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Abstract Application launch performance is of great importance to system platform developers and vendors as it greatly
affects the degree of users’ satisfaction. The single most effective way to improve application launch performance is to
replace a hard disk drive (HDD) with a solid state drive (SSD), which has recently become affordable and popular. A
natural question is then whether or not to replace the traditional HDD-aware application launchers with a new SSD-aware
optimizer. We address this question by analyzing the inefficiency of the HDD-aware application launchers on SSDs and then
proposing a new SSD-aware application prefetching scheme, called the Fast Application STarter (FAST). The key idea of
FAST is to overlap the computation (CPU) time with the SSD access (I/O) time during an application launch. FAST is
composed of a set of user-level components and system debugging tools provided by Linux OS (operating system). Hence,
FAST can be easily deployed in any recent Linux versions without kernel recompilation. We implement FAST on a desktop
PC with an SSD running Linux 2.6.32 OS and evaluate it by launching a set of widely-used applications, demonstrating an
average of 28% reduction of application launch time as compared to PC without a prefetcher.
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1 Introduction

Application launch performance is one of the impor-
tant metrics for the design or selection of a desktop
or a laptop PC as it critically affects the user-perceived
performance. Unfortunately, application launch perfor-
mance has not kept up with the remarkable progress of
CPU performance that has thus far evolved according
to Moore’s law. As frequently-used or popular applica-
tions get “heavier” (by adding new functions) with each
new release, their launch takes longer even if a new,
powerful machine equipped with high-speed multi-core
CPUs and several GBs of main memory is used. This
undesirable trend is known to stem from the poor ran-
dom access performance of hard disk drives (HDDs).
When an application stored in an HDD is launched, up
to thousands of block requests are sent to the HDD,
and a significant portion of its launch time is spent
on moving the disk head to proper track and sector

positions, i.e., seek and rotational latencies. Unfortu-
nately, the HDD seek and rotational latencies have not
been improved much over the last few decades, espe-
cially compared to the CPU speed improvement. In
spite of the various optimizations proposed to improve
the HDD performance in launching applications, users
must often wait tens of seconds for the completion of
launching frequently-used applications, such as Win-
dows Outlook.

A quick and easy solution to eliminate the HDD’s
seek and rotational latencies during an application
launch is to replace the HDD with a solid state drive
(SSD). An SSD consists of a number of NAND flash
chips, and does not use any mechanical parts, unlike
disk heads and arms of a conventional HDD. While the
HDD access latency — which is the sum of seek and
rotational latencies — ranges up to a few tens of mil-
liseconds (ms), depending on the seek distance, the SSD
shows a rather uniform access latency of about a few
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hundred micro-seconds (us). Replacing an HDD with
an SSD is, therefore, the single most effective way to
improve application launch performance.

Until recently, using SSDs as the secondary storage
of desktops or laptops has not been an option for most
users due to the high cost-per-bit of NAND flash memo-
ries. However, the rapid advance of semiconductor tech-
nology has continuously driven the SSD price down,
and at the end of 2010, the price of an 80 GB SSD
has fallen below 200 US dollars. Furthermore, SSDs
can be installed in existing systems without additional
hardware or software support because they are usually
equipped with the same interface as HDDs, and opera-
ting systems (OSes) see an SSD as a block device just
like an HDD. Thus, end-users begin to use an SSD as
their system disk to install the OS image and applica-
tions.

Although an SSD can significantly reduce the ap-
plication launch time, it does not give users ultimate
satisfaction for all applications. For example, using an
SSD reduces the launch time of a heavy application
from tens of seconds to several seconds. However, users
will soon become used to the SSD launch performance,
and will then want the launch time to be reduced fur-
ther, just as they see from light applications. Further-
more, users will keep on adding functions to applica-
tions, making them heavier with each release and their
launch time greater. According to a recent report[1],
the growth of software is rapid and limited only by the
ability of hardware. These call for the need to further
improve application launch performance on SSDs.

Unfortunately, most previous application launch op-
timizers are intended for HDDs and have not accounted
for the SSD characteristics. Furthermore, some of them
may rather be detrimental to SSDs. For example, run-
ning a disk defragmentation tool on an SSD is not bene-
ficial because changing the physical location of data in
the SSD does not affect its access latency. Rather, it
generates unnecessary write and erase operations, thus
shortening the SSD’s lifetime.

In view of these, the first step toward SSD-aware
optimization may be to simply disable the traditional
optimizers designed for HDDs. For example, Windows
7 disables many functions, such as disk defragmen-
tation, application prefetch, Superfetch, and Ready-
boost when it detects an SSD being used as a sys-
tem disk[2]. Let consider another example. Linux is
equipped with four disk I/O schedulers: NOOP, antic-
ipatory, deadline, and completely fair queueing. The
NOOP scheduler almost does nothing to improve HDD
access performance, thus providing the worst perfor-
mance on an HDD. Surprisingly, it has been reported
that NOOP shows better performance than the other

three sophisticated schedulers on an SSD[3].
To the best of our knowledge, this is the first attempt

to focus entirely on improving application launch per-
formance on SSDs. Specifically, we propose a new appli-
cation prefetching method, called the Fast Application
STarter (FAST), to improve application launch time on
SSDs. The key idea of FAST is to overlap the computa-
tion (CPU) time with the SSD access (I/O) time during
each application launch. To achieve this, we monitor
the sequence of block requests in each application, and
launch the application simultaneously with a prefetcher
that generates I/O requests according to the a priori
monitored application’s I/O request sequence. FAST
consists of a set of user-level components, a system-
call wrapper, and system debugging tools provided by
Linux OS. FAST can be easily deployed in most re-
cent Linux versions without kernel recompilation. We
have implemented and evaluated FAST on a desktop
PC with an SSD running Linux 2.6.32, demonstrating
an average of 28% reduction of application launch time
as compared to PC without a prefetcher.

This paper makes the following contributions:
• qualitative and quantitative evaluation of the in-

efficiency of traditional HDD-aware application launch
optimizers on SSDs;
• development of a new SSD-aware application

prefetching scheme, called FAST; and
• implementation and evaluation of FAST, demon-

strating its superiority and deployability.
The paper is organized as follows. In Section 2, we

review other related efforts and discuss their perfor-
mance in optimizing application launch on SSDs. Sec-
tion 3 describes the key idea of FAST and presents a
lower bound of the application launch time achievable
with FAST. Section 4 discusses design issues to imple-
ment FAST. Section 5 details the implementation of
FAST on Linux OS, while Section 6 evaluates its per-
formance using various real-world applications. Sec-
tion 7 discusses the applicability of FAST and Section
8 compares FAST with traditional I/O prefetching tech-
niques. We conclude the paper with Section 9.

2 Background

In this section, we summarize traditional application
launch optimization techniques for HDDs as well as re-
cent work for SSD performance optimization. We also
discuss the effectiveness of the traditional HDD-based
launch optimization schemes on SSDs.

