
DUET: Integration of Dynamic and Static Analyses for Malware

Clustering with Cluster Ensembles

Xin Hu
IBM T.J. Watson Research Labs

huxin@us.ibm.com

Kang G. Shin
University of Michigan, Ann Arbor

kgshin@eecs.umich.edu

ABSTRACT
Automatic malware clustering plays a vital role in combating
the rapidly growing number of malware variants. Most ex-
isting malware clustering algorithms operate on either static
instruction features or dynamic behavior features to parti-
tion malware into families. However, these two distinct ap-
proaches have their own strengths and weaknesses in han-
dling different types of malware. Moreover, different cluster-
ing algorithms and even multiple runs of the same algorithms
may produce inconsistent or even contradictory results. To
remedy this heterogeneity and lack of robustness of a single
clustering algorithm, we propose a novel system called DUET

by exploiting the complementary nature of static and dy-
namic clustering algorithms and optimally integrating their
results. By using the concept of clustering ensemble, DUET
combines partitions from individual clustering algorithms
into a single consensus partition with better quality and ro-
bustness. DUET improves existing ensemble algorithms by
incorporating cluster-quality measures to effectively recon-
cile differences and/or contradictions between base malware
clusterings. Using real-world malware samples, we compare
the performance of DUET (in terms of clustering precision,
recall and coverage) with individual state-of-the-art static
and dynamic clustering component. The comprehensive ex-
periments demonstrate DUET’s capability of improving the
coverage of malware samples by 20–40% while keeping the
precision near the optimum achievable by any individual
clustering algorithm.

1. INTRODUCTION
The growing popularity of automatic malware-creation

toolkits, which allow even marginally skilled attackers to
create and customize malware programs, has produced a
plethora of malware variants. Clustering plays a key role
in processing new incoming malware samples. Automatic
and accurate partitioning of these samples into families will
(1) allow analysts to prioritize allocation of precious hu-
man resources for more important, distinct malware pro-
grams; (2) enable automatic classification of incoming mal-
ware samples by associating them with existing clusters; and
(3) generalize existing mitigation techniques for new vari-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
ACSAC ’13 Dec. 9-13, 2013, New Orleans, Louisiana USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-2015-3/13/12 ...$15.00
http://dx.doi.org/10.1145/2523649.2523677.

ants. However, different clustering algorithms often gener-
ate inconsistent results. Even multiple runs of the same
algorithm may produce distinct results due to different pa-
rameter settings, random initialization or stochastic learning
process [32]. Furthermore, different approaches have their
respective strengths and limitations that often depend on
the characteristics of input data, such as data distribution,
pre-processing procedures, anti-analysis techniques used by
malware programs, etc. Thus, no single algorithm can per-
form optimally across various data sets, and a wide range of
clustering algorithms have been proposed [4, 6, 20, 23, 27, 31].

Most existing approaches cluster malware using their dy-
namic behavior or static features. The main benefit of dy-
namic behavior based clustering is its resilience to low-level
mutation techniques, such as packers or binary obfuscation
that do not affect runtime behavior. However, behavior-
based approaches also suffer from several weaknesses. First,
they may have only limited coverage of an application’s be-
havior, failing to reveal the entire capabilities of a given mal-
ware program. This is because a dynamic analysis system
can only capture API or system-call traces corresponding to
the code path taken during a particular execution. Unfor-
tunately, depending on the program’s internal logics and/or
external environments, different code paths may be taken
during different executions. For instance, many malware
exhibit interesting behavior only when certain conditions
are met, such as specific date/time or receipt of network
commands (e.g. botnet). In contrast, static clustering algo-
rithms analyze features extracted from a program’s binary
or disassembled instructions. They are capable of covering
all possible code paths of an application, including parts of
the program that normally do not execute, thereby yielding
more accurate characterization of the program’s function-
alities. However, their performance may suffer when fac-
ing binary-level packing, anti-reversing and anti-disassembly
techniques. Because of these limitations, it is often very
challenging, if not impossible, to develop a single, effective
clustering algorithm for all sets of malware programs.

In this paper, instead of focusing on developing a single
clustering algorithm that works only for a narrow range of
datasets, we design a unified clustering framework, called
DUET, exploiting the complementary features of static and
dynamic clustering approaches. DUET systematically com-
bines different clustering algorithms based on the concept
of cluster ensemble. Specifically, given a set of (dynamic or
static) clusterings C1, C2, . . . , Cm, cluster ensemble attempts
to derive a single clustering C that, according to certain cri-
teria, is in as much agreement as possible with the original
m clusterings. By exploiting the consensus among different
clustering algorithms, cluster ensemble combines strengths
of individual clusterings and yields better-quality clusters

79

with higher coverage. For instance, a dynamic approach may
mistakenly put all malware programs that stop execution
after detecting a virtual environment into the same cluster,
owing to the similar system calls invoked by the malware be-
fore they exit. Such coverage gaps can often be resolved by
using a static approach to grouping them according to their
binary traits. One challenge is how to reconcile the conflict-
ing results generated by different clustering algorithms. If
static and dynamic approaches are assigned an equal weight
when reconciling their results, the ensemble algorithm can,
at best, make random choices. We address this problem
via a Clustering-Quality metric, which gauages how strongly
connected/related the data points are within each cluster.
By assigning each cluster a quality score, high-quality clus-
ters, where member malware programs share stronger con-
nections, are assigned heavier weights when combining the
conflicting results, thus improving the overall clustering ac-
curacy. Our evaluation of DUET with real-world malware
samples demonstrates its ability to improve the malware
coverage by 20–40% while keeping the accuracy near the
optimum achievable by any individual clustering algorithm.

The main contribution of DUET is to employ clustering en-
semble as a principled method to build a framework that
systematically unifies static and dynamic clustering results,
achieving much better results than any single approach alone.
Although the ideas of exploiting diverse perspectives of static
and dynamic features have been discussed before, DUET is
unique in that it systematically addresses this problem and
demonstrates the effectiveness of a relatively large-scale work-
ing prototype. DUET thus offers additional insights into the
complementary nature of different analysis approaches and
efficient ways of integrating them in malware clustering.

The rest of this paper is organized as follows. Section 2
discusses related work. Section 3 provides a brief overview
of DUET architecture. Section 4 describes static and dynamic
clustering algorithms. Sections 5 and 6 detail the proposed
cluster ensemble algorithms. Section 7 presents the evalu-
ation results and Section 8 discuss the limitations. Finally,
Section 9 concludes the paper.

2. RELATED WORK
Static feature-based methods are among the first few ap-

proaches proposed for malware clustering due mainly to their
simplicity and fast speed. Static features like PE headers
[31], code patterns [7], instruction sequences [16] or binary
sequences [15] are extracted and used to train various learn-
ing algorithms [19] for malware categorization and detec-
tion. Unfortunately, the popularity of static approaches en-
couraged malware writers to develop obfuscation techniques
and thwart the static analysis. As a result, dynamic ap-
proaches have recently received significant attention. For
instance, Rieck et al. [27] trained a SVM classifier using the
malware’s run-time behavior, such as copy files and create
processes. Bailey et al. [4] employed a hierarchical clus-
tering algorithm to group similarly-behaving malware sam-
ples based on non-transient state changes. More recently,
Bayer et al. [6] adopted locality-sensitive hashing (LSH) and
Rieck et al. [20] developed a prototype-based clustering al-
gorithm to improve the scalability of behavior-based clus-
tering. Unfortunately, dynamic approaches also have their
own weaknesses, e.g., an incomplete view of program’s be-
havior. Therefore, a systematic approach to combining the
strengths of both static and dynamic analysis algorithms is

highly desirable. Although the ideas of combining static and
dynamic clusterings have been mentioned in both industry
and academia [3, 24], very few have addressed their system-
atic integration. The work most relevant to ours are those of
Leita et al. [24] and Anderson et al. [3]. In their work in [24],
Leita et al. focused on gaining insights into the relationship
among different code variants and presented several scenar-
ios where the combination of static and dynamic sources
can help detect clustering anomalies. However, these inte-
grations of static and dynamic clusterings are mostly done
manually and studied on a case-by-case basis. Anderson et
al. [3] applied a multi-kernel learning method to combine
similarity metrics for different data sources including static
and dynamic features of malware programs. They trained
a multi-kernel SVM (Support Vector Machine) classifier on
features extracted from 780 malicious and 776 benign pro-
grams, and demonstrate benefits of combining different data
sources in classifying malicious programs.

