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Abstract—Multihop wireless relays can extend the area of network connectivity instantly and efficiently. However, due to the spatial
dependence of wireless link-quality, the deployment of relay nodes requires extensive, expensive measurement, and management
efforts. This paper presents a mobile autonomous router system, (MARS) through which a relay router autonomously seeks and
adjusts the best “reception” position for itself and cooperatively forms a string-type relay network with other neighboring routers.
Specifically, MARS 1) accurately characterizes spatial link-quality through a new measurement technique, 2) effectively probes/
optimizes node positioning via a spatial probing algorithm, and 3) maintains error-tolerant position information via an inexpensive
positioning algorithm. MARS has been prototyped with both a commodity mobile robot and a wireless router with IEEE 802.11
cards. Our experimental evaluation of both the MARS prototype and ns-2-based simulation show that MARS achieves an average of
95 percent accuracy in link-quality measurements, and reduces the measurement effort necessary for the optimization of a node’s

location by two-thirds, compared to exhaustive spatial probing.

Index Terms—Wireless relay networks, robot-based wireless router, wireless link-quality measurement, IEEE 802.11

1 INTRODUCTION

OVER the last decade or so, wireless relay networks have
attracted considerable attention due to their potential
for instantly and inexpensively extending network coverage
[1], [2]. For example, relay nodes can be deployed in a string
or a tree topology to existing wireless backhaul networks
for emergency response or outdoor events. However,
channel fading and shadowing often degrade the quality
of wireless links and require time-consuming and expen-
sive network deployment and management efforts, espe-
cially for manual adjustment of nodes’ placement and
configuration [3].

Significant efforts have been made to improve quality-of-
service (QoS) and reduce management costs of wireless
relay networks. For example, measurement-driven deploy-
ment of relay nodes determines their placement positions
that meet the required network QoS [4]. Rate-adaptation
and transmission-power-control algorithms allow for dy-
namic selection of modulation schemes and transmit-power
levels at fixed positions [5], [6]. Multiple-input-multiple-
output (MIMO) or multiple interfaces enable a node to
exploit spatial diversity by adaptively choosing the best
antenna or antenna element [7], [8].
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In spite of these efforts, wireless relay networks still suffer
from several fundamental limitations as follows: First,
changes in the physical environment of a wireless relay
network (e.g., due to dynamic obstacles and interferences)
often calls for manual link-quality measurement and node
relocation over a large coverage area which are tedious,
time consuming and costly. Second, even if relay nodes can
make simple movements to improve link bandwidth, these
adjustments determined by geographic distance or node
density are not guaranteed to meet the overall QoS
requirement of networks [9], [10]. Third, relay nodes may
be able to relocate themselves “optimally” (in some sense) by
using simple signal-to-noise ratio (SNR) or traffic volume
information. However, accurate characterization of spatial
wireless link-quality along with efficient node relocation is
key to the efficient (re-)formation of relay networks [11].

In this paper, we study the feasibility of using a
commodity mobile robot for addressing some of the
limitations mentioned above. Specifically, we propose a
mobile autonomous router system (MARS) that enables
a wireless relay node to 1) characterize wireless link
conditions over the physical space and 2) seek and relocate
to, the best reception position to form string-type relay
networks. Specifically, MARS is equipped with a measure-
ment protocol that defines and characterizes spatial wireless
link-quality. This measurement protocol controls each
MARS node, mounted on a mobile robot, to move and
measure wireless link-quality over the deployment area.
Furthermore, based on the raw measurement results, the
protocol extracts unique correlations of link-quality with
environmental factors, such as distance, obstacles, or
interference sources, which are useful in reducing the
measurement space (see Section 5.3). Here, MARS focuses
on the string-type relay network that allows for the easy
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deployment of extended backhaul links between remote
end-points. Applications for such a network include home
networks (e.g., extension of access point’s range), outdoor
events (football stadium) and environmental (e.g., US
border) monitoring. However, we will also describe how
MARS can support other topologies such as a tree type in
Section 5.2.

Next, MARS includes a spatial probing algorithm by
which the node can efficiently find its optimal position that
satisfies the bandwidth demand on its link. Alternating
between measurements and movements, this probing
algorithm guides the robot to identify an “interesting”
space to probe. This space is then explored at progressively
finer resolutions until a locally optimal position is found.
Moreover, the algorithm enables a set of MARS nodes to
cooperatively form and adjust wireless relay networks in case
link conditions or QoS demands change. Note that MARS
focuses on QoS demands of backhaul links, excluding
client-to-access node links. We assume that access node (i.e.,
MARS) can aggregate QoS demands from multiple clients
that are associated with it and then use the aggregate
demands to form relay links.

MARS also includes a light-weight positioning system
that provides location information to the robot. This system
is currently implemented for indoor environments and does
not require any expensive infrastructure support, such as
cameras and other sensors, but uses natural landmarks,
which are easily obtainable with a semiautomated collection
procedure, as detailed in Section 6.3. Moreover, even
though MARS is designed for challenging indoor environ-
ments, such as office buildings or large retailer shops, it is
flexible enough to use any type of positioning system,
depending on deployment scenarios (e.g., global position-
ing system (GPS) in outdoor environments).

A prototype of MARS has been built with commodity
mobile robots and IEEE 802.11-based wireless routers, and
its algorithms have been implemented in Linux using a
combination of kernel- and user-space functionalities. Our
experimental evaluation results on a prototype implemen-
tation of MARS indicate that MARS achieves an average of
95 percent accuracy for link-quality measurements, and
finds locally optimal locations with 300 percent less
measurement overhead than exhaustive spatial probing.
Furthermore, our simulation results using ns-2 [12] show
that MARS reduces energy usage by up to 54 percent
during connectivity reformation.

In summary, this paper makes the following main
contribution:

e We study the feasibility of using a mobile robot for
dynamic (re)formation of a string-type wireless relay
network, while reducing manual measurement and
relocation overheads.

e We design, develop, and implement MARS that
autonomously characterizes spatial link-quality and
uses/controls mobility to find (sub)optimal position
of a wireless router for QoS support.

o We show the effectiveness of MARS through
extensive performance evaluation using both system
prototype and simulation.

The remainder of this paper is organized as follows:

Section 2 provides the motivation behind this work.
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Section 3 presents the software architecture and a hardware
prototype of MARS. Sections 4-6 detail the core components
of MARS. Section 7 presents the evaluation results of our
MARS implementation. The paper concludes with Section 8.

2 MOTIVATION

We first argue for the need of a MARS in wireless relay
networks, and then discuss why existing techniques are not
suitable for MARS.

