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Abstract—In modern wireless networks, fairness of user
throughputs is often important to efficiently utilize the available
network bandwidth. Association control—control of user associ-
ations to reduce overloading of access points (APs)—has been
the standard approach to address this problem. However, in the
recent paradigm of shared wireless networks in both, community
and commercial space, access points are increasingly managed
without any central coordination. As a result, achieving user level
fairness in these settings remains a challenging task.

In this paper, we consider the global utility of proportional fair-
ness. Specifically, we propose a distributed approach to association
control, in which each user makes association decisions based on
the information gathered from probe responses from its nearby
APs. Two solutions are presented: (i) a randomized approach, in
which users update their associations probabilistically, and (ii) a
deterministic association rule that converges quickly. We provide
theoretical guarantees on the performance of both approaches.
Our simulation results show that the proposed solutions can
significantly improve fairness and overall throughput compared
to other association heuristics.

I. INTRODUCTION

The prolific growth in wireless technologies over the last

decade can be gauged by today’s dense deployment of WiFi

networks in homes, offices and community hotspots. At the

same time, the low cost and popularity of wireless devices has

led to the paradigm of Shared Wireless Networks (also known

as Wireless Community Networks). In these networks, access

points function in the ‘open’ mode and provide connectivity to

users who do not necessarily have ownership over them. Such

open-source model of wireless access has many advantages, like

using under-utilized access points for possible monetary gains,

increased network capacity and improved coverage for mobile

users. Two sharing models have emerged. Peer-to-peer sharing,

facilitated by commercial ventures, e.g. FON [1], where private

access points are available to registered public users for free

or in a quid pro quo manner so that users who register also

open up their access point in return. And, Public sharing, in

hotspot deployments of cellular service providers and through

community initiatives [2], [3]. Given the tremendous benefits,

sharing of WiFi networks in urban areas is proposed as an

inexpensive alternative to cellular networks.

The underlying economics of sharing access points is an

interesting problem. Previous research has studied the various

models for incentive mechanisms and access schemes for

wireless community networks [4]. In our work, we assume a

shared wireless network is in place and instead focus on the

important problem of user association with access points (APs).

Although fairness-aware user associations has been studied in

similar deployments of WLANs, they are fundamentally tied to

the presence of a central controller. In this work, we present a

distributed solution for user associations that assumes no global

coordination.

The default AP-association of users can lead to some highly

congested APs while leaving the rest of the APs under-loaded

with few users connected to them. The overloading of APs

not only causes unbalanced users’ throughput (hence unfair-

ness) but also lowers the overall system throughput. This is

observed in most deployments of Mesh, WLANs and open

WiFi networks [5], [6], [7]. In practice, however, the association

metric implemented in wireless devices only considers the RSSI

(received signal strength indicator) values for AP selection.

Consequently, a number of heuristic based association schemes

[5], [8], [9] that are distributed and maximize individual user

throughputs have been proposed in literature. On the other hand,

centralized approach to user associations in WLANs addresses

the problem of fair throughput allocation [6], [10], [11]. In this

work, we show that the global objective of fairness can also

be achieved in a completely distributed way, a key requirement

for shared wireless networks. In the following, we discuss some

key features of our model.

Association control: The concept of association control [6]

was introduced to achieve load-balancing of APs. Following

this mechanism, users are switched and reassociated with

different APs so as to maximize a fairness measure of the

users’ throughput. By using the notion of max-min fairness, the

authors showed that the solution of the problem balances the

APs’ loads for an appropriately defined load metric. However,

as pointed out later, the objective of max-min fairness can

lead to low aggregate throughputs [12]. To balance between

fairness and throughput, the proportional fair utility was used

to obtain optimal user associations [10], [11]. The solution

required solving a discrete optimization problem using integer

relaxation. All of these approaches assume a central server that

solves the optimization problem offline and a periodic update

mechanism to switch users between APs [6], [11]. Clearly, such

an assumption fails to hold in our setting where sharing emerges

on an ad-hoc basis.

Uncoordinated APs: Excluding enterprise WLAN deploy-

ments, access points are mostly installed as plug-and-play

devices, and the configurations are done at a local level. For



Fig. 1. Example of a shared WiFi network [1] where APs are uncoordinated
and have a limited backhaul capacity

example, in a shared wireless network like FON, access points

are set up by individual owners. The assumption of uncoordi-

nated APs is also reasonable in large scale WLANs, for e.g.

public hotspots, where cost and scalability of WLAN controller

remains an issue. In the absence of global information, the APs

need to select their transmission channel, transmission power

and user-associations. This will generally result in low user

throughputs due to interference and uneven user loads on the

APs. Previous work [13], [14] described these settings under

Self-Organizing WiFi networks where the channels of APs

and user associations are managed autonomously. A distributed

method based on Gibbs sampling [15] was proposed for the

user-association problem. Nevertheless, the objective function

used gave no insights in system performance.

Backhaul limited: An important architectural feature of

community and open WiFi hotspot deployments is the limited

backhaul capacity of the access points [7], [16]. In fact, the

current wireless standards 802.11g and 802.11n offer nominal

throughputs up to 54Mbps and 300Mbps, respectively. Even

with the contention and transmission overhead, the through-

put is an order-of-magnitude greater than the bandwidth of

ADSL/cable connections. As a result, the maximum throughput

available from APs deployed in homes/offices is limited by the

capacity of the backhaul link. Also, in deployments where APs

are connected via a wireless mesh network, e.g., Municipal

WiFi networks, it is possible the wireless link (or route)

between the AP and the mesh gateway can become a bottleneck.