Cluster ensemble is a process of obtaining a single consen-
sus and better clustering results from a number of different
clusterings [2]. Strehl and Ghosh [2] considered cluster en-
semble as a knowledge-reuse framework for combining dif-
ferent clusterings. Hong et al. [14] implemented an approach
that combines the relabeling and voting to achieve the best
agreement between the labels of partitions. Fed [10] and Jain
[11] constructed the consensus function as a co-association
matrix which represents the association or connectivity be-
tween each pair of data samples. These work all showed that
ensemble is an effective way to improve the robustness, sta-
bility and accuracy of clustering. In this paper, we employed
the connectivity matrix-based ensemble approaches.

3. SYSTEM OVERVIEW

Figure 1: An overview of DUET

Fig. 1 depicts the system architecture of DUET. Given a
set of malware programs, DUET first uses two different fea-
ture extractors to derive (1) static-instruction features and
(2) dynamic-behavior features. Second, the results of indi-
vidual clusterings are generated by applying different clus-
tering algorithms with different parameters settings. Then,
the quality of each individual clustering is evaluated and
used to construct the connectivity-based consensus matrix,
where ensemble methods are applied to derive the final par-
titions. We will elaborate each component of DUET in the
following sections.

4. MALWARE CLUSTERING
This section introduces the base static and dynamic clus-

tering algorithms used by DUET for ensembles. We adopt
the state-of-the-art malware clustering algorithm proposed
in [20] because of its effectiveness and scalability. Note, how-
ever, that DUET does not rely on specific algorithms and can
easily accommodate other clustering algorithms to increase
the diversity of input clusterings.

80

4.1 Clustering Using Static Features
DUET’s static clustering component, henceforth referred to

as DUET-S, exploits the common observation that a large
portion of today’s malware are file-level variations of a small
number of families and tend to share similar instruction se-
quences. DUET-S consists of the following steps.

Unpacking: Packing is arguably the most popular tech-
niques used by malware writers to circumvent anti-virus de-
tection. A typical packer (e.g UPX) works by creating a
new binary containing the compressed version of the origi-
nal binary followed by the unpacker code. When the packed
program runs, the unpacker will first be executed. The un-
packer de-compresses the original program codes, write them
into some memory location and jump to the first instruc-
tion of the restored codes to start execution. Packing allows
malware to hide malicious instructions and evade anti-virus
detection, while keeping the original functionalities intact.
Since DUET-S , likely any other static analysis approach, re-
lies on features extracted from original instructions, it is
imperative to correctly unpack input malware programs.

While there exist unpacking tools such as UnPECompact,
ASProtect Deprotector, etc., they are often targeted specifi-
cally at one or a few packers. In addition, they often have to
perform expensive processing to ensure that the unpacked
program can be successfully executed (e.g., the file head-
ers and imported tables must be correctly reconstructed),
making them too slow for large scale processing. In DUET-S,
we tailored a generic unpacking algorithm proposed in [13]
for efficient malware clustering by exploiting the observa-
tion that, for static analysis, DUET-S need not guarantee the
executability of unpacked programs as long as the original
instructions can be inspected and features extracted. The
basic idea is to utilize the inherent property of the unpack-
ing procedure, i.e., a packed binary has to write the original
code into some memory space and execute them. Hence by
continuously monitoring memory access patterns of write
and execute, one can detect the occurrence of some form of
unpacking, self-modification or on-the-fly code generation.

To achieve this, DUET-S takes advantages of the physical
non-execution (NX) support in modern x86 CPUs. Specifi-
cally, given a packed program, DUET-S loads it into memory,
marks all the memory pages as executable but non-writable.
Then during the execution, when the unpacker attempts
to write original codes into some memory page (which has
been marked as non-writable), a write exception will occur.
DUET-S captures such an exception, marks the page as dirty
and changes the permission to writable but non-executable.
When the unpacker jumps to the newly-generated code for
execution (e.g., after finishing unpacking), the absence of
executable permission on these pages triggers an execution
exception. DUET-S intercepts the exception and records the
memory page’s address (these modified-then-executed mem-
ory pages likely contain the original machine instructions
and thus are targets for feature extraction). Then DUET-S re-
moves the write permission from these memory pages again,
grants execution privilege and continues the program’s ex-
ecution. Finally, DUET-S dumps the process memory image
either at the end of program execution or after certain time
threshold (e.g., 2 minute). The rationale is that after the
program has been running for a sufficient amount of time ,
it is fairly safe to assume that the program has finished un-
packing and the original codes are present in the memory.
Notice that this generic unpacking process can be seamlessly

integrated into dynamic analysis, thereby incurring little ad-
ditional overhead for DUET.

Table 1: Unpacking effectiveness (IC: Instruction
Count; NG Dist: N-gram Difference)
Packer Diff in NG Packer Diff in NG

IC (%) Dist IC (%) Dist
PECompact 0.88% 0.068 ASProtect 6.70% 0.133
EXECryptor 3.20% 0.176 UPX 0.88% 0.068
EXEStealth 0.88% 0.071 NSPack 0.87% 0.069
VMprotect 2.50% 0.10 Armadillo – –

To better understand the effectiveness and limitation of
the generic unpacking algorithm, we use 8 popular packing
tools to pack malware programs and then compare DUET-

S unpacked files with their original version. Ideally, the
unpacked binary should be byte- to-byte identical to the
original file. However, this is neither possible (DUET-S does
not reconstruct the import table, and the unpacker code is
also dumped from the memory), nor necessary for the pur-
pose of malware clustering. As a result, we use following
two metrics are directly related to clustering accuracy: (i)
the difference in their instruction count (IC), and (ii) the
distance between their N-gram feature vectors (NG, details
are elaborated later in this section). Table 1 summarizes
the results. For most packers, DUET-S successfully recovered
original binaries with only a 1–6% increase of ICs which
is often due to the inclusion of unpacker routines in the
dumped memory. Besides, the feature vectors of unpacked
binaries are very similar to those of the original binary with
most normalized distance measurements below 0.1, where 0
means identical and 1 means completely different. However,
DUET-S also failed on some packers e.g., Armadillo. A further
investigation showed that Armadillo works by unpacking an
intermediate executable on disk and creating another pro-
cess to run this executable. Therefore, memory dump of an
Armadillo-packed file does not contain original instructions.
After running DUET-S on the large data set, we have also
observed other causes of unsuccessful unpacking, such as
malware samples refuse to run in a virtual machine or the
time required for unpacking is longer than the threshold.
Hence despite the effectiveness of DUET-S against popular
packers, these failed cases demonstrates the necessity and
importance of complementing DUET-S with dynamic anal-
ysis. DUET-S discard binaries that cannot be unpacked to
avoid extracting bogus features from unpcker codes. Thanks
to DUET’s ensemble approach, most of these un-packable bi-
naries can still be clustered by their dynamic features.