2.1 Why Mobile Autonomous Routers?
Due to open and continuously changing deployment
environments, wireless relay networks often incur high
measurement and (re)configuration costs [13], [14], [15].
After their deployment, relay networks may often experi-
ence severe QoS degradation, require additional measure-
ments, and/or need to adjust placement of the relay nodes,
as their physical environment changes. Even though
various techniques (e.g., transmission-power control, rate
adaptation) and technologies (MIMO, multiradios) have
been proposed, their bandwidth improvement is essentially
limited by the surrounding environment. For example,
assuming that nodes already use their maximum transmis-
sion power, a stationary node behind the wall might not be
able to improve the bandwidth of link to another node on
the opposite side of the wall using the existing techniques.
In contrast, by utilizing their mobility, mobile wireless
relay routers can overcome the spatial dependence of link-
quality. Being aware of diverse link-quality at different
locations, mobile wireless routers can automatically im-
prove network performance and also offer several benefits
in wireless relay networks as follows:

e  Extension of AP’s range. Users near the boundary of an
AP’s coverage might experience intermittent con-
nectivity. A mobile wireless router can be placed near
the limit of the AP’s communication range and relay
users’ traffic for the extension of the AP’s range.

e  Deployment of wireless relay networks. For rural areas
or outdoor events, multihop relay networks are an
inexpensive way to provide/extend connectivity,
but their optimal placement is still a challenging
task. A group of mobile routers can identify a proper
position of each router, forming a relay network [16].

e Adjustment of wireless routers’ placement. Many nodes
in a relay network need to readjust their position to
deal with environmental changes (e.g., dynamic
obstacles in urban areas), but manually adjusting
locations of each pair of nodes incurs significant time
and management costs [17]. Equipped with (albeit
limited) local mobility, mobile routers can coopera-
tively and automatically adjust their locations to
improve connectivity and link-quality.

e Improved resilience to denial-of-service (DoS) attacks.
Wireless networks are vulnerable to DoS attacks
such as jamming, and channel hopping provides
limited resilience to wide-band jamming. However,
because of the spatial locality of such attacks, mobile
wireless routers in a relay network can improve
resilience to such attacks by physically moving away
from the jamming source [11].
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Fig. 1. A group of mobile routers can cooperatively move and form
string-type wireless relay networks by being aware of spatially diverse
link-conditions over deployment areas.

Motivated by the above and other likely scenarios, we
would like to 1) design an autonomous robot-based router
system that accurately captures the quality of wireless link
over space and that effectively optimizes a router’s position
based on the thus-obtained characteristics, and 2) prototype
and evaluate such a mobile router, especially for string-type
relay networks. Specifically, as illustrated in Fig. 1, we focus
on the placement of mobile wireless routers from an AP or a
gateway and the formation of multihop relay links among
the routers given links” QoS requirements.

2.2 Limitations of Existing Approaches

There has been a significant volume of work on link-
quality awareness and the use of mobility. We discuss pros
and cons of using existing approaches for the design of a
mobile router.

2.2.1 Link-Quality Awareness

Mobile routers (relay nodes) must be able to accurately
measure wireless link-quality—in this paper, we consider
the packet-delivery ratio (PDR) or bandwidth as link-quality
parameters of interest—over physical space. There have
been numerous link-quality measurement studies and
techniques in wireless mesh networks, large-scale WLANSs,
and wireless sensor networks [18], [19], [20], [21], [22]. Their
insights and solutions, however, focus on stationary net-
works where the physical space of measurements is fixed.
Goff et al. [23] considered the link-quality change resulting
from location changes in mobile ad-hoc networks (MAN-
ETs). However, their solution only deals with a binary (ON/
OFF) connectivity model based on simple metrics such as
SNR and distance, and thus, is not suitable for capturing
various channel conditions in diverse deployment areas [9].

2.2.2 Node Mobility

Mobile routers must be able to exploit their mobility in
conjunction with link-quality-awareness. Mobility in wire-
less networks has been considered from various perspec-
tives. First, flip-type mobility has been proposed for sensor
nodes to make a one-time random movement [24]. Second,
use of sophisticated robots in hybrid sensor networks has
been proposed, and the tradeoff between node density and
node mobility has been studied [25]. Third, using mobile
sensors against radio jamming attacks has been considered,
and movement-decision metrics (i.e., SNR and the amount of
traffic) have been proposed [11]. Fourth, multipath-fading-
aware mobility control strategies to improve link throughput
has been proposed in [26]. Finally, in MANETs, users’
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mobility is exploited for mobile devices to improve their
end-to-end throughput [27], [28]. However, the mobility
used in these existing approaches is not closely coupled with
link-quality-awareness or based on a theoretic channel
model, reducing the chance of making optimal movements
in heterogeneous network deployment environments.

2.2.3 Position Awareness

Mobile routers with limited battery and CPU power must be
equipped with a light-weight positioning system that does
not require any extensive computation or expensive infra-
structure support. On the one hand, positioning in an open
sky outdoor environment is relatively easy and fast since
GPS provides accurate position information. On the other
hand, positioning in an indoor environment or an outdoor
urban canyon is challenging, and many solutions have
been proposed. In the area of robotics, the use of different
hardware (sonar, laser, compass, and video camera) has
been explored [29], [30], and various assumptions (e.g.,
known or unknown landmarks) and algorithms (training or
search) have also been investigated [31]. However, their
hardware and computation costs have to be carefully
considered, depending on the underlying applications. In
the field of wireless networks, using AP-based landmarks
[32], ceiling-mounted sensors and listeners [33], and video
cameras [34] have been proposed, but these approaches
need installation of a positioning infrastructure or coopera-
tion from the network infrastructure (e.g., APs).

3 MARS ARCHITECTURE

We now present the architecture of MARS. We first describe
its design rationale and software architecture. Then, we
present our current hardware prototype of MARS that is
used for link-quality measurement and system evaluation.

3.1 Design Rationale

MARS is a distributed system in which each MARS node
autonomously adjusts its position to meet the network (e.g.,
bandwidth and network coverage) requirements via the
following distinct features:

e  String-type relay networks. MARS supports the dy-
namic (re)formation of a string-topology wireless
relay network. Using commodity robots and IEEE
802.11 wireless cards, MARS aims to extend wireless
network coverage where each relay link satisfies
given network requirements, as illustrated in Fig. 1.

e  Patch-based spatial measurement. To characterize link-
quality over a wide area, MARS divides space into
fixed-size squares (or patches) and measures the link-
quality in the selected patches. This divide-and-
conquer approach enables MARS to locate subspaces
or subareas where the link quality meets the QoS
requirements within the entire deployment area.

e  Hierarchical spatial probing. MARS takes a hierarchical
approach to finding locally optimal positions. Unlike
exhaustive spatial probing, MARS incrementally
probes space as needed. By repeating the cycle of
spatial measurement and local spatial-probing deci-
sion, MARS reduces the probing overhead.
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Fig. 2. MARS software architecture. MARS is designed across the
application, network, and link layers in a router, and controls sensors for
measuring distance and a robot for movement.

e  Infrastructure-less hybrid positioning. MARS includes a
positioning system for the case where no external
positioning system is available. By exploiting the
benefits of both dead-reckoning (DR) and physical-
landmark-based positioning, MARS achieves posi-
tioning accuracy at a reasonable training cost.

Throughout this paper, we assume that a robot has
only basic driving capabilities (forward/backward/spin),
which are adequate for evaluating the proposed design of
mobile routers. Further, we consider link bandwidth (or
(PDR)) as the QoS parameter, and the two terms are used
interchangeably.

