.8 -
0.7 1 200 Nodes
0.6 -
0.5 -
0.4 - ——Structured
0.3 —a—Unstructured
0.2 |
0.1
0 +—m T T
0 1 2 3 4 5
Number of Hops for a Command Lookup
1
0.9 -
0.8 |

0.7 +
0.6 -
0.5 -
0.4 -
0.3 4
0.2 4
0.1 +

200 Nodes

=e~Structured

-m-Unstructured

5 10 15 20 25 30 35 40 45 50
Total Number of Messages Sent

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

2000 Nodes

—e—Structured

- Unstructured

4_\ rrrrrrrrrrrrrrrrrrrrrrrrrrrrrorrT
o o0 O 90 o0 9 0 090 90 0O 9 0 o o o O O
— m ;N A MmN MM o~ Mmook~ O m

— = = o~ = N ™ N N NN mMmom
Total Number of Messages Sent

Figure 3: CDF's of the total number of messages sent to perform all lookups

0.3

0.25

0.2 +

0.1 4

0.05

Message Delay in seconds

- - - N
w [© N a ® =
o o =] o o (=] o

o

200 Nodes

@ Structured
@ Unstructured

nmMmLwb WwLw @ wmNnonon 0wn o
TS TN 2 4M 49 59NN §
o (=] L=} — — — — ™~

Percentage of Number of Messages Sent from

Each Node (%)

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

2000 Nodes

W structured

B Unstructured

Each Node(%)

Figure 4: Histograms of the percentage of total messages sent from each node

1 10 20 60+
Interval between SMS messages (seconds)

Figure 5: SMS message delays

1 = P —
0.9 -
08 -
07 | 2000 Nodes
0.6 -
0.5 - =o=100s
04 —=-1000s
0.3 -
0.2 4 —+-28800s
0.1 -

0 - . . .

0 1 2 3 4 5

Figure 6:

Number of Hops for a Command Lookup

CDFs of the number of hops for a com-

mand lookup under different mean lifetimes (in sec)

ing and spamming are not time-critical, bots do not have to
pull commands all at the same time. To further minimize
the number of messages sent/received, each bot can be re-
stricted by a threshold. If the number of messages reaches
the threshold, the bot will stop sending/receiving messages.
The threshold can be customized depending on the usage
pattern of SMS on that particular phone. If a bot has fre-
quent normal SMS messaging behavior, its threshold of al-
lowing bot communication could be high since this phone is
very likely to use a SMS plan and a few blended malicious
messages are less noticeable.

Figure 4 shows the histograms of load distribution on each
node, which is the percentage of total messages each node
accounts for during the entire simulation. In the 200-node
botnet, 76% of nodes in the structured botnet each accounts
for 0.75% — 1.25% of total messages sent, whereas in the un-
structured one, the percentage values are spread out among
different nodes ranging from 0.10% to 6%. The average per-
centage for the structured one is 1.02% and for the unstruc-
tured is 1.01%. To gauge the load-balancing more accu-
rately, we calculated a metric defined as: >, |pi — D| (%),
where n is the total number of nodes, p; is the load per-
centage at node i, and p is the average percentage across all
nodes. The (*) values for the structured and the unstruc-
tured are 13.40% and 55.89%, respectively. In the 2000-node
case, all nodes’ percentages in the structured botnet range
from 0.05% to 0.25% while those in the unstructured botnet
are distributed within 0.05% — 1.65%, although the average
percentages for both the structured and the unstructured
are 0.07%. The metric (x) values for the structured and the
unstructured are 23.73% and 145.48%. The unstructured
case varies more in load distribution leading to poor load-
balancing, probably because Gia uses schemes to direct most
queries to a few nodes—forming hub nodes.

To estimate the actual delay of locating a command in
our mobile botnet, we measured one-hop latency by sending
SMS messages between two smartphones. We implemented
a SMS send/receive utility on the Android platform and in-
stalled it on two G1 phones: one connected to T-mobile and
the other to AT&T. The software continually sent out and
received SMS messages between two phones and recorded
the exact timestamps. The intervals between two consec-
utive SMS messages were chosen from 1 second to tens of
minutes and the message contents were also randomly gen-
erated with various lengths to simulate the realistic SMS
usage. During the entire experiment, we sent out a total of
138 SMS messages and collected the corresponding message
delays, i.e., the difference between the time sending a mes-
sage from one phone and the time of receiving that message
from the other phone. Figure 5 depicts min/max/average
message delays based on different sending intervals (send-
ing rates). We can see that when SMS messages are sent
frequently, the message delays vary a lot and have high av-
erage values. Take 1 second as an example. Under this
interval, delays range from 15 to 205 seconds with an aver-
age of 60 seconds. Similar delay patterns occur when the
interval is 5 seconds. The general trend is that as intervals
become larger, both delay average and variance drop, and
that when the interval is greater than 60 seconds, the delays
become stable.

