
On Authentication in a Connected Vehicle: Secure
Integration of Mobile Devices with Vehicular Networks

Kyusuk Han, Swapna Divya Potluri, and Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, MI 48109-2121

{kyusuk,swapnap,kgshin}@umich.edu

ABSTRACT
Recent advances in in-vehicle technologies have paved way
to a new era of connectivity. Vehicle manufacturers have
already deployed various technologies for driving assistance,
anti-theft, and infotainment. They are now developing ways
to interface mobile devices with vehicles and provide the
customer’s smartphone or tablet the ability to send/receive
information to/from the car. However, such an integration
introduces severe security risks to the vehicle. The in-vehicle
network was originally designed to operate in a closed envi-
ronment and thus, security was not of concern. It has now
become an important issue due to an increasing number of
external interfaces to the in-vehicle network. Several studies
have already shown that an in-vehicle network can be easily
compromised just by connecting cheap commercial devices
and doing reverse engineering. Although research efforts
have been made to secure in-vehicle networks, most of them
focused on defining security requirements, or presenting at-
tack scenarios without providing any feasible solution. Also,
to the best of our knowledge, there hasn’t been any study
with a specific focus on understanding and analyzing the se-
curity aspects of integrating mobile devices with cars. In this
paper, we define the integration model, present the attack
scenarios, define the security objectives, and then propose a
3-step verification mechanism that meets our objectives.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]:
Real-time and embedded systems; J.7 [Computers in Other
Systems]: Command and control; D.4.6 [Security and
Protection]: Authentication

Keywords
Vehicular networks; security; mobile device integration; au-
thentication; Controller Area Network (CAN)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCPS’13 April 8-11, 2013, Philadelphia, PA, USA.
Copyright 2013 ACM 978-1-4503-1996-6/13/04...$15.00.

1. INTRODUCTION
Cars are undoubtedly the most sophisticated devices we use
in our daily lives. Currently, most cars are equipped with an
average of 70 ECUs (Electronic Control Units) that provide
advanced functionalities inside the vehicle. These ECUs are
internally connected via serial buses and communicate us-
ing a standard protocol called the Controller Area Network
(CAN). CAN is not only used by ECUs, but also by devices
that have a user interface, such as the dashboard. Other
user interfaces include infotainment and navigation systems,
in-vehicle WiFi, voice recognition modules, etc. Recent in-
novations in this area include GM’s Onstar, Ford’s Sync,
and so on.

Most of these systems are manufacturer-specific. They are
often built into the car and hence not easily customizable
and/or upgradable. A futuristic model would be to have
manufacturer-independent interfaces that would let users
customize according to their preferences and requirements
(i.e., enabling user-driven, not manufacturer-driven, experi-
ence inside a vehicle). This would allow mobile devices, like
smartphones and tablets, to replace in-vehicle entertainment
systems, dashboards or diagnostic systems. One such exam-
ple would be Ford’s OpenXC platform [7] that enables a
one-way communication from the car to the mobile device.
It provides a uniform open interface to which the users can
simply attach their mobile devices. The users can then use
applications that can process the data from the in-vehicle
network.

However, such an integration is governed by two major re-
strictions. First, the car manufacturers usually want to keep
their in-vehicle communications hidden from the customers
to preserve their product secrets. Second, integration of ex-
ternal devices with the in-vehicle network will have acute
security/safety implications. For example, the authors of
[3] analyzed the vulnerabilities of vehicular communications,
and Vandenbrink [14] showed that the in-vehicle network
could be sniffed using a cheap commercial embedded device.

To address these concerns, Ford introduced a conversion /
translation module that acts as a gateway and provides a
layer of abstraction for the internal network. However, this
setup does not guarantee a secure integration for all the com-
munication scenarios. Although several researchers have al-
ready proposed security mechanisms for integrating external

devices with in-vehicle networks, they are not applicable to
this interface model as they only consider direct connection
between an external device and the in-vehicle network, and
do not account for the first restriction mentioned above.

Considering the above-mentioned restrictions, we adopt the
gateway model implemented by Ford [7] and propose a com-
munication and security architecture to securely integrate
external devices with the in-vehicle network. Our architec-
ture is composed of three main components: A user device
(UD), a gateway (GW) and ECUs on an in-vehicle network.
We perform a detailed analysis of all relevant attackers to
create a corresponding attacker model. We then establish
our security objectives and design a three-step authentica-
tion protocol that allows only authorized devices to access
the in-vehicle network without exposing confidential vehicle
information. Finally, we show that our design meets these
objectives. Our contribution in this paper is three-fold:

• Mutual authentication between the UD and the GW;

• Authentication of the GW by the in-vehicle network;

• Verification of the UD’s requests.

The remainder of this paper is organized as follows. Section
2 briefly reviews CAN, a representative in-vehicle network,
and the security issues thereof. In Section 3 we discuss the
security model of a connected vehicle and enumerate all the
attack scenarios and assumptions based on the model. Our
three-step authentication protocol is presented in Section 4
and evaluated via a detailed security analysis in Section 5.
Finally, we conclude the paper in Section 6.

2. REVIEW OF IN-VEHICLE NETWORKS
For completeness, we briefly review the various components
of an in-vehicle network. As touched upon in Section 1, the
in-vehicle network connects, and enables communication be-
tween, several ECUs. CAN is the most widely-used protocol
for this communication (others being FlexRay and LIN) and
will hence be our primary focus.

