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Abstract—Spectrum sensing is key to the realization of dynamic spectrum access. To protect primary users’ communications from the

interference caused by secondary users, spectrum sensing must meet the strict detectability requirements set by regulatory bodies,

such as the FCC. Such strict detection requirements, however, can hardly be achieved using PHY-layer sensing techniques alone with

one-time sensing by only a single sensor. In this paper, we jointly exploit two MAC-layer sensing methods—cooperative sensing and

sensing scheduling— to improve spectrum sensing performance, while incurring minimum sensing overhead. While these sensing

methods have been studied individually, little has been done on their combinations and the resulting benefits. Specifically, we propose

to construct a profile of the primary signal’s RSSs and design a simple, yet near-optimal, incumbent detection rule. Based on this

constructed RSS profile, we develop an algorithm to find 1) an optimal set of sensors; 2) an optimal point at which to stop scheduling

additional sensing; and 3) an optimal sensing duration for one-time sensing, so as to make a tradeoff between detection performance

and sensing overhead. Our evaluation results show that the proposed sensing algorithms reduce the sensing overhead by up to

65 percent, while meeting the requirements of both false-alarm and misdetection probabilities of less than 0.01.

Index Terms—Cognitive radio, cooperative sensing, dynamic spectrum access, sensor selection, sensing scheduling

Ç

1 INTRODUCTION

DYNAMIC spectrum access (DSA) is a promising technol-
ogy that can help alleviate the impending spectrum-

scarcity problem, thus promoting the introduction of new
wireless services and meeting growing user demands. In
DSA networks, (license-exempt) secondary users (SUs)
identify temporarily unused licensed spectrum bands, and
opportunistically access them as long as SUs do not
interfere with legacy primary users’ (PUs’) communica-
tions. Recent measurement studies [1], [2] have indicated
that a significant portion of licensed spectrum bands are
highly underutilized, thus making DSA an attractive means
to greatly improve spectrum efficiency. To realize such
potential benefits of DSA, it is of the utmost importance to
efficiently and reliably detect spectrum opportunities or
white spaces.

In DSA networks, there are various ways to discover
spectrum opportunities, such as spectrum sensing [3], [4],
beacon protocol [5], [6], or geolocation database [7], [8], [9].
Spectrum sensors detect the presence or absence of a
primary signal in a target spectrum band. To protect PUs’
communications, spectrum sensing must meet strict re-
quirements set by regulatory bodies, such as the Federal
Communications Commission (FCC). For example, in the
IEEE 802.22 Wireless Regional Area Networks (WRANs)
[10], [11], a primary signal as weak as �20 dB must be

detected with high accuracy, i.e., both false-alarm and mis-
detection probabilities must be less than 10 percent [12].
Unfortunately, this stringent requirement cannot be met
using one-time sensing1 with a single sensor, regardless of
the underlying PHY-layer sensing schemes, e.g., energy/
feature detection [13], [14], [15]. A second method for
detecting a primary signal, called the beacon protocol, has
also been proposed to detect the presence of a primary
signal more efficiently. However, the beacon protocol
requires legacy devices to be equipped with an external
beacon device, which may not be feasible for already widely
deployed legacy systems because of the high cost involved.
Moreover, such modifications violate the basic premise of
DSA—opportunistic spectrum access should require no
modification to legacy systems. Thus, the beacon protocol
cannot obviate the need for spectrum sensing. Alternatively,
a geolocation database can be used to identify spectrum
availability at a given time and location [16]. Such a
database can be constructed and maintained by regulatory
bodies, such as the FCC in the US or Ofcom in the United
Kingdom, or by a trusted third party. A database can be
used for spectrum bands on which PU activities are
predictable, e.g., DTV signals with long ON/OFF periods.
Moreover, it can reduce the cost of large-scale sensor
deployment. In fact, the FCC recently mandated the use of a
geolocation database for accessing TV band white spaces
[17]. Algorithms and frameworks for implementing geolo-
cation databases for TV spectrum bands are currently under
development [7], [9]. However, construction of a database
with a complete spectrum map either via measurement or
propagation modeling, may require a considerable amount
of time. Examining the database to check spectrum
availability also consumes system resources. Moreover,
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spectrum sensing may still lead to better spectrum utiliza-
tion compared to the use of a geolocation database.

In this paper, we focus on improving spectrum-sensing
performance via joint design of two MAC-layer sensing
methods, namely cooperative sensing and sensing scheduling.
This joint design allows SUs not only to overcome the
performance deficiency of PHY-layer sensing, but also to
make the tradeoff between performance gain and sensing
overhead. In cooperative sensing, a fusion center (base
station) directs multiple sensors at different locations to
perform spectrum sensing simultaneously during each
sensing (quiet) period, thus exploiting sensor location
diversity [3], [18], [19], [20], [21], [22], [23], [24]. Scheduling
sensing also aims to improve detection performance by
having SUs perform spectrum sensing at various time
intervals, thereby exploiting temporal variations in re-
ceived signal strengths (RSSs) at each sensor [4], [25].
However, all SUs (sensors)2 must remain silent during
sensing periods so that SU signals are not misinterpreted as
primary signals [26]. These periods of silence waste
precious resources, such as energy and time, and ultimately
degrade the quality-of-service (QoS) of SU communica-
tions. Therefore, the fusion center must carefully select a set
of cooperative sensors and optimally schedule sensing
periods so as to minimize sensing-induced interruptions,
while guaranteeing the required detection performance,
even for weak primary signals.

To address this practical challenge, we propose an
efficient spectrum-sensing framework that exploits both
spatial and temporal variations in sensing reports (i.e.,
received primary signal strengths) to minimize the sensing
overhead subject to the detectability requirements. In
particular, we focus on large-scale PU detection in infra-
structure-based secondary networks (e.g., IEEE 802.22
WRANs) and address the following three key issues in
MAC-layer spectrum sensing: 1) which sensors to use for
cooperative sensing; 2) how to incorporate their hetero-
geneous sensitivities in data fusion; and 3) how to
minimally schedule spectrum sensing. To answer these
questions, we first introduce a new concept of spatial RSS
profiling for the incumbent signal on a given spectrum
band. Because the fusion center collects sensing results from
sensors at different locations, it can construct a unique RSS
profile for an incumbent signal. We show that such RSS
profiles can be approximated as multivariate Gaussian
when the primary signal is very weak. This Gaussian
approximation allows the fusion center to develop a simple,
yet near-optimal linear data-fusion rule via a linear
discriminant analysis (LDA). We then characterize the
network condition under which scheduling the sensing
multiple times is required. We also demonstrate that there
is no correlation in the sensing results even among
neighboring sensors in stationary DSA networks using a
software-defined radio testbed. Finally, we present algo-
rithms that minimize sensing overhead via: 1) an optimal
selection of sensors for cooperative sensing; 2) optimal
sensing duration; and 3) the optimal time to stop scheduling
additional sensing periods.

The remainder of this paper is organized as follows:
Section 2 reviews related work on spectrum sensing in DSA
networks. Section 3 introduces a DSA network model and
the energy-detection technique, followed by our approach
to exploiting spatiotemporal variations in sensing reports
for spectrum sensing. Section 4 presents our RSS-profile-
based detection scheme for one-time sensing and its
theoretical performance. Section 5 first shows that there is
no temporal correlation in sensing reports among stationary
sensors, and then it introduces our cooperative sensing
algorithms designed to select an optimal set of sensors and
to find an optimal time to stop sensing. Section 6 evaluates
the performance of the proposed algorithms, and Section 7
concludes the paper.