Feature Extraction: Since malware programs often un-
dergo changes due to polymorphism and obfuscation, exact
comparison between instructions will not tolerate any syn-
tax variation. At the other extreme, if all forms of vari-
ation are tolerated, correctness is compromised. To strike
a balance, DUET-S exploits the x86 instruction format1 and
uses the opcode as a succinct representation of instruction
semantics. Using opcodes—instead of widely-used features
such as binary sequences [15] or mnemonics i.e. ‘mov’ and
‘add’—offers several benefits. First, by ignoring operands,
opcode allows DUET-S to tolerate low-level mutations and ob-
fuscation among malware variants. Second, comparing with

1In x86, an instruction (e.g., add eax, 4Fh whose binary
form is 83C04F) consists of opcode which specifies the oper-
ation to be performed and operants on which the operation
is performed. In the above example, the opcode is ’83’, the
operation is ’add’ and the operants are ’eax’ and ’4F’.

81

Table 2: Opcodes provide fine-grained representa-
tions of instruction semantics

Binary Instruction Opcode Mnem
83 C0 4F add eax, 4Fh 83 ADD
B8 4F 00 00 00 mov eax, 4Fh B8 MOV
0F 22 C0 mov CR0, ecx 0F 22 MOV

mnemonics, the opcode sequence offers more precise repre-
sentation of instruction semantics. Mnemonics sometimes
overly generalize underlying CPU operations, leading to ac-
cidental similarity between different code sequences. For
instance, in Table 2, although both mov instructions share
the same mnemonic, the underlying semantic is drastically
different.
DUET-S represents each malware program as a sequence

of opcodes and applies the standard N-gram analysis [20] to
construct a feature vector V . Each value in V represents the
number of occurrence of a particular opcode N-gram. The
similarity between two programs can then be calculated ge-
ometrically as the Euclidean distance between their feature
vectors in the vector space.

Clustering with N-gram Feature Vectors: DUET-

S employs the prototype-based linear-time clustering algo-
rithm (henceforth referred to as ProtoCluster) developed in
[20]. The main advantage of ProtoCluster is its significantly
faster clustering speed achieved by performing most com-
putation on a relatively small set of prototypes and avoid-
ing expensive pair-wise data point comparisons required by
many classical clustering algorithms (e.g., K-mean or hier-
archical clustering). The first step of ProtoCluster is to ex-
tract a set of prototypes—data points that are typical for
a group of homogeneous data samples. Because selection of
an optimal set of prototypes is known to be NP-hard, Pro-
toCluster uses a greedy algorithm. It starts with choosing
a random sample as the first prototype and then iteratively
selects the next prototype by searching for the sample that
has the largest distance to its nearest prototype. This se-
lection process is terminated when the distance from all the
data points to their nearest prototype is smaller than a pre-
defined threshold Pmax (i.e., all the input data points are
located within a certain radius from some prototype). Then,
ProtoCluster performs standard agglomerative hierarchical
clustering only on the prototypes (rather than the original
input data). First, each prototype form a single-node clus-
ter. The algorithm recursively merges two closest prototype
clusters until the distance between the closest clusters is
larger than a predefined threshold Mind. Prototypes within
the same cluster are assigned the same label and the label
is subsequently propagated to their associated data points
(i.e., those within the Pmax distance to the prototype). The
authors of [20] showed that the runtime complexity of Pro-
toCluster is O(k2log k + kn) where k is the number of pro-
totypes and n the total number of malware samples. Since
k depends only on the distribution of the data (i.e., k is pro-
portional to the number of malware families), with proper
choice of Pmax, the algorithm is linear in the number of in-
put data n. Applying ProtoCluster on the extracted static
features with different parameters Pmax and Mind, DUET-
S produces multiple clusterings of input malware samples,
which serve as an input to the ensemble algorithm.

4.2 Malware Clustering Using Run-time Traces
This section briefly describes the dynamic-behavior-based

component of DUET, referred to as DUET-D. DUET-D adopts
Malheur [20], a state-of-the-art tool for automatic cluster-
ing of malware behavior collected from sandbox environ-
ments such as CWSandbox or Anubis. In DUET-D , for bet-
ter scalability and privacy, instead of using existing web-
based malware analysis services as those used in Malheur,
we built our own system call monitor to intercept and record
all API/system calls of malware programs in VMWare vir-
tual machines. This allows DUET-D to take advantage of
the VMWare VIX API to automate and parallelize the run-
ning of malware programs. Each malware program is moni-
tored for 2 minutes, and the virtual machine is reset to the
clean-state snapshot, preventing interference between mal-
ware programs.

Table 3: Examples of encoding system/API calls
Category Operation System Call

File 0x03 0x01 CreateFile
System 0x03 0x02 CopyFile

0x0A 0x02 CreateProcess
Process 0x0A 0x02 CreateProcessInternal
Handling 0x0A 0x02 CreateProcessAsUserr

0x0A 0x02 NtCreateProcess

The monitor produces a textual format of API/system
call traces. According to [20], we encode each call into a
tuple ’(category, operation)’, where a category represents a
group of calls that operate on a similar type of objects (e.g.,
registry, file systems, DLLs or processes), and an operation
specifies a particular function. For example, in Table 3, the
tuple ’(0x03, 0x01)’ indicates that the call belongs to the
’File System’ category and is performing the ’CreateFile’ op-
eration. Furthermore, we assign the same operation value to
those calls that can achieve identical results. For instance,
4 system calls that can be used to create a new process are
encoded with the same tuple, ’(0x0A, 0x02)’. This canoni-
calization of function variations enables a more generalized
representation of call traces and also ensures locality of calls
with similar functionalities in the encoded space. In to-
tal, DUET-D intercepts and encodes 211 windows API/system
calls into 21 categories, covering most frequently used func-
tionalities including file system, registry, network, mutex,
process, thread, virtual memory, etc.

Because typical malware behavior patterns, such as mod-
ifying the registry keys and file systems, can be reflected in
the system call sequences, DUET-D apply the N-gram anal-
ysis as similar to DUET-S , embedding the encoded system
call sequences into a fixed-length feature vector whose dis-
tance represents the similarity between malware behaviors.
However, one important difference is that: unlike in DUET-

S where the feature vector elements represent how often a
specific n-gram of instructions occurs, DUET-D uses binary
features (i.e., 0 or 1) where each feature vector element rep-
resents the absence or presence of a specific N-gram of the
call traces. Using binary features help DUET-D reduce the in-
fluence of many external factors, such as the length of traces,
the repetition of behavior, etc. For instance, depending on
the monitoring period and system condition, the number of
system calls in a call trace can vary significantly, even for
identical malware programs. Some system calls may be exe-
cuted in a loop and produce thousands of repetitions, which
considerably skews the values in the feature vector. To com-
pensate for this bias, DUET-D uses binary features and nor-
malizes the feature vector to ensure that the difference be-
tween feature vectors depends only on the presence/absence

82

of features. After feature extraction and vector encoding,
DUET-D applies the ProtoCluster algorithm with different pa-
rameter settings to generate clusterings as the inputs to the
ensemble algorithm.

5. CLUSTER ENSEMBLE
The goal of using cluster ensemble is to improve the qual-

ity and the robustness of clustering results by exploiting the
diversity of multiple clustering algorithms.

