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Abstract—In cognitive radio networks (CRNs), secondary users must be able to accurately and reliably track the location of small-scale

mobile primary users/devices (e.g., wireless microphones) in order to efficiently utilize spatial spectrum opportunities, while protecting

primary communications. However, accurate tracking of the location of mobile primary users is difficult due mainly to the CR-unique

constraint, i.e., localization must rely solely on reported sensing results (i.e., measured primary signal strengths), which can easily be

compromised by malicious sensors (or attackers). To cope with this challenge, we propose a new framework, called Sequential mOnte

carLo combIned with shadow-faDing estimation (SOLID), for accurate, attack/fault-tolerant tracking of small-scale mobile primary

users. The key idea underlying SOLID is to exploit the temporal shadow fading correlation in sensing results induced by the primary

user’s mobility. Specifically, SOLID augments conventional Sequential Monte Carlo (SMC)-based target tracking with shadow-fading

estimation. By examining the shadow-fading gain between the primary transmitter and CRs/sensors, SOLID 1) significantly improves the

accuracy of primary tracking regardless of the presence/absence of attack, and 2) successfully masks the abnormal sensing reports due

to sensor faults or attacks, preserving localization accuracy and improving spatial spectrum efficiency. Our extensive evaluation in

realistic wireless fading environments shows that SOLID lowers localization error by up to 88 percent in the absence of attacks, and

89 percent in the presence of the challenging “slow-poisoning” attack, compared to the conventional SMC-based tracking.

Index Terms—Cognitive radio, mobile primary user, location tracking, security, log-normal shadowing, Kalman filter
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1 INTRODUCTION

COGNITIVE radio (CR) has great potential to enhance
spectrum efficiency by allowing secondary (unli-

censed) users/devices to utilize spectrum opportunities
temporarily unused by primary users (PUs). CRs are key
components of efficient detection and reuse of spectrum
opportunities, thus mitigating the spectrum-scarcity pro-
blem that we may soon face due to the explosive growth of
wireless/mobile users, services and applications. As a first
step toward realizing opportunistic spectrum access, the
FCC recently finalized a ruling that permits the operation of
unlicensed CR devices in TV white space (TVWS) [1]. This
new use of TVWS has generated an interest in and need for
developing numerous standards and proposals, such as
IEEE 802.22 wireless regional area networks (WRANs) [2],
IEEE 802.11af [3], Ecma 392 [4] and White-Fi [5].

Unlike the detection of large-scale primaries, e.g., DTV
users, where localization is not the primary concern in
opportunistic spectrum reuse, accurately tracking the
physical location of small-scale mobile primaries, such as
wireless microphones (WMs), is crucial in achieving the
core objectives and functionalities of CRNs, such as spatial
spectrum reuse [6], interference management [7], [8],
routing decisions [9], and falsified primary signal detection

[10], [11]. For example, knowing the location of the primary
transmitter enables secondary users (SUs) to reuse licensed
spectrum more efficiently without causing excessive inter-
ference to primary communications [6], [7], [8], [12]. In the
IEEE 802.22 WRANs, without knowing the location of a
WM, all the SUs, also called consumer premise equipment
(CPE) in an 802.22 cell (of radius up to 100 km), must
immediately vacate the current operating channel upon
detection of the WM, resulting in significant waste of spatial
spectrum opportunities [6]. Furthermore, location informa-
tion is very useful in cooperative sensing by enabling the
secondary base station (BS) (or the fusion center) to select an
optimal set of sensors,1 especially when a very weak
primary signal like a WM signal is to be detected [13], [14].

However, CRN faces unique challenges, such as the
absence of primary-secondary coordination and low sensor
density, that make it difficult to track mobile primaries
accurately. According to the FCC, opportunistic spectrum
access should require no modification to the primary
system [15]. Thus, SUs (sensors) must rely solely on
measured received signal strengths (RSSs) (obtained via
spectrum sensing) for primary tracking. This makes the
primary tracking vulnerable to attacks, since the tracking
process can be disrupted by malicious or faulty sensors that
report incorrect RSSs. A sensing report falsification attack
can easily be launched by attackers due to the open nature
of low-layer protocol stacks in software-defined radio (SDR)
devices, such as USRP [16] and Sora [17]. Moreover, low
sensor density in CRNs hampers the accurate tracking of
mobile PUs, e.g., the average sensor density in 802.22
WRANs is only about 1:25=km2 [18]. Inaccurate location
estimation may ultimately cause SUs to generate excessive
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1. We use the terms secondary user/device and sensor interchangeably
because secondary devices also function as sensors.
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interference to the primary system, violating the basic
premise of CRNs and discouraging PUs from sharing their
licensed spectrum bands with SUs. Therefore, there is a
clear need for an efficient and secure tracking scheme for
small-scale mobile PUs in CRNs.

In this paper, we address the problem of accurately
and reliably tracking small-scale mobile PUs in CRNs.
Specifically, we design an RSS-based tracking scheme,
called SOLID, that augments the conventional Sequential
Monte Carlo (SMC)-based localization with shadow fading
estimation. The shadowing estimation in SOLID greatly
improves localization performance. Besides, by monitoring
temporally-correlated shadow fading, SOLID accurately
detects both manipulated and erroneous sensing reports,
thus achieving high robustness. The key motivation behind
exploiting temporal shadowing correlation in attack detec-
tion is that malicious sensors cannot control the physical-
layer signal-propagation characteristics. While we focus on
the robust tracking of the WMs’ locations in 802.22 WRANs,
our proposed techniques are generic and can be used for
detecting other types of small-scale primaries or, in a
broader context, target tracking in wireless sensor networks.

1.1 Contributions

This paper makes the following main contributions:

. Development of a new tracking scheme, SOLID, that
jointly estimates the mobile PU’s location and
shadow-fading gains using an adaptive filter. By
exploiting the temporal correlation in shadow
fading, SOLID

- improves localization accuracy and
- accurately identifies abnormal sensing reports.