2 RELATED WORK

Various aspects of cooperative sensing have been studied,
such as cooperation gain [3], [19], sensor selection [27],
security [28], [29], [30], and performance-overhead tradeoffs
[31], [32], [33]. The benefits of sensor collaboration have been
reported to diminish as the degree of shadowing correlation
among sensors increases [3], [19], [21], [34]. To minimize this
detrimental effect of shadowing correlation on cooperative
sensing, several sensor-selection algorithms have been
introduced. For example, Selén et al. [27] proposed heuristic
algorithms for selecting an uncorrelated set of sensors, given
different levels of information about sensor locations. In a
similar vein, Kim and Shin [4] suggested selecting sensors
based on their geographical separation, so as to make
the sensors uncorrelated with each other. While these
approaches seek to avoid shadow fading correlation among
sensors, we show that when sensors are stationary, there is
virtually no temporal correlation in sensing reports (see
Section 5). An extensive survey of cooperative sensing in
DSA networks can be found in [35].

Sensing scheduling has also been studied as an efficient
way of improving incumbent detection performance [36],
[37], [38], [39], [40]. For example, Hoang and Liang [36]
developed an adaptive sensing scheduling mechanism that
takes into account both time-varying channel and traffic
conditions. In the IEEE 802.22 WRAN standard draft, a
two-stage sensing mechanism has been proposed to
provide flexible scheduling of quiet periods [41]. Recently,
a sequential hypothesis testing framework has been
proposed as an attractive way to minimize the sensing
delay for given detection requirements (in terms of false-
alarm and misdetection probabilities). Lai et al. [37]
presented sequential detection of primary signals using
the cumulative sum (CUSUM) algorithm. Similar to our
work, Zou et al. [40] proposed a sensing scheduling
scheme based on the framework of sequential probability
ratio testing (SPRT) under the assumption of unknown
primary signal characteristics. However, the interactions
between cooperative sensing and sensing scheduling have
not been considered, whereas we jointly optimize them to
minimize the overall sensing overhead.

Despite all these efforts, an important but unexplored
issue is the joint exploitation of sensor selection and sensing
scheduling in MAC-layer spectrum sensing to synergisti-
cally improve detection performance. We argue that

MIN AND SHIN: JOINT OPTIMAL SENSOR SELECTION AND SCHEDULING IN DYNAMIC SPECTRUM ACCESS NETWORKS 1533

2. We use the terms SUs and sensors interchangeably since we focus on
the sensing functionality of SUs in this paper.



investigating the interplay between the two MAC-layer
sensing methods is key in devising optimal and efficient
sensing schemes in DSA networks.

3 SYSTEM MODEL

In this section, we introduce the DSA network model, PHY-
and MAC-layer spectrum sensing for incumbent detection,
and assumptions that we use throughout the paper.

3.1 DSA Network Model

We consider a DSA network in which primary and
secondary systems coexist in the same geographical area,
as shown in Fig. 1. We assume a large-scale stationary
primary system, such as DTV users in TV spectrum bands.
A secondary system is an infrastructure-based network,
e.g., IEEE 802.22 WRAN, where each cell consists of a single
base station (or fusion center) and multiple stationary
sensors.3 The fusion center selects a (sub)set of sensors and
directs them to perform sensing by scheduling (one or
more) sensing (quiet) periods. At the end of each sensing
period, sensors report their measurement results to the
fusion center sequentially. Based on the sensing reports
collected from the sensors, the fusion center will make a
final decision on the presence or absence of a primary signal
and will announce the decision to the SUs in the cell. We
assume the existence of a separate control channel, which
provides reliable communication between the fusion center
and sensors.

3.2 Spectrum Sensing Model

3.2.1 PHY-Layer Spectrum Sensing

Spectrum sensing consists of PHY- and MAC-layer
mechanisms. For PHY-layer sensing, we assume the use
of energy detection instead of other sensing techniques,
such as matched-filter detection [42], cyclostationary
feature detection [43] and compressed sensing [44]. The
energy detection is one of the most widely used sensing
techniques because of its simple design and low complex-
ity; it simply measures signal power on a target frequency
band and does not require a priori knowledge of primary-
signal-specific features.

Regarding the existence of a primary signal on a given
channel, there are two hypotheses, i.e.,

yiðnÞ ¼
wiðnÞ H0ðno primary signalÞ
siðnÞ þ wiðnÞ H1ðprimary signal existsÞ;

�
where yiðnÞ is the signal received by a sensor, siðnÞ is the
primary signal, and wiðnÞ is an independent and identically
distributed (i.i.d.) additive white Gaussian noise (AWGN)
at sensor i in the nth time slot within the sensing duration.
The test statistic of the energy detector is an estimate of
average RSS [13]:

Ti ¼
B

M

XM
n¼1

yiðnÞ � yiðnÞ; ð1Þ

where B is the channel bandwidth, and M is the number of
signal samples during a sensing period. The measurement
study in [13] indicates that the test statistic in (1) can be
approximated as a Gaussian distribution using the central
limit theorem (CLT) because the signal sample size, M, is
sufficiently large, even with a short sensing duration (e.g.,
1 ms). For example, assuming that the signal is sampled at
the Nyquist rate, a sensor can obtain M ¼ 6� 103 samples
for a 6-MHz TV channel within 1 ms [45].

Then, the probability density function (p.d.f.) of the test
statistic Ti at sensor i can be accurately approximated
as [13]:

Ti �
N NB;

ðNBÞ2

M

 !
H0

N Pi þNB;
ðPi þNBÞ2

M

 !
H1;

8>>>><
>>>>:

ð2Þ

where Pi is the received primary signal strength and N is
the noise spectral density. Note that this Gaussian approx-
imation is valid even in very low-SNR environments.

We make two additional assumptions as follows:

. A1. Separation between the primary transmitter and
sensors is relatively larger than the separation
between sensors, which is reasonable in large-scale
networks such as the IEEE 802.22 WRANs [46].4

. A2. The impact of multipath fading on spectrum
sensing is negligible due to a wide channel band-
width (e.g., larger than the coherent bandwidth) as
in DTV signal detection in IEEE 802.22 WRANs [13].5

Based on the above assumptions, the received primary
signal strength at sensor i can be expressed as Pi ¼ PR � eYi ,
where PR is the average RSS within a cell, and eYi is the
shadowing gain between the primary transmitter and
sensor i. Shadow fading can be characterized by the
shadowing dB-spread, �dB, and it has the relationship
� ¼ 0:1 lnð10Þ �dB.6

Remark. It is important to note that in stationary secondary
systems, where sensors do not move, the shadowing gain
Yi is a specific realization of a normal random variable
Y � Nð0; �2Þ. Thus, the channel gain is also (pseudo)
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Fig. 1. DSA network model. A (sub)set of SUs (sensors) perform
spectrum sensing simultaneously during each sensing period and report
their measurement results to the fusion center.

3. Although we focus here on a DSA network of stationary sensors, e.g.,
CPEs in the IEEE 802.22 WRANs, our sensing scheduling algorithm can be
applied to mobile sensors as long as their sensing reports are not closely
correlated, e.g., the sensors do not move together in a group.