2.1 Application Launch Optimization

Application developers are usually advised to opti-
mize their applications for fast startup. For example,
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they may be advised to postpone loading non-critical
functions or libraries so as to make applications re-
spond as fast as possible[4-5]. They are also ad-
vised to reduce the number of symbol relocations while
loading libraries, and to use dynamic library loading.
There have been numerous case studies — based on
in-depth analyses and manual optimizations — of vari-
ous target applications/platforms, such as Linux desk-
top suite platform[6], a digital TV[7], and a digital still
camera[8]. However, such an approach requires the ex-
perts’ manual optimizations for each and every appli-
cation. Hence, it is economically infeasible for general-
purpose systems with many (dynamic) application pro-
grams.

A snapshot boot technique has also been suggested
for fast startup of embedded systems[9], which is diffe-
rent from the traditional hibernate shutdown function
in that a snapshot of the main memory after booting an
OS is captured only once, and used repeatedly for every
subsequent booting of the system. However, applying
this approach for application launch is not practical for
the following reasons. First, the page cache in main
memory is shared by all applications, and separating
only the portion of the cache content that is related to
a certain application is not possible without extensive
modification of the page cache. Furthermore, once an
application is updated, its snapshot should be invali-
dated immediately, which incurs runtime overhead.

Modern desktops are equipped with large (up to
several GBs) main memory, and often have abun-
dant free space available in the main memory.
Prediction-based prefetching, such as Superfetch[10]

and Preload[11], loads an application’s code blocks in
the free space even if the user does not explicitly express
his/her intent to execute that particular application.
These techniques monitor and analyze the users’ access
patterns to predict which applications to be launched in
future. Consequently, the improvement of launch per-
formance depends strongly on prediction accuracy.

Windows OS is equipped with an application
prefetcher[12] that prefetches application code blocks in
a sorted order of their logical block addresses (LBAs) to
minimize disk head movements. A similar idea has also
been implemented for Linux OS[13-14]. We call these
approaches sorted prefetch. It monitors HDD activities
to maintain a list of blocks accessed during the launch
of each application. Upon detection of an application
launch, the application prefetcher immediately pauses
its execution and begins to fetch the blocks in the list in
an order sorted by their LBAs. The application launch
is resumed after fetching all the blocks, and hence, no
page miss occurs during the launch.

The block list information can also be used in a

different way to further reduce the seek distance during
an application launch. Modern OSes commonly sup-
port an HDD defragmentation tool that reorganizes the
HDD layout so as to place each file in a contiguous disk
space. In contrast, the defragmentation tool can relo-
cate the blocks in the list of each application by their
access order[12], which helps reduce the total HDD seek
distance during the launch.

2.2 SSD Performance Optimization

SSDs have become affordable and begun to be de-
ployed in desktop and laptop PCs, but their perfor-
mance characteristics have not yet been understood
well. So, researchers conducted in-depth analyses of
their performance characteristics, and suggested ways
to improve their runtime performance. Extensive ex-
periments have been carried out to understand the
performance dynamics of commercially-available SSDs
under various workloads, without knowledge of their
internal implementations[15]. Also, SSD design space
has been explored and some guidelines to improve the
SSD performance have been suggested[16]. A new write
buffer management scheme has also been suggested to
improve the random write performance of SSDs[17].
Traditional I/O schedulers optimized for HDDs have
been revisited in order to evaluate their performance
on SSDs, and then a new I/O scheduler optimized for
SSDs has been proposed[3,18].

2.3 Launch Optimization on SSDs

As discussed in Subsection 2.1, various approaches
have been developed and deployed to improve the
application launch performance on HDDs. On one
hand, many of them are effective on SSDs as well,
and orthogonal to FAST. For example, application-
level optimization and prediction-based prefetch can be
used together with FAST to further improve application
launch performance.

On the other hand, some of them exploit the HDD
characteristics to reduce the seek and rotational de-
lay during an application launch, such as the sorted
prefetch and the application defragmentation. Such
methods are ineffective for SSDs because the internal
structure of an SSD is very different from that of an
HDD. An SSD typically consists of multiple NAND
flash memory modules, and does not have any mechani-
cal moving part. Hence, unlike an HDD, the access
latency of an SSD is irrelevant to the LBA distance
between the last and the current block requests. Thus,
prefetching the application code blocks according to the
sorted order of their LBAs or changing their physical
locations will not make any significant performance
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improvement on SSDs. As the sorted prefetch has the
most similar structure to FAST, we will quantitatively
compare its performance with FAST in Section 6.

3 Application Prefetching on SSDs

This section illustrates the main idea of FAST with
examples and derives a lower bound of the application
launch time achievable with FAST.

3.1 Cold and Warm Starts

We focus on the performance improvement in case of
a cold start, or the first launch of an application upon
system bootup, representing the worst-case application
launch performance. Fig.1(a) shows an example cold
start scenario, where si is the i-th block request genera-
ted during the launch and n the total number of block
requests. After si is completed, the CPU proceeds with
the launch process until another page miss takes place.
Let ci denote this computation.

Fig.1. Various application launch scenarios (n = 4). (a) Cold

start scenario. (b) Warm start scenario. (c) Proposed prefetch-

ing (tCPU > tSSD). (d) Proposed prefetching (tCPU < tSSD).

The opposite extreme is a warm start where all the
code blocks necessary for launch have been found in the
page cache, and thus, no block request is generated, as
shown in Fig.1(b). This occurs when the application
launches again shortly after its closure. The warm start
represents a lower-bound of the application launch time
achievable with optimization of the secondary storage.

Let the time spent for si and ci be denoted by t(si)
and t(ci), respectively. Then, the computation (CPU)
time, tCPU, is expressed as

tCPU =
n∑

i=1

t(ci), (1)

and the SSD access (I/O) time, tSSD, is expressed as

tSSD =
n∑

i=1

t(si). (2)

3.2 Proposed Application Prefetcher

The rationale behind FAST is that the I/O request
sequence generated during an application launch does
not change over repeated launches of the application
in case of cold-start. The determinism in random read
requests has been also observed and exploited by many
previous work[19-21].

The key idea of FAST is to overlap the SSD ac-
cess (I/O) time with the computation (CPU) time by
running the application prefetcher concurrently with
the application itself. The application prefetcher re-
plays the I/O request sequence of the original appli-
cation, which we call an application launch sequence.
An application launch sequence S can be expressed as
(s1, . . . , sn).