Since mobile attacks such as confidential information steal-
ing (especially related to credit card, account number, etc.)
are not time-sensitive, bots can send messages at relatively

long intervals to shorten the delay and avoid detection. Us-
ing a greater than 1 minute sending interval’s delay, we
now estimate the total delay for a command-lookup. Under
structured Kademlia which uses iterative search, the esti-
mated delay is given by AverageTotalDelay = 2 x
AverageHops x AverageOneHopDelay. When it comes to
unstructured Gia which employs recursive search, the equa-
tion should be the same. By plugging in the data we ob-
tained, the estimated command-lookup delay is 17 seconds
for the structured and 36 seconds for the unstructured in
the 2000-node botnet.

The delays seem to be large compared to that of IP-based
connections. As briefly mentioned before, our current de-
sign does not opt for IP-based C&C or existing IP-based
P2P networks for the following reasons. First, some smart-
phones may not have data plans, not always accessible to the
Internet. Second, for smartphones with the Internet access,
they can initiate connections to retrieve commands from des-
ignated servers but are likely to suffer from a single-point-
of-failure. To work in a decentralized P2P fashion, mobile
bots should be able to accept incoming connections with-
out any difficulty, which presents a challenge due to private
IPs used in most scenarios. A possible solution is to obtain
assistance from a third-party such as a mediator server or
a rendezvous server, adding complexity to the C&C. Since
SMS is ubiquitous across all mobile phones, using SMS as
the C&C channel to construct a P2P structure is a feasible
and reliable solution for mobile botnets. As future work, we
can incorporate IP-based command-transfer into our botnet.
For mobile bots without network access, they transmit C&C
exclusively via SMS messages. For bots with network access,
they can pull commands from an IP-based P2P network.
Such a network consisting of PCs can be either constructed
by the botmaster or part of an existing P2P network. Doing
so may help reduce the message overhead and the delay.

In summary, our simulation results show that the struc-
tured architecture outperforms the unstructured one in terms
of total number of messages sent, hops needed and delays
for a lookup as well as load-balancing, although both the
original protocols—Kademlia and Gia—have already been
tailored to our mobile botnet’s needs through several modi-
fications. Thus, the structured architecture is indeed better
suited for our mobile botnet.

4.2 Effect of Churn Rates

Now that we have chosen the structured architecture, we
would like to see the effect of different mean lifetimes or
churn rates on the number of hops for a command lookup,
which directly affects the delay of locating a command. To
see the trend, in a 2000-node botnet, we varied the mean
lifetimes—100s, 1000s and 28800s. The higher the mean
lifetime, the lower the churn rate. Presumably, a large mean
lifetime indicates a relatively stable network in which fewer
steps are needed to locate a command. This assumption
is verified in our simulation. We can see that in Figure 6,
differences, though minimal, exist among the three CDFs.
With the mean equal to 100s, the average number of hops
is 1.8; with the mean equal to 1000s, the average reduces to
1.7; with the mean equal to 28800s, the average decreases
further to 1.4. It turns out that a higher churn rate does
not degrade much of the lookup performance.

4.3 Can Disguised C&C Messages Go Through?

One concern with our spam-like C&C messages is what if
they are filtered and deleted by the service providers with-
out reaching the recipients, which might be the only effective
way to mitigate SMS spam (spam-filtering at the end device
is not useful as the recipient needs to pay for the messages
already). According to some sources [27, 33], mobile carriers
do not automatically block SMS spam because there is no
spam folder with SMS so that accidental deletion of legiti-
mate messages from the carrier’s side cannot be recovered
by the users. Also, senders are presumably charged for these
messages unlike emails. To confirm this, we ran experiments
to see whether carriers will let our spam-like C&C messages
pass through. Table 1 shows the spam templates for C&C,
which are typical spam messages. The random strings high-
lighted in grey are variables such as passcodes and node
IDs. We tried two methods to send them: web-based and
smartphone-based. For the first method, we sent all mes-
sages twice to an AT&T phone via free texting service at
Text4Free.net and txt2day.com respectively. 100% of them
reached the designated phone. For the second method, we
wrote an application and installed it on an AT&T Samsung
Captivate phone running Android OS 2.2. This application
automatically sent the spam messages 5 times at different
times of a day to another AT&T phone. The application
also kept track of whether a message was sent successfully.
Out of the 50 messages, 48 messages were sent and delivered
to the target phone and 2 messages failed to be sent due to
some generic failure at sender’s phone that had nothing to do
with the carrier. Although we were not able to thoroughly
test every possible spam message on different networks, our
experimental results were in line with the aforementioned
reports and we believe that as few spam-fighting mecha-
nisms are in place, our disguised C&C messages can safely
go through the network.