Table 4: Success rate of different approaches (DUET-
S and DUET-D) in extracting malware features

of success (%) # of failure (%)
Dynamic approach 4943 (87.5%) 704 (12.4%)
Static approach 4799 (84.9%) 944 (16.7%)

Both approaches 5575 (98.72%) 72 (1.28%)

Motivating Examples The respective limitations of dy-
namic and static approaches, when used alone, can render
them ineffective for certain types of malware. To illustrate
this, we ran both approaches on a set of 5,647 real-world mal-
ware samples (Table 5 in Section 7 lists the details) to col-
lect N-gram features on their code instructions and dynamic
system-call traces. Table 4 summarizes the number of mal-
ware samples whose features can be successfully extracted by
dynamic, static and both analyses. It demonstrates the ca-
pabilities and shortcomings of these two approaches as well
as their complementary nature. Table 4 shows that the with
a 12 % and 17% failure rate2, neither static nor dynamic
approach alone is able to analyze all the samples. Detailed
investigation revealed that among 12 % samples that failed
dynamic analysis, 645 cannot be executed, and 25 only made
a single system call, i.e., TerminateProcess, due to detection
of the virtual machine environment3. On the other hand, the
disassembler failed to extract any static instructions from
655 binaries (particularly for FakeAV and Gammima) due
to the use of sophisticated obfuscation and packing tech-
niques. By contrast, a combination of dynamic and static
analyses yielded much better results: malware samples that
can be successfully analyzed increased to 98.72%, with only
72 malware samples being able to evade both approaches.
This preliminary experiment demonstrates that aggregating
different analysis approaches has the potential for achieving
more robust and complete clustering.

5.1 Formulation of Cluster Ensemble
Consider a set of n malware programs, X = x1, x2, . . . , xn,

and a set of T clusterings of X, C = {C1, C2, . . . , CT }. Each
clustering, Ct, t = 1, 2, . . . , T , is a partition of X into k dis-
joint clusters, i.e., Ct = {Ct

1, C
t
2, . . . , C

t
k} where

Sk
i=1 Ct

i =
X and Ct

i ∩ Ct
j = φ, ∀i �= j. Let Lt(x) denote the label

of the cluster to which the malware program, x, belongs,
i.e., Lt(x) = j if and only if x ∈ Ct

j . With these T cluster-
ings, the cluster ensemble is defined as a consensus function
Γ [2] that maps a set of clusters to an integrated clustering:
Γ : {Ct|t ∈ {1, 2, . . . , T }} → C.

If the relative importance of each individual clustering is
not known a priori, a natural goal of cluster ensemble is

2Failure rate is in accordance with observations from previous
work, e.g., [24] reported about 18.7% of their malware set cannot
be analyzed by Anubis
3Bredolab is one of the top malware families that produce only
one system call. According to [28], it is a botnet program that
terminates if it detects being executed in a virtual environment.

to find the final clustering, C, that shares the most com-
monality with the constituent clusterings [12].4 To measure
the similarity between clusterings, we define a connectiv-
ity matrix, M(Ct), for each clustering Ct. The connectivity
matrix is an n × n pair-wise matrix defined for all malware
programs and represents the structural information of a par-
ticular clustering. More specifically,

Mij(Ct) =

j
1 if xi and xj belong to the same cluster
0 Otherwise.

Then, the difference between two clusterings, Ca and Cb, can
be defined as the number of malware pairs for which the two
clusterings disagree [12]:

d(Ca, Cb) =

nX
i,j=1

di,j(Ca, Cb) =

nX
i,j=1

|Mij(Ca) − Mij(Cb)|

=

nX
i,j=1

(Mij(Ca) − Mij(Cb))2. (1)

Cluster ensemble strives to find a consensus clustering, Ĉ,
that is closest to all of the given clusterings, i.e., that mini-
mizes the average distance between Ĉ and {Ct|t ∈ {1, 2, . . . , T }:

Copt = arg min
Ĉ

TX
t=1

d(Ct, Ĉ). (2)

Since
PT

t=1 d(Ct, Ĉ) is a convex function, minimization re-

sults in an optimal matrix Mopt
i,j (Ĉ) = 1

T

PT
t=1 Mij(Ct) [32].

Here Mopt represents connectivity relationship between data
samples in the final ensemble clusters, and the values of Mopt

i,j

ranges between 0 and 1, where 1 (0) means all (none) of the
clusterings agree that xi and xj belong to the same cluster.
Given Mopt

i,j , our goal is to derive the final ensemble clusters

Copt = {Copt
1 , . . . , Copt

k }.

5.2 Clustering Based on Connectivity Matrix
Several methods have been proposed to generate a final

clustering from the optimal connectivity matrix[2, 12]. A
naive approach is to set a threshold such that two sam-
ples are assigned to the same cluster if their connectivity
is greater than the threshold and if these samples belong to
different clusters, these clusters are merged. However, the
main drawback of such an approach is that it tends to over-
merge unrelated clusters which have some samples acciden-
tally close to each other, leading to low clustering accuracy.
To address this, in DUET we employ the following algorithms.
The ball algorithm iteratively finds a set of samples that
are close to each other (i.e. within a ball) and far from
others, removes them from the data set and then contin-
ues clustering with the remaining samples. Because finding
the globally optimal sequence of clusters is NP-complete, a
greedy algorithm is used to create a bounded approximation.
Viewing the connectivity matrix, Mopt, as a graph’s adja-
cency matrix, where each Mopt

i,j represents the edge’s weight
connecting xi and xj , the algorithm sorts the samples in de-
creasing order of their edges’ total weights. At each step,
the algorithm chooses the first unclustered sample, xu, and
finds a set of samples, V = xv1, xv1, . . . , xvk whose connec-
tivity to xu is greater than the threshold, β. Then, their
union V ∪ xu forms a cluster.

4The algorithm can be easily generalized to the case where some
clusterings may carry more weights than others.

83

The agglomerative algorithm starts by placing all sam-
ples as singleton clusters. Then, it recursively merges the
two clusters with the smallest distance until the distance
between any pair of existing clusters is larger than a given
threshold, h. If h is set to 1/2, the algorithm is guaran-
teed to create clusters where the at least half of the original
clusterings are in agreement.
Hypergraph partition algorithm: Essentially, the clus-
ter ensemble re-partitions the original dataset based on con-
stituent clusterings’ indication of strong connections. There-
fore, it can also be formulated as a hypergraph partition
problem, where each sample is a vertex in the hypergraph,
and the hyperedge between vertices is weighted based on
Mopt. In this case, the goal is to cut the minimum set
of edges such that the remaining subgraphs consist of con-
nected components corresponding to new clusters.