2.1 Controller Area Network
CAN is a multi-master broadcast serial bus that connects
the ECUs inside a vehicle. There are four types of CAN
frames: data frame that contains the data to be transmit-
ted; remote frame that requests transmissions from a specific
node/identifier; error frame that is used when an error is de-
tected in the received frame; and overload frame to inject a
delay between frames. A CAN data frame can contain a
data field of up to 8 bytes as shown in Fig. 1. The base
frame format allows an 11-bit identifier (ID), while the ex-
tended frame format allows a 29-bit ID. Since it is a multi-
master protocol, the order/priority of transmission is deter-
mined through bus contention, called arbitration: a process
of broadcasting one bit at a time and comparing it with the
bits broadcast by other ECUs. The frame with the smallest
ID wins the arbitration and gets transmitted first. A 16-bit
CRC field (with a 1-bit CRC delimiter) is provided to check
the integrity of each received frame. For more information of
CAN frame formats, see ISO 11898-1:2003 or other related
CAN standards.

EOFACK FieldCRC FieldData FieldControl FieldArbitration FieldSOF
1bit 7 bits12 or 32 bits 6 bits 0 to 8 bytes 16 bits 2 bits

11 bits Identifier RTR

11 bits Identifier SRR 18 bit Identifier RTR

RTR = 0; Dominant in data frame
RTR = 1; Recessive in remote frame

IDE

Standard format

Extended format

Figure 1: CAN frame format

The frames are identified using their frame IDs. After win-
ning the bus contention via arbitration, the ECU writes the
frame, one bit at a time, onto the bus. The CAN frame
does not contain the address of the transmitter or the re-
ceiver node; a frame is broadcast over the bus, and each node
checks the unique ID in the frame, and determines whether
to accept or ignore it. For completeness, a brief example of
CAN communication architecture is shown in Fig. 2. ECU
2 broadcasts frame 1, all ECUs connected to the CAN bus
receive it. ECUs 1 and 4 accept it, while ECU 3 discards it.

Filter Filter Filter FilterFrame
1

Local
Intelligence

Local
Intelligence

Local
Intelligence

Local
Intelligence

BUS lines

Accepted Discarded Accepted

ECU 1 ECU 2 ECU 3 ECU 4

Figure 2: Example of frame filtering: when ECU 2
sends Frame 1, ECUs 1 and 4 receive it, while ECU
3 discards it.

2.2 Security Issues of CAN
Several researchers have already reported the weak security
support of CAN. The authors of [3] demonstrated vulner-
abilities in the current automotive networks by presenting
various attack scenarios. Recent reports, such as [11], have
revealed the weakness of the CAN when it is open to the ex-
ternal world. The authors of [9] argue that CAN is insecure
and vulnerable to DoS (Denial of Service) attacks.

All of the above-reported issues can be attributed to the
following major drawbacks of the CAN architecture:

• A CAN frame has no authentication field.

• The payload field in a CAN frame allows only up to
8 bytes, making it difficult to deploy strong security
primitives.

• ECUs do not have the computational power to support
cryptographic functions.

• No authentication of the sender and the receiver of a
frame.

It is, however, important to note that CAN was designed to
be simple and to work in isolation. It is difficult to over-
haul the entire design to support security mechanisms since
the automotive manufacturers are reluctant to adopt such a

wholesale change due to the associated cost. Note that other
protocols, such as FlexRay, have been introduced without
addressing all the security issues.

2.2.1 Encryption
As long as the communication in an in-vehicle network re-
mains closed, frames need not be encrypted as stated in [13].
However, opening up the in-vehicle network to the outside
world requires protection of vehicle privacy. The authors
of [13, 15] state that encryption of all vehicular data trans-
missions will improve the security of automotive bus com-
munications, however this will increase the overall overhead
significantly.

As mentioned earlier, CAN’s small data field makes it dif-
ficult to implement encryption. Hence, while block and
stream cipher algorithms are commonly used for data en-
cryption in regular networks, such mechanisms are not prac-
tical in vehicular networks. An interesting effort reported in
[2] is to deploy RC4, a lightweight stream cipher encryp-
tion, for CAN data frames. No two messages must be en-
crypted with the same key under RC4. To meet this require-
ment, they recommended the use of public key cryptosystem
(PKC) for refreshing the keys. Although several researchers
[1, 6] proposed the use of PKC and several key management
schemes, they haven’t yet been practically implemented.

2.2.2 Authentication
Cryptographic message authentication achieves strong pro-
tection against forgery, but incurs high overhead, thus de-
grading the overall throughput. The small number of bits in
each frame makes it difficult to provide frame-level authen-
tication. Most existing studies focus on the reduction of au-
thentication delay while providing strong security. The au-
thors of [13] proposed a truncated MAC model, and showed
that 32 bits are good enough for cryptographic strength, al-
though public recommendations, such as [4], state the need
for at least 64 bits. The authors of [8] proposed a broadcast
authentication methodology using MD5, SHA-1 and SHA-
256, which needs about 1ms to hash a 14-byte string with
SHA1 at a 40MHz clock speed. The authors of [10] proposed
an authentication protocol for CAN by substituting the CRC
field in CBC-MAC with the KASUMI algorithm [5]. Since
the KASUMI algorithm supports 64-bit data blocks, it re-
quires four CAN frame transmissions which would increase
the bus load.