To the best of our knowledge, this is the first attempt
to incorporate shadow fading into cooperative
localization.

. In-depth evaluation of SOLID in a realistic shadow-
fading environment under various attack scenarios.
Our extensive simulation study shows that in the
absence of an attack, SOLID lowers the average
localization error by up to 88 percent compared to
the conventional Sequential Monte Carlo-based
tracking scheme, since the two components of
SOLID—SMC-based localization and shadow-fading
estimation—refine each other throughout the track-
ing process.

. High attack and fault-tolerance of SOLID. Our
evaluation results show that SOLID can detect
compromised sensing reports with high accuracy,
e.g., attack false-alarm and misdetection rates below
1 and 7 percent, respectively. It also shows that in a
realistic shadowing and multipath environment,
SOLID lowers the average error by up to 89 percent,
even under “slow-poisoning” attacks.

. Investigation of the tradeoff in the design of the
attack detector in SOLID. When the base station
filters out sensors or sensing reports too aggressively
(or conservatively), the localization can suffer from
lack of samples (compromised sensing reports). Via
in-depth simulation, we identify the impact of attack
detection thresholds, and the results provide prac-

tical guidelines for the design of a robust and
efficient tracking scheme.

1.2 Organization

The rest of this paper is organized as follows. Section 2
reviews related work, while Section 3 describes the system
models and assumptions, and introduces the attack models.
Section 4 presents our proposed approach for attack
detection, and the underlying localization protocol. Section 5
details our approach to the estimation of shadow fading,
and the design of SOLID’s attack detector. Section 6
evaluates the performance of SOLID, and Section 7
concludes the paper.

2 RELATED WORK

In this section, we first review related work on existing
sensing-targeted attacks, and then discuss existing target-
tracking schemes in wireless sensor networks.

2.1 Secure Spectrum Sensing in CRNs

CRN security has recently become a topic of great interest to
the research community. Of the various potential threats,
two types of attacks that exploit the vulnerabilities in
spectrum sensing have been studied: primary user emula-
tion attack (PUEA) and spectrum sensing data falsification
(SSDF) attack. The defense against PUEA has been studied
in [19], [20]. Chen et al. [10] proposed an RSS-based location
verification scheme, called LocDef, to detect fake primary
signals. Liu et al. [20] developed a primary signal verifica-
tion scheme by jointly exploiting the location-dependent
link signature, i.e., multipath fading profile, and conven-
tional cryptographic authentication methods. However,
their scheme assumes the availability of a helper node,
located close to each primary transmitter. The problem of
ensuring robustness in distributed sensing has also been
studied [21], [22], [23]. Kaligineedi et al. [22] presented a
prefiltering scheme based on a simple outlier method that
filters out extremely low or high sensor reports. However,
their method is unsuitable for a very low SNR environment,
such as 802.22 WRANs, in which the final data-fusion
decision is very sensitive to small deviations in RSSs. Min
and Shin [23] proposed an attack-tolerant secure coopera-
tive sensing scheme that exploits shadow-fading correlation
in RSS among neighboring sensors. Recently, Duan et al.
[24] considered scenarios, in which attackers collaborate to
maximize their impact, and proposed mechanisms to
discourage and disincentivize the attackers from mounting
collaborative attacks. Min et al. [25] developed a collabora-
tive attack-detection framework, called IRIS, that accu-
rately detects the presence of an attack and identifies the
attacker by checking for consistency among sensing reports.
Unlike these studies, we focus on a new type of attack, i.e.,
disruption of location tracking of a mobile primary
transmitter by falsifying sensor reports.

2.2 Secure Mobile Target Tracking

The problem of node localization and target tracking has been
studied extensively in the area of wireless sensor networks
[26], [27], [28], [29], [30]. For example, Sheng et al. [31]
proposed the use of distributed particle filters to track
multiple mobile targets in wireless sensor networks. The
primary tracking in CRNs, however, faces unique challenges.
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In CRNs, it is not desirable to modify the primary system, and
thus, the information on the received primary signal
strengths obtained via spectrum sensing is only available to
the secondary system. The solution approach taken bySOLID
to overcome this challenge differs from others in that it only
relies on PHY-layer signal-propagation characteristics (i.e.,
temporally correlated shadow fading) to accurately detect
malicious sensors, which has not been considered before.

3 SYSTEM AND ATTACK MODELS

In this section, we describe the network, spectrum sensing,
and signal-propagation models that we use throughout the
paper. We then present an overview of our model for
tracking a small-scale mobile primary transmitter and
introduce the attack model.

3.1 CR Network Model and Assumptions

We consider a CRN that consists of primary and secondary
users/devices in the same geographical area. The secondary
network is an infrastructure-based network, such as an
IEEE 802.22 WRAN, in which each cell consists of a BS and
multiple sensors, called customer premise equipments. The
main goal of IEEE 802.22 WRANs is to provide Internet
access to rural areas by reusing unused TV spectrum bands,
without causing excessive interference to PUs. In an 802.22
WRAN, the BS manages the dynamic spectrum access of the
SUs in the network by 1) scheduling sensors to perform
spectrum sensing, and 2) performing data fusion and
primary location estimation to determine the presence or
absence of a primary signal based on the sensing reports.
For cooperative spectrum sensing, the BS employs the
sensors located within a fusion range centered at the
estimated primary location [14].2 We call such sensors
cooperative sensors. The BS uses sensing reports to update the
estimate of the primary transmitter’s location, and estimates
shadow-fading gains between the primary transmitter and
each cooperative sensor.