3.2 Software Architecture and Operations

Following the above rationale, the software architecture of
MARS is designed as shown in Fig. 2, and operates as
follows: Initially, a MARS node receives the bandwidth
requirement of link to AP or a neighboring node and then
checks if the node’s current position meets the requirement,
labeled as satisfiability check in the figure. If the current
position does not meet the requirement, MARS then decides
which direction it has to move-and-measure (Spatial Prob-
ing) based on previous link-quality information (Quality).
Next, if further measurements are necessary, MARS moves
to a different location (Movement) and measures the link-
quality at the new location (Measurement). Based on the
measured link-quality, MARS again checks the bandwidth
satisfiability. This procedure is repeated until MARS finds
the position that satisfies the bandwidth requirements.
Finally, for each movement, MARS maintains the node’s
position information (Position) using the distance informa-
tion periodically measured by sonar sensors (Distance).
Next, we will detail the three core components of MARS:
spatial measurement protocol in Section 4, spatial probing
algorithm in Section 5, and positioning system in Section 6.

3.3 Hardware Prototype

Before detailing the algorithms of MARS, we describe its
hardware prototype built for our measurement and
evaluation of MARS. Fig. 3 depicts the hardware prototype
of MARS, which consists of a mobile robot, a multiradio
wireless router, and sonar sensors: 1) MARS uses iRobot
Create [35] for mobility, which provides a well-defined API
for movement control (e.g., a granularity of 1 cm move-
ment) and is powerful enough to carry a network node as in
[34] and [36]; 2) MARS is equipped with an RB230 wireless
router (233-Mhz CPU, 128-MB memory) [37], and the router
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Fig. 3. MARS hardware prototype. A MARS node is prototyped with an
iRobot, a wireless router, and sonar sensors.

is equipped with two IEEE 802.11 miniPCI NICs, each with
a 5-dBi omnidirectional antenna. In addition, this router
includes a serial port for communication with the robot and
sonar sensors, and is connected to an external battery for a
long lifetime; 3) MARS is equipped with a sonar sensor on
each side of the robot to measure the distance between the
robot and the surrounding obstacles. The sonar sensor is
cheap (about $25 apiece) and provides accurate distance
information (error of less than 2.5 cm) to objects placed at
up to 6 m in line of sight for the positioning system.

4 MEASUREMENT PROTOCOL

We first overview challenges in designing a link-quality
measurement protocol, and then propose a measurement
protocol that characterizes spatial link-quality through
point and spatial measurement techniques.

4.1 Overview

Key challenges in measurements are (C1) how to measure
the link bandwidth at a given position/time and (C2) how
to characterize the quality of links as a function of physical
space. First, to determine if the current position’s link
satisfies the bandwidth demand, the measurement protocol
has to be able to accurately estimate the link bandwidth at
each position. Moreover, the protocol has to capture the link
bandwidth as quickly as possible, to reduce probing time,
or equivalently node’s energy consumption.

Next, MARS must be able to derive the overall quality of
links in a certain space, mainly for intelligent selection of a
subspace for measurement within a large deployment area.
Even though wireless link-quality may vary with the node’s
location [38], MARS needs to be able to characterize and
differentiate spaces with respect to the quality of links. In
addition, this characterization must be accurate even in the
presence of adverse environmental factors, such as moving
obstacles or short-term interference during measurement
period, which may cause temporal variations in link-quality
measurement.

The measurement protocol in MARS uses both point and
spatial measurement techniques to overcome the challenges
mentioned above. In what follows, we will detail both
techniques with which MARS derives spatial link-quality
together with measurement results. Note that in this
section, we use controlled configurations (e.g., low trans-
mission power, small measurement size) for experiments,
due to indoor space constraints. Although the absolute
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numbers of results might be different under different
settings, their trends support the underlying rationale of
the proposed techniques. We will also present evaluation
results under real-life settings in Section 7.

4.2 Point Measurement Technique

To meet the accuracy and time constraints, MARS includes a
unicast-based active probing technique along with a cross-layer
design principle. There have been numerous techniques for
estimating wireless link bandwidth. First, the SNR-based
approach has been studied extensively for the PHY layer
based on information theory [38], but the correlation between
SNR-based bandwidth estimation and packet-level band-
width estimation is shown to be weak [9], [39]. Second, the
broadcast-based PDR measurement has been widely used in
multihop routing metrics, such as expected transmission
count (ETX, [40]) and expected transmission time (ETT, [41]).
However, due to different underlying communication
settings (e.g., modulation schemes) of the broadcast from
those of actual data transmission, the technique has limited
measurement accuracy, even if the broadcast is modified to
use various modulation schemes [42], [43]. Next, the packet-
pair technique used in [41] is bandwidth-efficient, but
sensitive to the short-term fading effect due to its use of a
small number of probing packets. By contrast, the measure-
ment technique in MARS uses a set of unicast probing
packets to mimic actual data transmissions for accuracy, and
evenly spaces the packets throughout a given measurement
period (e.g., 1 packet every 50 ms for a = second-period) to
minimize the undesirable effect of channel fading (e.g.,
bursty bit-errors). Here, the measurement period can be
given as a system parameter, and this parameter can be
determined, depending on site-specific radio environment as
well as system tolerance to temporal measurement overhead.
Furthermore, as shown in Fig. 2, the measurement
technique in MARS is designed and implemented across
the network and link layers to further improve measure-
ment accuracy. After receiving a point measurement request
from the spatial probing algorithm, the measurement
protocol at the network layer sends a set of unicast probing
packets to a neighboring node. At the same time, the
protocol at the device driver passively monitors their
transmission results based on MAC’s feedback. The use
of this feedback at the sender side allows for capturing the
total number of (re-)transmissions made by MAC for
delivering the probing packets, yielding an accurate PDR
of the link. Next, to capture link asymmetry, MARS requests
the neighboring node to execute the same probing proce-
dure in the opposite direction, and then the node sends the
measurement result back to the MARS node. Finally, the
PDRs of both directions are stored in the Quality database at
the MARS node, and the protocol notifies the completion of
the point measurement to the spatial probing algorithm.
Our measurement evaluation of the above protocol
shows that the active probing technique in MARS achieves
higher than 95 percent accuracy in estimating link band-
width. Fig. 4 shows the progressions of actual UDP
throughput (upper figure) and PDRs measured via the
point measurement technique (lower figure) of a link
between MARS and an AP over a straight line of 7 m. As
shown in the figures, MARS’s measurement is indeed close
to the actual link bandwidth at the cost of 20 probing
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Fig. 4. Point measurement accuracy. Link-quality (PDR) measured by
MARS (bottom figure) is accurate enough to capture the actual
bandwidth (top figure) of a link over a line of 7 m from a remote AP.

packets for a 2 s-period at each position. We use the
measured PDR (i.e., Estimated LQ in Fig. 4 to derive link
bandwidth using an PDR-to-link capacity equation in [44].
Here, we use “link bandwidth” to refer to link capacity.
Then, we calculate root-mean-square-error (rmse) between
the estimated link bandwidth and achieved UDP through-
put. Finally, we derive the accuracy of the measured LQ,
based on the average of normalized rmse. Here, this
accuracy is derived from each run of the experiment settings
as it affects to the accuracy of spatial link-quality estimate.
For each run out of the multiple runs, the point measure-
ment technique achieves more than 95 percent accuracy.