3. SECURITY MODEL OF A CONNECTED
VEHICLE

3.1 Overview of a Connected Vehicle
A vehicular network is considered “connected” if it has a
wired or a wireless interface/communication with a device
that is not a part of the vehicle. This connectivity can be
broadly classified as follows.

Connection with a trusted entity. Given below are some
application scenarios of this type of connectivity:

(i) Anti-theft: Starting 2010, GM introduced a stolen ve-
hicle slowdown service using its flagship device, On-

Star. This feature allows OnStar (a trusted entity), to
remotely (wireless) slow down a stolen vehicle.

(ii) Remote firmware update: Tesla Motors recently de-
ployed an over-the-air firmware update feature: a mod-
ule in the vehicle can receive an update, without vis-
iting service centers (trusted entities).

(iii) Remote diagnostics: Technicians (trusted entities)
can connect remotely with the diagnostics port on the
vehicle using WiFi communication.

(iv) User devices: Using smartphones to lock/unlock ve-
hicles. The request to the car is, however, redirected
through a secure server (trusted entity).

Connection with an untrusted entity. The connection be-
tween a user device (untrusted entity) and the in-vehicle net-
work (for one/two-way communications) is made through a
gateway. User devices, such as smartphones and tablets, are
directly connected to the OBD port through a gateway, and
not through a secure server.

In this paper, we primarily focus on the connection between
an untrusted user devices and a vehicle. This kind of integra-
tion is governed by two major restrictions. First, the man-
ufacturers usually want to keep their in-vehicle communica-
tions proprietary. Second, integration of an external device
into the in-vehicle network as in Fig. 3(a) will introduce ad-
ditional security concerns. To address these concerns, Ford,
in their OpenXC model, introduced a conversion/translation
module that acts as a gateway and provides a layer of ab-
straction for the internal network as in Fig. 3(b). We adopt
Ford’s model and enhance it with our security protocol.

Device

Device Intermediate
Gateway

ECU

ECU

Physically connected
via OBD II

Wired/Wireless communication

CAN BUS

(A)

(B)

User Area Vehicle Area

e.gJSON, XML

CAN signal

Figure 3: (a) User device directly receives CAN sig-
nals. (b) The gateway relays the vehicle information
to the mobile device by converting the CAN signals
to a device friendly format

3.2 System Model
By employing Ford’s model as in Fig. 3(b), we define three
entities:

User device (UD), which interacts with the vehicle. It
is capable of heavy computations and has a standard
communication network architecture. Examples are
smartphones and tablets.

Gateway (GW), which interacts with both the UD and
CAN. Interaction with the UD is done over a generic
network, while interaction with the ECUs is done over
a vehicle-specific network, i.e., CAN.

ECU, which interacts with the gateway through CAN. All
of its communications are limited by the capability of
CAN. We will thus use the terms ECU and CAN bus
interchangeably.

Fig. 4 shows an example system setup using Ford’s openXC
platform. The complete setup includes the UD and the ve-
hicle. The GW can be built with off-the-shelf components.

Wired (USB) Wireless (Bluetooth)

OBD-II

Gateway

To UD

To CAN bus

Figure 4: Example gateway: Ford’s OpenXC plat-
form

3.3 Assumptions
Below are the assumptions we make to substantiate the
model under consideration.

• Link between the GW and the ECUs is secure.

• The ECUs are in a secure space. Some ECUs can be
physically damaged, but they don’t affect the others
on the same bus.

• Each ECU has its own unique seed key provided by an
external trusted party. Compromising the key doesn’t
affect the other ECUs on the same bus.

• Once the GW is attached and remains attached to the
vehicle, we consider it physically secure.

3.4 Attack Scenarios
We focus on the below attack scenarios:

Case 1. Compromised UD: Attackers may attach their own
devices or compromise a valid UD.

Case 2. Compromised GW: Attackers may attach their own
device. We do not consider modifying a genuine GW
using remote access or physical attachment.

Case 3. Both UD and GW are compromised: This scenario
is a subset of Case 2.

We do not consider the case in which the ECUs are compro-
mised. Such cases, including physically damaging the ECUs,
are very rare and beyond the scope of this paper. The attack
scenarios can be further classified as follows.

A1: Key exposure due to compromised entities: Af-
ter compromising an entity (UD or GW), the attacker
may try to extract the secret information from it.

A2: Invalid key: An attacker may attach devices to com-
municate with the ECUs in the vehicle. They may also
try to use invalid keys.

A3: Impersonating a UD: An attacker’s device may try
to impersonate a UD.

A4: Impersonating a GW: An attacker’s device may try
to impersonate a GW.

A5: Fraudulent requests from a compromised UD:
An attacker may compromise a UD and then send in-
valid requests to the ECUs.

A6: Fraudulent requests from a malicious GW: An
attacker may try to compromise the GW through wired
/ wireless communications. He/ she may then send
malicious commands or codes to the GW to read unau-
thorized vehicle information or to write control com-
mands to the CAN. However, we do not consider the
case in which the attacker transmits jamming signals
to incapacitate the GW.