Sensors are stationary and the BS has the location
information of the sensors within its own cell. For example,
the IEEE 802.22 WRAN standard draft requires the BS to
know the sensor locations. We assume that the sensors have
been deployed in an area A, e.g., an IEEE 802.22 WRAN cell,
following a point Poisson process with average density �.
The Poisson process is widely used to describe sensor
distributions in wireless networks. However, the design of
SOLID is generic and does not depend on any particular
sensor distribution, so it can be applied to CRNs with
arbitrary sensor distributions. The Poisson process is a
reasonable assumption in the absence of a known distribu-
tion that accurately models the sensor (i.e., CPE) distribu-
tion in 802.22 WRANs. Unlike in a typical wireless sensor
network environment, in which sensors are densely dis-
tributed, we assume a low sensor density � because the
typical density of CPEs in rural areas is only 1:25=km2 [32].
We assume that the BS and sensors communicate sensing
information over a common control channel.

3.2 Spectrum-Sensing and Signal-Propagation
Models

Due to the lack of primary-secondary cooperation, primary

tracking must be done based only on the received primary

signal strengths measured at cooperative sensors.3 We
consider energy detection [33] for spectrum sensing in the

PHY-layer. Energy detection is the most widely used PHY-

layer sensing technique due to its simple design and low

sensing overhead. The test statistics of the energy detector
are an estimate of the sum of received primary signal

strength and noise power [33]. We assume that the BS

employs only the sensors located close to the primary

transmitter, i.e., located within the fusion range Rs (e.g., 1
km) from the estimated location of a primary transmitter,

for location tracking. This is a reasonable assumption

because the reports from sensors located far away from

the WM transmitter will be close to the noise level, and
thus, do not contribute to the improvement of localization

accuracy [14]. The BS directs the cooperative sensors to

perform spectrum sensing at a periodic time interval t 2 T ,

and report their sensing results to the BS for localization.
Fig. 1 depicts an example scenario, tracking a mobile

primary transmitter in a CRN.
Assuming that the noise power is much smaller than the

received primary signal strength, sensor n’s measurement

in sensing time slot t can be expressed as [34]

Pt;n ¼ Po þ �10 logðdoÞ � �10 logðdt;nÞ þXt;n þ Yt;n; ð1Þ

where � is the path-loss exponent, do the reference distance,

Po the received primary signal strength at the reference

distance, dt;n the distance between the primary transmitter
and sensor n in time slot t. Log-normal shadow fading,

denoted by Xt;n, can be characterized by dB-spread, �dB,

where Xt;n � Nð0; �2
dBÞ.

4 We assume that nonfading com-

ponents, such as antenna and device losses, are approxi-
mated as an i.i.d. Gaussian random variable with zero mean

and variance �2
m, denoted as Yt;n � Nð0; �2

mÞ 8n.
Let St denote a set of cooperating sensors in time slot t.

Then, the received primary signal strength at cooperating

sensors in (1) can be expressed in a vector form as
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Fig. 1. An illustrative example of small-scale primary tracking. The BS
tracks the location of a mobile PU (e.g., a WM) based on sensing reports
(i.e., received primary signal strengths) from the sensors located within
the fusion range (the dotted circle).

2. We focus on the tracking of a mobile PU’s location after its detection.
The problem of detecting a PU and its location estimate has been addressed
in [14].

3. Cooperative sensors refer to a set of sensors in a 802.22 WRAN, which
are employed by the BS for spectrum sensing.

4. Measurement studies [35] indicate that a typical �dB values is 4-8 dB
depending on geographical environments, e.g., urban or suburban.



Pt ¼ HðdtÞ þ bXt þYt; ð2Þ

where HðdtÞ ¼ ½ hðdt;1Þ; . . . ; hðdt;jStjÞ �
T represents the re-

ceived signal strength due to path-loss, where hðdt;iÞ ¼
Po þ �10 logðdoÞ � �10 logðdt;iÞ. The shadow fading gain and
noise vectors are denoted by bXt and Yt, respectively.

Note that while we consider PU tracking in an outdoor
environment where large-scale transmitters’ signal propa-
gation can be accurately modeled or trained based on
terrain profiles, the problem would be more challenging if
the signal propagation were more random and unpredict-
able, e.g., an indoor environment. The extension of SOLID
to such a challenging environment will be part of our
future inquiry.

3.3 Attack Model

In CRNs, sensors are often deployed in hostile and
unattended areas, so they can be captured by attackers.
The compromised sensors’ reports can then be manipulated
to amplify localization error, resulting in either inefficient
use of available spectrum (due to conservative spectrum
reuse to avoid interference to PUs’ communications), or
excessive interference to PUs (due to aggressive spectrum
reuse based on incorrect PU location estimation). Selfish
SUs can manipulate their sensing reports to influence the
localization result so that neighboring SUs vacate the
channel. As a result, selfish SUs can receive higher
bandwidth at the expense of other honest SUs.

The main objective of attackers (compromised or selfish
sensors) is to disrupt the primary transmitter localization/
tracking process by manipulating sensing reports. Specifi-
cally, we consider the following scenarios: a sensor is

. compromised, reporting manipulated (i.e., higher or
lower than real) RSSs to the BS,

. malfunctioning or faulty, generating sensor readings
that significantly deviate from the true RSS.

In particular, we introduce the following metrics to
describe attack scenarios:

. attacker population represents the fraction of attackers
among sensors participating in cooperative sensing
(i.e., those employed by the BS for sensing),

. attack strength represents the deviation in the sensing
reports introduced by an attacker.

We assume that attackers are noncooperative and each
attacker can thus introduce a different attack strength.

The above attack scenarios render the sensing reports to
the fusion center (i.e., the BS) inaccurate, degrading
localization/tracking performance. Such large localization
error will require SUs to be more conservative in reusing
spectrum opportunities, resulting in a waste of spatial
spectrum opportunities (see Section 6.5). Therefore, we
opt to design an attack- or fault-tolerant primary tracking
mechanism that successfully tolerates such manipulated (or
erroneous) sensing reports. The attack detection mechanism
in SOLID will allow the BS to detect/discard sensing
reports or exclude malicious/faulty sensors in cooperative
sensing, thus achieving high localization accuracy.