Next, from the point measurements, MARS can also
identify a network boundary (gray bar in the lower figure)
that may marginally satisfy the link bandwidth. Note that
while MARS is capable of measuring PDRs over different
data-transmission rates, it uses a fixed-data rate to
evaluate the accuracy and applicability of the monitoring
technique for spatial measurement protocol, which will be
described next.

4.3 Spatial Measurement Protocol

Next, to characterize link-quality as a function of space,
MARS essentially uses a divide-and-conquer approach built
upon spatial locality in link-quality. There have been
numerous techniques proposed to model spectrum propa-
gation over space. First, empirical models such as log-
distance path loss model [38] determine the propagation
based on mathematical models and empirical offline
measurements in other similar environments. However,
the temporal and spatial granularities of such measure-
ments are too coarse (e.g., retail stores during daytime) to
predict the propagation in a heterogeneous deployment
environment. Next, ray-tracing-based models can predict
the propagation of a signal by tracing rays from a
transmitter at uniform angular intervals in all directions
[45]. However, this model requires the detailed geometric
structure of walls, ceilings, and floors along with informa-
tion about construction materials. Third, neural-network-
based models such as a multiplayer perceptron algorithms
have been proposed for cellular networks [46], but they
need an extensive training set of terrain information and
exhaustive SNR measurements.

By contrast, MARS relies purely on online link-quality
measurements over unit space without requiring informa-
tion about physical environments. Specifically, MARS first
divides space into grids or patches of fixed size (e.g., 50 cm x
50 cm in an indoor environment). Note that this size
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Fig. 5. Spatial link-quality measurement. (a) MARS measures point link-
quality at each vertex of a patch. (b) The point measurement results are
then used for deriving SPDR of the patch.

changes dynamically, depending on space to probe (an
outdoor or cooridor environment) and link parameters
(transmission power); we use 50 cm x 50 cm patches and
5 dBm transmission power for our controlled measure-
ments. Next, MARS measures the quality of link between a
node and its fixed neighboring node, while changing its
location within the patch. These measurements are then
averaged to derive spatial link-quality as follows:

1 n 1 m
SPDRZ;:E;PDR]-, PDRj:a;m (1)

where SPDR,; is the spatial link-quality of patch i, PDR; is
an average PDR of m point measurements at vertex j, and r
is the PDR of one point measurement at a given orientation
angle. The intuition behind this definition is to exploit
spatial locality among the quality of links within a small
space [22]. By using a small number of sample measure-
ments within the space, SPDR can represent an average
bandwidth of links in the space. Furthermore, as we will
describe in Section 5, the patch-based definition allows the
spatial probing algorithm to selectively and incrementally
probe an area of interest, as opposed to probing the entire
area. Note that the selection of the patch-size is an
interesting issue, which has been explored in [47].

Finally, to reduce temporal and spatial variations in link-
quality measurements, MARS not only takes multiple
measurements per patch, but also introduces randomiza-
tion. As shown in Fig. 5a, a MARS node conducts point
measurement at each vertex m times. In addition, for each
point measurement, the node randomly changes its direc-
tion so that measurements can reflect as diverse links as
possible. Here, m is dynamically adjusted, depending on
the variance of point measurements (m =3 by default).
MARS also adjusts the number of vertices (n = 4 by default)
within each patch, if the link-quality variance among the
vertices is larger than a given threshold. For example, if the
variance of PDR is greater than 0.2, MARS linearly increases
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m and n for the patch. Fig. 5b shows SPDR measurements
in the topology of Fig. 5a. As shown in the figure, SPDR
normalizes the quality of links for each patch given a
variance constraint (0.1 in PDR), and effectively differenti-
ates spaces with respect to link quality.

5 SPATIAL PROBING ALGORITHM

With the measurement protocol, we present a spatial
probing algorithm that guides MARS nodes to find locally
optimal positions to dynamically (re-)form a string-type
relay network.

5.1 Overview

With a group of nodes, the objective of the spatial probing
algorithm in MARS is to cooperatively form a relay network
by efficiently finding a locally optimal node position. In other
words, the algorithm has to minimize measurement space
(equivalent to energy or convergence time) and must
identify position that satisfies network QoS requirement.
However, main challenges are 1) how to coordinate a group
of MARS nodes to efficiently form a relay network and
2) how to find an “interesting” space for each MARS node to
probe. First, coordinating a group of relay nodes is
challenging because the link-quality between neighboring
nodes depends heavily on each other’s position. Further-
more, this coordination is not an one-time operation, but a
recurring operation due to changes in the physical environ-
ment or bandwidth demand.

Next, during the formation of a relay network, each
MARS node has to efficiently find an optimal position at the
least measurement cost. Finding an optimal node position
in a relay network is essentially equivalent to maximizing
the physical distance between adjacent relay nodes, while
satisfying the bandwidth demands of their links. On one
hand, exhaustive measurements over a target area might be
able to provide globally optimal location information, but it
might require significant amounts of energy and time. On
the other hand, finding a locally optimal position may cause
a local maximum, which may result in either poor link-
bandwidth or reduced network coverage.

5.2 Iterative Network (Re-)Formation

For deployment and adjustment of a relay network, the
spatial probing algorithm uses an iterative approach for both
energy-efficiency and reduction of the coordination over-
head. Let us consider the following deployment scenario.
Starting from a gateway, Sam, a network administrator,
periodically drops a MARS node (MARS;,...,MARS,)
along corridors like a trail of breadcrumbs [3], in a way that
neighboring MARS nodes can hear heartbeats of each other.
After deploying n nodes in a chain, Sam requests the
deployed nodes (e.g.,, MARS;) to cooperatively optimize
their position for meeting the bandwidth (bw) requirement of
link to a previous node (M ARS;_;) or the gateway. One way
of coordinating the optimization would be the use of a
centralized approach in which each node sends its measure-
ment results to the gateway, and the gateway can calculate
the best position of each node. However, this approach
requires each node to conduct extensive link-quality mea-
surements over the entire local space. Furthermore, since the
bandwidth of one link depends on both end-nodes’ locations,
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the number of measurements that each node conducts
increases quadratically. For example, assuming that there
are m patches that each node needs to explore, the node has
to measure the m patches for each patch of the previous
node—O(m?). Next, a distributed approach would help
avoid the need for exhaustive measurements and allow
adjacent nodes in the chain to locally identify optimal
positions. However, due to the nature of the chain topology
in a relay network, even if nodes of one intermediate link
locally optimizes their position, the nodes might need to
readjust their positions after their “parent” or upstream
nodes close to the gateway optimize their positions.