Table 1 shows all of these possible attack scenarios.

Table 1: Attack scenarios

UD GW A1 A2 A3 A5 A6

Case 1 Compromised Not
Compromised Y Y Y Y N

Case 2 Compromised Compromised Y Y Y Y Y

Case 3 Not
Compromised Compromised Y Y Y N Y

A4

N

Y

Y

3.5 Security Requirements
We define the security requirements for each entity as fol-
lows.

UD (User Device):

- Only a valid UD should be able to send/receive messages
to/from the ECU through the GW.

- A UD should be able to check the validity of the GW.

GW (Gateway):

- Only a valid GW should be able to send/receive messages
to/from the ECU and the UD.

- The GW should be able to check the validity of the UD.

- The GW should be able to check the validity of messages
from the ECUs and the UD.

- Without a request from the UD, the GW should not send
or receive any vehicle information from an ECU.

ECU:

- An ECU should be able to check the validity of the GW.

- An ECU should sends/receives information to/from only
a valid UD through a valid GW.

- Only a valid UD should be able to communicate with the
ECUs.

- The frame format in the CAN bus should not be revealed to
the entities which are not physically and directly attached.

Common:

- Exposing the secret information in one entity should not
affect other entities.

4. THE PROPOSED PROTOCOL
In this section, we propose a three-step authentication pro-
tocol that provides secure communication between the UD
and the ECU, preventing any malicious device from extract-
ing confidential information from CAN.

4.1 Overview of the Protocol
The proposed protocol consists of the following three phases:

P1: Authenticating the GW;

P2: Mutual authentication between the UD and the GW;

P3: Authenticating UD’s data request.

Our model consists of two different kinds of communication
paths:

N1: Communication over the in-vehicle network, e.g., CAN,
Flexray, etc.

N2: Communication over a wired or wireless network, e.g.,
USB, WiFi, Bluetooth, etc.

We assume that the communication between the GW and
the ECUs is over N1 and the communication between the
UD and the GW is over N2. Thus, P1 runs only on N1,
P2 runs only on N2, and P3 on both N1 and N2.

Table 2 shows the notations used in the protocol.

4.2 Initial Key Distribution
The initial key distribution is different for the three entities
in our model. We use longevity and operating environment

Table 2: Notations
Notation Description
LK Long term seed key, shared between ECU and Trusted

third party (e.g. vehicle manufacturers).
MK Midterm key
SK Short term key
TS Timestamp. TS = Y ear||Month||Date||T ime||

Expiration date
RNi Random number i, randomly selected by each entity
h(m) Hash of an arbitrary message m
fj j = 1: generate CertID; j = 2, 3: derive keys; j = 4:

Auth from the UD; j = 5: Auth from the GW. The
same algorithms can also be used for all functions.

of each entity as the deciding factors to determine the ap-
propriate key. The ECUs have the greatest longevity as they
are not usually replaced after deployment in a car. Hence,
we can safely assume that the seed key would be a long-
term key and that it is built into the ECU at the time of car
assembly.

The GW, on the other hand, has a shorter lifetime than the
ECUs as they are usually deployed at the time of car assem-
bly or installed at a later time. Thus, the GW is associated
with a mid-term key. The key is built into the GW and
activated at the time of its purchase.

UDs have the shortest lifetime in our model because users of-
ten replace them with new models as and when they become
available. For example, mobile devices like smartphones are
usually replaced often and every user has his/her own device.
We therefore associate UDs with a short-term key. The key
is distributed to the users at the time of registration with
the car manufacturer.

Table 3 compares the lifetimes of these entities and their
associated keys.

Table 3: Comparison of different entities

Device
Type

Lifetime Description Keys Source

User
Device
(UD)

Short term
(Months -
2 year)

Users frequently
upgrade or re-
place. Used in
external envi-
ronments and
connected to the
gateway

SK1, SK2 On regis-
tration

Gateway
(GW)

Mid term
(Years)

Users rarely re-
place. Connected
to the user device
and the CAN bus
only

MK1, MK2 During
purchase

ECU Long term
(As same
as a car’s
lifetime

Only replaced
when broken,
connected to the
CAN bus only

LK Built-in

Next, we need to establish a mechanism for each ECU to
be able to verify the GW and the UD. One way to accom-
plish this is to use certificates. The certificate Cert can be
generated by using the seed key LK, timestamp TS, and

TS

32/64 bits

LK

- Transfered to GW or UD
- ECU can verify it

TTP generate

128 bits

ID

KEY

f1

f2

f3

CertID

Figure 5: Key and certificate generation for P1 and
P3. For the certificate in P2, LK is substituted by
MK2

the device ID, where CertID = ID||TS||f1(ID||TS||LK).
f1, f2 and f3 are one-way cryptographic hash functions and
used only for generating SKs or MKs and Cert.

The UD receives two keys and two certificates for N1 and
N2 as in Fig. 5, and the GW receives two keys for N1 and
N2, with one certificate for N1.

4.3 Three-Step Authentication Protocol
4.3.1 P1: Authentication of the gateway by the ECUs

Suppose GW has MK1 as the key for N1.

When the GW with valid CertGW is connected to the ECU,
it generates a request message REQ and AuthP1

0 to ini-
tiate P1, where AuthP1

0 = f4(MK1||MSG) and MSG =
REQ||CertGW . Then, the GW sends MSG and AuthP1

0 to
the ECU.