Although there exist other security threats, such as
jamming or denial-of-service attacks, in the primary
tracking process, the sensing report manipulation attack
that we consider in this paper is more stealthy due to the

attacker’s ability to control sensing reports in a more fine-
grained manner. Thus, we focus on detecting manipulated
(or erroneous) sensing reports instead of addressing all the
attack scenarios.

4 THE PROPOSED APPROACH

We first describe the overall architecture of SOLID and

present its design rationale. We then introduce the sequential

Monte Carlo localization process that underlies SOLID.

4.1 SOLID Architecture

SOLID (Fig. 2) resides at the BS and consists of the

following three building blocks:

. Location estimator that tracks the location of a
small-scale mobile primary transmitter based on
sensing reports,

. Shadowing estimator that tracks the shadowing
gain at cooperative sensors using the Kalman filter
(KF), and

. Attack detector that detects and discards abnormal
sensing reports, and updates the normal profile.

These three components interact with each other

synergistically and collectively enable accurate and robust

primary tracking. Based on the estimated primary location,

the sensor manager selects sensors to cooperate with each

other based on their (ab)normality and proximity to the

primary transmitter.5

In particular, the shadowing estimator introduced in

SOLID offers two main benefits:

. Improved localization accuracy by mitigating the
effect of shadow fading in RSSs (in Fig. 2a), and

. Accurate detection of abnormal sensing reports
(in Fig. 2b).

SOLID also minimizes communication and processing

overhead since it exploits physical-layer signal-propagation

characteristics, extracted from the cooperative sensing

results.

4.2 Design Rationale for Attack Detection

To maximize attack tolerance and preserve localization
accuracy, SOLID exploits the temporal correlation in shadow
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Fig. 2. The SOLID framework. SOLID provides high accuracy and
robustness in mobile primary tracking by (a) estimating/monitoring the
shadow-fading gains between the primary transmitter and sensors using
the Kalman filter, and (b) detecting and filtering out abnormal sensing
reports based on the shadowing-correlation profile.

5. Although there are many sophisticated sensor-selection methods for
target tracking (e.g., [36]), optimal sensor-selection is not our focus.



fading in received primary signal strengths. The key insight
behind the attack detector is that, in shadow-fading
environments, the sequence of RSSs measured at each
sensor is highly likely to be correlated as indicated in
measurement studies (e.g., [35], [37], [38]). Thus, the attack
detector takes an anomaly-detection approach to identifying
and discarding abnormal sensing reports in the localization
process. So, if attackers raise or lower the sensing results
(i.e., RSSs) reported to the BS in order to influence the
localization result, SOLID can easily detect them by
examining the consistency of the sensing reports. Hence,
the attacker must lower its attack strength to evade detection
by SOLID, exerting only a negligible impact on localization.

One important, but not so obvious feature of the attack
detector in SOLID is that it is cooperative in the sense that the
accuracy of shadowing-gain estimation depends heavily on
the location estimate, which is updated based on reports
from all the cooperating sensors. In other words, the
robustness of attack detection is directly correlated with
localization accuracy.

4.3 SOLID: Sequential Monte Carlo Combined with
Shadow-Fading Estimation

SOLID employs sequential Monte Carlo [39] as the baseline
scheme for tracking small-scale mobile PUs. SMC has been
widely used as a localization method in mobile wireless
systems [40], [41]. The key idea of SMC is to represent the
required posterior density function as a set of random
samples (or particles) with their associated weights, and
then compute the estimated location by taking their
weighted average. SOLID augments the conventional
SMC with shadow-fading estimation to further improve
the tracking accuracy and achieve robustness against
malicious/faulty sensors.

Let f�� j ��t ¼ ðxt; ytÞ t 2 INg denote the sequence of a
mobile primary’s locations in 2D coordinates where t is the
index for (sensing) time slots. The BS estimates the primary
transmitter’s location based on the vector of received
primary signal strengths, denoted by Pt in (2).

Let the particle set denote the set of tuples fð��ðiÞt ; w
ðiÞ
t Þg

Ns

i¼1

where each sample ��
ðiÞ
t represents potential PU location and

each sample is associated with its weight w
ðiÞ
t , wherePNs

i¼1 w
ðiÞ
t ¼ 1, and Ns is the number of particle samples.

Then, the primary tracking process in SOLID consists of the
following seven steps.

Step 1. At the end of sensing period t, SOLID draws Ns

new samples6 using transition probabilities pð��ðiÞt j��
ðiÞ
t�1Þ,

given by

p
�
��
ðiÞ
t j��

ðiÞ
t�1

�
¼ min 1

�ðvmaxþ�Þ2
; 1

h i
if d
�
��
ðiÞ
t ; ��

ðiÞ
t�1

�
< vmax

0 otherwise;

(
ð3Þ

where vmax (m/s) is the maximum speed of the mobile
primary transmitter, and � is used to generate better samples
[41]. We set � ¼ 0:2 vmax empirically in our simulations.

Step 2. After generating Ns new samples using (3),
SOLID updates the weights associated with the samples as

w
ðiÞ
t ¼ w

ðiÞ
t�1 LðPt j ��ðiÞt Þ; ð4Þ

where the likelihood LðPt j ��ðiÞt Þ can be calculated based on
multivariate Gaussian in (2), i.e., LðPt j ��ðiÞt Þ � N ðHðdtÞ þbXt�1; �

2
m IN�NÞ where

hðdt;nÞ ¼ Po þ �10 logðdoÞ � �10 logðdt;nÞ; bXt�1

is the shadow-fading gain matrix estimated in the previous
time slot. When t ¼ 1, bX1 is initialized to a zero vector. IN�N
is an identity matrix where N ¼ jStj is the number of
cooperating sensors in time slot t. The weights are normal-
ized such that

PNs

i¼1 w
ðiÞ
t ¼ 1.