Therefore, user associations in general network deployments

should consider the backhaul capacity.

The above aspects are illustrated in Fig. 1. The users share

a common set of APs deployed in a residential area over a

backhaul of ADSL cable connections. Since there is no central

coordination in the network, AP-selection decisions need to

be made by users themselves. We consider the association

control problem that arises in this scenario. In particular, we are

interested in the global objective of proportional fairness (PF) of

user throughputs. As the optimization problem is NP-hard, we

present a randomized solution where users associate with each

AP following a probability rule. We show that the randomized

solution can be implemented in a distributed fashion and also

include the practical overhead of scanning and beacon losses.

We then apply a fast converging heuristic to the randomized

solution. As the associations need not be optimal, bounds are

provided in special cases. To the best of our knowledge, our

approach is the first to present a distributed association control

in wireless access networks.

The remainder of the paper is organized as follows. Section II

lays out the notation used and formulates the optimization

problem. In Section III, we give a randomized solution to this

problem. In Section IV, a deterministic analogue of the ran-

domized association scheme is presented. Section V evaluates

the performance of these solutions and compares it with other

existing association heuristics. Finally, the paper concludes with

Section VI.

II. SYSTEM MODEL

A. Notation

Consider a wireless network with a set of APs, S :=
{1, 2 . . . , S} and a set of mobile users, N := {1, 2 . . . , N}.

Assume that user i, i ∈ N can associate with a single AP

from a subset of APs, Si ⊆ S, depending on its location,

received signal strength and preferences. We implicitly let

N > 1 and |Si| ≥ 1 for all users i ∈ N . The set of all

possible associations, F =
∏

i Si is called the feasible set.

Let us denote the association of user i ∈ N by ai ∈ Si

and define the association vector a := (ai)i∈N , indexed by

the users. Also, let ns(a) := {i ∈ N | ai = s} be the set

of users connected to an AP s ∈ S. We use the notation

a−i = (a1, . . . ai−1, ai+1, . . . aN) to represent the association

vector of all users except i and (bi, a−i) to denote the vector

(a1, . . . ai−1, bi, ai+1, . . . aN). Unless specified otherwise, we

make the following assumptions about our model.

• The users N , and their feasible associations, Si, for all i ∈
N are fixed, i.e., there is no new user arrival or departure

and the location of users does not change.

• Users are cooperative, i.e., they have a common objective

function and behave in a non-strategic way to achieve an

optimal state.

• Association control is done over a longer time-scale and

ignores short-term effects like channel fading

B. Throughput model

For a given association, a ∈ F , of users in the network, let

ri(a) be the throughput user i ∈ N receives from its chosen AP,

ai ∈ Si. As data flows and channel characteristics are varying

in nature, we restrict our attention to the long-term throughputs.

Moreover, association policies based on instantaneous through-

put will not be stable. Let Bi,ai
> 0 be the PHY-transmission

rate of user i ∈ N . This is the rate at which the AP or user

transmits data when the user is scheduled. It takes only discrete



values given by the rate-adaptation algorithm of 802.11 MAC

and is a function of the Signal-to-Noise ratio (SNR) of the link.

When two or more APs share a common channel and lie

in the same collision domain, each AP will gain access to the

channel for a fraction of time. For AP s ∈ S, this fraction

is denoted by fs ∈ (0, 1). Consider the case where all user

dataflows are homogeneous and fully saturated, and that an

AP always has a packet to trasnmit. Assuming round-robin

scheduling with infinite buffer size, the downlink throughput

of user i ∈ N is given by

ri(a) =
fai

∑

j∈nai
(a)

1/Bj,ai
+O(|nai

(a)|)
(1)

where the overhead term O(|nai
(a)|) accounts for MAC layer

overhead like ACKs. The overhead term only depends on

number of users, |nai
(a)|, assuming equal overhead for all

users. Note that the long-term throughput of all users i ∈ nai
(a)

connected to AP ai is equal due to fair scheduling. A similar

expression is known for the uplink throughput and is attributed

to the rate anomaly of 802.11 DCF [17].

Consider the case where each AP s has a finite backhaul link

capacity Ws > 0 determined by the backbone infrastructure,

e.g., ISP. This gives an upper limit on the maximum band-

width available to the users connected to the AP. Assume this

bandwidth is equally shared among the users. Accordingly, the

actual throughput of a user is the minimum of the capacity

available from the wired and the wireless link [6].

ri(a) = min











fai
∑

j∈nai
(a)

1/Bj,ai
+O(|nai

(a)|)
,

Wai

|nai
(a)|











(2)

The above expression also holds for uplink traffic of users.

Therefore, throughput definition of a user could refer to either

uplink or downlink.

C. Objective function

The association control problem is to find user associations

that maximize a global objective function. Here, we define the

global utility, U : F → R, to be the sum of logarithm of user

throughputs as follows.

U(a) :=
∑

i∈N

log ri(a) (3)

The utility is well defined since ri(a) > 0 for all users

i ∈ N and all a ∈ F . Also, from the throughput expression

of a user in Eq. (2), we can further express Eq. (3) as

U(a) =
∑

s∈S Us(ns(a)), where the utility of each AP s ∈ S is

defined by Us(ns(a)) :=
∑

j∈ns(a)
log rj(a) and Us(∅) := 0.

We call the user associations that maximize the global utility

as proportionally fair. Therefore, the problem is to solve the

following combinatorial optimization problem:

max {U(a), a ∈ F} (4)

Let F⋆ ⊆ F be the set of optimal solutions and OPT be the

optimal value. In the following sections, we detail approaches

to efficiently solve this problem.