4. The detection of small-scale PUs, such as wireless microphones, is
outside the scope of this paper.

5. The performance of the energy detector under multipath fading can be
found in [47].

6. We assume that all sensors within a secondary cell experience the
same path-loss rate since the relative distance to the primary transmitter is
much larger than the distances between the sensors [46].



time invariant and determined based on sensor locations.
We will elaborate further on temporal correlation in
sensing reports among station sensors in Section 5.1.

3.2.2 MAC-Layer Spectrum Sensing

The performance of energy detection is highly susceptible to
signal-to-noise ratio (SNR), thus limiting its ability to meet
the FCC’s detection requirements. Moreover, noise uncer-
tainty [48] at sensors also prevents the applicability of energy
detection to such a weak primary signal. As a result, one-time
sensing with a single sensor cannot guarantee the detection
requirements imposed by regulatory bodies such as the FCC.

To overcome these challenges, we design efficient MAC-
layer spectrum sensing algorithms—i.e., sensor selection
and sensing scheduling—by exploiting both spatial diversity
and temporal variations in sensing reports (i.e., RSS) to
improve the incumbent detection performance. Most pre-
vious work studies these two MAC-layer sensing methods
separately; therefore, the analysis of their interplay is still an
open problem.

Once the fusion center collects sensing reports (i.e.,
measured RSSs) from sensors, it will perform data fusion
to make a decision. As we discuss next, we propose to build
an RSS profile for data fusion.

4 DATA-FUSION RULE BASED ON SPATIAL RSS
PROFILE

In this section, we discuss the design rationale behind our
approach, present the construction of a spatial RSS profile,
and formulate the problem of incumbent detection based
on one-time sensing as a binary classification problem via
LDA. We then analyze its detection performance and
further characterize the wireless network conditions,
under which more sensing is needed to meet desired
detection requirements.

4.1 Design Rationale

As mentioned earlier, in DSA networks with stationary
sensor deployment, the measured RSS at each sensor is
(pseudo) time invariant. This allows the fusion center to
learn the RSS distributions at sensors and construct their
spatial RSS profile. The fusion center can construct a unique
profile of RSS distributions for a given set of sensors and
sensing time. For RSS profiling, we assume a large enough
training period (including both ON/OFF periods of the
primary transmitter) for accurate estimation of RSS dis-
tributions. In practice, the RSS profile can be constructed at
the time of system/sensor deployment.

Upon collecting the sensing results during each sched-
uled sensing period, the fusion center compares the
observed RSS values with the RSS profile. A similarity
between the RSS distribution and the primary signal can be
interpreted as an indication of the presence of a primary
signal, and vice versa. Using the RSS profile, the fusion
center can adopt the sequential hypothesis testing frame-
work for sensing scheduling, and minimally schedule
sensing periods only until it accumulates a sufficient
number of observations to determine whether or not a
primary signal exists within a certain performance bound.

The RSS-profile-based data fusion offers two main
benefits: 1) near-optimal detection performance, and 2) high

robustness (fault tolerance) against attacks (malfunctioning
sensors). We will demonstrate the above benefits of the
proposed RSS-profile-based spectrum sensing in Section 6.

4.2 Construction of a Spatial RSS Profile

We propose to build a spatial profile of RSSs at multiple
sensor locations, which will be used as a main reference for
incumbent detection. To build a RSS profile, it is important
to understand the spatial and temporal characteristics of
sensing reports. The spatial RSS diversity is due mainly to
the different sensors’ locations (thus different channel gains
from the primary transmitter), whereas the temporal RSS
variations are due mainly to the measurement error of the
energy detector. The intensity of temporal variations
depends on the sensing time (i.e., M in (1)); the shorter
the sensing time, the larger the temporal RSS variation due
to the increase of measurement error.

Note that the measurement study from the IEEE 802.22
Working Group indicated that the distribution of test
statistic, T (equivalent to the estimated RSS), of the energy
detector can be approximated as Gaussian (see (2)) using
the CLT in both ON and OFF periods. Thus, the RSS profile
of ns stationary sensors is an ns-dimensional Gaussian
distribution, the parameters of which can be easily
estimated using well-known techniques, such as max-
imum-likelihood estimation (MLE). Since the RSS distribu-
tions at each sensor location are (pseudo) time invariant due
to the static deployment of SUs, the RSS profile can be used
reliably without frequent updating.

4.3 Detection with One-Time Sensing Based on LDA

We now present a detection rule using an RSS profile given
a one-time sensing measurement. Let x ¼ ½ T1; . . . ; Tns �

T

denote the vector of test statistics of the energy detector
measured by ns cooperating sensors. Then, the incumbent
detection problem can be cast into a binary Gaussian
classification problem, where the observed test statistic x 2
IRns�1 belongs to one of two classes, H0 or H1, where

H0 : x � Nð��0;��0Þ ðno primary signalÞ
H1 : x � Nð��1;��1Þ ðprimary signal existsÞ;

where ��k 2 IRns�1 and ��k 2 IRns�ns are the estimated mean
vector and the covariance matrix of RSS distributions under
Hk, respectively. Note that ��0 ¼ �2

n I, where I is an ns � ns
identity matrix and �2

n ¼ ðNBÞ
2=M.

Under the general assumption of unequal covariance
matrices, i.e., ��0 6¼ ��1, the optimal decision rule for our
detection problem can be found via quadratic discriminant
analysis (QDA) [49]. Although QDA provides optimal
detection performance for a general multivariate Gaussian
with unequal covariance matrices, its quadratic decision
boundaries do not yield a closed-form expression for
detection performance [50].

In our problem, the quadratic decision rule can actually
be linearized using a LDA on the basis of the following two
important observations, i.e., the covariance matrix under
H1, ��1, can be:

. O1) assumed as an identity matrix with fixed sensor
locations, and then,

. O2) approximated as ��1 � ��0 ¼ �2
n I in a very low SNR

environment.
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Regarding the first observation, the covariance matrix
��1 may not appear to be an identity matrix because of the
existence of shadow correlation in primary signal
strengths [51]. However, as mentioned earlier, when
sensor locations are fixed, their RSSs are also (pseudo)
time invariant and the randomness in the test statistics
comes only from the noise processes (i.e., measurement
errors), which are independent of each other. Thus, the
correlation of RSSs between any pair of sensors does not
exist, so we can assume that ��1 is also an identity matrix
as ��0 (see Section 5.1).

Regarding the second observation, the received primary
signal strength may be significantly lower than that of the
noise power for a very weak primary signal. For example, the
FCC requires the detection of a DTV signal as weak as
�20 dB, assuming the typical noise level NB ¼ �95:2 dBm
[14]. Therefore, it is reasonable to assume that Pi þNB �
NB 8i, and thus, ��1 � ��0 ¼ �2

n I. Fig. 2 justifies these
assumptions by showing that the error performances of
QDA and LDA are almost the same in very low SNR
environments.

Lemma 1. With spatial RSS profile, we have a simple distance-
based decision rule for incumbent detection:

x� ��0

H1
><
H0

������
������x� ��1

������
������; ð3Þ

where x is the measured RSS vector, and ��k is the estimated
mean vector of the RSS at sensors under Hk.

Proof. Based on the observations O1) and O2), we compute
the log likelihood of the two hypotheses H0 and H1 as:

log

�
PrðH1jxÞ
PrðH0jxÞ

�
¼ log

g1ðxÞ
g0ðxÞ

þ log
�1

�0

¼ log
�1

�0
� 1

2
ð��1þ��0Þ

T���1ð��1���0Þ

þ xT���1ð��1���0Þ;

where gkðxÞ is the estimated Gaussian distribution of the
sensing reports, x, under Hk and �� is the common
covariance matrix. �k is a priori probabilities of hypoth-
eses Hk.