Step 3. Based on (3) and (4), SOLID approximates the
posterior density pð��tjP1:tÞ as

pð��tjP1:tÞ �
XNs

i¼1

w
ðiÞ
t 	ð��t � ��

ðiÞ
t Þ; ð5Þ

where 	ð�Þ is the Dirac delta measure.
Step 4. Then, SOLID estimates the location of the primary

transmitter by taking the weighted average of the samples

b��t ¼4 ðx̂t; ŷtÞ ¼ XNs

i¼1

w
ðiÞ
t x
ðiÞ
t ;
XNs

i¼1

w
ðiÞ
t y
ðiÞ
t

 !
: ð6Þ

Step 5. SOLID then calculates the effective number of
particles, i.e., bNeff ¼ ð

PNs

i¼1ðw
ðiÞ
t Þ

2Þ�1, and compares it
against the given threshold Nthr. If bNeff < Nthr, SOLID

resamples the particles using the posterior probability in (5)
to replace the current particle set with this new one, and
sets the weights w

ðiÞ
t ¼ 1=Ns for i 2 St. Steps 1-4 repeat

themselves until the effective number of particles, bNeff , is
equal to, or greater than a given threshold Nthr.

Step 6. Given the estimated primary transmitter
location in (6) and shadowing gains in the previous time
slot, SOLID estimates the shadow-fading gains between
the primary transmitter and the sensors, bXt, using the
Kalman filter. The presence of temporal correlation in
shadow fading allows the Kalman filter to track shadow-
ing gains. It is important to note that the estimated
shadowing gains improve localization accuracy by miti-
gating the uncertainty caused by shadow fading, i.e., Xt;n

in (1), in sensing results (i.e., measured primary RSS).
Likewise, the improved localization enables more accurate
shadow fading estimation, and thus, the two methods help
each other to improve. As a result, the incorporation of
shadow fading estimation in SMC-based localization
improves the localization accuracy significantly. This will
be detailed in Section 5.2.

Step 7. Based on the estimated shadow-fading gains bXt

in Step 6, the attack detector in SOLID filters out abnormal
sensors from the tracking process. Joint localization and
shadowing estimation enables SOLID to accurately predict
the correlated shadow fading. Therefore, even a small
disturbance in manipulated sensing reports will make the
shadow fading estimation deviate from its prediction,
allowing the attack detector to easily identify the compro-
mised ones. We will elaborate on attack-detection design
and filtering algorithms in Section 5.3.

Algorithm 1 describes the primary tracking process of
SOLID.
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6. Initially, SOLID randomly selects Ns sample points ��0 ¼ f��ðiÞ0 g
Ns

i¼1 in
the detection region to represent candidate locations of the mobile PU.



Algorithm 1. SMC WITH SHADOW-FADING ESTIMATION

At the end of each sensing round t 2 T , SOLID does

//1. Localization

1: Initialization

2: ��
ðiÞ
0 � pð��0Þ; wðiÞ0 ¼ 1=Ns for i ¼ 1; . . . ; Ns

3: bNeff  0 //Effective number of particles

4: while ð bNeff < NthrÞ do

5: for i ¼ 1 to Ns do

6: Draw ��
ðiÞ
t � pð��t j ��

ðiÞ
t�1Þ using (3)

7: Update w
ðiÞ
t using (4)

8: end for

9: Calculate the total weight Wt ¼
PNs

i¼1 w
ðiÞ
t

10: for i ¼ 1 to Ns do

11: w
ðiÞ
t  w

ðiÞ
t =Wt //Normalization

12: ðx̂t; ŷtÞ  ð
PNs

i¼1 w
ðiÞ
t x
ðiÞ
t ;
PNs

i¼1 w
ðiÞ
t y
ðiÞ
t Þ

13: bNeff  ð
PNs

i¼1ðw
ðiÞ
t Þ

2Þ�1

14: end for

15: end while

16: return ðx̂t; ŷtÞ
// 2. Shadowing Estimation

17: Estimate the shadowing gains bXt using Kalman filter

// 3. Attack Detection and Filtering

18: Monitor the shadowing estimation error to detect and
filter out abnormal sensing reports

5 DETECTION OF ABNORMAL SENSING REPORTS

VIA MONITORING SHADOWING CORRELATION

In this section, we describe the shadowing-estimation

component in SOLID, and discuss the attack-detection

algorithm of SOLID.

5.1 Construction of Shadowing Profile

SOLID constructs and maintains the profile of normal

shadow-fading behavior for each cooperative sensor n,

based on the history of reports from the sensors during the

primary transmitter tracking process. We define the basic

profile element (PE) of sensor n as the shadowing component

in the received primary signal strengths in (1), i.e.,

Xt;n ¼ Pt;n � Po � �10 logðdoÞ þ �10 logðbdt;nÞ � Yt;n; ð7Þ

where Pt;n is the sensor n’s measurement report at sensing

period t, bdt;n the estimated distance between the primary

transmitter and sensor n, which is obtained via SMC, and

Yt;n � Nð0; �2
mÞ the noise power.

Suppose that, at time t, SOLID has processed kð� 1Þ PEs

for sensor n. Note that k may vary among sensors based on

the time they joined the cooperative sensor set. This

sequence of PEs exhibits a strong temporal correlation,

because SOLID keeps track of each sensor’s shadowing gain

at each sensing period (e.g., once every 2 seconds). To

exploit the temporal correlation in PEs, we define a profile

vector consisting of the entire history of PE records:

Xt;nðk; 1Þ ¼ ½Xt;n; . . . ; Xt�kþ1;n�T ; 1 	 n 	 N: ð8Þ

Thus, the estimates of the shadowing gain Xt;n provide a

compact description of the normal shadowing profile. We

henceforth omit the subscript t for brevity.