Fig.1(c) illustrates how FAST works, where tCPU >
tSSD is assumed. At the beginning, the target applica-
tion and the prefetcher start simultaneously, and com-
pete with each other to send their first block request to
the SSD. However, the SSD always receives the same
block request s1 regardless of which process gets the
bus grant first. After s1 is fetched, the application can
proceed with its launch by the time t(c1), while the
prefetcher keeps issuing the subsequent block requests
to the SSD. After completing c1, the application ac-
cesses the code block corresponding to s2, but no page
miss occurs for s2 because it has already been fetched by
the prefetcher. It is the same for the remaining block re-
quests, and thus, the resulting application launch time
tlaunch becomes

tlaunch = t(s1) + tCPU. (3)

Fig.1(d) shows another possible scenario where tCPU <
tSSD. In this case, the prefetcher cannot complete fetch-
ing s2 before the application finishes computation c1.
However, s2 can be fetched by t(c1) earlier than that of
the cold start, and this improvement is accumulated for
all of the remaining block requests, resulting in tlaunch:

tlaunch = tSSD + t(cn). (4)

Note that n ranges up to a few thousands for typical
applications, and thus, t(s1) ¿ tCPU and t(cn) ¿ tSSD.
Consequently, (3) and (4) can be combined into a single
equation as:

tlaunch ≈ max(tSSD, tCPU), (5)
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which represents a lower bound of the application
launch time achievable with FAST.

However, FAST may not achieve application launch
performance close to (5) when there is a significant
variation of I/O intensiveness, especially if the begin-
ning of the launch process is more I/O intensive than
the other. Fig.2 illustrates an extreme example of such
a case, where the first half of this example is SSD-bound
and the second half is CPU-bound. In this example,
tCPU is equal to tSSD, and thus the expected launch
time texpected is given to be tSSD + t(c8), according to
(4). However, the actual launch time tactual is much
larger than texpected. The CPU usage in the first half
of the launch time is kept quite low despite the fact
that there are lots of remaining CPU computations (i.e.,
c5, . . . , c8) due to the dependency between si and ci. We
will provide a detailed analysis for this case using real
applications in Section 6.

Fig.2. Worst-case example (tCPU = tSSD).

4 Design Consideration

We chose Linux OS to demonstrate the feasibility of
FAST. Our goal is to implement FAST without mod-
ification of the OS kernel so as to lower its barrier to
adoption and encourage its wide deployment. In this
section, we discuss design issues that we should con-
sider to fulfill this goal.

4.1 What to Do

Implementing FAST essentially includes the follow-
ing three phases:

1) Launch Sequence Profiling. FAST obtains an ap-
plication launch sequence for each target application.

2) Prefetcher Generation. FAST builds a prefetcher
that replays exactly the same block I/O sequence as
specified in the obtained application launch sequence.

3) Prefetcher Execution. FAST runs the generated
prefetcher simultaneously with the original application
upon detecting its launch.

For the launch sequence profiling phase, we can uti-
lize existing block I/O tracing tools (e.g., blktrace[22])
to capture raw I/O request sequences from which
we can extract an application launch sequence. The
prefetcher execution phase can be implemented in var-
ious ways. For example, we can monitor invocation
of a certain system call that launches an application
program (e.g., execve()) to detect the launch and
immediately execute the corresponding prefetcher. It is

even possible to manually launch both the application
and its prefetcher using a shell command. However,
the prefetcher generation phase has some implementa-
tion issues — which will be discussed below — to be
considered for FAST to work correctly.

4.2 I/O Replay

Since we implement an application prefetcher as a
user-level program, the prefetcher of FAST should is-
sue all I/O requests via file system calls with a file name
and an offset in that file. However, the application
launch sequence obtained from the launch sequence pro-
filing phase contains only block-level information, i.e.,
each I/O request is represented as a tuple of the form
(start LBA, size).

With these constraints in mind, we can consider the
following two types of approaches to implement the
prefetcher generation phase:

1) File-Level I/O Replay. We first convert the LBA
of each I/O request into the associated file name and
the file offset. We use the obtained file names and off-
sets to fetch the application launch sequence via file
system calls.

2) Block-Level I/O Replay. If we open the whole
block device as a file (e.g., “/dev/sda”), we can use
the LBA of each I/O request as the file offset in the
device file. With this approach, conversion from LBA
to file name and offset is not necessary.

Figs. 3 and 4 show example prefetchers performing
file-level and block-level I/O replay, respectively. The
assumed application launch sequence is [(5, 2), (1, 1),
(7, 1)] (unit: 512 B). Fig.5 shows the mapping between
LBA and file offset of the example application launch
sequence.

int main(void) {

fd1 = open("b.so", O_RDONLY);

posix_fadvise(fd1,2*512,2*512,POSIX_FADV_WILLNEED);

fd2 = open("a.conf",O_RDONLY);

posix_fadvise(fd2,1*512,1*512,POSIX_FADV_WILLNEED);

fd3 = open("c.lib", O_RDONLY);

posix_fadvise(fd3,0*512,1*512,POSIX_FADV_WILLNEED);

return 0;

}

Fig.3. Prefetcher performing file-level I/O replay.

int main(void) {

fd = open("/dev/sda",O_RDONLY|O_LARGEFILE);

posix_fadvise(fd,5*512,2*512,POSIX_FADV_WILLNEED);

posix_fadvise(fd,1*512,1*512,POSIX_FADV_WILLNEED);

posix_fadvise(fd,7*512,1*512,POSIX_FADV_WILLNEED);

return 0;

}

Fig.4. Prefetcher performing block-level I/O replay.

Although both approaches generate exactly the same
sequence of I/O requests, they create different struc-
tures in the page cache due to its indexing mechanism.
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Fig.5. Launch block mapping between file offset and LBA (file

offset and LBA are in unit of 512B).

The page cache of Linux is organized as a radix tree per
inode. To find a certain block in the page cache, Linux
system calls pass an inode to the page cache, and only
the radix tree of the designated inode is searched in the
page cache.

Fig.6 shows how the two prefetchers of Figs. 3 and
4 create different page cache structures. When we per-
form file-level I/O replay, each fetched block is linked to
the inode of its associated file (Fig.6(a)). In contrast,
block-level I/O replay results in that all the cached
blocks are linked to the inode of the device (Fig.6(b)).

Fig.6. Page cache structures created via file- and block-level I/O

replay. (a) File-level I/O replay. (b) Block-level I/O replay.

A target application issues a file system call using the
file names "a.conf", "b.so", and "c.lib". If FAST
fetches the application launch sequence via block-level
I/O replay, the target application cannot see the thus
fetched blocks because they are linked to the radix
tree of "/dev/sda", as shown in Fig.6(b). In order to
achieve the prefetch effect described in Subsection 3.2,
FAST must create the page cache structure of Fig.6(a)
via file-level I/O replay.

Hence, the implementation of FAST should include
a mechanism to convert the block-level information of

an application launch sequence into file-level informa-
tion, i.e., LBA-to-inode reverse mapping, which will be
explained in detail in Section 5.

5 Prefetcher Implementation

The implementation of FAST consists of an appli-
cation launch manager, a system-call profiler, a disk
I/O profiler, an application launch sequence extractor,
an LBA-to-inode reverse mapper, and an application
prefetcher generator.

Fig.7 shows that these components interact with
each other to perform three procedures: 1) launch se-
quence generation, 2) LBA-to-inode map generation,
and 3) prefetcher generation. The first procedure gene-
rates an application launch sequence and the second
its corresponding LBA-to-inode map. The thus gene-
rated launch sequence and the LBA-to-inode map are
referenced together by the third procedure to create an
application prefetcher. The application launch mana-
ger monitors the launch of applications and determines
when to initiate each procedure. In what follows, we
detail the implementation of each component.