III. RANDOMIZED SOLUTION

The optimization problem in Eq. (4) is intractable due to

the combinatorial nature, but can be solved through a general

approach of randomization . The basic idea is to associate users

with APs probabilistically, where each user i ∈ N connects to

an AP in the set Si for a random duration, probes nearby APs in

its range and switches to another randomly chosen AP. As this

results in a random process of user associations, by choosing an

appropriate steady state distribution, we ensure that the optimal

solutions are the most likely to occur.

To this end, let the time begin at t = 0 and assume

the initial association of users is given. Our objective is to

generate a continuous-time Markov chain, {X(t)}t∈R+
, of user

associations that has a stationary distribution π, π : F → [0, 1],
given by

π(a) =
exp(βU(a))

∑

a
′∈F exp(βU(a′))

, a ∈ F (5)

where β > 0 is a fixed parameter. This distribution, also known

as Gibbs measure [15], favors association vectors with large

objective values. By tuning the parameter, β, the distribution

converges to the optimal solutions as shown below.

Lemma 1. For every a ∈ F⋆, π(a) is an increasing function

in β. Moreover, as β → ∞, π(a) = 1
|F⋆| , ∀a ∈ F⋆.

Proof: See Appendix.

The transitions in the process, {X(t)}t∈R+
, correspond to

change in state of user associations. To facilitate analysis, as

will be clear later, we require that only a single user in the

network changes its association at a time. This requirement can

be practically realized by slightly modifying the reassociation

procedure of mobile users.

A. Update process

The IEEE 802.11 standard [18] defines handoff as a process

through which a user changes association between APs. It

involves active/passive scanning of APs on different channels,

sending association requests, authentication and higher layer

processes like DHCP requests, IP route changes, etc. Although,

a handoff is generally triggered when a user moves from the

coverage of one AP to another, it can also be initiated to select

APs in a proactive manner. This feature is implemented in most

wireless drivers (e.g., MadWifi [19]) through periodic back-

ground scans. In our case, we relax the periodicity constraint

and assume the scans are triggered according to a Poisson

process with rate λ > 0. That is, each user implements a

clock with exponential i.i.d. inter-tick intervals and at each

clock tick, it possibly reassociates with another AP. As the

probability of two or more clock ticks occurring at the same

instant is zero, association of only a single user is updated at

a time. The associations in system then describe a continuous

time Markov chain {X(t)}t∈R+
. Here, we have assumed the

overhead in scanning and changing association is << 1/λ, so

that the tick instant is also the instant of reassociation. This is



reasonable because a scan is triggered in the order of minutes

while reassociation of users takes around the order of 100ms.

The continuous time process, {X(t)}t∈R+
, can be further

discretized as follows: The overall ticks in the system is a

Poisson process, {Z(t)}t∈R+
, with rate Nλ. Denote the global

ticks by Tk, k = 1, 2 . . . and T0 = 0, and map the interval

[Tk, Tk+1) to the k-th time-slot. The equivalent discrete-time

Markov chain, {Ak}k∈Z+
with state space F has the same

stationary distribution given by Eq. (5), where the equivalence

follows from the relation, X(t) = AZ(t), t ∈ R+.

B. Gibbs sampler

Gibbs sampling [15] is a classical MCMC method to simulate

a markov chain with known stationary distribution. In our

setting, the markov chain is {Ak}k∈Z+
, and the steady state

is described by (5). Using this method, we show our main

result that user associations can be updated in a completely

distributed and asynchronous fashion.

Since all users implement an exponential clock with the same

rate, it is equally likely that a global clock tick belongs to a

particular user. Let the current association state be a ∈ F and

let the global clock be triggered by user i ∈ N . The user i
updates its association to another randomly chosen AP bi from

the set Si as follows:

p(bi|a) =
exp(βU(bi, a−i))

∑

s∈Si
exp(βU(s, a−i))

(6)

Note that it is possible to select bi = ai, in which case

the user i simply continues with its current association. The

corresponding one-step transition probability of the Markov

chain {Ak}k∈Z+
between states (ai, a−i) and (bi, a−i) is

P ((ai, a−i) → (bi, a−i)) = 1
N
p(bi|a) for bi 6= ai. We note

that P (a → a
′) = 0 whenever states a, a′ ∈ F differ in more

than one coordinate.As the probability of visiting any state in

F is positive, and self-looping is allowed, the Markov chain

{Ak}k∈Z+
is both irreducible and aperiodic. Furthermore, it is

easy to verify that π(·) is the unique stationary distribution.

Although, the above procedure gives us the desired steady

state distribution, it is still centralized in its current form. In

particular, to compute the transition probability in Eq. (6), user

i ∈ N needs to know the value of the global utility U(bi, a−i),
for all possible bi ∈ Si. Let us define

φi(bi, a−i) := Ubi(nbi(bi, a−i))− Ubi(nbi(a−i)) (7)

where we have used the notation nbi(a−i) := {j ∈ N , j 6=
i | aj = bi} to denote the set of users not including i
associated with AP bi. Then, using the separability of the

objective function, we can further simplify Eq. (6) as

p(bi|a) ∝ exp(βU(bi, a−i))

∝ exp[β(Ubi(nbi(bi, a−i)) +
∑

s∈S−{b}

Us(ns(a−i)))]

∝ exp[β(Ubi(nbi(bi, a−i))− Ubi(nbi(a−i)))]