6. IMPROVING ENSEMBLE WITH CLUS-
TER QUALITY MEASURES

Standard cluster ensemble approaches weight all clusters
equally, i.e., Mij is set to 1 if two data points, xi and xj , are
in the same cluster, regardless of cluster quality. However,
clustering is essentially an unsupervised learning process.
Without prior knowledge of the underlying data distribu-
tion, every clustering algorithm implicitly assumes certain
data models. When these assumptions are not supported
by the input data, the algorithms may produce erroneous
or meaningless clusters. In other words, because of the ex-
ploratory nature, most clustering algorithms will create clus-
ters even for data points that have little or no correlation,
eventually degrading the quality of ensemble clusters.
DUET overcomes this limitation and improves existing en-

semble algorithms by differentiating high-quality clusters that
have non-random structures from those that are created due
to the artifact of the clustering algorithms. Ideally, when
grouping certain type of malware, we should give higher
weights to the clustering methods that are known to bet-
ter at handling that particular type. For instance, we want
to rely more on dynamic analysis when clustering heavily-
obfuscated malware programs. Unfortunately, such infor-
mation is not always readily available. Instead, we use
cluster-quality as an indirect measure to enable the ensemble
method to bias towards high-quality clusters. Our objective
is to define quality measures that evaluate the “goodness” of
clustering by looking at the intra- and inter-cluster data cor-
relations, and incorporate them in the ensemble algorithms.
Intuitively, high-quality clusters should be compact and well
separated from other clusters, i.e., data points share a strong
bond. We measure cluster quality with following metrics:

• Cluster Cohesion (Co) determines how closely sam-
ples in a cluster are related. For a cluster Ct

i , cohesion
is calculated as the average distance function between
two members: Co(C

t
i) = 2

|Ct
i |∗(|Ct

i |−1)

P
x,y∈Ct

i ;x<y d(x, y).

Note that, smaller Co indicates better cluster cohesion.

• Cluster Separation (Cs) measures how well a clus-
ter is separated from others. The separation between
two clusters, Ct

i and Ct
j , is defined as Cs(C

t
i , C

t
j) =

1
|Ct

i |∗|Ct
j |

P
x∈Ct

i
;y∈Ct

j
d(x, y). Then, the separation of

the cluster Ct
i is defined as the average separation from

all other clusters: Cs(C
t
i) = 1

k−1

Pk
j=1;j �=i Cs(C

t
i , C

t
j)

where k is the number of clusters.

Table 5: Malware families of reference data set
Family # Family # Family #

Pilleuz 500 Bredolab 362 Mabezat 129
Virut 500 Vundo 334 Qakbot 44
Silly 500 Almanahe 327 Waledac 41
Fakeav 500 Tidserv 242 Ackantta 36
Koobface 496 Sasfis 219 Mebroot 26
Banker 489 Gammima 206 Hotbar 21
Zbot 486 Graybird 189

DUET exploits this “goodness” information in the ensem-
ble process to preserve high-quality clusters (i.e., those with
small Co and high Cs) and reduce influence from those with
weak connections among their members. To achieve this
goal, we define a weighted boost score β = ωo(1−Co)+ωsCs

(ωo+ωs = 1), with a higher value indicating a better cluster-
ing. We use β to augment the connectivity matrix of each
member clustering and increase Mij if xi and xj are in a
high-quality cluster. Specifically, the new boosted connec-
tivity matrix is computed as: MB

i,j(Ct) = Mi,j(Ct)× (1+βt)
and the cluster ensemble algorithm is applied on the boosted
connectivity matrix to derive the final clustering results.

7. EVALUATION
In this section, we first compare the experimental results

of DUET-S and DUET-D using real-world malware, verifying
their complementary nature. Then, we evaluate the cluster
ensemble algorithms and demonstrate their advantages over
the single clustering algorithm. By comparing DUET with in-
dividual state-of-the-art clustering algorithms used in DUET-

S and DUET-D5, we are able to demonstrate the main point of
DUET, i.e. benefits of integrating static and dynamic analysis.

7.1 Malware data set
The malware dataset used in our experiment was offered

by a large AV company containing 5,647 malware files, each
of which was manually labeled with a malware family name
by experts in the company. Table 5 lists the name of each
family and number of variants. In order to ensure a mean-
ingful representation of malware’s semantics, DUET imposes
a threshold constraint, discarding malware programs that
have less than 10 extracted N-grams. This is to prevent the
use of overly generic features in clustering. Further, when a
malware program has too few extracted N-grams, it often
implies that the feature extraction process (disassembling or
runtime monitoring) failed, making it unsafe to include these
malware in clustering. Table 6 lists the number of malware
programs that passed the threshold and again demonstrates
the benefits of ensemble methods: the combined approaches
significantly increases the percentage of analyzable malware
programs from below 80% to almost 97%.

7.2 Results of Individual Clusterings
Next, we present the results of DUET-S and DUET-D com-

ponents. Assume each clustering algorithm creates a set of
clusters C = C1, C2, . . . , Cc. The performance is assessed
with three metrics: precision, recall, and coverage. Pre-
cision and recall are two standard metrics widely-used for

5For instance, DUET-D is built upon the state-of-the-art malware
analysis tool Malheur[27]. Also, since ProtoCluster is essentially
an scalable version of hierarchical clustering algorithm, DUET-D’s
perform should be similar as previous work such as [4, 6] and
DUET-S is similar to [15].

84

Table 6: Number of samples with over and under 10
N-grams for Behavior (B) and Static (S) analysis

of malware with # of malware with
> 10 N-grams < 10 N-grams

B: 3 gram 4026 (71.29%) 1621 (28.71%)
B: 4 gram 4038 (71.51%) 1609 (28.49%)
S: 3 gram 4622 (81.85%) 1025 (18.15%)
S: 4 gram 4605 (81.55%) 1042 (18.45%)

B+S 5454 (96.58%) 193 (3.41%)

0

0.5

1 0
0.5

1

0.75

0.8

0.85

0.9

0.95

P
max

Clustering Precision−− Static 3 gram

Min
d

P
re

ci
si

o
n

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

1

0

0.1

0.2

0.3

0.4

P
max

Clustering Recall − Static 3 gram

Min
d

R
ec

al
l

0

0.5

1 0

0.5

1

0.4

0.5

0.6

0.7

P
max

Clustering Coverage −− −− Static 3 gram

Min
d

C
o

ve
ra

g
e

0

0.5

1 0 0.2 0.4 0.6 0.8 1

0.5

0.6

0.7

0.8

0.9

P
max

Clustering Precision −− Behavioral 3 gram

Min
d

P
re

ci
si

o
n

0.2
0.4

0.6
0.8

1

0.2

0.4

0.6

0.8
1

0

0.1

0.2

0.3

0.4

P
max

Clustering Recall − Behaviroal 3 gram

Min
d

R
ec

al
l

0

0.5

1 0

0.5

10.45

0.5

0.55

0.6

0.65

P
max

Clustering Coverage −− Behavioral 3 gram

Min
d

C
o

ve
ra

g
e

Figure 2: Precision, Recall and Coverage of DUET-S

(top) and DUET-D (bottom)

measuring clustering results [15, 20] . Precision assesses the
accuracy of clustering in terms of how well the individual
clusters agree with the original malware classes. More for-
mally, assume the malware programs are grouped into a set
of clusters, O = {O1, O2, . . . , Oo} according to manually
created family labels. Then, precision, P , is defined as:
P = 1

n

Pc
i=1 max(|Ci ∩ O1|, |Ci ∩ O2|, . . . , |Ci ∩ Oo|). On

the other hand, recall R measures the degree of the mal-
ware classes’ scattering across the clusters and is defined as:
R = 1

n

Po
j=1 max(|Oj ∩ C1|, |Oj ∩ C2|, . . . , |Oi ∩ Cc|). Pre-

cision is 1 if all the samples in every cluster Ci are from
the same family and recall is 1 if all malware samples from
the same family fall into a single cluster (but not necessarily
the only family in this cluster). The third metric, cover-
age, measures the percentage of malware programs that can
be successfully clustered after excluding single-member clus-
ters. Coverage is an important metric measuring how well
clustering algorithms yield useful clusters.