5.1 Launch Sequence Generation

The disk I/O profiler is used to track the block re-
quests generated during an application launch. We used
Blktrace[22], a built-in Linux kernel I/O-tracing tool
that monitors the details of I/O behavior for the eva-
luation of I/O performance. Blktrace can profile var-
ious I/O events: inserting an item into the block layer,
merging the item with a previous request in the queue,
remapping onto another device, issuing a request to
the device driver, and a completion signal from the de-
vice. From these events, we collect the trace of device-
completion events, each of which consists of a device
number, an LBA, the I/O size, and completion time.

Ideally, the application launch sequence should in-
clude all of the block requests that are generated every

Fig.7. Structure of FAST.
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time the application is launched in the cold start sce-
nario, without including any block requests that are not
relevant to the application launch. We observed that
the raw block request sequence captured by Blktrace
does not vary from one launch to another, i.e., de-
terministic for multiple launches of the same applica-
tion. However, we observed that other processes (e.g.,
OS and application daemons) sometimes generate their
own I/O requests simultaneously with the application
launch. To handle this case, the application launch se-
quence extractor collects two or more raw block request
sequences to extract a common sequence, which is then
used as a launch sequence of the corresponding appli-
cation.

Fig.8 shows the pseudo-code of the application
launch sequence extractor we used. In step 1, it first
removes write block requests. In step 2, it removes
any block request that does not appear in all of the
input sequences. This procedure makes all the input
sequences the same, so we use any of them as an appli-
cation launch sequence.

Input S1, S2, . . .: raw block request sequences captured by
the disk I/O profiler

Output S = (s1, . . . , sn): an application launch sequence
begin

for each Si do
for each sj of Si do

if sj is a write request // step 1
then remove sj from Si

fi;
if there is any Sk not including sj // step 2

then remove sj from all Si’s
fi;

od;
od;
Return any of Si’s

end

Fig.8. Application launch sequence extractor.

5.2 LBA-to-Inode Map Generation

Most file systems, including EXT3, do not support
a reverse mapping from LBA to file name and offset.
However, for a given file name, we can easily find the
LBA of all of the blocks that belong to the file and their
offsets in the file. Hence, we can build an LBA-to-inode
map by gathering this information for every file. How-
ever, building such a map of the entire file system is
impractical because a file system, in general, contains
tens of thousands of files and their block locations on
the disk change very often.

Therefore, we build a separate LBA-to-inode map
for each application, which can significantly reduce the
overhead of creating an LBA-to-inode map because 1)
the number of applications and the number of files used
in launching each application are very small compared

to the number of files in the entire file system, and 2)
most of them are shared libraries and application code
blocks, so their block locations remain unchanged un-
less they are updated or disk defragmentation is per-
formed.

We implement the LBA-to-inode reverse mapper
that receives a list of file names as input and creates an
LBA-to-inode map as output. An LBA-to-inode map
is built using a red-black tree in order to reduce the
search time. Each node in the red-black tree has the
LBA of a block as its key, and a block type as its data
by default. According to the block type, different types
of data are added to the node. A block type includes a
super block, a group descriptor, an inode block bitmap,
a data block bitmap, an inode table, and a data block.
For example, a node for a data block has a block type, a
device number, an inode number, an offset, and a size.
Also, for a data block, a table is created to keep the
mapping information between an inode number and its
file name.

The system-call profiler obtains a full list of file
names that are accessed during an application launch,
and passes it to the LBA-to-inode reverse mapper.
We used strace for the system-call profiler, which
is a debugging tool in Linux. We can specify the
argument of strace so that it may monitor only
the system calls that have a file name as their ar-
gument. As many of these system calls are rarely
called during an application launch, we monitor only
the following system calls that frequently occur dur-
ing application launches: open(), creat(), execve(),
stat(), stat64(), lstat(), lstat64(), access(),
truncate(), truncate64(), statfs(), statfs64(),
readlink(), and unlink().

5.3 Prefetcher Generation

The application prefetcher is a user-level program
that replays the disk access requests made by a tar-
get application. We implemented the application
prefetcher generator to automatically create an applica-
tion prefetcher for each target application. It performs
the following operations.

1) Read si one-by-one from S of the target applica-
tion.

2) Convert si into its associated data
items stored in the LBA-to-inode map, e.g.,
(dev,LBA,size)→(datablk,filename,offset,size)
or
(dev,LBA,size)→(inode,start_inode,end_inode).

3) Depending on the type of block, generate an ap-
propriate system call using the converted disk access
information.

4) Repeat steps 1∼3 until processing all si.
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Table 1 shows the kind of system calls used for each
block type. There are two system calls that can be
used to replay the disk access for data blocks of a reg-
ular file. If we use read(), data is first moved from
the SSD to the page cache, and then copying takes
place from the page cache to the user buffer. The sec-
ond step is unnecessary for our purpose, as the process
that actually manipulates the data is not the appli-
cation prefetcher but the target application. Hence,
we chose posix fadvise() that performs only the first
step, from which we can avoid the overhead of read().
We used the POSIX FADV WILLNEED parameter, which
informs the OS that the specified data will be used
in the near future. When to issue the corresponding
disk access after posix fadvise() is called depends on
the OS implementation. We confirmed that the cur-
rent version of Linux we used issues a block request
immediately after receiving the information through
posix fadvise(), thus meeting our need. A symbolic-
linked file name is stored in data block pointers in an
inode entry when the length of the file name is less than
or equal to 60B (c.f., the space of data block pointers
is 60 B, 4 × 12 for direct, 4 for single indirect, another
4 for double indirect, and last 4 for triple indirect data
block pointer). If the length of linked file name is more
than 60 B, the name is stored in the data blocks pointed
to by data block pointers in the inode entry. We used
readlink() to replay the data block access of symbolic-
link file names that are longer than 60B.

Table 1. System Calls to Replay Block I/O Requests

Block Type System Call

Inode table open()

Data block: A directory opendir() and readdir()

Data block: A regular file read() or posix fadvise()

Data block: A symbolic link file readlink()

Fig.9 is an example of automatically-generated ap-
plication prefetcher. Unlike the target application, the
application prefetcher successively fetches all the blocks
as soon as possible to minimize the time between adja-
cent block requests.