Then, in our two-class problem, the fusion center will
assume H1 if the following condition holds:

xT���1ð�̂�1 � �̂�0Þ >
1

2
�̂�T1 �̂��1�̂�1 �

1

2
�̂�T0 �̂��1�̂�0 þ log

�0

�1
:

Otherwise, the fusion center will assume H0. Assuming
that the fusion center may not have an accurate estimation
of a priori probability of a primary signal, the fusion
center can set �0 ¼ �1 ¼ 0:5. Then, (3) follows. tu
Equation (3) indicates that, under both hypotheses, the

decision is made based solely on the distance between the
observed RSS vector, x, and the mean vectors of the RSS
profile, ��k. Although (3) is optimal in minimizing detection
error performance (i.e., the sum of false alarm and
misdetection probabilities), the detection requirements are
often expressed in terms of misdetection probability for a
fixed false-alarm probability. In what follows, we analyze
the performance of the proposed RSS-profile-based spec-
trum sensing.

4.4 Performance Analysis

4.4.1 Incumbent Detection Performance

Let T ðxÞ ¼4 wTx denote the test statistic for incumbent
detection, which is calculated based on the observed RSS
vector x, where w ¼4 ð��1 � ��0Þ 2 IRns�1 . Note that kwk is the
euclidean distance between the centroids of two Gaussian
distributions under both hypotheses, where the centroids
are the vectors of average RSSs at sensor locations. It can be
easily shown that the test statistic T ðxÞ follows a Gaussian
distribution, i.e., T ðxÞ � N ðwT��k; �

2
nkwk

2Þ under Hk.
Then, the probability of false alarm under our LDA-based

decision rule with the decision threshold � 2 IR is given as:

PLDA
FA ¼4 ProbðT ðxÞ > � j H0Þ ¼ Q

�
� �wT��0

�nkwk

�
; ð4Þ

where Qð�Þ is the Q-function. Using (4), the decision
threshold � can be derived for the desired PLDA

FA as:

� ¼ �n � kwk �Q�1
�
PLDA
FA

�
þwT��0: ð5Þ

Then, based on (4) and (5), the probability of misdetec-
tion, PLDA

MD , is given as:

PLDA
MD ¼

4
ProbðT ðxÞ < � j H1Þ

¼ 1�Q
�
Q�1

�
PLDA
FA

�
� kwk

�n

�
:

ð6Þ

Equation (6) indicates that, when the desired false-alarm

probability, PLDA
FA , is given, the achievable misdetection,

PLDA
MD , depends on the noise variance �2

n ¼
ðNBÞ2
M in energy

detection and the distance kwk. That is, PLDA
MD decreases as

the sensing duration (thus, the number M of sensing

samples) increases because a large number of samples

would make the decision more accurate due to the reduced

noise variance (measurement error).

4.4.2 Impact of Shadow Fading

Recall that w is defined as the difference in RSSs under both
hypotheses, i.e., w ¼4 ð��1 � ��0Þ ¼ ½P1; . . . ; Pns �

T . Therefore,
kwk under shadow fading is given as:

kwk ¼
�Xns
i¼1

P 2
i

	1=2

¼ PR �
�Xns
i¼1

�
eYi
�2
	1=2

; ð7Þ
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Fig. 2. Error performances of QDA versus LDA. The performance
difference is insignificant, even in a very low SNR environment. These
are the results of a Monte Carlo simulation with 107 runs.



where PR is the average RSS in the secondary cell due to

path loss and Yi is a location-dependent realization of a

random variable Y � Nð0; �2Þ where � ¼ 0:1 lnð10Þ �dB.
To understand the impact of shadow fading on detection

performance (in terms of PLDA
MD given a fixed PLDA

FA ), we

study the distribution of kwk in (7). Although there is no

closed-form expression available for the power sum of log-

normal random variables in (7) [52], the power sum can be

approximated accurately by rendering the sum itself as

another log-normal random variable [53].
Let eZ

0 � e2Y1 þ e2Y2 þ � � � þ e2Yns . Then, by following the

result in [53], the sum can be approximated by matching its

mean and variance with eZ
0
. The first two moments of eZ

0

are IE½eZ0 � ¼ e�Z0 þ�2
Z0 =2 and IE½e2Z0 � ¼ e2�Z0 þ2�2

Z0 . Our final goal

is to approximate the square root of the power sum, i.e.,

eZ ¼ ðeZ0 Þ1=2, which is still a log-normal random variable.

Thus, by equating the first two moments of eZ
0

and the

power sum,
Pns

i¼1ðeYiÞ
2, and then taking eZ ¼ ðeZ0 Þ1=2,

we have kwk � PR � eZ with the random variable eZ �
Log�Nð�Z; �2

ZÞ where:

�2
Z ¼

1

4
log

�
ðe4�2 � 1Þ

ns
þ 1

	
; ð8Þ

and

�Z ¼
1

2
log ðnsÞ þ �2 � �

2
Z

4
: ð9Þ

Then, we can derive the average misdetection probability as:

P
LDA

MD ¼
Z 1
�1

�
1�Q

�
Q�1

�
PLDA
FA

�
� PR � e

z

�n

�	
� fz � dz;

where

fz ¼
1

�Z
ffiffiffiffiffiffi
2�
p exp �ðz� �ZÞ

2

2�2
Z

" #
; �1 < z <1:

Fig. 3 shows examples of RSS distributions under various
wireless environments. The figure shows that the centroids
of the two Gaussian distributions will have a larger
separation, kwk, with a higher average primary signal
strength PR, or a longer sensing time TS . As indicated in (6),
a larger separation between the two RSS distributions
improves the incumbent detection performance.

Fig. 4 plots misdetection probabilities, PMD, for a given
false-alarm probability. The figure shows that the misdetec-
tion probability increases as the average primary signal
strength decreases. It shows that spectrum sensing with a
single sensor may not be sufficient to protect primary
communications. To further improve the detection perfor-
mance while introducing minimal sensing overhead, in
what follows, we jointly optimize sensor selection, sensing
time, and sensing scheduling.

4.5 The Necessity of Sensing Scheduling

We now characterize the network conditions under which
the fusion center must schedule spectrum sensing multiple
times to meet a given detectability requirement. As we
observed in previous sections, performance of one-time
spectrum sensing depends on various network parameters,
such as average primary signal strength, PR, number of
sensors for sensing collaboration ns, and detection require-
ments, PFA and PMD. The fusion center may avoid
scheduling sensing multiple times by employing a larger
number of sensors for cooperative sensing. We define the
minimum number of sensors, n�s , to meet a given detection
requirement as:

n�s ¼
4

arg min
ns

�
ns : PFA; PMD 	 �

�
: ð10Þ

Fig. 5 plots the minimum number of sensors required to
achieve the desired level of detection probability, �. This
figure shows that the required number of sensors
increases exponentially as the average primary signal
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Fig. 3. Distribution of the measured RSS vector from three cooperating
sensors under various wireless environments. The yellow (blue) dots
indicate the vector of measured test statistics under H0 (H1). The
simulation parameters are set NB ¼ �95:2 dBm and �dB ¼ 5:5 dB.