Fig. 2 plots the performance of DUET-S and DUET-D with
two varying parameters of ProtoCluster algorithms—Pmax,
Mind. From these figures, one can observe that with proper
selection of parameters, both algorithms are able to cluster
malware samples with precision ranging from 70 to 90%, and
static-feature-based clustering generally outperforms behavior-
based clustering. We have also observed that the recall val-
ues of both DUET-S and DUET-D are around 0.3, which ap-
pears to be low. However, this low value of recall is mainly
because the malware family labels in our experiments are
very generic and within the same family, significant diver-
sity exists across variants. Taking Vundo as an example,
the size of the largest Vundo variant in our training data is
9.6M bytes while the smallest variant size is only 13K and
the standard deviation is 2.2M bytes. Because of this enor-
mous diversity, clustering algorithms tend to break the orig-
inal family into several sub-families, e.g., DUET-S and DUET-D

often create 100–380 clusters for the reference dataset, re-

sulting in a low recall value. In fact, this result is in line with
previous research6. Note also that the recall score is much
more stable than precision and coverage with little fluctu-
ation across different parameter values, which, to some de-
gree, supports our conjecture that the low recall is caused
by input data rather than clustering algorithms per se.

Finally, the coverage results in Fig. 2 show that both clus-
terings can create useful clusters for only 50–70% of samples.
In addition, there exists a natural trade-off between preci-
sion and coverage; an increase in precision is accompanied
by a decrease in coverage, and vice versa. The reason is
that, in order to achieve a higher precision, clustering algo-
rithms must avoid merging unrelated malware programs into
the same cluster. While this produces high-quality clusters
for some samples, many more remain uncovered in singular
clusters. For example, as Mind and Pmax both decrease
toward 0.1, precision improves because a small Pmax dic-
tates that each prototype includes only extremely close data
points within its range and a small Mind terminates the
merging process early to avoid combining unrelated classes.
Together, they ensure that only very similar samples are
grouped together, excluding a large portion of samples with
moderate resemblance. This leads to a sharp drop in cover-
age from 75 to 45% for DUET-D and below 30% for DUET-S .

7.3 Evaluation of Cluster Ensemble
we evaluate DUET’s cluster ensemble under two scenarios.

In each scenario, input to DUET are 8 base clusterings—
two clusterings for each combination of 3-gram/4-gram and
static/dynamic with different Pmax and Mind values. In
the first (best-case) scenario, Pmax and Mind are selected
to make each base clustering optimized for precision (thus
with low coverage) or coverage (thus with low precision).
Note that this is an ideal but not realistic scenario, since in
reality, we would not be able to determine which values of
Pmax and Mind would achieve optimal precision or cover-
age. As a result, the best-case scenario is used to evaluate
the optimal performance of cluster ensemble under an ideal
condition. Our second (random) scenario offers a more re-
alistic evaluation by randomly choosing Pmax and Mind for
the 8 input clusters. Tables 7 lists the parameters of these
two scenarios. From the tables, we can see that the precision
for the best-case scenario’s clusterings ranges from 0.69 to
0.88, while the random scenario has a slightly lower range
of 0.57 to 0.83. Most recall values are surrounding 0.3 with
a couple of outliers (0.2 and 0.49). The coverage is usually
50–68% for dynamic clusterings and 54–74% for static clus-
terings. Next, we show that DUET can leverage the diverse
perspectives of input clustering to improve final results.

Cluster ensemble based on the ball algorithm: Fig. 3
plots the precision and coverage7 of this ensemble approach
with different threshold β (Section 5.2) between 0.2 to 0.9.
From the figure, one can see that the ball algorithm achieves
a precision value consistently higher than 0.8 and cover-
age close to 80%. Using a threshold of 0.5, the precision
for the best-case and random scenarios are 0.85 and 0.8,
respectively—both very close to the maximum of individual
clusterings. Furthermore, the coverages in these two cases

6the clustering algorithms in [15] created 200 clusters for 3,935
samples, and the size of each cluster is comparable to DUET.
7Due to space limitation and small variation of recall values across
different parameters, we will plot only precision and coverage, and
present recall using its average and standard deviation.

85

Table 7: Parameters of best and random scenario

Mind Pmax Pre- Cov- re-
cision erage call

Best
B: 3 gram 0.15 0.1 0.87 51.5% 0.26

Pre-
B: 4 gram 0.1 0.15 0.88 51.1% 0.24

cision
S: 3 gram 0.65 0.2 0.86 57.4% 0.21
S: 4 gram 0.3 0.7 0.85 56.7% 0.20

Best
B: 3 gram 0.85 0.45 0.69 67.9% 0.27

Cov-
B: 4 gram 0.4 0.95 0.68 68.1% 0.30

erage
S: 3 gram 1.3 0.3 0.7 74.4% 0.39
S: 4 gram 1.3 0.75 0.7 71.0% 0.37

Mind Pmax Pre- Cov- re-
cision erage call

B: 3 gram 0.20 0.60 0.71 64.7% 0.27
B: 3 gram 0.30 0.20 0.80 57.9% 0.28
B: 4 gram 0.50 0.20 0.77 62.2% 0.27
B: 4 gram 0.75 0.10 0.71 65.7% 0.27
S: 3 gram 0.60 0.70 0.83 59.5% 0.23
S: 3 gram 1.10 1.25 0.57 72.3% 0.49
S: 4 gram 0.30 1.10 0.74 64.3% 0.33
S: 4 gram 0.85 1.15 0.69 65.7% 0.4

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Threshold

P
re

ci
si

o
n

Best Scenario
Random Scenario

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

Threshold

C
o

ve
ra

g
e

Best Scenario
Random Scenario

Figure 3: Results of ball algorithm ensemble (Aver-
age recall: 0.22, standard deviation: 0.02)

are 0.78 and 0.82, which are 5% and 10% higher than the
best coverage for individual clusterings. Also, the ensemble
results of random and best-case scenarios are close to each
other, indicating that the ensemble’s effectiveness is not very
sensitive to the choice of its member clusterings. This is a
salient property, as it is not always possible to select a pri-
ori the best individual clusterings.

Cluster ensemble using the agglomerative algo-
rithm The benefit of the agglomerative algorithm is that
it starts with the most similar samples and continues with
the “best” pair of clusters. It also allows fine-grained control
in halting the merging process, such that remaining clus-
ters can be far enough from each other to ensure a clear
separation. Fig. 4 plots the results and shows that single
linkage is the worst of all in terms of precision, suffering
from the same over-merging problem as the single-threshold
approach. Average linkage is slightly better than complete
linkage, resulting in 0.84 precision and 81.85% coverage for
the random scenario, and 0.87 precision and 77.6% coverage
for the best-case scenario, all better than the base clustering.

Cluster ensemble based on hypergraph partition
We employ the HMETIS [17], a widely-used hypergraph
partition algorithm, to find minimum cut in the connectiv-
ity matrix. With this approach, DUET achieves as high as
91.2% of coverage, but with very low precision of only 0.72.
Detailed investigation reveals that the low precision is at-
tributed to the standard constraint in the hypergraph par-
titioning algorithm—attempting to avoid trivial partitions
by making clusters comparably sized. However, in practice,
the size of malware families are very unbalanced (Table 5).
As the hypergraph partitioning balances the size of resulting

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Threshold

P
re

ci
si

o
n

Best Scenario A
Best Scenario C
Best Scenario S
Random Scenario A
Random Scenario C
Random Scenario S

0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

Threshold

C
o

ve
ra

g
e

Best Scenario A
Best Scenario C
Best Scenario S
Random Scenario A
Random Scenario C
Random Scenario S

Figure 4: Results of agglomerative algorithm en-
semble. A, C, S represent Average, Complete, and
Single linkage distance metrics in agglomerative al-
gorithm, i.e.,. Avg recall: 0.29, stdev: 0.07)

clusters, it creates groups containing samples from multiple
small families, resulting in a lower precision value.