In the EXT3 file system, the inode of a file includes
pointers of up to 12 data blocks, so these blocks can
be found immediately after accessing the inode. If the
file size exceeds 12 blocks, indirect, double indirect, and
triple indirect pointer blocks are used to store the point-
ers to the data blocks. Therefore, requests for indirect
pointer blocks may occur in the cold start scenario when
the application is accessing files larger than 12 blocks.
We cannot explicitly load those indirect pointer blocks
in the application prefetcher because there is no such
system call. However, the posix fadvise() call for a
data block will first make a request for the indirect

int main(void) {

...

readlink("/etc/fonts/conf.d/90-ttf-arphic-uming-embolde

n.conf", linkbuf, 256);

int fd423;

fd423 = open("/etc/fonts/conf.d/90-ttf-arphic-uming-emb

olden.conf", O_RDONLY);

posix_fadvise(fd423, 0, 4096, POSIX_FADV_WILLNEED);

posix_fadvise(fd351, 286720, 114688, POSIX_FADV_WILLNEE

D);

int fd424;

fd424 = open("/usr/share/fontconfig/conf.avail/90-ttf-a

rphic-uming-embolden.conf", O_RDONLY);

posix_fadvise(fd424, 0, 4096, POSIX_FADV_WILLNEED);

int fd425;

fd425 = open("/root/.gnupg/trustdb.gpg", O_RDONLY);

posix_fadvise(fd425, 0, 4096, POSIX_FADV_WILLNEED);

dirp = opendir("/var/cache/");

if(dirp)while(readdir(dirp));

...

return 0;

}

Fig.9. Example application prefetcher.

block when needed, so it can be fetched in a timely
manner by running the application prefetcher.

The following types of block request are not listed
in Table 1: a superblock, a group descriptor, an in-
ode entry bitmap, a data block bitmap. We found
that requests to these types of blocks seldom occur dur-
ing an application launch, so we did not consider their
prefetching.

5.4 Application Launch Manager

The role of the application launch manager is to
detect the launch of an application and to take an
appropriate action. We can detect the beginning of
an application launch by monitoring execve() system
call, which is implemented using a system-call wrap-
per. There are three phases with which the applica-
tion launch manager deals: a launch sequence profiling
phase, a prefetcher generation phase, and a prefetcher
execution phase. The application launch manager uses
a set of variables and parameters for each application to
decide when to change its phase. These are summarized
in Table 2.

Here we describe the operations performed in each
phase:

1) Launch Sequence Profiling. If no application
prefetcher is found for that application, the applica-
tion launch manager regards the current launch as the
first launch of this application, and enters the initial
launch phase. In this phase, the application launch
manager performs the following operations in addition
to the launch of the target application:
• Increase ninit of the current application by 1.
• If ninit = 1, run the system call profiler.
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Table 2. Variables and Parameters Used by the Application
Launch Manager

Type Description

ninit A counter to record the number of application
launches done in the initial launch phase

npref A counter to record the number of launches done in
the application prefetch phase after the last check
of the miss ratio of the application prefetcher

Nrawseq The number of raw block request sequences that
are to be captured at the launch profiling phase

Nchk The period to check the miss ratio of the applica-
tion prefetcher

Rmiss A threshold value for the prefetcher miss ratio that
is used to determine if an update of the application
or shared libraries has taken place

Tidle A threshold value for the idle time period that is
used to determine if an application launch is com-
pleted

Ttimeout The maximum amount of time allowed for the disk
I/O profiler to capture block requests

• Flush the page cache, dentries (directory entries),
and inodes in the main memory to ensure a cold start
scenario, which is done by the following command:

$ echo 3 > /proc/sys/vm/drop caches.

• Run the disk I/O profiler. Terminate the disk I/O
profiler when any of the following conditions are met: if
no block request occurs during the last Tidle seconds or
the elapsed time since the start of the disk I/O profiler
exceeds Ttimeout seconds.
• If ninit = Nrawseq, enter the prefetcher generation

phase after the current launch is completed.
2) Prefetcher Generation. Once application launch

profiling is done, it is ready to generate an application
prefetcher using the information obtained from the first
phase. This can be performed either immediately after
the application launch is completed, or when the system
is idle. The following operations are performed:
• Run the application launch sequence extractor.
• Run the LBA-to-inode reverse mapper.
• Run the application prefetcher generator.
• Reset the values of ninit and npref to 0.
3) Prefetcher Execution. If the application pre-

fetcher for the current application is found, the applica-
tion launch manager runs the prefetcher simultaneously
with the target application. It also periodically checks
the miss ratio of the prefetcher to determine if there has
been any update of the application or shared libraries.
Specifically, the following operations are performed:
• Increase npref of the current application by 1.
• If npref = Nchk, reset the value of npref to 0 and

run the disk I/O profiler. Its termination conditions
are the same as those in the first phase.
• Run the application prefetcher simultaneously

with the target application.
• If a raw block request sequence is captured, use it

to calculate the miss ratio of the application prefetcher.
If it exceeds Rmiss, delete the application prefetcher.

The miss ratio is defined as the ratio of the number
of block requests not issued by the prefetcher to the to-
tal number of block requests in the application launch
sequence.

6 Performance Evaluation

In this section, we evaluate the performance of FAST
using various applications and discuss a set of imple-
mentation issues that can affect the efficiency of FAST.

6.1 Experimental Setup

6.1.1 Experimental Platform

We used a desktop PC equipped with an Intel i7-860
2.8GHz CPU, 4GB of PC12800 DDR3 SDRAM and an
Intel 80 GB SSD (X25-M G2 Mainstream). We installed
a Fedora 12 with Linux kernel 2.6.32 on the desktop, in
which we set NOOP as the default I/O scheduler. For
benchmark applications, we chose frequently used user-
interactive applications, for which application launch
performance matters much. Such an application typi-
cally uses graphical user interfaces and requires user in-
teraction immediately after completing its launch. Ap-
plications like gcc and gzip are not included in our
set of benchmarks as launch performance is not an is-
sue for them. Our benchmark set consists of the fol-
lowing Linux applications: Acrobat Reader, Designer-
qt4, Eclipse, F-Spot, Firefox, Gimp, Gnome, Houdini,
Kdevdesigner, Kdevelop, Konqueror, Labview, Matlab,
OpenOffice, Skype, Thunderbird, and Xilinx ISE. In
addition to these, we used Wine[23], which is an imple-
mentation of the Windows API running on Linux OS,
to test Access, Excel, PowerPoint, Visio, and Word —
typical Windows applications.

6.1.2 Test Scenarios

For each benchmark application, we measured its
launch time for the following scenarios.
• Cold Start. The application was launched

immediately after flushing the page cache, using the
method described in Subsection 5.4. The resulting
launch time is denoted by tcold.
• Warm Start. We first ran the application pre-

fetcher only to load all the blocks in the application
launch sequence to the page cache, and then launched
the application. Let twarm denote the resulting launch
time.
• Sorted Prefetch. To evaluate the performance of

the sorted prefetch[12-14] on SSDs, we modified the ap-
plication prefetcher to fetch the block requests in the
application launch sequence in the sorted order of their
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LBAs. After flushing the page cache, we first ran the
modified application prefetcher, then immediately ran
the application. Let tsorted denote the resulting launch
time.
• FAST. We flushed the page cache, and then ran

the application simultaneously with the application
prefetcher. The resulting launch time is denoted by
tFAST.
• Prefetcher Only. We flushed the page cache and

ran the application prefetcher. The completion time of
the application prefetcher is denoted by tSSD. It is used
to calculate a lower bound of the application launch
time tbound = max(tSSD, tCPU), where tCPU = twarm is
assumed.