Fig. 4. Detection performance of RSS-profile-based cooperative
spectrum sensing for various primary signal strengths.

Fig. 5. Minimum number of sensors required to achieve a desired
detection performance with one-time sensing.



strength, PR, decreases. The number of sensors also
increases as the detection requirement becomes stricter,
i.e., smaller �. For example, when PR ¼ �116 dBm, more
than 70 sensors are required to achieve PFA; PMD 	 0:01.
In practice, it may be difficult to find such a large number
of sensors within a cell, and more importantly, having
such a large number of sensors may incur significant
overhead. Therefore, in a low SNR environment with strict
detection requirements, the fusion center must schedule
sensing multiple times to make the best tradeoff between
performance and overhead.

5 JOINT OPTIMAL DESIGN OF COOPERATIVE

SENSING AND SENSING SCHEDULING

In this section, we first investigate temporal correlation in
sensing reports among stationary sensors. We then propose
adaptive online algorithms that find: 1) an optimal stopping
time for scheduling sensing periods; 2) an optimal set of
sensors; and 3) an optimal sensing duration that minimizes
the average sensing-time overhead.

5.1 Temporal Correlation in Sensing Reports

Before presenting an optimal sensing scheduling algorithm,
we would like to show that there is no correlation in RSSs
among stationary sensors. As we discussed in Section 4.3,
the randomness in sensing results (i.e., the output of the
energy detector) comes only from the measurement noise,
which is independent for each sensor. To illustrate this, we
measure the Pearson’s correlation coefficient between a pair
of sensors. The Pearson’s correlation coefficient of sensing
reports from the sensors i and j can be calculated as:

�̂i;j ¼ Corrði; jÞ ¼
Pn

i¼1ðTi � IE½Ti�ÞðTj � IE½Tj�Þ
ðn� 1Þ�̂i�̂j

; ð11Þ

where �̂i and �̂j are the sample standard deviation of test
statistics Ti and Tj, i.e.,

�̂i ¼4
�

1

n� 1

Xn
i¼1



Ti � IE½Ti�

�2
�1

2

: ð12Þ

It is well known that shadow fading is correlated with
the spatial domain [51], as shown in Fig. 6a. As a result,
sensors located close to each other (e.g., within shadowing
decorrelation distance) are highly likely to exhibit similar

sensing reports. However, Fig. 6b indicates that even when
sensors are located close to each other (and thus they have
similar average RSS values), their sensing reports are not
correlated with the temporal domain.

5.2 Experimental Results

To examine the temporal correlation in RSS in a realistic
network environment, we measured RSS at four different
locations in our GNUradio/USRP2 [54] testbed deployed
on the fourth floor of the Computer Science and Engineer-
ing (CSE) Building at the University of Michigan. We
placed five USRP2 nodes (one transmitter and four
receivers) at different locations (i.e., corridors and offices)
shown in Fig. 7. We emulate the DSA network by
considering the transmitter and the receivers as the
primary transmitter and the spectrum sensors, respec-
tively. We equipped the nodes with the VERT2450 (dual
Band 2,400-2,480 MHz and 4.9-5.9-GHz omnidirectional
antenna) on a XCVR2450 board (2.4-2.5 and 4.9-5.85-GHz
dual-band daughterboard).

We measured the SNR at the receivers (thus emulating
the energy detector) for 1-min periods, as shown in Fig. 8a.
The SNR was found to be very stable during the measure-
ment periods, except for the measurement noise. Fig. 8b
shows the correlation coefficient in the measured time series
of SNRs at six receiver pairs. The results show that the
correlation coefficients are negligible for the receiver pairs,
indicating that there is virtually no correlation with the
measured SNR when the sensors are stationary.

The measurement results imply that when the fusion
center can obtain the information of average primary signal
strength at each sensor (via estimation or learning), then the
physical separation between cooperating sensors may not
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Fig. 6. Spatial versus temporal correlation in shadow fading: (a) the
spatial shadowing correlation decreases with increasing separation
between sensors where dcorr ¼ 150 m, whereas (b) the temporal
correlation in sensing reports is virtually zero regardless of the difference
in average RSS at sensors.

Fig. 7. GNURadio testbed on the fourth floor of the CSE building at the
University of Michigan. It consists of one transmitter (denoted as T) and
four receivers (1-4) working as spectrum sensors.

Fig. 8. Temporal correlation in measured RSS among stationary
sensors. (a) The measured SNR is stable at different locations, and
(b) the correlation among the measured SNR is negligible (i.e., � < 0:1).



greatly affect detection performance.7 These uncorrelated

sensing reports in the temporal domain allow us to use the

sequential hypothesis testing framework to find the optimal

time to stop the scheduling of sensing as we discuss next.

Moreover, the results also indicate that the measured signal

strengths (or sensing results) can be approximated well as a

Gaussian distribution, as shown in Fig. 9, corroborating our

assumption in Section 3.

5.3 Optimal Stopping Rule for Sensing Scheduling

The fusion center can schedule sensing multiple times

before making a final decision, and thus, it receives a

sequence of sensing reports from the sensors, which are

independent of each other.
This makes sequential detection suitable for our pro-

blem. In particular, among the various sequential detection

schemes, we adopt Wald’s SPRT [55] because it is optimal

in the sense of minimizing the average number of

observations, given bounded probabilities of false alarm

and misdetection.
Let tn ¼4 ��1

n � kwk
�1 � T ðxnÞ denote the normalized test

statistic based on the observed RSS vector xn in the nth

sensing period. The decision statistic �N is the log-like-

lihood ratio based on N sequential observations (i.e., test

statistics) t1; . . . ; tN as:

�N ¼4 �ðt1; . . . ; tNÞ ¼ ln
f1ðt1; . . . ; tNÞ
f0ðt1; . . . ; tNÞ

; ð13Þ

where fkðt1; . . . ; tNÞ is the joint p.d.f. of the sequence of

observations under hypotheses Hk 8k. Recall that ftngNn¼1

are Gaussian, and they are independent, as we observed in

Section 5.1. Then, (13) becomes:

�N ¼
XN
n¼1

�n ¼
XN
n¼1

ln
f1ðtnÞ
f0ðtnÞ

; ð14Þ

where fkðtnÞ is Nð	k; 1Þ with 	k ¼4 IE½tn j Hk� ¼ wT �k
�nkwk 8k.

Then, we have:

�n ¼ ln
f1ðtnÞ
f0ðtnÞ

¼ ð	1 � 	0Þ tn þ
1

2

�
	2

0 � 	2
1

�
: ð15Þ

Based on (14) and (15), the decision statistic �N can be

expressed as:

�N ¼ ð	1 � 	0Þ
XN
n¼1

tn þ
N

2

�
	2

0 � 	2
1

�
: ð16Þ

Then, in SPRT, a decision is made based on the observed
sequence of test statistics, ftngNn¼1, using the following rule:

�N 
 �u ) accept H1 ðprimary signal existsÞ;
�N < �l ) accept H0 ðno primary signalÞ;

�l 	 �N < �u ) take another observation;

where �l and �u (0 < �l < �u <1) are the detection thresh-
olds that depend on the desired values of PFA and PMD.