After receiving requests from the GW, the ECU first checks
if CertGW is valid. If it is, then the ECU generates MK∗

and AuthP1
∗ , where MK∗ = f3(LK||f2(IDGW)||TS) and

AuthP1
∗ = f4(MK∗||MSG). If AuthP1

∗ ≡ AuthP1
0 , the ECU

stores MK∗ as the key that is shared with the GW. This
remains true as long as the GW stays connected and TS is
not expired. Algorithm 1 shows the pseudocode for P1.

Algorithm 1: Authenticated Key Establishment
--
GW:

MSG = REQ||CERT_GW
AUTH_0_P1 = f4(MK_1||MSG)
Send MSG||AUTH_0 to ECU

ECU:
If(CERT is valid?)

Generate MK* = f3(LK||f2(ID_GW)||TS)
AUTH* = h(MK*||MSG)
If (AUTH* == AUTH_0)

If Previous key exists
Delete old key

Store MK* , TS
else

Discard MSG
else

Discard MSG

--

4.3.2 P2: Mutual authentication between the UD and
the GW

When the UD is connected to the GW via N2 for the first
time, they need to be mutually authenticated. As discussed
in Section 3.5, the UD should be connected only to a valid
GW and the GW should only allow an authorized UD to
connect to it. The valid GW has two keys: MK1 and MK2.
MK1 is used in N1, and MK2 in N2 (see Table 3). Simi-
larly, a UD has two keys: SK1 and SK2, where SK1 is used
for P3 and SK2 for P2. Since the processes of P2 are done
over N2, two entities are assumed to use function h.

The UD sends MSG and AuthP2
0 , where MSG = REQ||

CertP2
UD and AuthP2

0 = h(SK2||MSG). CertP2
UD is gener-

ated by trusted third party, where CertP2
UD = IDUD||TS||

h(IDUD||TS|| MK2).

The GW checks if CertP2
UD from the UD is valid, and then

verifies whether AuthP2
0 is valid by generating SKP2

∗ and
Auth∗0, where SKP2

∗ = h(TS||f2(IDUD)||MK2) and Auth∗0
= h(SKP2

∗ ||MSG). If Auth∗0 ≡ AuthP2
0 , the GW selects

RN0 and generates AuthP2
1 = h(SKP2

∗ ||RES||RN0) where
RES is the response message of an arbitrary size. The GW
then responds by sending RES, RN0 and AuthP2

1 to the
UD.

The UD verifies AuthP2
1 by comparing Auth∗1 generated by

the UD with AuthP2
1 , where Auth∗1 = h(SK2||RES||RN0).

If AuthP2
1 = Auth∗1, the UD regards the GW authenticated,

and sends CON , RN1, AuthP2
2 , where CON is a confirma-

tion message, RN1 is a randomly selected string by the UD,
and AuthP2

2 = h(SK2||CON ||RN1||RN0).

The GW generates Auth∗2 = h(SKP2
∗ ||CON ||RN1||RN0)

and compares Auth∗2 and AuthP2
2 . If they are identical,

the GW sets SKP2
∗ as the shared key with the UD, which

remains valid until TS expires. Algorithm 2 provides the
pseudocode for P2.

Algorithm 2: Secure Channel Setup between User Device
and CAN Translator
--
UD:

MSG = REQ||CERT_UD_P2
AUTH_0 = h(SK_2||MSG)
Send MSG||AUTH_0 to GW

GW:
If(CERT_UD_P2 is valid?)

Generate SK* = h(MK_2||h(ID_UD)||TS)
AUTH_0* = h(SK*||MSG)
If (AUTH_0* == AUTH_0)

Selects RN_0
// Response from GW to UD
Generates AUTH_1 = h(SK*||RES||RN_0)
Generates MSG_2 = RES||RN_0||AUTH_1
Send MSG_2 to UD

else
Discard request

else
Discard request

UD:
Generates AUTH_1* = h(SK_2||RES||RN_0)
If (AUTH_1* == AUTH_1)

GW is authenticated
Selects RN_1
Generates AUTH_2 = h(SK_2||CON||RN_1||RN_0)
// Confirmation from UD to GW

Generates MSG_3 = CON||RN_1||AUTH_2
Sends MSG_3 to GW

else
Stop

GW:
Generates AUTH_2* = h(SK*||CON||RN_1||RN_0)
If (AUTH_2* == AUTH_2)

If Previous key exists
Delete old key

Store SK*, TS
else

Discard request

--

4.3.3 P3: Authentication of data request in ECU
When the UD wants to interact with an ECU via the GW,
the UD first generates HR1 = h(SK2||RN1) and sends RN1

and HR1 to the GW. We assume that this transmission is
done over a secure channel set up via P2.

The GW checks if HR1 is valid, and then responds by send-
ing RN2 and HR2, where RN2 is a randomly selected string
and HR2 = h(SKP2

∗ || RN2||RN1).

After checking the validity of HR2, the UD sends AuthP3
1

to the GW, where AuthP3
1 = f4(SK1||RN1|| RN2) and f4 is

also a cryptographic hash function. If it is the first time, the
UD also sends the certificate to the GW. The entire process
is done over N2.