6.1.3 Launch-Time Measurement

We start an application launch by clicking an icon
or inputting a command, and can accurately measure
the launch start time by monitoring when execve()
is called. Although it is difficult to clearly define the
completion of a launch, a reasonable definition is the
first moment the application becomes responsive to the
user[4]. However, it is difficult to accurately and au-
tomatically measure that moment. So, as an alter-
native, we measured the completion time of the last
block request in an application launch sequence using
Blktrace, assuming that the launch would be com-
pleted very soon after issuing the last block request. For
the warm start scenario, we executed posix fadvise()
with POSIX FADV DONTNEED parameter to evict the last
block request from the page cache. For the sorted
prefetch and the FAST scenarios, we modified the ap-
plication prefetcher so that it skips prefetching of the
last block request.

6.2 Experimental Results

6.2.1 Application Launch Sequence Generation

We captured 10 raw block request sequences during
the cold start launch of each application. We ran the
application launch sequence extractor with a various
number of input block request sequences, and observed
the size of the resulting application launch sequences.

Fig.10 shows that for all the applications we tested,
there is no significant reduction of the application
launch sequence size while increasing the number of in-
puts from 2 to 10. Hence, we set the value of Nrawseq in
Table 2 to 2 in this paper. We used the size of the first
captured input sequence as the number of input one in
Fig.10 (the application launch sequence extractor re-
quires at least two input sequences). For some appli-
cations, there are noticeable differences in size between
the number of inputs one and two. This is because the

first raw input request sequence includes a set of bursty
I/O requests generated by OS and user daemons that
are irrelevant to the application launch. Fig.10 shows
that such I/O requests can be effectively excluded from
the resulting application launch sequence using just two
input request sequences.

Fig.10. Size of application launch sequences.

The second and third columns of Table 3 summarize
the total number of block requests and accessed blocks
of the thus-obtained application launch sequences, re-
spectively. The last column shows the total number of
files used during the launch of each application.

Table 3. Collected Launch Sequences

Application Number of Number of Number of
Block Fetched Used

Requests Blocks Files

Access 1 296 106 992 555
Acrobat Reader 960 73 784 178
Designer-qt4 2 400 138 608 410
Eclipse 4 163 155 216 787
Excel 1 610 169 112 583
F-Spot 1 180 49 968 304
Firefox 1 566 60 944 433
Gimp 1 939 66 928 799
Gnome 4 739 228 872 538
Houdini 4 836 290 320 724
Kdevdesigner 1 537 44 904 467
Kdevelop 1 970 63 104 372
Konqueror 1 780 62 216 296
Labview 2 927 154 768 354
Matlab 6 125 267 312 742
OpenOffice 1 425 104 600 308
PowerPoint 1 405 120 808 576
Skype 892 41 560 197
Thunderbird 1 533 64 784 429
Visio 1 769 168 832 662
Word 1 715 181 496 613
Xilinx ISE 4 718 328 768 351

Note: Nrawseq = 2.

6.2.2 Testing of the Application Prefetcher

Application prefetchers are automatically generated
for the benchmark applications using the application
launch sequences in Table 3. In order to see if the ap-
plication prefetchers fetch all the blocks used by an ap-
plication, we first flushed the page cache, and launched
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each application immediately after running the applica-
tion prefetcher. During the application launch, we cap-
tured all the block requests generated using Blktrace,
and counted the number of missed block requests. The
average number of missed block requests was 1.6% of
the number of block requests in the application launch
sequence, but varied among repeated launches, e.g.,
from 0% to 6.1% in the experiments we performed.

By examining the missed block requests, we could
categorize them into three types: 1) files opened by OS
daemons and user daemons at boot time; 2) journaling
data or swap partition accesses; and 3) files dynamically
created or renamed at every launch (e.g., tmpfile()).
The first type occurs because we force the page cache to
be flushed in the experiment. In reality, they are highly
likely to reside in the page cache, and thus, this type of
misses will not be a problem. The second type is irrele-
vant to the application, and observed even during idle
time. The third type occurs more or less often, depend-
ing on the application. FAST does not prefetch this
type of block requests as they change at every launch.

6.2.3 Experiments for the Test Scenarios

We measured the launch time of the benchmark ap-
plications for each test scenario listed in Subsection 6.1.
Fig.11 shows that the average launch time reduction of
FAST is 28% over the cold start scenario. The per-
formance of FAST varies considerably among applica-
tions, ranging from 16% to 46% reduction of launch
time. In particular, FAST shows performance very
close to tbound for some applications, such as Eclipse,
Gnome, and Houdini. On the other hand, the gap be-
tween tbound and tFAST is relatively larger for such ap-
plications as Acrobat Reader, Firefox, OpenOffice, and
Labview.

6.2.4 Launch Time Behavior

We conducted experiments to see if the application
prefetcher works well as expected when it is simulta-
neously run with the application. We chose Firefox

because it shows a large gap between tbound and tFAST.
We monitored the generated block requests during the
launch of Firefox with the application prefetcher, and
observed that the first 12 of the entire 1 566 block re-
quests were issued by Firefox, which took about 15 ms.
As the application prefetcher itself should be launched
as well, FAST cannot prefetch these block requests until
finishing its launch. However, we observed that all the
remaining block requests were issued by FAST, mean-
ing that they were successfully prefetched before the
CPU needed them.

6.2.5 CPU and SSD Usage Patterns

We performed another experiment to observe the
CPU and SSD usage patterns in each test scenario. We
chose two applications, Eclipse and Firefox, represent-
ing the two groups of applications of which tFAST is
close to and far from tbound, respectively. We modi-
fied the OS kernel to sample the number of CPU cores
having runnable processes and to count the number of
cores in the I/O wait state. Fig.12 shows the CPU and
SSD usage of the two applications, where the entire
CPU is regarded as busy if at least one of its cores is
active. Similarly, the SSD is assumed busy if there are
one or more cores in the I/O wait state. In the cold
start scenario, there is almost no overlap between CPU
computation and SSD access for both applications. In
the warm start scenario, the CPU stays fully active un-
til the launch is completed as there is no wait. One
exception we observed is the time period marked with
circle (a), during which the CPU seemed to be in the
event-waiting state. FAST is shown to be successful in
overlapping CPU computation with SSD access as we
intended. However, CPU usage is observed to be low
at the beginning of launch for both applications, which
can be explained with the example in Fig.2. As Eclipse
shows a shorter such time period (circle (b)) than Fire-
fox (circle (c)), tFAST can reach closer to tbound. In the
case of Firefox, however, the ratio of tCPU to tSSD is
close to 1:1, allowing FAST to achieve more reduction
of launch time for Firefox than for Eclipse.

Fig.11. Measured application launch time (normalized to tcold).
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Fig.12. Usage of CPU and SSD (sampling rate = 1 KHz). (a) Application: Eclipse. (b) Application: Firefox.