Let 
� and �� denote the desired values of false-alarm
and misdetection probabilities, respectively. Then, the
decision boundaries are given by Wald [55]:

�l ¼ ln
��

1� 
� and �u ¼ ln
1� ��

�

: ð17Þ

5.4 Sensing Delay Analysis

Recall that our goal is to minimize the number of times the
spectrum needs to be sensed, with the decision thresholds
derived from the target detection probabilities as shown in
(17). We, therefore, consider the number of sensing periods
scheduled until a decision is made (i.e., either the boundary
�l or �u is reached) as our main performance metric. The
average number of sensing periods, IE½N �, required for
decision making can be computed as:

IE½�N � ¼ IE½N� � IE½� j Hk�: ð18Þ

First, using (15), the average value of � under Hk can be
derived as:

IE½� j Hk� ¼ ð	1 � 	0Þ 	k þ
1

2

�
	2

0 � 	2
1

�
: ð19Þ

The average of �N can then be found as follows: Suppose
H0 holds, then �N will reach �u (i.e., false alarm) with the
desired false-alarm probability 
�; otherwise, it will reach
�l. Thus, using (17), we have:

IE½�N j H0� ¼ 
� ln
1� ��

�

þ ð1� 
�Þ ln
��

1� 
� : ð20Þ

Based on (18), (19), and (20), we can derive the average
required number of sensing periods for decision making as:

IE½N j H0� ¼

� ln 1���


� þ ð1� 
�Þ ln ��

1�
�

ð	1 � 	0Þ 	0 þ 1
2

�
	2

0 � 	2
1

� : ð21Þ

Similarly, we can derive:

IE½N j H1� ¼
ð1� ��Þ ln 1���


� þ �� ln ��

1�
�

ð	1 � 	0Þ 	1 þ 1
2

�
	2

0 � 	2
1

� : ð22Þ

Based on (13)-(22), Algorithm 1 describes our online
algorithm for scheduling sensing periods that finds the
optimal stopping time for sensing.

Algorithm 1. ONLINE SENSING SCHEDULING.

The fusion center does the following

1: while each round n 2 ½1; Nmax� of sensing period do

2: Receive results of energy detector (i.e., RSS) xn from

sensors
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Fig. 9. The measured SNR can be approximated as a Gaussian
distribution.

7. Note that, in a stationary DSA network environment, such as the IEEE
802.22 WRAN where all the sensors (called CPEs) in the network do not
move, the fusion center can easily obtain the RSS at each sensor, e.g., by
simply observing the reports from the sensors.



3: tn  ��1
n � kwk

�1 � T ðxnÞ // Calculate test statistic
4: �N  �N þ ð	1 � 	0Þ tn þ 1

2 ð	2
0 � 	2

1Þ
5: if �N 
 �u then

6: A primary exists and we schedule fine-sensing

(or initiate the channel vacation procedure)

7: else if �N < �l then

8: A primary does not exist

9: else if n ¼¼ Nmax then

10: Schedule fine-sensing for in-depth measurement
11: else

12: Schedule another sensing period and wait for the

observation

13: end if

14: end while

5.5 Tradeoff in Sensing Overhead: Energy
Detection versus Feature Detection

In practice, the number of sensing periods that can be
scheduled before the fusion center makes a final decision
can be upper bounded by Nmax due to several factors, such
as the detection delay requirement, intersensing interval,
initial sensing delay, and sensing time [56]. For example, in
the 802.22 WRAN standard draft, the SUs must be able to
detect the return of a PU within 2 seconds [12]. Otherwise,
the fusion center must schedule a fine-sensing (i.e., feature
detection) period at the end of the current sensing interval
to perform expensive feature detection. Therefore, we set a
threshold Pth—a design parameter—such that the fusion
center must reach a conclusion within Nmax sensing periods
with a probability greater than or equal to Pth.

Let Nopt denote the optimal stopping time of sensing
under Algorithm 1. Then, we want to derive the probability
of satisfying Nopt 	 Nmax, which should be no less than Pth.
Although an approximate expression for the distribution of
Nopt can be derived, we instead derive a lower bound of the
probability for computational efficiency [55].

Suppose �Nmax

 �u. Then, we have Nopt 	 Nmax, so the

following inequality holds:

Prob
�
Nopt 	 NmaxÞ 
 Probð�Nmax


 �u
�
: ð23Þ

Since Nmax is sufficiently large in practice, we can use the
CLT, and the inequality �Nmax


 �u can then be written as:

�Nmax
�Nmax IE½� j H1�ffiffiffiffiffiffiffiffiffiffiffi
Nmax

p
�1ð�Þ


 B�Nmax IE½� j H1�ffiffiffiffiffiffiffiffiffiffiffi
Nmax

p
�1ð�Þ

; ð24Þ

where �1ð�Þ is the standard deviation of � under H1, which
can be derived as �kð�Þ ¼ ð	1 � 	0Þ 8k from (15). Then, the
left-hand side of (24) is normally distributed with zero
mean and unit variance when H1 is true.

Therefore, based on (23) and (24), we have the following
lower bound of the probability that the fusion center makes
a decision within Nmax observations:

Prob
�
Nopt 	 Nmax

�

 � ¼ Q

 
B�Nmax IE½� j H1�ffiffiffiffiffiffiffiffiffiffiffi

Nmax

p
�1ð�Þ

!
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

this part should be
Pth

: ð25Þ

This lower bound will be considered in our algorithm to
select an optimal set of sensors, i.e., the right-hand side of

(25) must be greater than the threshold probability Pth to
avoid scheduling a longer sensing period for feature
detection (see line 17 in Algorithm 2).

Algorithm 2. JOINT OPTIMIZATION OF SENSOR SELECTION

AND SENSING TIME.

Initialize the desired detection parameters PFA,PMD,Pth
2: Initialize the set of available sensors � ¼ f�1; . . . ; �nsg

Initialize the optimal set of sensors ��  ;
4: Initialize the set of sensing time TTS 2 ½1; 2; 3; 4; 5� ms

Initialize the sensing overhead O�  1
6: while � 6¼ ; do

��  arg max�i2�fPig // Pi ¼ PR � eYi
8: � � n f��g

� �� [ f��g
10: for each TS 2 TTS do

TDð�; TSÞ  TS þ j�j � TR
12: N�  minfmaxfIE½Nð�; PFA; PMD; TSÞ�; 1g; Nmaxg

OEð�; TSÞ  N� � TDð�; TSÞ
14: end for

T �S  arg minTS2TTS
fOEð�; TSÞg

16: Omin  OEð�; T �SÞ
if Omin > O� and PrðNopt 	 NmaxÞ 
 Pth then

18: return ð��; T �SÞ
else

20: ��  �

O�  Omin
22: end if

end while

5.5.1 Finding the Optimal Threshold P �th
Without reaching one of the thresholds, �u and �l, the
fusion center must schedule a fine-sensing period. Thus, for
a given threshold value of Pth, the total expected sensing
overhead to meet the detection requirements can be
expressed as:

Ototal ¼ OE ðPthÞ þ ð1� PthÞ � OF ; ð26Þ

where OE ðPthÞ is the sensing overhead of energy detection
with cooperative sensing and sensing scheduling, subject to
the constraint Pth; a higher Pth incurs a larger overhead. On
the other hand, OF is the sensing overhead of feature
detection, which is assumed to be a constant, e.g., feature
detection takes up to 26 ms for DTV signal detection.

The first and second terms in (26) are monotonically
increasing and decreasing functions of Pth. Therefore, there
exists an optimal P �th that minimizes the total sensing
overhead. We will study the impact of Pth on the sensing
overhead in Section 6.