By considering such measurement overhead and depen-
dence, the spatial probing algorithm in MARS optimizes its
location only after the previous node finds its locally
optimal position, based on the iterative approach. As
explained in Algorithm 1 (1), the first node (MARS)
optimizes its position with a gateway, and then the child
nodes optimize their positions in order. Here, we assume
that during the optimization, each node can maintain link
connectivity with neighboring nodes, because the heartbeat
is transmitted using low-rate, and thus reliable, broadcasts.
Because a parent node’s location of a link is fixed, a child
node needs to measure only m patches over the parent
node, which can be further reduced by incorporating a
hierarchical approach (see the next section). In addition, the
iterative approach facilitates other complex topologies, such
as tree or DAG with a linear increase of complexity. For
example, once a string relay network is formed, each
intermediate node in the network can create another relay
network starting from itself, and apply the same iterative
procedure to build a tree topology.

Algorithm 1. Spatial probing in MARS.

(1) Main function for formation in M ARS; (bw, nextloc)
1: /* bw: bandwidth demand of link with MARS;_, */
2: /* nextloc: location of the next node, MARS; 1 */
3: wait until node receives done message from

M ARSL'_l ;

4: optimize node location by calling the function (2);
5: send done message to MARS;1;

(2) Coarse-grained spatial probing (bw, nextloc)
6: face toward nextloc;
7:fori = 0;i < Ny i++ do / *N, is the number of grids */
8: move-and-measure corner patches of grid i;
9: if SPDR of the patches is greater than bw then

10: Gid < 1;
11: end if
12: end for

13: move to the grid g,; and call the function (3)
(3) Fine-grained spatial probing (g;q, bw)

14: p, «+— current position;

15: while SPDR(p,) satisfies bw do

16: move-and-measure neighboring patches of the
patch p,;

17:  pm, < the patch with the maximum SPDR
among neighbors

18:  if SPDR(p,,) > bw then

19: po— location of the patch p,,;

20: end if

21: end while
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In addition to the formation of a relay network, MARS
also takes the iterative approach to handle link-quality
fluctuations in intermediate links. Each MARS node
periodically monitors the quality of link to the next (or
child) node, and if that link’s quality is below the bandwidth
requirement, then the child node should start the adjust-
ment procedure. Subsequently, the child nodes in the
remainder of the relay network optimize their position
iteratively. We show the effectiveness of this optimization
approach in Section 7.2.2. Note that this iterative adjustment
can be extended for an intermediate node to move and
optimize links to both its parent and child nodes to avoid the
propagation of adjustment requests. This is an interesting,
but challenging problem, which is a matter of future inquiry.

5.3 Hierarchical Position Optimization Using
Correlation

For each link, a child MARS node optimizes its position by
finding a patch whose SPDR meets the bandwidth demand,
and further among measured candidate patches, the node
chooses the farthest one from its parent node to maximize
coverage of networks. In fact, there may exist multiple
optimal positions that meet the bandwidth demand, and a
greedy measurement/movement strategy could lead the
node to reach one of the farthest positions. However,
relying on a point measurement is often erroneous due to
spatially diverse link-quality. Moreover, even after its initial
deployment, the robot may need to frequently (re)adjust its
position to cope with temporal variations in link-quality.
Instead, by using SPDR, MARS positions itself in a patch
where the majority of positions meet the demand with a
certain variance bound.

A main challenge now is how to “efficiently” find such a
patch, as opposed to relying on exhaustive search over the
entire deployment area. To overcome this challenge, the
spatial probing algorithm in MARS exploits characteristics
in spatial link-quality measurements. If the measurements
can capture correlations of spatial link-quality with sta-
tionary factors such as distance, obstacles, or interference
source, then the probing algorithm can adaptively adjust
the granularity of measurements.

To confirm this characteristic, we have conducted two
interesting measurement studies as follows: First, we study
the correlation of SPDRs with distance. We use an empty
room (600 cm x 60 cm space) in our lab and an idle IEEE
802.11a frequency to exclude the other effects such as
interference, obstacles and moving objects. In addition, we
use a reduced transmission power of 5 dBm to identify
the correlation given the limited room space. Note that the
results from these controlled settings are also consistent with
those in real-life settings, as we will show in Section 7.2.1.
Next, we place one stationary node and one mobile robot at
one corner and measure the spatial link-quality while letting
the robot move away from the stationary node. Here, we use
an exhaustive spatial probing algorithm, which measures
SPDR of every patch in the area. As shown in Fig. 6, the
correlation between spatial link-quality and distance is
captured. Furthermore, this correlation helps MARS find
locations that satisfy the bandwidth demand (dotted line).
Second, we study the correlation of SPDRs with physical
obstacles as well as the source of signal. We first place an
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Fig. 6. Spatial correlation with distance. Spatial link-quality is correlated
with distance between the two end-nodes of a link. MARS can identify
the boundary (dotted line) that satisfies bandwidth demand
(SPDR = 0.7).

obstacle, a stationary node, and a mobile node as shown in
Fig. 7a. While moving toward the end-position, the mobile
robot measures and collects SPDR of each patch. Fig. 7b also
confirms that the measurements reflect the strong correla-
tion. These confirmed correlations suggest that the robot
may take coarse-grained measurements until the robot
reaches areas whose SPDRs are close to meeting the
bandwidth requirements (correlation with distance). On
the other hand, in such interesting areas, the robot may need
to take fine-grained measurements to optimize its position
because of the irregular link-quality distribution resulting
from obstacles (correlation with obstacle).

Based on the above observations, our spatial probing
algorithm takes a hierarchical approach. As explained in
Section 4.3, existing spectrum propagation models either
suffer from unmatched physical parameters or require
comprehensive information about physical environments to
predict optimal node positions. Exhaustive spatial probing
requires excessive time and system resources-an area of
5m x 5 m with a 50 cm x 50 ¢cm unit requires 100 measure-
ments. Instead, MARS takes a two-step hierarchical
procedure as explained in Algorithm 1 (2) and (3). In the
first step, it divides the probing space using a grid large
enough to identify the correlation with distance. Note that
the grid size is determined based on the wireless technology
used and the environment. We will show one measure-
ment-based grid size for indoors 802.11a in Section 7.2.1.
Then, MARS measures a subset of patches inside each grid
(coarse-grained measurement). Among them, it identifies
patches beyond which spatial link-quality does not meet the
bandwidth requirements. In the second step, within the
grid including the identified patches, MARS uses fine-
grained measurements to find a locally optimal location.

Let us consider an example of optimizing one link from an
AP. As shown in Fig. 8,a MARS node in grid 1 needs to find a
location far away from the AP in grid 2. MARS first measures

Stationary
node

Obstacle (Desks)

1918W Q'
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(a) Scenario

1835
T
7 6 3 2
s
Bnd T | 1< Step-2
| ol [ N
Med$ured 5 o . 4 1
patch \ .
(step-1) " o) { Begin

/,//Boundary of network QoS

Fig. 8. Two-step spatial probing procedure of MARS: MARS first finds
the best among eight grids. Then, within the grid, it identifies a locally
optimal patch.

the spatial link-quality of a corner patch (50 cm x 50 cm) in
each grid (5m x 5m), and then identifies grid 6 as the
farthest grid that contains a bandwidth-satisfying patch,
shown with a cross in the figure. Next, within the identified
grid, MARS uses Newton’s method, which recursively
selects the best neighboring patch until the node reaches a
locally optimal position. Note that MARS uses Newton’s
method for its simplicity, but other optimization methods
such as second moments or extrapolation can also be used
for fine-grained measurements/movements. Nevertheless,
using the hierarchical approach, MARS significantly reduces
the probing space, as shown in the example. Our evaluation
results in Section 7.2.1 also confirm the benefits of the two-
step procedure against the exhaustive spatial probing.