The GW generates AuthP3
2 and KTEM , where AuthP3

2 =
f5(MK1|| AuthP3

1 ||RN2)), KTEM = h(MK1||RN2||RN1),
and f5 is also a cryptographic hash function. The same
algorithms can be used for f4 and f5. The GW then sends
RN1, RN2 and AuthP3

2 to the ECUs over N1. If it is the
first time, the GW also sends the certificate of the UD to
the ECUs.

160 bits

RN1

RN1

RN1

RN2

RN2

RN2

AuthP3
1

AuthP3
2

MK1

f4

f5

SK1

Figure 6: The ECU verifies the request from a user
device

If the ECUs had previous interactions with the UD, they
store SK1. Otherwise, ECUs verify CertP3

UD and derive SK1.
The ECUs generate Auth∗1 and Auth∗2 as shown in Fig. 6,
and then compare Auth∗2 and AuthP3

2 . If they are identical,
the ECUs generate KTEM which is the same as the GW’s.
Algorithm 3 provides the pseudocode for P3.

Algorithm 3: Authenticated Request to ECU
--
UD:

Selects 64/128 bits RN_1
Generates HR_1 =h(SK_2||RN_1)
Send Request with RN_1, HR_1 to GW

GW:

If HR_1 is valid
selects 64/128 bits RN_2
generates HR_2 = h(SK_2||RN_2||RN_1)
sends response with RN_2, HR_2 to UD

UD:
If HR_2 is valid

generates AUTH_1 = f4(SK_1||RN_1||RN_2)
sends frame request with AUTH_1 to GW
If it is the initial request

sends CERT_U_1 to GW

GW:
Generates AUTH_2= f5(MK_1||AUTH_1||RN_2))
Generates K_TEM = h(MK_1||RN_2||RN_1)
If UD firstly requests

sends RN_1||RN_2||AUTH_2||CERT_U_1 to ECU
else

sends RN_1||RN_2||AUTH_2 to ECU

ECU:
If TS_1, TS_2 are valid
//by checking CERT_U_1 and CERT_U_2
//simultaneously

Generates AUTH_1* = f4(SK_1||RN_1||RN_2)
Generates AUTH_2* = f5(MK_1||AUTH_1*||RN_2)

If AUTH_2 == AUTH_2*
Generates K_TEM = h(MK_1||RN_2||RN_1)

else
Filter request

--

After verifying the request from the GW, the GW and the
ECUs can establish a secure channel by using KTEM . The
GW now only receives authenticated CAN messages from
the ECUs over N1, and vice versa. Several existing proto-
cols designed for CAN such as [4, 8, 10, 13] can be used for
authenticated frame transmission.

The entire process of our protocol is shown in Fig. 7.

5. EVALUATION
In this section, we present a detailed security analysis of the
proposed protocol and calculate the associated performance
overheads.

5.1 Security Analysis

Security against key exposure from compromised enti-
ties. Suppose key KC is derived from another key KM, and
the attacker A is now the owner of KC . A will try to retrieve
the key KM of an attached device D. If the probability that
A extracts KM from KC is not higher than the probability
that A extracts KC without it, then we can conclude that
the protocol is secure. KC is derived from KM using the
cryptographic hash function h. The probability that A de-
rives KM from KC is the same as the probability that A

Trusted 3rd party

User Device Gateway ECU

SK_1, SK_2,
Cert_UD_1, 2

MK_1, MK_2,
Cert_GW LK

Selects RN_1

RN_2

Auth_1, Cert_UD_1

Request, RN_1

K_TEM = h(MK_1||RN_2||RN_1)RN_1, RN_2, Auth_2 Cert_UD_1

K_TEMK_TEM

Selects RN_2

Authenticated communication

Only in initial setup

Keys can be shared offline in
the manufacturing stage.

Given to a registered device.
It has an expiration date.

REQ, Cert_GW
Verify Cert_GW

K* = h(LK||h(ID_GW)||TS_GW)

e(K**, RES||R1||h(RES))

ID_UD, REQ_2, Cert_UD_2 K** = h(MK_2||ID_U||TS_U)

MK_1 == K*

SK_2 == K*
e(K**, CON||h(CON||R1))

P2: Secure channel setup

P1: Gateway Authentication

P3: Request Authentication
Verifies AUTH_1 and AUTH_2

- Auth_1 = h(SK_1|RN_1||RN_2)
- Auth_2 = h(MK_1||AUTH_1||RN_2)

We do not depict data encryption for N2

Verify Cert_UD_2

Verify Cert_UD_1

Figure 7: The full 3-step authentication process

finds a message m (a pre-image) from h(m).

Pr[F(MK1) ≡ LK]∪Pr[F(SK1) ≡ LK] ≡ Pr[F(h(m)) ≡ m],

where F is a function that finds the pre-image of the input.
Thus, it is difficult to derive LK from MK1 or SK1, and
MK2 from SK2 in the protocol.

Security against invalid key usage. If a certificate CertID
is generated by using timestamp TS, the sender’s ID and
the receiver’s key K, a malicious entity without a valid cer-
tificate CertA will try to get authenticated by the receiver.
The probability that the attacker generates a valid CertA,
such that CertA = CertID is the same as the probability
that the attacker finds a collision in the hash function.