5.6 Algorithm for Joint Optimization of Sensor
Selection and Sensing Time

We now turn to the problem of finding an optimal set of
sensors, as well as an optimal sensing time, that together
minimize the average sensing overhead. Let � denote the
total set of sensors in the network available for cooperative
sensing with estimated RSS distributions via training.
The key idea is to utilize a subset � � � of sensors with
relatively high-average RSS values, and also select the
sensing time TS , thus minimizing both the number of
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cooperating sensors and the number of sensing periods in
incumbent detection, while guaranteeing the detectability
requirements. Given a subset of sensors, �, and sensing time
TS , the total expected sensing overhead before the fusion
center accumulates enough sensing samples can be ex-
pressed as:

OEð�; TSÞ ¼min
n

max
n

IE½Nð�Þ�; 1
o
; Nmax

o
�TDð�; TSÞ; ð27Þ

where IE½Nð�Þ� is the expected number of sensing periods
necessary to meet the detection requirement with a set � of
sensors. TDð�; TSÞ is the total time duration for a single
sensing, which consists of a sensing period and a measure-
ment reporting period:

TDð�; TSÞ ¼ TS þ j�j � TR; ð28Þ

where TS is the sensing duration and TR is the duration of a
time slot for reporting the sensing result to the fusion center.

Then, based on (25), (27), and (28), our problem of
finding an optimal set of sensors and optimal sensing time
can be formally stated as:

Find ð��; T �SÞ ¼ arg min���;TS2TTS
OEð�; TSÞ

subjectto ProbðNopt 	 NmaxÞ 
 Pth;
PFA 	 
;
PMD 	 �;

where 
 and � are the desired false-alarm and misdetection
probabilities.

Unfortunately, there is no analytical solution to this
problem, and finding an optimal solution is computation-
ally prohibitive as it requires an exhaustive combinatorial
search. For this, we propose a simple algorithm as described
in Algorithm 2. The idea is that we sort the sensors in
descending order of average RSS and then add sensors to �
from the top of the list until the total sensing overhead
increases by adding another sensor, and the detection
constraint (i.e., Pth) is satisfied (line 17). The algorithm
provides an optimal solution with a low computational
overhead, i.e., Oðj�j � jTTSjÞ, where j�j and jTTSj are the total
number of available sensors and sensing times, respectively.
On the other hand, the exhaustive search requires
Oð2j�j�jTTS j � 1Þ. The algorithm is shown to reduce the
sensing overhead significantly (see Section 6.3), while
guaranteeing the desired level of detection performance.

6 PERFORMANCE EVALUATION

This section comparatively evaluates the proposed algo-
rithms using MATLAB-based simulation under realistic
wireless environments.

6.1 Simulation Setup

We consider a DSA network with a large-scale primary
transmitter (e.g., a TV transmitter) and multiple SUs (or
sensors). To demonstrate the efficacy of the proposed
schemes in realistic wireless environments, we consider
the network parameters, which are used widely in IEEE
802.22 WRANs. We assume that the noise power is NBi ¼
�95:2��i dBm, which is commonly used in IEEE 802.22
WRANs [14], where �i is the noise uncertainty (in dB) at
sensor i and B is the channel bandwidth. The channel

bandwidth is set to B ¼ 6 MHz as in TV channels. We
consider shadow fading with dB-spread �dB ¼ 5:5 (dB),
which is also typical in rural area networks such as 802.22
WRANs [46]. Throughout the simulation, we assume that
the time slot duration for reporting a RSS measurement (TR)
is fixed at 0.2 ms, and assume ns ¼ 10 cooperating sensors,
unless specified otherwise. For RSS profiling, 104 samples
for estimating the RSS distributions. This consumes only a
total sensing time of 10 seconds, assuming the sensing time
of TS ¼ 1 ms. We fix the desired false-alarm probability
PFA ¼ 0:01 throughout the evaluation.

To demonstrate the benefits of the proposed sensing

algorithms, we evaluate the performance of the following

decision- and data-fusion rules:

1. OR-rule,
2. Equal Gain Combining (EGC),
3. Maximal Ratio Combining (MRC), and
4. RSS-profile-based sensing.

The OR-rule is a simple decision fusion rule, in which the
fusion center concludes that there exists a primary signal if
at least one sensor reports the existence of a primary signal.
The other two data-fusion rules, EGC and MRC, are
different in that EGC does not require any channel state
information at the sensors, whereas MRC requires channel
state information. EGC and MRC are known to be near-
optimal in high and low SNR regions, respectively [57],
serving as the performance benchmark.

6.2 Performance of RSS-Profile-Based Detection for
One-Time Sensing

We first evaluate the performance of the proposed LDA-

based detection scheme for one-time sensing, assuming that

the sensors are randomly selected.

6.2.1 Performance Comparison

Fig. 10 compares the performance of the testing schemes for
different average RSS values. As expected, misdetection
probability, PMD, increases as average primary signal
strength, PR, decreases for all the tested schemes. The
figure also indicates that the OR-rule8 performs worst
because it does not fully utilize the sensing results.
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8. In the OR-rule, we set the detection threshold to keep the false-alarm
probability below 0.01 as in [58].

Fig. 10. Performance of detection schemes for one-time sensing with 10
sensors. RSS-profile-based cooperative sensing (denoted as LDA)
shows near-optimal performance even in a very low SNR environment.



Among the data-fusion rules, MRC outperforms EGC
because MRC exploits the SNR information at the sensors,
whereas EGC does not require channel estimation. It also
shows that our RSS-profile-based detection (denoted as
LDA) significantly outperforms the OR-rule and EGC,
thanks to its ability to set the near-optimal detection
threshold (i.e., an ðns � 1Þ-dimensional hyperplane) based
on the spatial RSS profile, which incurs only a minimal
training overhead at the time of sensor deployment. More
importantly, the performance of the RSS-profile-based
scheme is close to MRC, demonstrating its near-optimal
detection performance despite its simple detection rule.

In practice, sensors can be compromised by attackers or
malfunctioning due to hardware or software defects. Fig. 11
compares the incumbent detection performance (for PFA
fixed at 0.01) under different attack scenarios. In the figure,
sensing reports are negatively biased by a certain magni-
tude (in dBm) (denoted as attack strength) to emulate
collaborative attack scenarios (or erroneous sensors) [29].
The figure shows that the proposed RSS-profile-based
spectrum sensing keeps the misdetection probability low
for reasonably strong attack strengths (i.e., < 5 dB),
demonstrating its high robustness. In practice, when the
attack strength grows beyond a certain limit, the fusion
center can detect such deviations very easily, thus preser-
ving the detection performance.

6.2.2 Effects of Noise Uncertainty

Noise uncertainty is one of the main obstacles in using
energy detection in a very low SNR environment such as
802.22 WRANs [48]. Noise uncertainty creates a perfor-
mance barrier called SNRwall, below which signal detection
is infeasible irrespective of the sensing time or the number
of cooperative sensors. SNRwall, in fact, depends solely on
noise uncertainty as [48], specifically, SNRwall ¼ �2�1

� , where
� ¼ 10�=10 and � (in dB) is the noise uncertainty. We
assume that the noise uncertainty is bounded by 1 dB for all
sensors,9 with the corresponding SNRwall of �98:5 dBm.