4.4 How Do SMS C&C and P2P Structure Be-
come One?

Having an impression of how SMS transmits C&C mes-
sages and how a structured P2P topology fits our mobile
botnet, one may want to know in detail the way we inte-
grate both into the mobile botnet. We now use a simplified
example (Figure 7) to illustrate the command publish and
search process. For illustration purpose, node IDs and data
items’ keys are 4-bit long, and SMS messages transmitted
are not disguised as spam. In this figure, node 1111 wants
to publish certain data—a command—under the key 0111.
Note that in Kademlia, data items are stored in nodes whose
IDs are close to data items’ keys. To locate such nodes,
node 1111 first sends SMS messages to nodes in its hard-
coded node list; these nodes help to obtain nodes closer to
the target from their node lists. The process continues till
no closer nodes could be found (this process is omitted in
the figure). Finally, node 1111 finds the closest node 0110
(0110 ® 0111 = 0001), so a publish message containing the
command’s key (0111), the encrypted command (XXXX)
along with a passcode (8888) is sent to node 0110. After
verifying the pre-defined passcode and command, node 0110
stores this information so that later any node requests the
command associated with key 0111 it is able to return this
command. As for the search process, it is similar to the
publish process described. Node 0000 looks up a command
associated with key 0111 and it has to find the node whose

ID is closer to this key. Node 0000 first asks node 0010; node
0010 points it to node 0100; node 0100 provides the closest
one, node 0110. Node 0000 contacts node 0110 to request
the command.

S. DISCUSSION ON COUNTERMEASURES

Although we have focused on the design of a stealthy and
resilient mobile botnet, we would like to discuss potential
defensive strategies and challenges in using these techniques.

Similar to the patching mechanism in the PC world, to
prevent malicious code from infecting mobile devices by vul-
nerability exploits, OS vendors and software providers need
to push patches to end devices in a timely manner. Certifica-
tion (only approved applications can be installed) is also an
important security measure, but it is far from being perfect
as some malware has been able to get around [34] as a dis-
guised harmless application. To nip the mobile malware in
the bud, additional protection features are necessary. For ex-
ample, Kirin [35] is designed for the Android-platform whose
certification process is not stringent; it provides application
certification at install time using a set of predefined secu-
rity rules that determine whether the security configuration
bundled with an application is safe. With the aid of Kirin,
users may be more cautious while installing applications.

Host-based approaches that detect malware at runtime
could also serve as a solution. Signature-based detection is
effective but cannot handle unknown or polymorphic mal-
ware. We prefer use of behavior-based detection. Since our
bots send SMS messages stealthily without the user’s in-
volvement or awareness, the detector could first characterize
the normal process of sending SMS messages by a system-
call state-diagram and then keep monitoring the system calls
that generate outgoing messages to see if there is any devi-
ation from the normal behavior. To detect incoming C&C
messages, the detector needs to know the encoding scheme
probably through binary analysis so that it can intercept and
delete malicious messages before any application’s access.
However, the botmaster can apply advanced packing and
obfuscation techniques to make the binary analysis harder,
and periodically update the spam templates as well as the
mapping between them and corresponding commands. In
addition, host-level detection is susceptible to compromise
by the malware, and consumes much resource.

Deploying detection schemes at the SMSC is another pos-
sible solution. Compared to the host-level detection, this
centralized approach can acquire a global view of all phones’
SMS activities, although the information of each phone might
be limited. As mentioned before, simply filtering out spam
will not effectively cut off the botnet’s C&C. The reason is
that even if carriers dump spam-like SMS messages into a
spam folder like email service providers do, spam messages
will still reach target phones, stay at a less noticeable place—
the spam folder and get commands executed. Black-listing
and SMS sending/receiving rate-limiting may be difficult be-
cause our design attempts to minimize the total number of
messages sent/received and to balance the load on each bot.
As always, matching signatures extracted from known bots’
messages can be bypassed by malicious messages with com-
pletely new formats or contents. To differentiate between
mobile bots and normal phones, the detector at the SMSC
needs to extract more distinctive features from SMS traffic
patterns. For example, normal phones may have regularities
in whom they send messages to and the sending frequency