5.2 Shadowing Estimation Using Kalman Filter

We now describe how SOLID accurately estimates the PE

(i.e., shadowing gain) from the observed primary signal

strengths. Specifically, the attack detector in SOLID seeks

the shadow-fading estimator that minimizes the mean

squared errors (MSE):

MSEnðk; 1Þ ¼ IE

( Xt

¼t�kþ1

��� Xnð
Þ � bXnð
Þ
���2); ð9Þ

where k is the index of the sensing stage since sensor n

joined the set of cooperative sensors. We thus need an

efficient estimator that minimizes the MSE in (9).
To meet this requirement, SOLID employs the Kalman

filter [42], a recursive estimator that produces optimal

estimates by minimizing the MSE in (9). Note that other

adaptive filters, such as the recursive least squares (RLS)

filter, can also be used to track the log-normal shadowing

gain at the expense of additional computational complexity.

In the KF, the system can be modeled as

Snðkþ 1Þ ¼ �nðkÞ SnðkÞ þWnðkÞ; ð10Þ

where SnðkÞ represents the state (i.e., shadowing gain) of

the system, �nðkÞ is the state-transition matrix that relates

the state SnðkÞ to the next state Snðkþ 1Þ, WnðkÞ � N ð0;QÞ
is the system noise vector where the covariance matrix Q

represents the degree of variability in the state variables.
The measurement of the system is defined as

XnðkÞ ¼ HnðkÞ SnðkÞ þVnðkÞ; ð11Þ

where the matrix HnðkÞ represents an observation model

that relates the true state variable SnðkÞ to the measure-

ments XnðkÞ. The initial value of XnðkÞ is set to 0. The

measurement noise is denoted as Vn � Nð0;RÞ, where the

covariance matrix R represents measurement uncertainty.

We consider the measurement noise in spectrum sensing

due to noise power (i.e., Yt;n in (1)) by setting R ¼ �2
m, and

setting Q ¼ �2 ¼ 0:12 empirically.
The Kalman-filter-based shadow fading estimation in

SOLID for sensor n is described as follows:

bSnðk j k� 1Þ ¼ a bSnðk� 1 j k� 1Þ;
Mnðk j k� 1Þ ¼ a2 Mnðk� 1 j k� 1Þ þ �2;

KnðkÞ ¼
Mnðk j k� 1Þ

Mnðk j k� 1Þ þ �2
m

;

bSnðk j kÞ ¼ bSnðk j k� 1Þ þ KnðkÞðXnðkÞ � bSnðk j k� 1ÞÞ;
Mnðk j kÞ ¼ ð1�KnðkÞÞMnðk j k� 1Þ;

where Mnðk j k� 1Þ is the one-step minimum prediction

MSE, Mnðk j kÞ is the MMSE, and KnðkÞ is the Kalman gain

at stage k. bSnðk j k� 1Þ is the shadow fading prediction

based on the observations fXnðiÞgk�1
i¼0 . The coefficient a is set

to 1.
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5.3 Attack Detection and Filtering

A compromised or malfunctioning sensor node may report

a falsified sensing value to the BS. Such manipulated

sensing reports may render the localization less reliable,

hampering efficient reuse of spectrum opportunities in the

spatial domain. To mitigate this problem, SOLID verifies

the trustworthiness of sensing reports and filters out or

penalizes the bad ones before performing the localization.
SOLID activates an instance of attack-detection scheme

whenever the BS employs a sensor for cooperative sensing.

The attack detector in SOLID quantifies the deviation of a

sensor’s shadowing gain from the value predicted from its

history by monitoring the prediction error (or measurement

residual), which can be computed as

enðkÞ ¼ XnðkÞ �HnðkÞ bSnðk j k� 1Þ; ð12Þ

where XnðkÞ is the observed shadow fading in (7).
We introduce a metric for attack detection called

prediction error distance (PED) that indicates the euclidean

distance in two consecutive prediction errors, i.e.,

PEDnðkÞ ¼
��� enðkÞ � enðk� 1Þ

���: ð13Þ

This is a very useful, yet simple, metric because the

prediction error is correlated in the absence of an attack,

and consequently, the difference in two consecutive errors

is kept small. We also observed from our simulation results

that PEDnðkÞ is smaller than the prediction error itself.
The attack detector in SOLID raises a flag to indicate that

sensor n’s report is compromised (or abnormal) if

PEDnðkÞ � �; ð14Þ

where � 2 IR is a predefined threshold for detecting

anomalies. SOLID classifies a sensor as malicious and

excludes it from the localization process if the cumulative

number of flags raised is greater than NB, which is a design

parameter. Algorithm 2 describes the pseudocode of the

attack-detection algorithm in SOLID.

Algorithm 2. ATTACK-DETECTION ALGORITHM IN SOLID

For every newly employed cooperating sensor n, the BS

performs

1: Initialization

2: k 0

3: blacklist countðnÞ  0

4: while n 2 St do

5: k kþ 1 //Start the kth iteration

6: The BS estimates XnðkÞ using Kalman filter

7: Compute PEDnðkÞ using (13)

8: if PEDnðkÞ > � then

9: if þþ blacklist countðnÞ � NB then

10: blacklist n

11: end if

12: if Sensor n is blacklisted then

13: Exclude sensor n from localization

14: end if

15: end if

16: end while

Note that the attack-detection threshold � is carefully
designed and securely maintained by the attack detector at
the BS, and hence, it may be very difficult, if not impossible,
for an attacker to manipulate its attack strength based on
the threshold value.

6 PERFORMANCE EVALUATION

SOLID is evaluated using Matlab-based simulation. We first
describe the simulation setup and show the efficacy of
shadow-fading estimation in SOLID in the absence of
attacks. We then demonstrate SOLID’s robustness against
various attack scenarios including slow-poisoning attacks,
and show the tradeoff in determining the attack-detection
threshold. Finally, we show SOLID’s efficacy in spatial
spectrum reuse.