∝ exp[βφi(bi, a−i)]

Fig. 2. An illustration of the process of changing associations based on probe
responses obtained from nearby APs

and therefore,

p(bi|a) =
exp[βφi(bi, a−i)]

∑

s∈Si
exp[βφi(s, a−i)]

. (8)

The function, φi(bi, a−i) is the marginal utility of user i ∈
N w.r.t. the access point bi ∈ Si. It is equal to the change

in the utility of an AP due to the addition of the user. Now,

each AP bi will know the PHY rates Bj,bi of its currently

associated users j ∈ nbi(a−i). Also, the fractional airtime fbi
and backhaul bandwidth Wbi can be known from simple passive

measurements. The overhead term, on the other hand, can be

computed from a known expression [17]. Consequently, the

value of φi(bi, a−i) can be calculated by AP bi using Eqs. (2)

and (3), and each user only needs to obtain the marginal utilities

from the neighborhood APs. Therefore, the update equation

in Eq. (8) allows a completely distributed mechanism for user

association where each user needs to obtain information locally.

The process of obtaining marginal utilities from APs is asym-

metric in practice. Since a user i ∈ N is already associated with

AP ai, it will know φi(ai, a−i) through direct communication

with the AP. However, to obtain the rest of the marginal utilities,

a user has to setup explicit communication channels with each

AP in Si\{ai}. This is achieved through the process of active

scanning, as specified in the 802.11 standard [18]. Assume

the information about the channel ID and the MAC address

of the surrounding APs is available to a user. The scanning is

performed as follows. A user suspends its transmission state and

switches to the channel of AP it wants to probe. It then sends

a unicast probe request frame and waits for a probe response

before switching to the next channel. This is repeated until

all channels have been scanned. The collected probe responses

contains information about user’s marginal utility, based on

which, the user chooses its next association (Fig. 2).

C. Partial information

The randomized association of users has an inherent over-

head in terms of the number of message exchanges. In partic-

ular, a user needs to probe all of |Si| − 1 surrounding APs

at every clock trigger. This causes a scanning delay of the



order of hundreds of milliseconds and affects real-time traffic.

In addition, there is a significant reassociation (if triggered)

overhead in the order of seconds that will disrupt user traffic. To

avoid the excessive scanning delay, we consider the case where

only a subset of APs are probed by a user during the scan phase.

Also, it is possible that some of the probe responses from the

APs get delayed, discarded or dropped [14]. Collectively, this

implies that a user has access to a partial subset of all marginal

utilities.

Let Ti ⊆ Si denote the set of APs from which the marginal

utilities are available to user i after the probing process. The

set Ti is always non-empty because the marginal utility of

the current AP, φi(ai, a−i), is assumed to be known. User

association is now updated based on the available information,

in a manner similar to Eq. (8):

p(bi|a;Ti) =







exp(βφi(bi,a−i))∑

s∈Ti

exp(βφi(s,a−i))
, if bi ∈ Ti

0 o.w.

(9)

Here, we assume a user will not be associated with an AP if the

marginal utility from it is not available. Assume the event that a

marginal utility from an AP bi 6= ai is known to a user i occurs

independently in each scan of the user. The independence could

represent situations of random loss of probe frames or when a

user decides to randomly pick a subset of APs to probe after

each clock trigger. Let qi,bi ∈ (0, 1] denote the probability of

this event and let {A′
k}k∈Z+

be the Markov chain generated

from the resulting associations.

Theorem 1. The Markov chain {A′
k}k∈Z+

is irreducible,

aperiodic and the unique stationary distribution is given by:

π′(a) =
ηa exp(βU(a))

∑

a
′∈F ηa′ exp(βU(a′))

, a ∈ F (10)

where ηa =
∏

i∈N qi,ai

Proof: We only verify that the detailed balanced equa-

tions hold as the rest of the properties are straightfor-

ward to show. Consider any two distinct states, (ai, a−i)
and (bi, a−i) for any i ∈ N and bi, ai ∈ Si. Then,

P ((ai, a−i) → (bi, a−i)) = 1
N

∑

Ti:Ti⊆Si
P (Ti)p(bi|a;Ti),

where the summation is over all possible subsets of Si,

and P (Ti) is the probability that marginal utilities from

APs in Ti are known after a scanning process. We have,

P (Ti) =
∏

s∈Ti
qi,s

∏

s∈Si\Ti
(1 − qi,s). Therefore, for bi ∈

Ti, P (Ti) ∝ qi,bi . Also, from the user update rule in

Eq. (8), p(bi|Ti) ∝ exp(βφi(bi, a−i)). Therefore, we can

write P ((ai, a−i) → (bi, a−i)) ∝ qi,bi exp(βφi(bi, a−i)).
Similarly, P ((bi, a−i) → (ai, a−i)) ∝ qi,ai

exp(βφi(ai, a−i)).
The proportionality constants can be verified to be same.

We also have, π′(ai, a−i) ∝ qi,ai
exp(βφi(ai, a−i))

and π′(bi, a−i) ∝ qi,b exp(βφi(bi, a−i)). This implies,

P ((ai, a−i) → (bi, a−i))π
′((ai, a−i)) = P ((bi, a−i) →

(ai, a−i))π
′((bi, a−i)), and therefore π′ is the steady state

distribution.

Thus, user associations with partial information gives rise to

a modified Gibbs distribution, π′(·) . The next theorem shows

that the optimality gap can be made arbitrarily small.