Table 1: Spam templates with variable fields in grey

Your paypal account was hijacked

(Err msg: NzkxMjAzNDIxODExMDUyM183Mz).
Respond to http://www.bhocxx.paypal.com using code
Q3MDk2NDUyXzEyMzQ1Njc4

Free ringtone download at www.myringtone.com, using username VIP,
password YT JINGQxMWw to log on

Dear Customer, your order ID dWFuaWRpb3Q) is accepted.
Please visit: www.xajq.apple.com for more info

Your business is greatly appreciated and we would like to award you a free gift.
http://www.protending.com/ebay/anVzdDRmd W4

To confirm your online bank records, follow the link
https://login.personal.wamu.com/logon.asp?id=Y WhhaGFoYWg

Hey, come on - Purchase G.en.er.ic VIA G R Al
http://www.WQ9.wesiwhchned.com/default.asp?ID=MTA5MzIxMnc

Citi Users: This is an important step in stopping online fraud.
Please verify your account at https://www.citi.com.Y2Nzc3Vja3M /verify/

Hey alice, I forgot to tell you yesterday that the password to that
account(MDkyMzkxMDM0OOTgxMjAzN) should be
183MzQyNjIlwOTM5XzUxOTQwMTI5

Don’t miss the chance to win an iPhone 4.
Go to www.apple.hak/index.asp?id=0OTAxMjcIMjM4OTExMTIzOD,
password: QyXzQxNDMyMTg3MzIfNjQ4MTkyMDQ

Guess who is tracking your location info?
Log on to www.whoistrackingme.com/index.asp?num=Y Wxqc2hmdy0

SMS message (Publish)

Passcode 8888
Number 123-456-7890 |- —— Number 321-645-0978
Node ID 1111 i Node ID 0110

Value XXXX

Number 521-322-0765
Node ID 0010

SMS message (Search)

Passcode 8888

Number 521-633-0789
Node ID 0100

Key 0111

Number 331-645-0278
Node ID 0000

1

Figure 7: Publish and Search

[36]. The detector can therefore build normal profiles and
identify anomalies accordingly. The detector may also adopt
a high-level view for detection. As our botnet utilizes a P2P
architecture, the resultant network topology stemmed from
SMS activities may be different from that formed by be-
nign phones, given the fact that P2P applications are rare
in today’s mobile phone networks.

6. CONCLUSION

As smartphones are getting more powerful, they become
potential targets of profit-driven attacks, especially botnets.
In this paper, we presented the design of a mobile botnet
that utilizes SMS to transmit C&C messages and a P2P
structure to construct its topology. Using simulation, we
compared two types of P2P architectures—the structured
and the unstructured—based on several metrics critical to
the mobile botnet performance. We found that the modi-
fied Kademlia—a structured architecture—is more suitable
for our botnet in terms of message overhead, delay, and load-
balancing. We also investigated possible ways to counter the
mobile botnet threat. As future work, we plan to combine
SMS-based C&C and IP-based C&C utilizing existing DHT
or P2P networks. Since our current work focuses on the as-
pects of feasibility and efficiency in botnet design, we would
also like to measure robustness, i.e., how our botnet per-
forms under different detection and mitigation strategies.

Acknowledgments
The work reported in this paper was supported in part by the

US National Science Foundation under Grant No. CNS 1114837.

7. REFERENCES

[1] “Google yanks over 50 infected apps from android
market,”
http://www.computerworld.com/s/article/9212598

/Google_yanks_over_50_infected_apps_from_Android_Market.

[2] SymbOS.Exy.A,
http://www.symantec.com/security_response
/writeup.jsp?docid=2009-022010-4100-99.

[3] Ikee.B, http://www.symantec.com/security_response
/writeup.jsp?docid=2009-112217-4458-99.

[4] “More droiddream details emerge: It was building a
mobile botnet,”
http://www.readwriteweb.com/archives
/droiddream_malware_was_going_to_install more_apps
_on_your_phone.php.

[5] RootSmart,
http://www.csc.ncsu.edu/faculty /jiang /RootSmart /.

[6] P. Wang, S. Sparks, and C. C. Zou, “An advanced
hybrid peer-to-peer botnet,” in HotBots’07.

[7] P. Wang, L. Wu, B. Aslam, and C. C. Zou, “A
systematic study on peer-to-peer botnets,” in I[CCCN
2009.

[8] G. Starnberger, C. Kruegel, and E. Kirda, “Overbot -
a botnet protocol based on kademlia,” in
SECURECOMM 2008.