6 POSITIONING SYSTEM

We present the final component of MARS, a positioning
system, that provides the location information of a node.

6.1 Overview

The function of a positioning system is to continuously
maintain the accurate location information of a node for
both derivation of spatial link-quality and relocation to
previous measurement areas. Although it is flexible enough
to adopt any positioning system, MARS uses an infrastruc-
ture-less hybrid positioning system, especially for indoor
environments. The system is designed for using DR
combined with landmark-based positioning. Although the
system deliberately adopts well-known positioning techni-
ques from the robotics, the main purpose of this section is to
share our experience in building an inexpensive positioning
system tailored for a mobile router, while completing the
design and evaluation of MARS.

Y (cm)

400 500 600

X (cm)
(b) Effect of an obstacle

Fig. 7. Spatial correlation with an obstacle. Fig. 7b plots MARS’s measurement result of SPDR in our office (see Fig. 7a). SPDR shows diverse
spatial link-quality and correlates with the stationary node and the obstacle. The dotted line also shows MARS’s identification of an interesting

network boundary that satisfies the bandwidth requirements.
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Fig. 9. Landmark-based positioning: (a) A sonar scanning primitive identifies landmarks around the robot’s position. (b) MARS discovers landmarks
using a semiautomated procedure, which is based on DR and manual measurements of a few positions. (c) MARS determines landmarks that are

visible from at least three different locations.

6.2 Hybrid Positioning Algorithms

The positioning system in MARS consists of 1) continuous
location tracking or DR and 2) periodic landmark-based
position measurement. First, DR positioning has been
widely used in many navigation systems due mainly to
its simplicity. Adopting DR, the positioning system in
MARS simply maintains the location information of a robot
by constantly updating the robot’s position. Using the
robot’s previous position (z) and previous movement
information (¢), the system can easily estimate the robot’s
current position (x + 0).

However, this technique accumulates errors, due to
unexpected obstacles, floor conditions, or physical inertia,
which are difficult to avoid. For example, assume that MARS
requests a 90 degree rotation followed by a movement of 2 m
but the robot physically rotates 90 degrees instead, while still
believing it has rotated 90 degrees. After a forward move-
ment of 2 m its physical position is 10 cm away from its
believed-to-be position. These small errors accumulate over
time and may render the robot unable to follow its planned
trajectory. While use of a compass would greatly improve the
performance of DR which is more sensitive to angular errors,
we found that stray magnetic fields (HVAC, power cables,
metallic structures) render all compasses unusable indoor.

One method to avoid accumulation of positioning errors
is to periodically measure the robot’s true position and
update the DR-based position. Numerous position mea-
surement techniques have been proposed, but many require
infrastructure support such as sensors and access points
[32], [34] or incur extensive computation overhead for
processing image/training data [29], [30]. Instead, MARS
exploits naturally occurring landmarks in the environment.
Briefly, given positions (z;,y;) of at least three landmarks
and distances d; to each landmark from the current position,
one can derive the current position (x,y) by solving the
following equation:

(x—z)’+y—u) =d. (2)

However, the main challenges in using this technique are
how to identify the landmarks (z;, y;) and how to accurately
derive the position in the presence of measurement
uncertainties of d;. First, to sense landmarks near the robot,
MARS uses sonar scanning. Spinning around 360 degrees,

the robot collects the information of distances to its
surrounding obstacles. Fig. 9a shows one scan result from
the robot located at (0, 0). Because the sonar has a 45 degree
wide beam shape, the resulting polar plot has regions of
constant depth (RCDs) only for some of the objects in the
environment.

Next, using the above scanning, the positioning system
needs to derive the robot’s current position. However, as
shown in Fig. 9a, the scan result includes many candidate
landmarks (measured as arcs ay, ..., a9), and the robot has
to determine which arcs indeed represent landmarks and
how these arcs are associated with known landmarks. We
assume the position information of landmarks has already
been collected, and the next section will discuss how to
collect the position information. To solve this association
problem, MARS uses a matching algorithm similar to the
one in [48]. Briefly, given a set of arcs and known
landmarks that are likely to be visible from the robot’s
current believed-to-be position, MARS first generates a set
of feasible matchings between arcs and landmarks. Then,
each feasible matching is evaluated and considered only if
from the estimated robot’s position, landmarks are actually
sensed at measured distances in the scanning results.
Finally, if there are multiple valid matchings, then MARS
chooses the matching that minimizes the residual error,
defined as follows:

%i|($*$i)2+(y*yi)27d?|, (3)

where n is the number of landmarks, (z,y) the estimated
position of a robot, (z;,y;) the position of a landmark ¢, and
d; distance between (z,y) and (z;,y;).

6.3 Landmark Collection Procedure

To build the landmark information, the positioning system
includes a semiautomated landmark collection procedure.
This procedure consists of DR-based collection of RCDs
over deployment areas, followed by offline processing that
extracts landmarks from a large set of collected RCDs.
Initially, a robot navigates deployment areas (corridors),
and periodically stops and measures RCDs via scanning.
These RCDs and the robot’s scanning position information
are then used to calculate the positions of potential
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landmarks. However, for this calculation, accurate informa-
tion on scanning points is essential, and the robot obtains it
in the following semiautomated way. The robot records the
scanning positions using DR during the navigation, and a
few positions are manually measured. Then, the manual
position measurements and the DR-based positions are fed
into a trajectory fitting optimization technique for generat-
ing true scanning points. Using a few “good” points that are
manually measured, the entire trajectory of the robot can be
fitted so that the trajectory satisfies two goals: 1) the
trajectory passes through good points and 2) the trajectory
is close to the length/angle of each leg from the odometry
as much as possible. This trajectory fit is obtained using the
following optimization:

n n—1
min | Y " de(i,i 4+ 1)+ K>t (i = 1Lii+1)|,  (4)
i=1 =2

where d.,-(i,i+ 1) is the absolute difference between the
length of leg ¢ obtained from the odometry and the length
imposed by the fit; a..-(i — 1,4, + 1) is the absolute error in
angle at measurement stop i, namely, the angle between
segments (i —1,7) and (i,i+1); K is a constant that
modifies the relative weight of preserving angles versus
preserving distances from the original drive. The procedure
is implemented using the function fmins in octave-forge.
Finally, based on the true scanning points and collected
RCDs, the positioning system can obtain accurate positions
of candidate landmarks.