6.2.6 Performance of Sorted Prefetch

Fig.11 shows that the sorted prefetch reduces the ap-
plication launch time by an average of 7%, which is less
efficient than FAST, but non-negligible. One reason
for this improvement is the difference in I/O burstiness
between the cold start and the sorted prefetch. Most
SSDs (including the one we used) support the native
command queueing (NCQ) feature, which allows up to
31 block requests to be sent to an SSD controller. Us-
ing this information, the SSD controller can read as
many NAND flash chips as possible, effectively increas-
ing read throughput. The average queue depth in the
cold start scenario is close to 1, meaning that for most
of time there is only one outstanding request in case of
SSD. In contrast, in the sorted prefetch scenario, the
queue depth will likely grow larger than 1 because the
prefetcher may successively issue asynchronous I/O re-
quests using posix fadvise(), at small inter-issue in-
tervals.

On the other hand, we could not find a clear evi-
dence that sorting block requests in their LBA order
is advantageous in case of SSD. Rather, the execution
time of the sorted prefetcher was slightly longer than its
unsorted version for most of the applications we tested.
Also, the sorted prefetch shows worse performance than
the cold start for Excel, PowerPoint, Skype, and Word.
Although these observations were consistent over re-
peated tests, a further investigation is necessary to un-
derstand such a behavior.

6.3 Implementation Issues

6.3.1 Simultaneous Launch of Applications

We performed experiments to see how well FAST

can scale up for launching multiple applications. We
launched multiple applications starting from the top of
Table 3, adding 5 at a time, and measured the launch
completion time of all launched applications①. Fig.13
shows that FAST could reduce the launch completion
time for all the tests, whereas the sorted prefetch did
not scale beyond 10 applications. Note that the FAST
improvement decreased from 20% to 7% as the number
of applications increased from 5 to 20.

Fig.13. Simultaneous launch of multiple applications.

6.3.2 Runtime and Space Overhead

We analyzed the runtime overhead of FAST for seven
possible combinations of running processes, and sum-
marized the results in Table 4. Cases 2 and 3 belong
to the launch profiling phase, which was described in
Subsection 5.4. During this phase, Case 2 occurs only

Table 4. Runtime Overhead

Running Processes Runtime (s)

1. Application Only (cold start scenario) 0.86
2. strace + blktrace + Application 1.21
3. blktrace + Application 0.88
4. Prefetcher Generation 5.01
5. Prefetcher + Application 0.56
6. Prefetcher + blktrace + Application 0.59
7. Miss Ratio Calculation 0.90

Note: Application: Firefox.

①Except for Gnome that cannot be launched with other applications, and Houdini whose license had expired.
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once, and Case 3 occurs Nrawseq times. Case 4 corre-
sponds to the prefetcher generation phase (the right side
of Fig.7), and shows a relatively long runtime. However,
we can hide it from users by running it in background.
Also, since we primarily focused on functionality in the
current implementation, there is room for further opti-
mization. Cases 5, 6, and 7 belong to the application
prefetch phase, and repeatedly occur until the appli-
cation prefetcher is invalidated. Cases 6 and 7 occur
only when npref reaches Nchk, and Case 7 can be run in
background.

FAST creates temporary files such as system call
log files and I/O traces, but these can be deleted after
FAST completes creating application prefetchers. How-
ever, the generated prefetchers occupy disk space as far
as application prefetching is used. In addition, applica-
tion launch sequences are stored to check the miss ra-
tio of the corresponding application prefetcher. In our
experiment, the total size of the application prefetchers
and application launch sequences for all 22 applications
was 7.2 MB.

6.3.3 Scenarios Making FAST Inefficient

While previous examples clearly demonstrate the
benefits of FAST for a wide range of applications, FAST
does not guarantee improvements for all cases. One
such a scenario is when a target application is too
small to offset the overhead of loading the prefetcher.
We tested FAST with the Linux utility uname, which
displays the name of the OS. It generated three I/O re-
quests whose total size was 32 KB. The measured tcold
was 2.2ms, and tFAST was 2.3ms, 5% longer than the
cold start time.

Another possible scenario is when the target appli-
cation experiences a major update. In this scenario,
FAST may fetch data that will not be used by the newly
updated application until it detects the application up-
date and enters a new launch profiling phase. We modi-
fied the application prefetcher so that it fetches the
same size of data from the same file but from another
offset that is not used by the application. We tested

the modified prefetcher with Firefox. Even in this case,
FAST reduced application launch time by 4%, because
FAST could still prefetch some of the metadata used
by the application. Assuming most of the file names
are changed after the update, we ran Firefox with the
prefetcher for Gimp, which fetches a similar number of
blocks as Firefox. In this experiment, the measured ap-
plication launch time was 7% longer than the cold start
time, but the performance degradation was not drastic
due to the internal parallelism of the SSD we used (10
channels).

6.3.4 Application Launch Sequence Determinism on
Multi-Core CPUs

The CPU we used in the experiment has four cores
and is able to simultaneously execute up to 8 threads
through the Intel HyperThreading technology. The use
of a multi-core CPU can affect the launch sequence de-
terminism because an application can dynamically cre-
ate multiple threads during its launch process.

However, the experimental results in Subsection 6.2
demonstrate that all of the tested benchmark applica-
tions show launch sequence determinism even on the
multi-core CPU, allowing FAST to effectively reduce
application launch time by exploiting the determinism.

For detailed analysis, we visualized the number of
CPUs that were active during the cold start scenario
launch process of Eclipse application in Fig.14, where
we set the sampling frequency to 1 KHz and took to-
tal 4 738 samples. The two main observations we made
from Fig.14 are as below:

1) The SSD is mostly idle when the CPU is active
and vice versa. Among the whole 4 738 samples, the
CPU and the SSD are both active only in 109 samples
(2%).

2) When the CPU is active, mostly only one CPU
core is used. Among the 3 685 samples where one or
more CPU cores are active, 3 623 samples (or 98%) have
only one active CPU core.

To summarize, there is not much parallelism among
the threads that are created during the launch process.

Fig.14. CPU and SSD usage during an application launch process. (CPU: Intel i7-860 2.8 GHz, SSD: 80 GB Intel X25-M G2

Mainstream, application: Eclipse.)
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Consequently, the launch sequence determinism can be
maintained even on the multi-core CPU systems.

6.3.5 Configuring Application Launch Manager

The application launch manager has a set of parame-
ters to be configured, as shown in Table 2. If Nrawseq is
set too large, users will experience the cold-start per-
formance during the initialization phase. If it is set
too small, unnecessary blocks may be included in the
application prefetcher. Fig.10 shows that setting it be-
tween 2 and 4 is a good choice. The proper value of
Nchk will depend on the runtime overhead of Blktrace;
if FAST is placed in the OS kernel, the miss ratio of
the application prefetcher may be checked upon every
launch (Nchk = 1) without noticeable overhead. Also,
setting Rmiss to 0.1 is reasonable, but it needs to be ad-
justed after gaining enough experience in using FAST.
To find the proper value of Tidle, we investigated the
SSD’s maximum idle time during the cold-start of ap-
plications, and found it to range from 24ms (Thun-
derbird) to 826 ms (Xilinx ISE). Hence, setting Tidle

to 2 seconds is proper in practice. As the maximum
cold-start launch time is observed to be less than 10
seconds, 30 seconds may be reasonable for Ttimeout. All
these values may need to be adjusted, depending on the
underlying OS and applications.