Pr[CertA ≡ CertID] ≡ Pr[h(m) ≡ h(m′)],

where m 6= m′.

Security against impersonation of a user device. In this
scenario, a malicious entity A tries to impersonate a valid
UD. A impersonates a valid UD by sending a fraudulent
proof AuthA. The probability of AuthA = AuthP2

0 is the
same as the probability that the attacker succeeds in find-
ing a collision in the cryptographic hash function. The diffi-
culty in finding a collision depends on the underlying cryp-
tographic hash function as below.

Pr[AuthA ≡ AuthP2
0] ≡ Pr[h(m′) ≡ h(m)],

where m′ 6= m.

Security against Impersonation of GW. Suppose a ma-
licious entity A tries to impersonate a valid GW that is
attached to CAN and communicates with the ECU with-
out a valid key from the GW. A impersonates a valid GW
by sending a fraudulent proof AuthA. The probability of
AuthA = AuthP1

∗ is the probability that any attacker suc-
ceeds in finding a collision in the cryptographic hash func-
tions as below.

Pr[AuthA ≡ AuthP1
∗] ≡ Pr[h(m′) ≡ h(m)],

where m′ 6= m.

Security against fraudulent requests from a user de-
vice. In order for an attacker A to succeed in receiving vehi-
cle information by sending a fraudulent request, A should be
able to impersonate both the GW and the ECUs. We showed
the probability of success in impersonating a valid device in
the previous section. Even after a successful impersonation,
A should be able to generate Auth∗A for a fraudulent request
in P3. The probability that an attacker A who has compro-
mised the GW, also succeeds in sending a fraudulent request
to the ECUs, is not higher than the probability that A suc-
ceeds in finding two collisions when the same cryptographic
hash function is used in P2 and P3.

Security against fraudulent requests from a malicious
GW. Since we assume that the GW authenticated in P1 is
secure, we only need to consider the malicious GW that has
not yet been authenticated. Suppose a compromised gate-
way GWA attempts to send fraudulent requests with fraud-
proof AuthGWA

2 to the ECUs. The probability of GWA suc-
ceeding in sending a fraudulent message to an ECU without
valid MK1 is the same as the probability that the attacker
finds CertP1

GWA , AuthGWA
2 and CertP3

GWA , where CertP1
GWA

≡ CertP1
GW , AuthGWA

2 ≡ Auth∗2, and CertP3
GWA ≡ Cert

P3
UD.

5.2 Implementation Overhead
5.2.1 Implementation Setup

For the evaluation of our model, we set up a testbed as shown
in Fig. 8. We used Ford’s OpenXC library [7] running on
Digilent chipKIT Max32 which has a 32-bit processor with
40 MHz processing capability, and a Digilent chipKIT Net-
work Shield. An emulator software running on the Digilent
chipKIT Max32 (32-bit, 40 MHz) simulates the CAN bus en-
vironment. We used a translation software which converts
the raw data sent from the car into a JSON format which
is then parsed by the Android device. We used a Toshiba
Thrive Android tablet as our user device platform.

ECU Gateway

User Device

Figure 8: Testbed

The ECU(emulator) performs authentication and verifica-
tion of the GW when the GW is attached to it. We then
attach the UD to the GW. The GW performs Step 2 authen-
tication to verify the user device. The GW will not translate
the simulated information if the unauthenticated device is
attached to it. The user device only receives data after the
3-step verification is completed. The user can only request
preregistered messages.

5.2.2 Implementation Results
We now provide the details of our data frame setup along
with the specifications used for the evaluation of the over-
head incurred in the protocol. The communications in P2,
which are done over N2, do not increase any perceivable
additional overhead, so we only focus on the overheads due
to data transmissions during P1 and P3. We assume use of
SHA-1 that produces a 160-bit hash output.

First, in case of P1, the GW needs to send CertGW and
AuthP1

0 . Let us use the following data fields: 128-bit ID,

Universally Unique IDentifier (UUID)1; 32/64-bits times-
tamp (TS), 32 (64) bits cover 136 (293 billion) years; 160
bits Proof of ID and time using message authentication
code.

Six 8-byte CAN frames are required to transmit CertGW :

dSize(ID) + Size(TS) + Size(Proof)

8
e = 6.

If AuthP1
0 and Proof are set to use 160 bits with SHA-1,

we need three frames for transmission. Thus, for P1, a total
of 9 frames should be transmitted. However, this happens
only at the time of initial setup, and such transmissions do
not increase the overhead significantly.

For P3, the GW sends the following data: RN1 and RN2 use
a 64-bit random string. AuthP3

2 uses 160 bits with SHA-1.
Five 8-byte CAN frames are required to transmit the above
data.

d (Size(RN1) + Size(RN2) + Siz(AuthP3
2))

8
e = 5.

When we set up an authenticated connection using P3 for
the first time, we need to transmit eleven 8-byte CAN frames,
including Cert of a UD, to the CAN. The number and size
of frames can be reduced using several existing authentica-
tion protocols designed for CAN such as [13, 4, 8, 10]. The
actual transmission time in the vehicle depends on the CAN
arbitration time from the priority and the data transmission
intervals. The authors of [12] showed an SAE CAN message
period to range from 5 to 1000ms.