Theorem 2. Let Ū ′ be the expected value of the utility in steady

state, then

Ū ′ ≥ OPT−
1

β
log

η

η⋆
(11)

where η =
∑

a∈F ηa and η⋆ =
∑

a∈F⋆ ηa.

Proof: For a fixed optimal solution, a
⋆ ∈ F⋆, con-

sider E[eβ(U(a⋆)−U(a))] =
∑

a∈F π′(a)eβ(U(a⋆)−U(a)) =
η

η
a
⋆
π′(a⋆) ≤ η

η⋆ . The inequality is shown by using a result

similar to lemma (1) which shows, π′(a⋆) ≤ limβ→∞ π′(a⋆) =
η
a
⋆

η⋆ . Now, applying Jensen’s inequality to the exponential

function, we have, eβ(U(a⋆)−Ū ′) ≤ E[eβ(U(a⋆)−U(a))] ≤ η
η⋆ .

Taking log on both sides gives the result in the theorem.

The value of β can be set to upperboundOPT−Ū ′. Choosing a

large β will, however, increase the time required for the Markov

chain to reach steady state. Hence, β represents a tradeoff

between convergence and optimality.

Algorithm Randomized Association

1: Initialize: clock(i)← Poisson(λ), ∀i
2: repeat:
3: for each user i do
4: if clock(i) == TRUE then
5: Ti = {ai}
6: Obtain current marginal utility: φi(ai,a−i)
7: for each s ∈ Si\{ai} do
8: Switch to the channel of AP s
9: Send probe request and wait on the channel. If a probe

response is received, Ti ← Ti ∪ {s}, store φi(s,a−i)
10: end for
11: Pick AP bi from Si according to Eq. (9)
12: If bi 6= ai, initiate reassociation to AP bi, ai ← bi
13: end if
14: end for

As summarized in the algorithm above, we have shown that

the randomized solution to the user association problem is fully

distributed. It is also robust to the scenarios of partial scanning

and probe frame losses. Moreover, we get nearly optimal user

associations, though, at the cost of slow convergence.

IV. BEST ASSOCIATION

While the randomized approach ensures that all states in

the feasible set F are visited and selected probabilistically,

there is no upper bound on the number of reassociations or

the time it takes for users to reach steady state. This could

be undesirable due to the frequent disruptions in the network

caused by user reassociations. Also, user arrivals and departures

need to be considered at this time scale. Next, we describe a

greedy approach to randomization, a Best Association rule, that

is suboptimal but converges quickly.

Assume that when a clock of user i ticks, instead of picking

an AP at random according to Eq. (8), it chooses the next AP

bi ∈ Si that maximizes the marginal utility function, i.e.,

bi = argmaxs∈Si
φi(s, a−i) (12)



A switch from AP ai to AP bi occurs if and only if

φi(bi, a−i) > φi(ai, a−i). Ties are broken randomly when

the current AP is not involved. In contrast to the previously

discussed probabilistic model, the AP selection is simple and

deterministic. Moreover, this heuristic is intuitive for users and

is easily realized in practice. In place of the default received

signal strength index (RSSI) of an AP, we consider a similar

metric based on the marginal utility of the user w.r.t. that AP. A

user simply picks an AP iteratively that maximizes this index

until no such AP exists.

From a game-theoretic viewpoint, the system can be analyzed

as a non-cooperative game [20]. The strategy space of user

i ∈ N is the set of APs Si it can choose to associate with,

and the reward for choosing AP bi, for a given association

choices of other users, a−i, is its marginal utility φi(bi, a−i).
The next result shows that the Best Association approach will

lead to a Nash equilibrium, denoted by ā ∈ F , which satisfies

the property that no user switches unilaterally to increase its

marginal utility i.e., φi(āi, ā−i) ≥ φi(s, ā−i) for all s ∈ Si and

all i ∈ N .

Theorem 3. The Best Association converges almost surely.

Proof: No two users switch at the same time. Let a single user i
selected switch its association from AP ai to AP bi. It follows

that φi(bi, a−i) > φi(ai, a−i), which implies using Eq. (7),

Ubi(nbi(bi, a−i)) − Ubi(nbi(a−i)) > Uai
(nai

(ai, a−i)) −
Uai

(nai
(a−i)) and after rearranging, U(bi, a−i) > U(ai, a−i).

Therefore, the objective function improves strictly at every

reassociation. Since the objective function is bounded above,

there are only a finite number of increments. Thus, the system

should converge in finite time almost surely.

Corollary 3.1. Every optimal association a ∈ F⋆ is an

equilibrium association.

Corollary 3.2. The Best Association with partial scanning also

converges almost surely.

We conclude that it takes at most |F| steps for the system to

converge. Also, the equilibrium association ā corresponds to the

local maximum in F of the global utility U(a). Since there are

many such equilibrium states depending on the update sequence

of the users, it is highly likely the system will converge to a

state that is far from optimal. Providing bounds on the resulting

utility U(ā) is difficult and next, we analyze two tractable cases

of interest.

A. Dense networks

We consider a dense network deployment where users are

located nearby and can connect to any AP, i.e., Si = S
and Bi,s = Bs for all users i ∈ N and APs s ∈ S. This

can happen, for instance, in a deployment of WiFi network

within an apartment complex. Let n := (n1, . . . , nS) represent

the number of users associated with APs, s = 1, 2 . . . , S,

respectively so that
∑S

s=1 ns = N . To facilitate the analysis,

assume the overhead term is a linear function of the form,

O(ns) = k1ns + k2, for some constants k1, k2 ≥ 0. Since

the exact identity of the users is irrelevant here, with slight

abuse of notation, the global utility is expressed as U(n) =
∑

s∈S Us(ns). Obviously, Us(0) = 0 for AP s that has no user.