Fig. 12 shows that, when the OR-rule is employed, the
detector completely fails to detect the signals below SNRwall

under the AWGN channel. However, under a practical

assumption that noise uncertainty is independent at the

sensors, the RSS-profile-based detection works well for

signals below SNRwall, even with a one-time sensing,

thanks to its ability to exploit spatial RSS diversity. The

detection performance improves further under the shadow

fading, i.e., �dB ¼ 5:5 dB, as the shadow fading increases the

spatial RSS diversity.

6.2.3 Effects of Sensing Time

Fig. 13 plots the misdetection performance for various
sensing time durations, TS 2 ½1; 20� ms. As we observed in
(6), the detection performance depends not only on the
average primary signal strength, PR, but also on the sensing
time. The figure shows that, as the sensing time increases, the
misdetection rate decreases for all tested values of PR. This is
because the more samples the detector is provided with, the
more accurate the sensing results, thus eliminating ambi-
guity regarding the existence of a primary signal. As
described in Algorithm 2, the fusion center finds a combina-
tion of an optimal set of sensors and an optimal sensing time
T �S that minimizes the average sensing overhead.

6.3 Performance of Online Sensing Scheduling with
Optimal Sensor Selection

We now evaluate the performance of the proposed online

sensing scheduling by jointly optimizing the selection of

sensors and sensing time.
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Fig. 11. Effect of attacks on incumbent detection performance. RSS-
profile-based spectrum sensing tolerates sensing-targeted attacks well
thanks to its ability to exploit spatial diversity in spectrum sensing.

Fig. 12. Effect of noise uncertainty for AWGN and shadow fading
environments. RSS-profile-based spectrum sensing works well even
when the average RSS is below SNRwall, thus overcoming noise
uncertainty.

Fig. 13. Impact of sensing time on detection performance. The amount
of time a sensor spends on sensing for one-time sensing affects the
detection performance.

9. This is a reasonable assumption since noise uncertainty can be
bounded by �1 (dB), considering several contributing factors such as
calibration error, thermal noise variation, changes in LNA amplifier gain,
and so on [59].



6.3.1 Impact on Incumbent Detection Delay

Fig. 14 shows the average number of sensing periods that
needs to be scheduled to meet the detection requirements.
The figure shows that our SPRT-based online sensing
scheduling algorithm significantly reduces the average
number of sensing periods compared to the OR-rule-based
scheduling scheme, thanks to its ability to fully utilize the
sensing results via RSS profiles. As a result, our algorithm
expands the feasible region of the energy detector sig-
nificantly. On the other hand, the OR-rule benefits relatively
less from scheduling sensing periods because RSSs do not
change over time (except the measurement errors) at fixed
sensor locations.

6.3.2 Impact on Sensing Overhead

We now demonstrate the performance of our optimal sensor-
selection algorithm in terms of the reduction of sensing
overhead. The sensing overhead is defined as the average
fraction of time (in percent) spent on fast sensing (i.e., energy
detection) within a 2-second interval, which is the channel
detection time (CDT) period (see (27)). Here, we set the
thresholdPth ¼ 0:95. Fig. 15 shows the sensing time overhead
for various sensing durations TS 2 ½1; 3; 5� ms. The figure
shows that a larger sensing time, i.e., TS ¼ 5 ms, is favored in
relatively low SNR environments (i.e., PR < �126 dBm),
whereas a smaller sensing time, i.e., TS ¼ 1 ms, is desirable in
relatively high SNR environments, in which sensing schedul-
ing may not be needed to achieve the detection requirements.
This is because in a low SNR environment, a larger sensing

duration can reduce the number of sensing periods necessary
to meet the detection requirement. On the other hand, in a
high SNR environment, even one-time sensing might suffice
to meet the requirement, so a short sensing duration is more
beneficial in minimizing the average overhead.

Fig. 16 compares the average sensing-time overhead, i.e.,
the fraction of time spent on spectrum sensing and
reporting the sensing results within a sensing interval, with
the optimal selection of sensors and sensing time against the
one without sensor selection. A sensing interval is assumed
to be 2 s, which is equivalent to CDT in IEEE 802.22
WRANs. The figure shows that our algorithm minimizes
average sensing overhead by up to 94 percent because it
selects only a subset of sensors with high average RSSs, thus
minimizing both the number of sensing rounds and the
sensing result reporting time.

6.3.3 Impact of P �th on Sensing Overhead

We now evaluate the impact of the threshold Pth on the
sensing overhead. Fig. 17 plots the sensing-time overhead
and the number of cooperative sensors used in our optimal
sensor selection algorithm, for the cases in which the total
number of sensors in the secondary networks is ns ¼ 20 and
ns ¼ 50, respectively. Here, we assume that the sensing-time
overhead of feature detection is OF ¼ 20 ms. The sensing
overhead is calculated using (26) in Section 5. A small Pth
means that the fusion center relies more on feature
detection, and vice versa; the fusion center may need to
employ more sensors and schedule more sensing periods
for energy detection as Pth increases. When ns ¼ 20, the
number of sensors and the total sensing overhead for energy
detection, OE , increases with Pth. On the other hand, the
sensing overhead for feature detection, i.e., ð1� PthÞ � OF ,
decreases linearly with Pth, resulting in Fig. 17a.

When ns ¼ 50, the fusion center can meet the detection
requirement with only a small number of sensors selected
by the proposed sensor selection algorithm. Thus, the
number of sensors is stable over the entire range of Pth, as
shown in Fig. 17d. Due to the high detection performance of
the selected sensors, the number of sensing periods required
to meet the detection requirement does not increases with
Pth. On the other hand, the overhead of feature detection
only decreases with Pth, resulting in a monotonically
decreasing sensing overhead, as shown in Fig. 17c.

In summary, when there is a sufficiently large number of
sensors in the secondary network, the fusion center may
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Fig. 14. Average number of sensing periods scheduled to meet the
detectability requirement of PMD; PFA 	 0:01. The proposed algorithm
significantly reduces the sensing overhead.

Fig. 15. Impact of sensing time on sensing overhead. A longer sensing
time becomes more desirable as the average primary signal strength
decreases, and vice versa.

Fig. 16. Performance of the optimal sensor selection algorithm. Our
proposed sensor selection algorithm (a) reduces the sensing overhead
significantly over the algorithm without sensor selection, and (b) utilizes
only a small subset of the sensors (i.e., <15 percent). The simulation
parameters are set to Pth ¼ 0:95 and TS ¼ 5 ms.



prefer to rely on energy detection, and vice versa, to
minimize the overall sensing overhead.

7 CONCLUSION

In this paper, we proposed to jointly optimize cooperative
sensing and sensing scheduling, to minimize the average
sensing overhead, while guaranteeing the desired level of
detection requirement. Our spectrum sensing framework
exploits the spatiotemporal variations in received primary
signal strength by constructing a spatial RSS profile for an
incumbent signal. We showed that the RSS distribution of
a primary signal can be accurately approximated as a
Gaussian distribution in low SNR environments and
analyzed the detection performance of the RSS-profile-
based detection scheme. We have also shown that there is
virtually no correlation between sensing reports from
stationary sensors, regardless of their physical locations.
Based on these observations, we formulated the problem of
sensing scheduling as a sequential hypothesis test, which
finds an optimal time to stop scheduling sensing subject to
given detection requirements. We also proposed an optimal
algorithm that minimizes the average sensing overhead via
optimal selection of sensors and sensing duration, by
balancing the tradeoff between detection performance and
sensing overhead. Our evaluation results have shown that
the proposed sensing algorithms reduce sensing overhead
by up to 65 percent in practical scenarios.
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