6.1 Simulation Setup

We consider a CRN in which sensors are randomly
distributed according to a point Poisson process (as
discussed in Section 3.1) in a 6 km� 6 km area with an
average sensor density of 3/km2, unless otherwise speci-
fied. We assume a WM with a transmit-power of 250 mW,
which is the maximum transmit-power allowed by the FCC
in the UHF band [43]. For WM’s mobility, we assume a
Random Waypoint model without pause time [44], which is
frequently used in simulations for wireless networks. We
assume that the WM moves at a fixed speed of 5 m/s with a
destination randomly selected in the simulated network
area. For each testing scenario, we ran simulations over at
least 60 randomly generated secondary network topologies
to study average behavior.

For WM sensing, we fix the sensing interval at 2 seconds
[45], and during each sensing period, sensors measure the
RSS using the energy detector for 1 ms, as is typically
assumed in 802.22 WRANs [46]. The radius of the fusion
range for cooperative sensing is fixed at Rs ¼ 1 km, which is
shown to be near optimal for WM sensing in an 802.22
WRAN [14]. The shadow fading dB-spread �dB is assumed
to be 5 dB, as it is typically assumed in IEEE 802.22 WRANs.
The shadowing-decorrelation distance is set to 150 m,7 and
the path-loss exponent � is 4. We assume these parameters
are estimated at the time of system deployment, and thus
known a priori to the secondary system.

For WM tracking, we set the number of samples for SMC
to ns ¼ 40 and set the resampling threshold Nthr empirically
in the range Nthr 2 ½3; 5�, depending on the network
environment. In what follows, the figures of localization
error plot the average as well as 
 0:25 � interval.

6.1.1 Effects of Shadow Fading

Fig. 3a shows that SMC-based tracking suffers from the
unpredictability in RSSs due to shadow fading, resulting in
a rapid increase in error as �dB increases. By contrast, SOLID
maintains a small average localization error (<35 m) for all
simulated scenarios thanks to its estimation of the primary
location and shadow-fading gains, which refine each other
throughout the tracking process.
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6.1.2 Effects of Noise Power

The measurement noise (including the effects of multipath
fading) in RSSs can adversely affect the accuracy of
shadow-fading estimation. Fig. 3b shows that the average
localization error increases with noise power (�m) since a
large �m makes the shadow-fading estimation less accurate.
Therefore, it is crucial to combat or reduce the effect of noise
power �m at each cooperative sensor in order to fully
benefit from shadow-fading estimation in SOLID.

Although the standard deviation of Rayleigh fading, �m,
can be as large as 5.5 dB in practice, many techniques can be
used to significantly reduce the effect of multipath fading,
e.g., exploiting antenna diversity [47]. For sensors with a
single transceiver, this can be accomplished by extending
the sensing time (longer than the channel coherence time)
[48] at the expense of increased sensing overhead (e.g., time
and energy). In what follows, we assume the standard
deviation of the noise power is fixed at �m ¼ 0:3 dB.

6.1.3 Effects of Sensor Density

Fig. 3c plots the localization error for various average sensor
densities. The figure shows that the average localization
error decreases as the sensor density increases for both
schemes. However, the error drops faster with SOLID,
significantly outperforming the SMC-based tracking scheme
thanks to its ability to accurately track the shadow fading
gains. When the average sensor density is � ¼ 3:5=km2,
SOLID reduces the error by up to 88 percent compared to
SMC-based tracking.

6.2 Attack-Tolerance of SOLID
We now demonstrate SOLID’s attack-tolerance while vary-
ing two key attack parameters; attack strength and attack
population. We fix the attack frequency at 0.3, i.e., compro-
mised sensors launch attacks independently with probabil-
ity 0.3 in each sensing stage. We set the detection and
blocking thresholds to � ¼ 5 dB and NB ¼ 2, respectively.

To demonstrate the efficacy of SOLID, we compare the
following three testing schemes: 1) SMC-based tracking,
2) SOLID without attack detector, and 3) SOLID with attack
detector.

6.2.1 Impact of Attack Strength

Here, we show the impact of attack strength on the
localization accuracy, while varying the attack strengths in

the range between 0 and 10 dB. We assume that the attack
population is 30 percent, i.e., each sensor is compromised
with probability 0.3.

Fig. 4 shows that the localization performance of SMC-
based tracking suffers from large attack strengths due to
its lack of ability to detect and filter out manipulated
sensing reports. For a similar reason, the localization error
of SOLID without attack detector also increases with
increasing attack strengths. However, this scheme signifi-
cantly lowers the average error compared to the SMC-
based tracking, because of its ability to accurately track the
shadowing gains.

In contrast, SOLID with attack detector maintains a low
localization error even in the case of large attack strengths.
This performance superiority can be explained as follows.
On one hand, the attack detector in SOLID successfully
withstands weak attacks, i.e., <� ¼ 5 dB, because such
attacks do not influence the localization outcome much
even though they can evade the attack detector. On the
other hand, the attack detector can easily detect strong
attacks, i.e., >� ¼ 5 dB, thanks to its ability to detect large
deviations in shadowing estimation caused by manipulated
sensing reports.

However, Fig. 4 shows that the localization error of
SOLID with attack detector still increases slowly with
increasing attack strength for the following two reasons.
First, the detection delay (i.e., NB) allows an attacker to
influence the localization outcome. Second, the localization
error induced by the attackers increases the attack false-
alarm rate, i.e., misclassifying legitimate sensors as
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Fig. 3. Tracking performance under no attack. SOLID (a) successfully withstands shadow fading-induced unpredictability, (b) achieves high
performance gain when the measurement noise (�m) is small, and (c) outperforms SMC-based tracking for various sensor densities.