Fig. 9b depicts the result of the landmark-collection
procedure on the corridor of an office building. The robot
starts at the circle marked “start,” drives in a counter-
clockwise loop, and periodically stops and takes a sonar scan
to collect RCDs. At the same time, the robot’s DR-based
positions are recorded (denoted by crosses). As expected,
DR-based position becomes erroneous toward the end of the
drive, where the robot is 60 cm away from its DR-based
position. On the other hand, using a few manual position
measurements (denoted by circles), the robot’s actual
trajectory (the solid line) and scanning positions (omitted)
are also collected.

Next, based on the information of RCDs and scanning
points, the positioning system identifies “good” landmarks
that have robust visibility. Good landmarks should be
visible from different places, and we found that corners,
door frames, or even cracks in the walls are good landmarks
mainly because they are fixed and reflective to sonars.
MARS only includes landmarks that are visible from at least
three scanning points. Fig. 9c shows the detection from the
scanning results at three different positions denoted as 1, 2,
3. Good landmarks like the top two dots are heavily
intersected (high visibility). On the other hand, the
candidate landmark at the lowest spot is not “good,” since
the intersection is weak-it is in fact a flat wall. Using this
technique and RCD collections, MARS effectively collects
landmarks as shown in Fig. 9b that are used later for
positioning during the spatial probing. Note that a “good”
landmark refers to its presence in measurements from
different vantage points, and not its guaranteed presence in
time. Clearly, furniture that is later moved would provide
unreliable landmarks, which either need to be detected as
such, or eliminated by a new collection procedure. The first
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Fig. 10. Topology for corridor experimentation. We evaluate the spatial
probing algorithm of MARS in our department building.

approach is intensely explored by the robotics community
[49], as it provides methods to simultaneously use and
update the map. These highly complex methods, based on
extended Kalman filters, or on particle filters are able to
probabilistically recognize new landmarks to be added to
the map, or delete old landmarks which disappeared, all
based on the current known position and the stable
landmarks. In this project however, we opted for the latter
approach—a lower complexity method that involves the
semiautomated landmark collection procedure. This has to
be repeated by the robot as needed whenever the set of the
landmarks changes.

7 PERFORMANCE EVALUATION

We now present the evaluation results of MARS. We first
describe an experimental setup, and then present key
experimental evaluation results in indoor environments.
Next, we show ns-2-based simulation study on energy saving.

7.1 Experimental Setup

We extensively evaluated MARS in a challenging indoor
environment consisting mainly of office rooms and corri-
dors (see Fig. 10). This environment includes floor-to-ceiling
concrete walls and wooden doors, thus providing natural
multipath fading effects on the radio signal. In addition,
IEEE 802.11a is used for wireless links since this standard
provides high data-rates and many idle channels. Through-
out the entire experimentation a fixed data-rate is used to
exclude the effects of rate-adaptation algorithms in NICs
and to focus on the effect of node mobility. Each radio is
tuned to a medium transmission power of 10 dBm to allow
multihop relays in a limited space. Finally, we prototype
and use three MARS nodes for our experimentation, which
are sufficient to demonstrate MARS’ potential benefits for
wireless relay networks. By performing the same experi-
ment recursively, one can realize experimentation on an
arbitrary number of hops.

7.2 Experimental Results

7.2.1 Reducing Space to Probe

We first studied the effectiveness of the spatial probing
algorithm of MARS in reducing space to probe. We place
node 1 in one corridor shown in Fig. 10 and let node 2 find
the position farthest away from node 1 given QoS con-
straints. We first collect spatial link-quality using exhaustive
probing-visit every patch and measure SPDR-over 15 m X
1.2m on the corridor. Then, we run the spatial probing
algorithm explained in Section 5.3, 20 times with the same
settings. We measure the final position of node 2, the number
of point measurements, and the number of patches visited.



1838

600

IEEE TRANSACTIONS ON MOBILE COMPUTING,

X (cm)

VOL. 12, NO.9, SEPTEMBER 2013

900

1200 1500
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Fig. 12. Accuracy of spatial probing. The spatial probing finds locally optimal positions with 86 percent accuracy for given QoS requests, while
reducing the measurement overhead by two-thirds, compared to exhaustive probing.

Fig. 11 shows the spatial link-quality measurements on
the corridor using the exhaustive probing. We measure the
link-quality on every patch of size 50 cm x 30 cm. Note that
we ran the same experiment more than five times over two
days and saw similar results. As shown in the figure, the
spatial link-quality shows correlation with several obstacles
(doors, walls, etc.) along the corridor as well as with
distance to the stationary node. In addition, this link-quality
shows several interesting boundaries denoted by white
lines, or areas (e.g., the one labeled with SPDR = 0.85) that
satisfy link’s QoS demand. However, even though this
exhaustive probing provides a comprehensive SPDR map, it
is very expensive in terms of energy and time to build. For
example, the above spatial probing for constructing the
entire map requires more than 450 point measurements.

The spatial probing algorithm in MARS reduces this
overhead while maintaining reasonable accuracy in finding
a locally optimal position. Fig. 12 shows the distribution of
MARS'’s final positions from 20 runs for each QoS demand
(SPDR = 0.85 or 0.45). Starting from (0, 0), the robot is
guided by the spatial probing algorithm to find the farthest
position that satisfies the given SPDR. As shown in the
figure, MARS'’s probing algorithm effectively determines a
locally optimal position; 86 percent of the final locations are
located within the area of required SPDR boundary,
whereas the remaining 14 percent deviates from the
boundary by, on average, 54 cm. Some of runs yielded
local maxima-still satisfying the required QoS, but without
reaching the farthest position. MARS could avoid this local
maximum by using other optimization techniques, such as
extrapolation, in fine-grained measurements, and we will
explore these in future. On the other hand, thanks to its
hierarchical approach, MARS reduces the number of
measurements, on average, by two-thirds over the exhaus-
tive probing, as shown in Table 1. For example, M ARS 45
reduces the total number of measurements (XV,,,) from 465 to
150. Moreover, an interesting feature is that the increase in
number of measurements from MARSyg; to MARS) 5 is
only 19 percent, although the navigation space of the former
is twice larger than that of the latter, indicating the
scalability of the spatial probing algorithm.

Throughout our experimentation, the spatial probing
algorithm is set to use the 2.0 m x 0.6 m size of a grid. This
value is determined based on our offline measurement
study, which helps identify the degree of link-quality
attenuation in corridor or indoor environments. As increas-
ing the grid size by 1 m, we measure the difference between
two SPDRs in both ends of the grid, and repeat this
measurement until the difference becomes greater than the
minimum threshold (10 percent). Under current experiment
settings, the use of a 2.0m x 0.6 m grid provides 10-
100 percent more efficiency than the use of other’s. This
efficiency results from the tradeoff in the two-step
procedure of spatial probing. For example, the larger the
size of grid, the faster the algorithm can find a boundary of
interest. However, it is likely that the algorithm needs more
fine-grained measurements within a large-size grid.