Summary In sum, individual clusterings often have to
make a trade-off between precision and coverage, achieving
a high value for the one at the expense of the other. By con-
trast, the cluster ensemble is able to leverage information
from multiple clusterings and improve both metrics simul-
taneously. The “Avg. Improvement” column in Table 8 lists
the average improvements of cluster ensemble over all indi-
vidual clusterings. The table shows that, except for the
hypergraph-based approach, incorporating ensemble algo-
rithms allows DUET to improve precision by 5–10% and cov-
erage by 20–40% over individual clusterings.

Table 8: Summary of cluster ensemble’s results and
improvements over individual clusterings

Best Scenario
Ensemble Preci- Avg. Imp- Coverage Avg. Imp-
Approach sion rovement rovement
Ball 0.85 9.24% 78.38% 25.88%
Agglomerative 0.87 11.81% 77.60% 24.63%
Hypergraph 0.72 -7.47% 91.20% 46.48%

Non-Ensemble 0.78 N/A 62.26% N/A

Random Scnario
Ensemble Preci- Avg. Imp- Coverage Avg. Imp-
Approach sion rovement rovement
Ball 0.8 9.97% 82.56% 28.94%
Agglomerative 0.84 15.46% 81.85% 27.83%
Hypergraph 0.71 -2.41% 89.90% 40.40%

Non-Ensemble 0.7275 N/A 64.03% N/A

7.4 Improvement with Cluster-Quality Metrics
We first examine whether cohesion and separation are

effective measures of cluster quality. We take four best-
coverage cases, one from each clustering (see Table 7), and
compute cohesion and separation for each constituent clus-
ter. We separate “clean” clusters (i.e., those consisting of
malware from only one family) from “mixed” clusters (i.e.,
those consisting of malware samples from multiple families),
and plot their CDFs in Figs. 5. These figures show that
Co and Cs work fairly well in distinguishing between good
and bad clusters, with clean clusters often having a smaller
cohesion8 and a higher separation than mixed clusters.

Next, we integrate the cluster-quality measures into the
DUET according to Section 6 and apply same ensemble al-
gorithms on the augmented connectivity matrices for both
best-case and random scenarios (Table 7). Fig. 6 compare
the precision and coverage results of the agglomerative en-
semble algorithm with and without quality measures. The
results for other algorithms share the same trends and are

8a smaller cohesion means better (Section 6) cluster quality.

86

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Cluster Cohesion

C
D

F

Clean Cluster
Mixed Cluster

0.9 0.92 0.94 0.96 0.98 1
0

0.2

0.4

0.6

0.8

1

Cluster Separation

C
D

F

Clean Cluster
Mixed Cluster

Figure 5: CDF for Cohesion Co and Separation Cs

0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

Threshold

P
re

ci
si

o
n

Quality measures (B)
No quality measures (B)
Quality measures (R)
No quality measures (R)

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Threshold

C
o

ve
ra

g
e

Quality measures (B)
No quality measures (B)
Quality measures (R)
No quality measures (R)

Figure 6: Agglomerative ensemble algorithm with
quality measures. (B) and (R) represent the best
and random scenario. Avg recall: 0.27; stdev: 0.07

omitted due to space limit. From the figure, we can ob-
serve that ensemble algorithms with quality-measures out-
perform their original counterpart, by 5–10% in terms of
precision. However, Fig. 6 also shows that the improve-
ment of precision does not come without cost. We ob-
serve a decrease in the malware coverage after incorporat-
ing the quality-measures.9 This is because employing the
quality-measures weakens connectivity between samples in
low-quality clusters, making them more likely to be excluded
from final clusters. In all the plots, the coverage is shown
to be reduced by 3–30%, with the biggest drop often oc-
curring when the threshold is around 0.5. This is due to
the composition of member clusterings (i.e., a half from dy-
namic approaches and a half from static approaches). With-
out quality-measures, a threshold of 0.5 (i.e., majority vot-
ing) can result in a false consensus among approaches of the
same type. Fortunately, by using the quality-measures, the
reduced connectivity between weakly-related samples drop
below the threshold, improving precision but lowering the
sample coverage (Fig. 6). However, the decrease in coverage
is not necessarily a disadvantage, as the remaining clusters
are often of better quality, allowing higher confidence when
using these clusters. Incorporating diversified sets of clus-
tering techniques could potentially mitigate this problem.

7.5 Run Time Performance of DUET
DUET consists of two main components: trace collector and

clustering system. The most time-consuming step is the
trace collection. For all 5,647 malware programs, it took
approximately 12 hours to extract static features and 7 days
to collect dynamic traces on a single machine with an Intel
Core i7 3.0G CPU and 16 GB of RAM. The trace-collector
step, albeit expensive, (1) is required for any malware anal-
ysis tasks and has already been efficiently conducted as a
daily process in AV industry, (2) only needs to be done once
and is also amenable to parallelization thanks to the inde-
pendence between malware samples. For instance, Anubis,
an online service for executing and dynamically analyzing

9Astute readers may notice that the same trade-off can be
obtained by changing the parameters, e.g., Pmax and Mind.
However, the trade-off made here provides additional bene-
fits of enhancing the cluster qualities.

Figure 7: Running times
of different components

Figure 8: Scalability of
DUET’s components

malware, can process more than 1 million samples on the fly,
as they were submitted during one week period of time [21].
Hence, scalability is becoming a less concern for dynamic
malware analysis, making its integration with static analy-
sis very practical and beneficial.

The second component of DUET is the clustering system
including individual static/dynamic clusterings and cluster
ensemble. Their running times on the entire data set is
summarized in Fig. 7. We observe that the clustering runs
much faster for dynamic features than static features. This
is because the space of static features is orders-of-magnitude
larger than that of dynamic features. As a result, DUET-

S takes longer to compare similarity between longer static
feature vectors (which also help DUET-S achieve better pre-
cision than DUET-D as shown in Section 7.2). The running
times of different ensemble algorithms are usually in the
range of 70–90 seconds except for the hypergraph partition-
ing being the most complicated and time-consuming (about
200s). To better understand the scalability, we measure the
running time of DUET with different number of input malware
samples, as shown in Fig. 8. The figure confirms the runtime
complexity of DUET’s ensemble component is O(n2) where n
is the number of malware samples. Because of this quadratic
complexity, DUET’s performance may suffer when the number
of malware samples grows significantly. A potential solution
is to employ the principle of the ProtoCluster. The ensem-
ble algorithms can first be applied to a relatively small set of
prototypes and then propagate to associated samples, avoid-
ing expensive computation over entire dataset.

8. DISCUSSIONS
Here we discuss several limitations of the current DUET pro-

totype, and possible improvements to alleviate them. DUET’s
performance hinges on the successful extraction of useful fea-
tures from malware binaries and run-time behaviors. First,
like any other static-analysis approach, DUET-S is vulner-
able to binary/instruction-level obfuscation and advanced
run-time packers. For instance, anti-disassembly techniques,
such as mixture of code and data, and indirect control flow,
can be used to confuse disassemblers, thus preventing DUET-

S from extracting features. Instruction-level polymorphism
can be used to create syntactically distinct but semantically
similar variants, bypassing DUET’s similarity comparison, Al-
though the current DUET prototype does not handle these
types of obfuscation for simplicity, advanced de-obfuscation
and normalization [22, 30] can be used to mitigate the prob-
lems. For the packers than cannot be handled by generic
unpacking algorithm e.g. in section 4.1, specialized unpack-
ing tools such as Armadillo Killer [1] can be employed.