The marginal utility w.r.t. a AP s for a user not associated

with that AP is φs(ns) = Us(ns + 1) − Us(ns), while the

marginal utility of users associated with AP s is φs(ns − 1).
An equilibrium state, n̄ = (n̄1, . . . , n̄S), then satisfies the

condition: φs(n̄s − 1) ≥ φl(n̄l) for all s, l ∈ S. We show

that in this simple case, the Best Association rule leads to the

optimal association of users. First, we show a couple of simple

results that will be required in our proof.

Lemma 2. For a,W > 0 and b ≥ 0, the function f(x) =
x log W

ax+b
defined on R++ is concave.

Proof: See Appendix.

Lemma 3. For two concave functions f and g, their minimum,

h = min{f, g} is also concave.

Proof: See Appendix.

Theorem 4. Every equilibrium association n̄ is globally opti-

mal, that is U(n̄) = OPT

Proof: From the throughput expression in Eq. (2),

the utility associated with an AP s ∈ S takes the

form Us(ns) = ns log{min( fs
ns

Bs
+k1ns+k2

, Ws

ns

)} =

min{ns log
fs

ns

Bs
+k1ns+k2

, ns log
Ws

ns

}, since log is monotonic

increasing. From lemma (2), both functions in the expression

are concave in ns, and from lemma (3), Us(ns) is also

concave. Consequently, φs(ns) is monotonic decreasing for all

ns ≥ 0 and s ∈ S. We show that all equilibrium states have

the same value of the utility function. For any two distinct

equilibrium states, n̄ = (n̄1, . . . , n̄S) and m̄ = (m̄1, . . . , m̄S),
take any indices s, l ∈ {1, 2 . . . S} such that n̄s > m̄s and

n̄l < m̄l. From the equilibrium condition, φs(n̄s−1) ≥ φl(n̄l).
Furthermore, the decreasing property of the marginal utility

implies φs(m̄s) ≥ φs(n̄s − 1) ≥ φl(n̄l) ≥ φl(m̄l − 1). But

for the equilibrium state m̄, we have φl(m̄l − 1) ≥ φs(m̄s).
Therefore, n̄s = m̄s+1, n̄l = m̄l−1 and φs(n̄s−1) = φl(n̄l)
for all such s and l. In addition, the number of APs s that

satisfy n̄s = m̄s + 1 equals the number of APs l with

n̄l = m̄l − 1. Now, consider ∆U = U(n̄) − U(m̄) =
∑

s:n̄s>m̄s
{Us(n̄s)−Us(m̄s)}+

∑

l:n̄l<m̄l
{Ul(n̄l)−Ul(m̄l)}.

This further simplifies to ∆U =
∑

s,l(φs(n̄s−1)−φl(n̄l)) = 0
for all equilibrium states n̄ and m̄. Together with the corollary

3.1, this proves the claim.

B. Backhaul-limited

We analyze scenarios when the backhaul capacity of APs

becomes the bottleneck in the network. This may occur when

there are a few users in network, all of whom are connected

to APs at high link rates or when the backhaul bandwidth is

just too low. From Eq. (2), the throughput of user i ∈ N in

this case is only a function of number of users |nai
(a)| sharing

its AP. Again, let the state of the system be represented by

n = (n1, . . . , nS). The equilibrium state, n̄ = (n̄1, . . . , n̄S),



for any two APs s, l ∈ S satisfies φs(n̄s − 1) ≥ φl(n̄l) if

a user connected to AP s can also associate with AP l. In

contrast to the previous case, the users can be spread across

the network and connect to only a subset of all APs. However,

we can precisely bound the worst-case value of an equilibrium

state.

Theorem 5. If all APs are backhaul-limited and the units of

the backhaul bandwidth are taken so that Ws ≥ Ne for all

s ∈ S, then U(n̄) ≥ 1
2OPT.

Proof: The function Us(ns) = ns log
Ws

ns
is strictly increasing

and concave (lemma (2)) in (0,Ws/e]. Given the condition,

Ws ≥ Ne, it implies that the utility of an AP, Us(ns), is

an increasing function while the marginal utility, φs(ns), is

monotonic decreasing and satisfies φs(ns) > 0 for all ns ≤ N
and s ∈ S. Let n⋆ = (n⋆

1, . . . , n
⋆
S) be the optimal configuration

of users and let S ′ = {s | n⋆
s > n̄s}. Then, for any s ∈ S ′,

we can write Us(n
⋆
s) − Us(n̄s) = n⋆

s log
Ws

n⋆
s

− n̄s log
Ws

n̄s

=
∑m=n⋆

s
−1

m=n̄s
φs(m) ≤ (n⋆

s − n̄s)φs(n̄s). Therefore, U(n⋆) −
U(n̄) ≤

∑

s∈S′(Us(n
⋆
s)− Us(n̄s)) ≤

∑

s∈S′(n⋆
s − n̄s)φs(n̄s).

Now, since n̄ is an equilibrium state, for each AP s ∈ S ′,

n⋆
s − n̄s users did not switch to that AP s. It means φs(n̄s) ≤

φl(n̄l−1) for some AP l 6= s for each of those users. Therefore,

we can write
∑

s∈S′(n⋆
s − n̄s)φs(n̄s) ≤

∑

s∈S n̄sφs(n̄s − 1).
Now, use the inequality φs(ns − 1) = ns log

Ws

ns
− (ns −

1) log Ws

ns−1 ≤ ns log
Ws

ns

− (ns − 1) log Ws

ns

= log Ws

ns

for all

ns ≥ 1. As a result, U(n⋆)−U(n̄) ≤
∑

s∈S n̄s log
Ws

n̄s

= U(n̄)

or U(n̄) ≥ 1
2U(n⋆).