7 Applicability of FAST

FAST can be used not only for SSDs but also for
other types of storage devices. Here we discuss the ap-
plicability of FAST on HDDs and smartphones.

7.1 FAST on HDDs

To see how FAST works on an HDD, we replaced the
SSD with a Seagate 3.5′′ 1TB HDD (ST31000528AS)
and measured the launch time of the same set of bench-
mark applications, of which the result is shown in
Fig.15. Although FAST worked well as expected by
hiding most of CPU computation from the applica-
tion launch, the average launch time reduction was only

15%. It is because the application launch on an HDD
is mostly I/O bound; in the cold start scenario, we ob-
served that about 85% of the application launch time
was spent on accessing the HDD. In contrast, the sorted
prefetch was shown to be more effective; it could reduce
the application launch time by an average of 40% by op-
timizing disk head movements.

We performed another experiment by modifying the
sorted prefetch so that the prefetcher starts simultan-
eously with the original application, like FAST. Howe-
ver, the resulting launch time reduction was only 19%
(denoted by tmFAST in Fig.15), which is worse than that
of the unmodified sorted prefetch. The performance
degradation is due to the I/O contention between the
prefetcher and the application.

7.2 FAST on Smartphones

The similarity between modern smartphones and
PCs with SSDs in terms of the internal structure and
the usage pattern, as summarized below, makes smart-
phones a good candidate to which we can apply FAST.
• Unlike other mobile embedded systems, smart-

phones run different applications at different times,
making application launch performance matter more;
• Smartphones use NAND flash as their secondary

storage, of which the performance characteristics are
basically the same as the SSD; and
• Smartphones often use slightly customized (if not

the same) OSes and file systems that are designed for
PCs, reducing the effort to port FAST to smartphones.

Furthermore, a smartphone has the characteristics
that enhance the benefit of using FAST as follows:
• Users tend to launch and quit applications more

frequently on smartphones than on PCs;
• Due to relatively smaller main memory of a smart-

phone, users will experience cold start performance
more frequently; and
• Its relatively slower CPU and flash storage speed

may increase the absolute reduction of application
launch time by applying FAST.

Fig.15. Measured application launch time on an HDD (normalized to tcold).
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Although we have not yet implemented FAST on
a smartphone, we could measure the launch time of
some smartphone applications by simply using a stop-
watch. We randomly chose 14 applications installed on
the iPhone 4 to compare their cold and warm start time,
of which the results are plotted in Fig.16. The average
cold start time of the smartphone applications is 6.1
seconds, which is more than twice of the average cold
start time of the PC applications (2.4 seconds) shown in
Fig.11. Fig.16 also shows that the average warm start
time is 63% of the cold start time (almost the same ra-
tio as in Fig.11), implying that we can achieve similar
benefits from applying FAST to smartphones.

Fig.16. Measured application launch time on iPhone 4 (CPU:

1GHz, SDRAM: 512MB, NAND flash: 32GB).

8 Comparison of FAST with Traditional
Prefetching

FAST is a special type of prefetching optimized for
application launch, whereas most of the traditional
prefetching schemes focus on runtime performance im-
provement. We compare FAST with the traditional
prefetching algorithms by answering the following three
questions inspired by previous work[24].

8.1 What to Prefetch

FAST prefetches the blocks appear in the applica-
tion launch sequence. While many prediction-based
prefetching schemes[25-27] suffer from low hit ratio of
the prefetched data, FAST can achieve near 100% hit
ratio. This is because the application launch sequence
changes little over repeated launches of an application.

Sequential pattern detection schemes like
readahead[28-29] can achieve a fairly good hit ratio
when activated, but they are applicable only when
such a pattern is detected. By contrast, FAST guaran-
tees stable performance for every application launch.

One way to enhance the prefetch hit ratio for a com-
plicated disk I/O pattern is to analyze the application
source code to extract its access pattern. Using the
thus-obtained pattern, prefetching can be done by ei-
ther inserting prefetch codes into the application source
code[30-31] or converting the source code into a com-
putation thread and a prefetch thread[32]. However,

such an approach does not work well for application
launch optimization because many of the block requests
generated during an application launch are not from
the application itself but from other sources, such as
loading shared libraries, which cannot be analyzed by
examining the application source code. Furthermore,
both require modification of the source code, which
is usually not available for most commercial applica-
tions. Even if the source code is available, modifying
and recompiling every application would be tedious
and inconvenient. In contrast, FAST does not require
application source code and is thus applicable for any
commercial application.

Another relevant approach[33] is to deploy a shadow
process that speculatively executes the copy of the
original application to get hints for the future I/O re-
quests. It does not require any source modification, but
consumes non-negligible CPU and memory resources
for the shadow process. Although it is acceptable when
CPU is otherwise stalled waiting for the I/O comple-
tion, employing such a shadow process in FAST may
degrade application launch performance as there is not
enough CPU idle period as shown in Fig.12.

8.2 When to Prefetch

FAST is not activated until an application is
launched, which is as conservative as demand pag-
ing. Thus, unlike prediction-based application prefetch-
ing schemes[10-11], there is no cache-pollution prob-
lem or additional disk I/O activity during idle period.
However, once activated, FAST aggressively performs
prefetching: it keeps on fetching subsequent blocks in
the application launch sequence asynchronously even
in the absence of page misses. As the prefetched blocks
are mostly (if not all) used by the application, the per-
formance improvement of FAST is comparable to that
of the prediction-based schemes when their prediction
is accurate.

8.3 What to Replace

FAST does not modify the replacement algorithm
of page cache in main memory, so the default page re-
placement algorithm is used to determine which page
to evict in order to secure free space for the prefetched
blocks.

In general, prefetching may significantly affect the
performance of page replacement. Thus, previous
work[34-36] emphasized the need for integrated prefetch-
ing and caching. However, FAST differs from the tradi-
tional prefetching schemes since it prefetches only those
blocks that will be referenced before the application
launch completes (e.g., in next few seconds). If the page
cache in the main memory is large enough to store all
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the blocks in the application launch sequence, which is
commonly the case, FAST will have minimal effect on
the optimality of the page replacement algorithm.

9 Conclusions

We proposed a new I/O prefetching technique called
FAST for the reduction of application launch time on
SSDs. We implemented and evaluated FAST on the
Linux OS, demonstrating its deployability and perfor-
mance superiority. While the HDD-aware application
launcher showed only 7% of launch time reduction on
SSDs, FAST achieved a 28% reduction with no addi-
tional overhead, demonstrating the need for, and the
utility of, a new SSD-aware optimizer. FAST with a
well-designed entry-level SSD can provide end-users the
fastest application launch performance. It also incurs
fairly low implementation overhead and has excellent
portability, facilitating its wide deployment in various
platforms.
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