7.2.2 Optimizing Multihop Links

We also studied the effectiveness of optimizing multihop
wireless links in the presence of changes in link condi-
tions. As discussed in Section 5.2, to adapt to changing
link conditions or QoS requirements, MARS iteratively
and cooperatively adjusts its position to maintain the
required QoS. To evaluate the performance of this
adjustment, we place three nodes as shown in Fig. 10
along different corridors and let them form multihop relay
links (node 1 <> node 2 < node 3). Next, we move node 1
to south so that the quality of the link between nodes 1

TABLE 1
Efficiency Benefit of the Spatial Probing in MARS

[ H Exhaustive [ MARS(.45 [ MARSy g5 [ Benefits ]
N, * 465 (0) 150 (32) 126 (43) 67.3%
Ny, T 120 (0) 24 (6) 18 (5) 80.0%

8 Overhead reduction of MARSy.45 over exhaustive probing.

* Total number of measurements.

¥ Total number of patches visited.
MARS reduces the measurement effort by two-thirds over the
exhaustive spatial probing, while finding a locally optimal position. The
number in a parenthesis is variance.
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Fig. 13. The multihop optimization result. In MARS, relay nodes optimize
each position one-by-one when the link conditions changed. Triangles
denote adjusted nodes’ positions.

and 2 is degraded, and we let nodes 2 and 3 maintain QoS
demand (SPDR = 0.85). We ran the same experiment 10
times and measured the final positions of nodes 2 and 3
after their adjustment.

Fig. 13 shows the effectiveness of our adjustment in
coping with link condition changes. The unshaded part of
the figure shows the robots’ final positions (denoted as
triangles) on the corridor. Starting from their original
positions, denoted as N2 and N3, node 2 first starts its
spatial probing to adjust its position. Next, once node 2
finds a location that satisfies the QoS requirements (0.85),
the node informs node 3 of its adjustment through a
broadcast-based message handshake. Then, node 3 starts
adjusting its own position with respect to the new location
of node 2 to maintain the required QoS. As shown in the
figure, each robot successfully senses its direction (e.g.,
east for node 2) without relying on movement information
of node 1 and moves in the direction that node 1 moved.
In addition, this iterative adjustment significantly reduces
the average measurement overhead. Compared to the
exhaustive probing where nodes 2 and 3 have to measure
SPDR of every patch in the corridor, the spatial probing in
MARS selectively measures SPDR over the fixed previous
node. As shown in the inset graph, the iterative adjust-
ment in MARS reduces the total number of measurements
(N2+ N3) by 72 percent compared to the exhaustive
probing-based adjustment (Fx).

7.2.3 Maintaining Positioning Accuracy

We now turn to the quantitative evaluation of MARS’s
positioning system. We first set up one large square space
(240 cm x 240 cm) with four artificial landmarks in our lab.
In the square, we let the robot collect positions of the four
landmarks through the landmark collection technique
described in Section 6.3. As expected, the robot properly
detects all the landmarks with error of at most 2 cm from
their true positions, and this measured landmark informa-
tion is used for the robot’s positioning during the following
random walks. At each point on the random walk, the robot
updates its position (i.e., believed-to-be position) based on
its previous position and movement information. At the
same time, the robot takes a sonar scan (as in Fig. 9a) and
derives its current true position using the scanned result.
Next, the robot derives the position error by comparing the
believed-to-be position and the true position from the scan.
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Fig. 14. Accuracy in correcting location error. The positioning system in
MARS accurately corrects the error in its location information, on
average, within 7.3 cm error.

Finally, the robot updates its position information with the
true position and drives itself toward the next random point.

Fig. 14 shows the robot’s true positions relative to
believed-to-be positions (0, 0). As shown in the figure, the
MARS’s positioning system keeps the average location error
less than 7.3 cm, thanks to landmark-based position
measurements. In addition, the distributions of errors is
found to be independent Gaussians on z and y with an
almost diagonal covariance matrix. This error is due mostly
to the drifts caused by the heading error, but it is small
enough for the robot to correct the error using the landmarks
and continue its walk without unbounded growth of error.

7.3 Simulation

We also evaluated the effectiveness of MARS in energy
savings by using the ns-2 simulator [12]. We implemented
MARS as a mobile node in ns-2. We used the wireless
extension for 802.11 MAC in ns-2 and used a string-type
relay topology with three nodes as in our previous
experiments for comparison. While reducing the unit grid
size of the spatial probing algorithm, we measured the total
energy consumption during the relay network (re-)forma-
tion. Note that the smaller the grid size, the higher
reformation accuracy MARS can achieve. The reformation
is triggered by changing the link-quality requirement (from
0.75 to 0.85) of the link between the first and second nodes.
Then, the second and third nodes sequentially relocate
themselves to meet the requirements. To calculate energy
consumption, we use unit energy levels for 1) robot’s
moving distance (i.e., 8.27 J per meter) and 2) link-quality
measurement (2.184 J per vertex), both of which are derived
from measurements in [50] and [51] together with the
MARS measurement protocol. Here, we do not consider the
energy consumption for operating a wireless router board,
since the wireless router is assumed to be always on for
network connectivity. For comparison, we also implemen-
ted and used an exhaustive measurement strategy.

Fig. 15 shows MARS’s energy savings per node
compared to the exhaustive strategy. As shown in the
figure, the MARS probing algorithm saves energy by up to
54 percent (for the grid size of 0.25 m). In addition, as the
grid size decreases, the energy savings comes from
the reduced navigation distance (i.e., Hier-Dist) as well as
the reduced number of measurements (Hier-Measure)
achieved by the MARS'’s hierarchical probing algorithm.
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Fig. 15. MARS'’s energy savings. The spatial probing algorithm in MARS
saves energy by reducing the navigation distance as well as the number
of measurements, compared to the exhaustive measurements.

8 CONCLUSION

8.1 Concluding Remarks

In this paper, we have presented MARS—a mobile wireless
router that is aware of spatial diversity in wireless link-
quality. MARS autonomously measures spatial wireless
link-condition and reforms a wireless relay network with
neighboring nodes. We have built MARS’ prototype using
commodity robots and IEEE-based wireless routers. Using
extensive experimental evaluation, we have demonstrated
the feasibility and practicality of MARS for dynamic
(re)formation of a multihop relay network. MARS demon-
stration videos are available in a public website of http://
kabru.eecs.umich.edu/bin/view/Main/SMART.

8.2 Remaining Issues

While the current prototype targets 802.11-based indoor
applications, MARS can be extended further by addressing
the following issues:

e  Flexible deployment scenarios. Even in cases when
routers are deployed by humans [3], MARS can
support the deployment scenario via iterative
adjustments around each drop point. This is espe-
cially useful for inherently hazardous scenarios such
as rescue or military applications, but a robotic
platform that is more capable than the iRobot is
necessary for such applications.

e  Fully automatic landmark collection. The current land-
mark collection in MARS requires a few manual
position measurements. This may be time-consuming
and not scalable in large networks. We plan to
investigate ways to fully automate this procedure [31].

e Transmission rate adaptation. In this paper, MARS
focuses on the mobility of a wireless router and
disables the use of link-layer rate adaptation (i.e.,
fixed rate). However, it would be an interesting to
jointly consider transmission rate adaptation (e.g.,
[6]), which we plan to investigate as a separate paper.
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