C. User dynamics

As stated earlier, the upper bound on the number of reasso-

ciations is |F|. This is also true when the number of users,

N in the network changes due to arrivals and departures.

Here, we consider the previous scenario of a dense network

deployment in section IV.A and show that the equilibrium

state is reached much more easily. The system state is given

by n = (n1, . . . , nS) and φs(ns) is a decreasing function

for ns ≥ 0. A user arriving in the system follows the Best

Association rule while users leaving the system can depart from

any AP.

Theorem 6. Arrival of a new user maintains the equilibrium.

Proof: Let n̄ be the Nash equilibrium state and assume that a

new user chooses AP s such that φs(n̄s) ≥ φl(n̄l), ∀l 6= s. For

users associated with AP s, the new marginal utility satisfies

φs((n̄s + 1) − 1) = φs(n̄s) ≥ φl(n̄l) for all l 6= s. For users

associated with other APs, φl(n̄l − 1) ≥ φs(n̄s) ≥ φs(n̄s + 1)
for all l 6= s. Collectively, this shows that no user can further

improve its marginal utility.

Also, we show that the maximum number of reassociations

needed from any starting state is N , and therefore gives us the

next theorem.

Theorem 7. A user departing will lead to at most N − 1
reassociations.

Proof: We provide a sketch of the proof. We claim that once

a user switches to an AP, users from that AP will not switch

later. Let the current state of the system be n = (n1, . . . , nS)
and consider the next switch of a user between APs r, s ∈ S
as r → s. We show by induction that s 6→ t for any later

time instant for any AP t 6= s. Consider the base case and

assume next switch is given by, k → l, and s → t occurs

after this. Clearly, k 6= s and we only worry when t is either

l or k. Consider three cases: (i) l 6= s, k 6= r, the users with

AP s after the second switch will not switch to k because

φs(ns) ≥ φl(nl) and φl(nl) ≥ φk(nk − 1) from two switch

conditions and therefore, φs(ns) ≥ φk(nk−1). (ii) l = s, users

from s wont switch to t, because user from k did not switch to

t (iii) k = r, users from AP s will not switch to AP r because

φs(ns) ≥ φl(nl) > φr(nr − 2). Now, from the induction step,

assume s → t is not possible at time T , and instead switch

occurs as k → l. It is then easy to show that s → t is not

feasible for time T + 1. Therefore, the claim is true for all T .

This implies that each user will switch at most once to reach

equilibrium. Hence there at most N − 1 reassociations when a

user departs.

In summary, the Best Association policy is based on the

greedy version of the randomized solution. It is suboptimal,

but simple and fast converging; we showed its performance in

various special cases.

V. EVALUATION

In this section, we present the evaluation (via simulation)

results of the proposed association control mechanisms. We

restrict the evaluation to the MAC layer and do not study

the association overhead at higher layers. For the purpose of

comparison, we take the two commonly used performance

measures: (i) average user throughput r̄ = (
∑

i ri)/N and (ii)

Jain’s fairness index (JFI) , (
∑

i ri)
2/(N

∑

i r
2
i ), that varies

from 1/N (least fair) to 1 (equal throughputs).

A. Numerical Evaluation

We consider a deployment of overlapping APs placed ran-

domly in each of the 9 grids in a 300m× 300m square area.

The backhaul capacity of each is set to 10Mbps. There are

50 users randomly deployed in this area following a uniform

distribution. The range of AP is taken to be 200m and users’

physical rates are selected based on distance between APs and

the users following the 802.11g specification in [21]. Each AP

is assigned one of the three orthogonal channels in the 2.4

GHz band, and assuming fair access to channel, the fraction

fs is set to 1/3 for all s. We assume a linear overhead term

O(ns) = 0.0171ns so that the throughput at 54Mbps link rate

is equal to the observed 28Mbps for a single user. The mean

scanning period of users is set to 1/λ = 120 seconds.

Fig. 3 shows the simulation results of a single run for the

three proposed solutions with a run duration of 104 seconds.

Two values of β are chosen to show its effect on convergence.

The initial association of each user is set to its closest AP

following the best RSSI strategy. In the partial randomized
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(b) β = 80

Fig. 3. Simulation results shows the effect of β on proposed solutions for a
random deployment of 9 APs and 50 users

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

User Index

U
se

r 
T

hr
ou

gh
pu

t (
M

bp
s)

 

 

RSSI

Best

(a)

5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

User Index

M
ax

im
um

 n
o.

 o
f R

ea
ss

oc
ia

tio
ns

(b)
Fig. 4. (a) Throughput performance before and after association control (b)
Maximum number of reassociations needed for users to reach steady state

method, user i only probes two randomly chosen APs in Si.

The user associations were changed following Eqs. (8), (9) and

(12) for the three cases, respectively. The changes in trajectory

of the objective function in Fig. 4a correspond to change in

association of a user. The Best Association strictly increases

the objective function and thus converges. The randomized

solutions take longer to reach steady state, with partial ran-

domized being the slowest. We observe that close to optimal

states are reached around the 103 seconds mark. Also, the Best

Association gives nearly optimal solution: U(ā) = 365.22 and

OPT = 365.33. We see with β = 80, there are fewer changes in

user associations, the expected utility is more close to optimal

and it takes longer to reach steady state. The partial update

mechanism takes the longest time to converge in both cases.