Fig. 4. Attack-tolerance of SOLID. SOLID successfully tolerates attacks
thanks to its ability to exploit temporal shadowing correlation to
accurately detect abnormal sensing reports.



malicious/faulty, thus increasing the fraction of attackers
in the set of cooperative sensors.

6.2.2 Impact of Attacker Population

Next, we examine the impact of the attacker population by
varying the fraction of compromised sensors from 0 to
50 percent. We fix the attack strength at 5 dB. As expected,
Fig. 5 shows that a larger attacker population degrades
localization performance because it is harder to identify
compromised sensors. Moreover, a large fraction of
compromised sensors will remove a large number of
sensors from the cooperating group, which, in turn,
negatively affects localization performance. Nevertheless,
localization error is significantly reduced by SOLID with

attack detector compared to the conventional SMC-based
tracking scheme even with a large fraction of compromised
sensors, demonstrating its robustness against attacks.

6.3 Tolerance against “Slow-Poisoning” Attack

To further demonstrate SOLID’s high attack-tolerance, we
evaluate SOLID’s tracking performance under a challen-
ging, slow-poisoning attack, such that malicious sensors
incrementally raise the attack strength by �att (dB) in order
to evade detection, while disrupting the localization process.
Specifically, we assume that a malicious sensor reports the
falsified value Pa

t;nðkÞ in the kth sensing stage after joining
the set of cooperative sensors, i.e., Pa

t;nðkÞ ¼ Pt;n þ k ��att.
Fig. 6 shows that SOLID performs well under a slow-

poisoning attack, even without the attack detector, while the
performance of the SMC-based tracking suffers greatly from
the attack. Thus, the figure demonstrates that SOLID

efficiently mitigates the effects of a slow-poisoning attack.

6.4 Tradeoff in Determining the Attack Detection
Threshold

We now study the impact of detection threshold �. In our

simulation, we fixed the attack strength at 5 dB, and

measured localization accuracy and attack detection per-

formance (in terms of false-alarm and misdetection prob-

abilities), while varying the detection threshold in the range

� 2 ½2; 14� dB.
Fig. 7a indicates that the localization performance of

SOLID suffers in the case of low detection thresholds,

i.e., � < 6 dB, due mainly to overfiltering, i.e., some of the

well-behaving sensors are flagged as malicious and then

their reports are discarded. On the other hand, too high a

detection threshold, i.e., � > 6 dB, also degrades localization

performance because of underfiltering, in which some of the

attackers evade detection, thus adversely influencing the

localization process.
Fig. 7b clearly shows the tradeoff in determining the

attack-detection threshold � in terms of false-alarm (de-

noted by PFA) and misdetection (denoted by PMD) prob-

abilities. SOLID is shown to achieve near zero PMD and to

maintain a low false-alarm rate, i.e., PFA < 6%, unless the

detection threshold is significantly larger than the attack

strength, i.e., � > 10 dB.
Therefore, the attack detection threshold must be chosen

carefully to balance the tradeoff between false-alarm and

misdetection probabilities, while considering their depen-

dency on attack strengths and SOLID’s tolerance to weak

attacks, as observed in Fig. 4.

6.5 Improvement in Spatial Spectrum Reuse

The SUs located within a keep-out-radius of Re from a

small-scale PU (e.g., a WM) must vacate the channel to

avoid excessive interference with primary communications

[6]. The keep-out-radius needs to be enlarged when the

localization is inaccurate, thus reducing not only spatial

spectrum utilization, but also spectrum sensing efficiency.

SOLID achieves high spatial spectrum efficiency by

providing accurate location of mobile primary transmitters.

We quantify the improvement in spectrum efficiency made

by SOLID by introducing the metric of spatial spectrum

opportunity loss (SSOL), which is defined as the extended

area of PU protection due to the inaccuracy of PUs’

localization. Assuming a localization error of �, the spatial

spectrum opportunity loss due to the inaccuracy of the
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Fig. 5. Impact of attacker population. The localization accuracy of SOLID
depends on the design of attack detection threshold �, making a tradeoff
between under-/overfiltering.

Fig. 6. Attack-tolerance of SOLID against slow-poisoning attack. SOLID
successfully tolerates slow-poisoning attacks, safeguarding the tracking
process.

Fig. 7. Impact of attack detection threshold. The attack detection
threshold � affects (a) localization accuracy, as well as (b) false-alarm
and misdetection probabilities. In simulations, the attack strength is fixed
at 5 dB.



tracking process can be roughly approximated as SSOL �
�ðRe þ �Þ2 � �R2

e ¼ ��2 þ 2�Re�.
Fig. 8 compares the spatial spectrum opportunity loss of

SMC-based tracking and SOLID, assuming the keep-out-
radius of Re ¼ 2 km, which is reasonably sufficient to
provide a typical WM transmission range of 100-150 m. The
figure clearly indicates that SOLID maintains small SSOL,
improving spatial spectrum efficiency substantially. Note
that the improved spectrum efficiency can be translated to
other performance metrics, such as network throughput of
SUs. For example, the increased keep-out-radius Re

indicates that more SUs must vacate the channel to avoid
potential interference to primary communications. There-
fore, when the keep-out-radius is increased by �, additional
SUs, i.e., on average � ð��2 þ 2��Þ where � is average SU
density, must remain silent on the target channel, thus
degrading the overall SU network throughput.

7 CONCLUSION

In this paper, we have introduced SOLID, which enables
accurate and robust location tracking of small-scale mobile
primary users in CRNs. By jointly performing localization
and shadow-fading estimation, SOLID significantly im-
proves the accuracy of mobile primary user tracking and
masks the effect of manipulated sensing reports by
accurately detecting and filtering them out. Our in-depth
evaluation results, in realistic wireless environments, show
that SOLID reduces localization error significantly both in
the absence/presence of attacks, including the “slow-
poisoning” attack. The enhanced primary tracking capabil-
ity offered by SOLID enables the secondary system to
improve considerably in overall spectrum efficiency.
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