The hash computation requires each ECU to perform 4 hash
operations, generating AuthP3

1 , AuthP3
2 , KTEM , and CertU

for the initial setup. The hash computation is also known
to take a small amount of time. For example, the authors
of [8] showed the computation of cryptographic hash func-
tions to take less than 1.2ms when SHA-1 is executed at an
80Mhz clock speed 16-bit microprocessor. When we use 32-
bit processors with 40Mhz computation capability, the delay
incurred by cryptographic computations is less than 1ms.
This is in tune with the SAE standards for safety-critical
control applications.2 Each SHA-1 computation takes 200
µs or 0.2 ms. For the initial establishment, we need a total
of 5 SHA-1 computations, which amounts to a 1 ms delay.
Thus, the protocol does not incur any significant overhead.

6. CONCLUSION
Connecting in-vehicle networks to the external world intro-
duces serious security risks due to their inherent design for
operation in an isolated environment. Moreover, it is diffi-
cult to deploy the security mechanisms intended for generic
computer networks to vehicular networks due to the signifi-
cant differences in their intended operational environments.
By accounting for these facts and trends, we defined secu-
rity models for “connected” vehicles, proposed and analyzed

1RFC 4122 A UUID URN Namespace, July 2005
2SAE Class C Application Requirement Considerations,
SAE J2056/1.

a three-step authentication protocol that secures the com-
munication between the in-vehicle network and an external
network(mobile device) while meeting the vehicle manufac-
turers’ requirements. In the future, we would like to design
a security model against attackers who physically attach a
compromised device and directly interact with the in-vehicle
network.

Acknowledgement
The work reported in this paper was supported in part by
the US Army Research Office under Grant W911NF-12-1-
530 and the US Air Force Office of Scientific Research under
Grant FA9550-10-1-0393.

7. REFERENCES
[1] AUTOSAR. Automotive Open System Architecture.

[2] M. Chavez, C. Rosete, and F. Henriquez. Achieving
Confidentiality Security Service for CAN. In
Electronics, Communications and Computers, 2005.
CONIELECOMP 2005. Proceedings. 15th
International Conference on, pages 166–170, 2005.

[3] S. Checkoway, D. McCoy, B. Kantor, D. Anderson,
H. Shacham, S. Savage, K. Koscher, A. Czeskis,
F. Roesner, and T. Kohno. Comprehensive
experimental analyses of automotive attack surfaces.
In SEC’11: Proceedings of the 20th USENIX
conference on Security, pages 1–16. USENIX
Association, Aug. 2011.

[4] M. Dworkin. NIST SP 800-38B, Recommendation for
Block Cipher Modes of Operation: The CMAC Mode
for Authentication. Technical report, NIST, May 2005.

[5] A. Elouafiq. Authentication and Encryption in GSM
and 3GUMTS: An Emphasis on Protocols and
Algorithms. arXiv.org, cs.CR, Apr. 2012.

[6] EVITA. E-safety vehicle intrusion protected
applications. EVITA Consortium.

[7] Ford Motors. Inc. The openxc platform.
http://openxcplatform, 2013.

[8] B. Groza and P.-S. Murvay. Broadcast Authentication
in a Low Speed Controller Area Network. revised
postproceedings version of the paper presented at
SECRYPT’11, to appear in e-Business and
Telecommunications, Springer CCIS, pages 1–16, Feb.
2012.

[9] K. Koscher, A. Czeskis, F. Roesner, S. Patel,
T. Kohno, S. Checkoway, D. McCoy, B. Kantor,
D. Anderson, H. Shacham, and S. Savage.
Experimental Security Analysis of a Modern
Automobile. Security and Privacy (SP), 2010 IEEE
Symposium on, pages 447–462, 2010.

[10] D. Nilsson, U. Larson, and E. Jonsson. Efficient
In-Vehicle Delayed Data Authentication Based on
Compound Message Authentication Codes. In
Vehicular Technology Conference, 2008. VTC
2008-Fall. IEEE 68th, pages 1–5, 2008.

[11] D. K. Nilsson, U. E. Larson, F. Picasso, and
E. Jonsson. A First Simulation of Attacks in the
Automotive Network Communications Protocol
FlexRay. Proceedings of the International Workshop
on Computational Intelligence in Security for
Information Systems CISIS’08, pages 1–8, Sept. 2008.

[12] T. Nolte, H. Hansson, and C. Norstrom. Probabilistic
worst-case response-time analysis for the controller
area network. In Real-Time and Embedded Technology
and Applications Symposium, 2003. Proceedings. The
9th IEEE, pages 200–207. IEEE Computer Society,
2003.

[13] H. Schweppe, Y. Roudier, B. Weyl, L. Apvrille, and
D. Scheuermann. Car2X Communication: Securing
the Last Meter. WIVEC 2011, 4th IEEE International
Symposium on Wireless Vehicular Communications,
5-6 September 2011, San Francisco, CA, United
States, pages 1–5, June 2011.

[14] R. VandenBrink. Dude, your car is pwned! SANSFIRE
2012, Washington, DC, Jul 6th - 15th 2012.

[15] M. Wolf, A. Weimerskirch, and C. Paar. Security in
Automotive Bus Systems. in: Proceedings of the
Workshop on Embedded Security in Cars (escar)’04,
pages 1–13, 2004.