Intuitively, this presents a tradeoff between optimality, speed of

convergence and reassociation overhead.

The plot in Fig. 4a shows sorted user throughputs before

and after the Best Association rule. One can observe that

initial associations based on RSSI led to skewed distribution

of user throughputs. The initial values of average throughput

r̄ = 1.53Mbps and JFI = 0.7727 changed to r̄ = 1.51Mbps

and JFI = 0.9509 after association control. This improvement

in performance is from the proportional fair (PF) utility used,

which improves fairness when the sum throughput is roughly

kept constant. Fig. 4b shows the maximum reassociation over-

head in the Best Association over a number of runs. At most,

4 reassociations were needed by users and on an average most

users had to switch only twice.

In Fig. 5a, we plot the utility function for a dense network

deployment where all users can connect to any AP and do

so at the same PHY rates. As shown previously, the greedy

association rule gives the optimal user associations. One can see
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Fig. 5. Evaluation of Best Association in Dense network deployment with
10 users and 4 APs. Plots showing that equilibrium association is optimal
(Theorem (4)) and the number of reassociations per user to reach equilibrium
(Theorem (7))
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Fig. 6. Comparison of our metric with other distributed solutions with an
unfair network topology

that there are perturbations in associations in the randomized

solution even after steady state is reached. Also, each user needs

to reassociate at most once to reach equilibrium.

B. Comparison

We implement and compare our Best Association solution

with other distributed AP association rules. Specifically, we

consider: Sum-delay [13], that tries to minimize the sum of

user packet delays, Max-thru [8], where each user greedily

maximizes its own throughput, and Sum-thru [22], where users

choose APs so as to maximize the overall throughput in the

system. We modified their expressions to include the additional

overhead term and backhual constraint.

We run these association policies with an unfair topology

example shown in Fig. 6a. Clearly, some of the APs (triangles)

are overloaded from users (circles) by following the default

RSSI rule. Fig. 6b shows the averaged throughput distrbution

across the users for the different metrics used. As seen, the

default RSSI led to associations where an AP served a single

user at 9Mbps while more than 30 users received 0.4 Mbps.

Table 1 lists the average performance metrics over 10 runs.

Maximizing individual throughput achieves reasonable fairness

while being the least efficient. This is attributed to the load-

balancing of APs [8]. Sum-delay only minimizes the packet

transmission times and therefore has no notion of fairness.

Sum-thru gives the highest throughput in the system while

being the most inefficient in distribution of throughput. In

comparison, Best Association, based on proportional fairness,

outperformed on the fairness measure with a slight reduction in



TABLE I
COMPARISON OF DIFFERENT DISTRIBUTED AP-ASSOCIATION POLICIES

AVERAGED OVER SIMULATION RUNS

Utility Fairness Index Mean thru. (Mbps) Total switches

RSSI 0.48 1.42 0

Best-Assoc 0.96 1.32 28

Sum-delay [13] 0.47 1.39 3

Max-thru [8] 0.77 0.68 34

Sum-thru [22] 0.33 1.45 381

total throughput (1.32 Mbps vs 1.42 Mbps with RSSI). Also,

the reassociation overhead is reasonable in this case.

Based on these observations, we conclude that the Best

Association performs close to optimal, providing both fairness

and throughput-efficiency .

VI. CONCLUDING REMARKS

We have presented and solved the problem of distributed

association control that arises in many modern WLAN de-

ployments. We derived a provably optimal solution, which is

completely distributed and can be practically implemented by

the mobile users. We have also proposed a greedy heuristic,

Best Association, based on the concept of marginal utility. In

our simulation results, the Best Association rule gives almost

optimal solutions and has a low reassociation overhead.

Some of the assumptions made in our work can be relaxed

in practice. In particular, the update process need not follow

a Poisson clock. The convergence of the greedy heuristic will

still hold. However, the strict assumption of cooperative users

is required to solve for the optimal user associations.

APPENDIX

Proof of Lemma 1: For a ∈ F⋆, taking the derivative of π(a)
in Eq. (5) w.r.t β,

∂π(a)

∂β
=

U(a)eβU(a)

∑

a
′∈F eβU(a′)

−

∑

a
′∈F U(a′)eβU(a′)eβU(a)

[
∑

a
′∈F eβU(a′)]2

=

∑

a
′∈F [U(a)− U(a′)]eβU(a′)eβU(a)

[
∑

a
′∈F eβU(a′)]2

≥ 0

since U(a) ≥ U(a′) for any a ∈ F⋆ and a
′ ∈ F . Note that

Eq. (5) can also be expressed as:

π(a) =
1

|F⋆|+
∑

a
′∈F\F⋆ eβ(U(a′)−U(a))

which gives the result limβ→∞ π(a) = 1
|F⋆| for a ∈ F⋆.

Proof of Lemma 2: The first and the second derivate of the

function are given by:

f ′(x) = log
W

ax+ b
−

ax

ax+ b

f ′′(x) =
−a2x− 2ab

(ax+ b)2

Clearly, f ′′(x) < 0 for all x > 0 and therefore, f(x) is concave

in R++.

Proof of Lemma 3: A function is concave if and only if the

epigraph of the function is a concave region. The epigraph of

the function h = min{f, g} is a union of concave regions above

f and g, and is thus concave. Hence h is a concave function.
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