[9] C. R. Davis, S. Neville, J. M. Fernandez, J.-M.
Robert, and J. McHugh, “Structured peer-to-peer
overlay networks: Ideal botnets command and control
infrastructures?” in Proceedings of 13th European

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]
(24]

(25]

Symposium on Research in Computer Security
(ESORICS’08).

K. Singh, A. Srivastava, J. Giffin, and W. Lee,
“Evaluating email’s feasibility for botnet command
and control,” in Proceedings of 38th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’08).

A. Nappa, A. Fattori, M. Balduzzi, M. Dell’Amico,
and L. Cavallaro, “Take a deep breath: A stealthy,
resilient and cost-effective botnet using skype,” in
Proceedings of 7th International Conference on
Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA’10).

D. Dagon, G. Gu, C. P. Lee, and W. Lee, “A
taxonomy of botnet structures,” in Proceedings of the
23 Annual Computer Security Applications Conference
(ACSAC07).

A. Bose and K. G.Shin, “On mobile viruses exploiting
messaging and bluetooth services,” in Proceedings of
the 2nd International Conference on Security and
Privacy in Communication Networks
(SecureComm’06).

R. Racic, D. Ma, and H. Chen, “Exploiting mms
vulnerabilities to stealthily exhaust mobile phone’s
battery,” in Proceedings of the 2nd International
Conference on Security and Privacy in
Communication Networks (SecureComm’06).

W. Enck, P. Traynor, P. McDaniel, and T. L. Porta,
“Exploiting open functionality in sms-capable cellular
networks,” in Proceedings of the 12th ACM Conference
on Computer and Communications Security (CCS’05).
P.Traynor, M.Lin, M.Ongtang, V.Rao, T.Jaeger,
P.McDaniel, and T.L.Porta, “On cellular botnets:
Measuring the impact of malicious devices on a
cellular network core,” in Proceedings of the 12th ACM
Conference on Computer and Communications
Security (CCS’09).

K. Singh, S. Sangal, N. Jain, P. Traynor, and W. Lee,
“Evaluating bluetooth as a medium for botnet
command and control,” in Proceedings of the
International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA
2010).

J. Hua and K. Sakurai, “A sms-based mobile botnet
using flooding algorithm,” in The 5th Workshop in
Information Security and Privacy (WISTP’11).

C. Mulliner and J.-P. Seifert, “Rise of the ibots:
Owning a telco network,” in The 5th IEEE
International Conference on Malicious and Unwanted
Software (Malware), 2010.

G. Weidman, “Transparent botnet command and
control for smartphones over sms,” in Shmoocon 2011.
“Htc bluetooth vulnerability,”
http://www.cio.com/article/497146
/HTC_Smartphones_Left_Vulnerable_to_Bluetooth_Attack.
C.Mulliner and C.Miller, “Fuzzing the phone in your
phone,” in BlackHat Security Conference, 2009.

SMS, http://en.wikipedia.org/wiki/SMS.

“China cracks down on sms spam,”
http://www.redherring.com/Home/19081.

textPlus, http://www.textplus.com/.

[26]

[27]

[28]

[29]

[30]

[31]

Textfree, http://itunes.apple.com/us/app/textiree-
unlimited-send-text/id3059251517mt=8.

“Gsma launches sms spam reporting service,”
http://www.pcworld.com/businesscenter/article/192469
/gsma_launches_sms_spam_reporting_service.html.

P. Maymounkov and D. Mazieres, “Kademlia: A
peer-to-peer information system based on the xor
metric,” in IPTPS, 2002.

Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham,
and S. Shenker, “Making gnutellalike p2p systems
scalable,” in ACM SIGCOMM, 2003.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan, “Chord: A scalable peer-to-peer
lookup service for internet applications,” in ACM
SIGCOMM 2001.

OverSim, http://www.oversim.org/.

(32]

(33]

(34]

(35]

(36]

“Sms market statistics 2009,”
http://www.massmailsoftware.com/blog/2010/04/
sms-market-statistics-2009-know-your-customer/.
“Mobile_phone_spam,”
http://en.wikipedia.org/wiki/Mobile_phone_spam.
“Researcher says app store open to malware,”
http://www.iphonealley.com/current /researcher-says-
app-store-open-to-malware.

W. Enck, M. Ongtang, and P. McDaniel, “On
lightweight mobile phone application certification,” in
Proceedings of the 16th ACM conference on Computer
and communications security (CCS ’09).

G. Yan, S. Eidenbenz, and E. Galli, “Sms-watchdog:
Profiling social behaviors of sms users for anomaly
detection,” in Proceedings of the 12th International

Symposium on Recent Advances in Intrusion Detection
(RAID’09).