Similarly, DUET-D as a dynamic analysis system can be cir-
cumvented by specifically crafted evasion techniques. First,
since any dynamic analysis system typically can only afford

87

to execute a malware program for a small period of time,
it can be circumvented by inserting stalling codes before
the real malicious codes. Systems such as HASEN [18] have
been proposed to detect and automatically skip such stalling
code. Another limitation of DUET-D is its reliance on virtual
machines to provide a controlled environment, for malware
execution. Unfortunately, malware programs can check for
virtual environments [25] and behave differently from what
they do when running in a real system. Countermeasures in-
clude use of more transparent environments [8, 9], detecting
split identities of malware samples [5] and forcing multiple
path exploration [26]. Finally, both DUET-S and DUET-D can-
not handle file infectors or parasitic malware which injects
itself into host binaries (e.g. Sality virus), because major-
ity of extracted features may belong to the host binaries.
In practice, techniques for detecting parasitic malware [29]
should be used to pre-filter these samples.

Malware analysis has always been covering an active bat-
tle field between adversaries and defenders. None of the
aforementioned countermeasures are perfect or long-lasting.
Nevertheless, new emerging techniques can be leveraged to
raise the bar and handle common malware types, which, in
practice, prove to be beneficial. Furthermore, the respective
limitations of static and dynamic analysis again strengthen
the necessity and importance for integrating these two ap-
proaches to deal with advanced malware samples.

9. CONCLUDING REMARKS
In this paper, we design, develop and evaluate an au-

tomatic malware-clustering system, called DUET, which ex-
ploits cluster ensemble as a principled method to effectively
integrate static and dynamic analyses. Using a number
of real-life malware samples, we have evaluated the perfor-
mance of ensemble methods for both best-case and random
scenarios, demonstrating that DUET can improve coverage by
20–40% while achieving nearly the highest precision of the
individual clustering algorithms. We have also made fur-
ther improvements of existing cluster ensemble algorithms
by leveraging cluster-quality measures. Overall, the evalua-
tion results have shown DUET’s ability of combining multiple
malware clustering techniques to create more effective and
accurate clusters.

10. REFERENCES
[1] Unpackers. http://www.exetools.com/unpackers.htm.
[2] C. C. Alexander Strehl, Joydeep Ghosh. Cluster

ensembles - a knowledge reuse framework for
combining multiple partitions. Journal of Machine
Learning Research, 2002.

[3] B. Anderson, C. Storlie, and T. Lane. Improving
malware classification: bridging the static/dynamic
gap. In Proceedings of the 5th ACM workshop on
Security and artificial intelligence, AISec ’12, 2012.

[4] M. Bailey, J. Andersen, Z. M. mao, and F. Jahanian.
Automated classification and analysis of internet
malware. In In Proceedings of RAID, 2007.

[5] D. Balzarotti, M. Cova, C. Karlberger, C. Kruegel,
E. Kirda, and G. Vigna. Efficient detection of split
personalities in malware. In NDSS, 2010.

[6] U. Bayer, P. Comparetti, C. Hlauschek, C. Kruegel,
and E. Kirda. Scalable, behavior-based malware
clustering. In Proc. of the 16th NDSS, 2009.

[7] M. Christodorescu and S. Jha. Static analysis of
executables to detect malicious patterns. In Proc. of
the 12th USENIX Security Symposium, 2003.

[8] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether:
malware analysis via hardware virtualization
extensions. In Proceedings of CCS’08, 2008.

[9] A. Fattori, R. Paleari, L. Martignoni, and M. Monga.
Dynamic and transparent analysis of commodity
production systems. In Proceedings of ASE’10, 2010.

[10] A. Fred. Finding consistent clusters in data partitions.
In Proc. 3d Int. Workshop on Multiple Classifier, 2001.

[11] A. L. N. Fred and A. K. Jain. Data clustering using
evidence accumulation. In Proceedings of the 16 th
International Conf. on Pattern Recognition, 2002.

[12] A. Gionis, H. Mannila, and P. Tsaparas. Clustering
aggregation. ACM Trans. Knowl. Discov. Data, 1,
March 2007.

[13] F. Guo, P. Ferrie, and T.-C. Chiueh. A study of the
packer problem and its solutions. In RAID ’08, 2008.

[14] Y. Hong, S. Kwong, Y. Chang, and Q. Ren.
Unsupervised feature selection using clustering
ensembles and population based incremental learning
algorithm. Pattern Recognition, 41(9):2742–2756, 2008.

[15] J. Jang, D. Brumley, and S. Venkataraman. Bitshred:
feature hashing malware for scalable triage and
semantic analysis. In Proceedings of CCS’11, 2011.

[16] M. E. Karim, A. Walenstein, A. Lakhotia, and
L. Parida. Malware phylogeny generation using
permutations of code. J. in Computer Virology, 2005.

[17] Karypis Lab. Hypergraph partitioning software.
http://glaros.dtc.umn.edu/gkhome/views/metis, 2010.

[18] C. Kolbitsch, E. Kirda, and C. Kruegel. The power of
procrastination: detection and mitigation of
execution-stalling malicious code. CCS ’11, 2011.

[19] J. Z. Kolter and M. A. Maloof. Learning to detect and
classify malicious executables in the wild. Journal of
Machine Learning Research, 7:2006, 2006.

[20] C. W. Konrad Rieck, Philipp Trinius and T. Holz.
Automatic analysis of malware behavior using
machine learning. Technical report, 2011.

[21] C. Kruegel, E. Kirda, U. Bayer, D. Balzarotti, and
I. Habibi. A view on current malware behaviors. In
2nd USENIX Workshop on LEET, 2009.

[22] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna.
Static disassembly of obfuscated binaries. In USENIX
Security’04, 2004.

[23] T. Lee and J. J.Mody. Behavioral classification. In
Proceedings of EICAR Conference, 2006.

[24] C. Leita, U. Bayer, and E. Kirda. Exploiting diverse
observation perspectives to get insights on the
malware landscape. In DSN, 1 2010.

[25] T. Liston. On the cutting edge: Thwarting virtual
machine detection http://handlers.sans.org.
/tliston/ThwartingVMDetection Liston Skoudis.pdf.

[26] A. Moser, C. Kruegel, and E. Kirda. Exploring
multiple execution paths for malware analysis. In
Proceedings of Oakland’07, 2007.

[27] K. Rieck, T. Holz, C. Willems, P. Düssel, and
P. Laskov. Learning and classification of malware
behavior. In Proceedings of DIMVA’08, 2008.

[28] P. Security. Bredolab.aw.
http://www.pandasecurity.com/homeusers/security-
info/220087/Bredolab.AW.

[29] A. Srivastava and J. Giffin. Raid. In Recent Advances
in Intrusion Detection. 2010.

[30] S. K. Udupa, S. K. Debray, and M. Madou.
Deobfuscation: Reverse engineering obfuscated code.
Reverse Engineering, Working Conference on, 2005.

[31] G. Wicherski. pehash: A novel approach to fast
malware clustering. In LEET’2009.

[32] Y. Ye, T. Li, Y. Chen, and Q. Jiang. Automatic
malware categorization using cluster ensemble. In
Proceedings of the 16th ACM SIGKDD, 2010.

88

