On Fault Resilience of OpenStack

Xiaoen Jul Livio Soares’ Kang G. Shin'

Kyung Dong Ryu! Dilma Da Silva$

TUniversity of Michigan *IBM T.J. Watson Research Center $Qualcomm Research Silicon Valley

Abstract

Cloud-management stacks have become an increasingly
important element in cloud computing, serving as the re-
source manager of cloud platforms. While the function-
ality of this emerging layer has been constantly expand-
ing, its fault resilience remains under-studied. This pa-
per presents a systematic study of the fault resilience of
OpenStack—a popular open source cloud-management
stack. We have built a prototype fault-injection frame-
work targeting service communications during the pro-
cessing of external requests, both among OpenStack
services and between OpenStack and external services,
and have thus far uncovered 23 bugs in two versions
of OpenStack. Our findings shed light on defects in
the design and implementation of state-of-the-art cloud-
management stacks from a fault-resilience perspective.

Categories and Subject Descriptors

D.4.2 [Operating Systems]: Reliability

Keywords

Fault injection, cloud-management stack, OpenStack

1 Introduction

With the maturation of virtual machine (VM) technol-
ogy in both software design and hardware support, cloud

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. Copy-
rights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permis-
sions@acm.org.

SOCC’13, October 01-03 2013, Santa Clara, CA, USA.
Copyright 2013 ACM 978-1-4503-2428-1/13/10$15.00
http://dx.doi.org/10.1145/2523616.2523622

computing has become a major computing platform. In
addition to public cloud services (e.g., Amazon EC2 [2])
that have been available since the early stage of cloud
platform deployment, there is an emerging demand for
other types of cloud platforms, notably, private and hy-
brid clouds. This demand leads to the role transition
from cloud users to a combination of cloud users and
providers, broadening the scope of cloud providers from
major IT companies to organizations of any size. It has
also prompted the research and development of cloud-
management stack—a new software stack that functions
as a high-level cloud operating system and is key to re-
source management in cloud platforms.

The significant attention to cloud-management stacks
from both academia and industry has led to a rapid in-
crease in the number of features in recent years. Fault
resilience of this layer, however, is still regarded as
an optional feature and remains under-studied, despite
its importance demonstrated by real-world failures and
its significant impact on its managed cloud platforms
[3,4,29]. Fault-resilience-related issues constantly per-
plex the users of cloud-management stacks. For exam-
ple, when faults occur, VM creation may fail or take
extremely long time, and VMs may be marked as suc-
cessfully created but lack critical resources (e.g., IP ad-
dresses), thus remaining unusable. A thorough investiga-
tion of the fault resilience of cloud-management stacks
that demystifies the above issues is long overdue.

In this paper, we present the first systematic study on
the fault resilience of OpenStack, a popular open source
cloud-management stack. Leveraging conventional wis-
dom in the fault-injection literature as well as its ap-
plication in fault-injection studies targeting large-scale
distributed systems [12, 19, 38], we study the execution
of OpenStack in the presence of two common faults
in the cloud environment: server crashes and network
partitions. OpenStack is considered fault-resilient dur-
ing the processing of an external request, if it main-
tains correct and consistent states and behaviors, even
in case of occurrence of faults. As external requests are
an important source of inputs to OpenStack and usually
trigger state transitions, we focus on OpenStack’s fault-
resilience during external request processing. We inject
faults into inter-service communications during request

processing, as they characterize service collaboration of
which design and implementation is difficult to be fault-
resilient. Specifically, we target communications among
OpenStack’s compute, image, and identity services, as
well as external services such as databases, hypervisors,
and messaging services.

We take a white-box approach in this fault-injection
study, exposing high-level semantics of OpenStack (e.g.,
service A sends a request R to service B via communi-
cation channel C) by augmenting its wrapper layer of
communication libraries with our logging and coordina-
tion module. Exposing, instead of inferring, high-level
semantics reduces the amount of logs, simplifies the ex-
traction of communication patterns and facilitates effi-
cient fault injection. This approach can also be easily
integrated into OpenStack’s notification mechanism, be-
cause it closely mirrors OpenStack’s existing logging
infrastructure. In a broader sense, this white-box ap-
proach is of value to the current trend of DevOps inte-
gration [33], enabling developers and operators to bet-
ter understand the functioning of software in realistic
deployment environments. It facilitates the design of a
spectrum of approaches to hardening cloud-management
stacks, such as fault-injection studies, as exemplified in
this paper, and online fault detection and analysis, which
we plan to explore in future.

We study 11 external APIs! of OpenStack. For each
API, we execute the related request and identify all fault-
injection cases, each corresponding to the combination
of a fault type and a location in the execution path
of the request. We then conduct single-fault injections
by re-executing the same request and iterating through
the fault-injection cases, each time injecting a distinct
fault into the execution flow. Upon completion of fault-
injection experiments, we check the results against pre-
defined specifications regarding the expected states and
behaviors of OpenStack. When specifications are vio-
lated, we manually investigate the execution of Open-
Stack and identify bugs.

We study two OpenStack versions, namely, essex
(2012.1) and grizzly (2013.1), the latter being the first
version of the most recent release series, and identify a
total of 23 bugs. As in the preliminary version of this
work [22], we categorize those bugs into seven cate-
gories and perform an in-depth study for each category.
We then identify several common fault-resilience issues
in OpenStack, such as permanent service blocking due
to the lack of timeout protection, irrecoverable inconsis-
tent system states due to the lack of periodic checking
and state stabilization, and misleading behaviors due to

"We use external APIs and external requests interchangeably.

2Since 2012, OpenStack has released three series: essex (first ver-
sion released on Apr. 5, 2012), folsom (first version released on Sep.
27,2012) and grizzly (first version released on Apr. 4, 2013).

incautious return code checking.

The major contributions of this paper are three-fold:

1. We apply fault-injection techniques to cloud-
management stacks and present the design and
implementation of an operational prototype fault-
injection framework for this emerging software
layer, using OpenStack as the target of our study.

2. We conduct the first systematic fault-resilience
study on OpenStack, identifying 23 bugs.

3. We categorize the bugs, present an in-depth analy-
sis for each bug category, and discuss related fault-
resilience issues.

The remainder of the paper is organized as fol-
lows. Section 2 provides the background of cloud-
management stacks and OpenStack in particular. Sec-
tion 3 presents an overview of the our fault-injection
framework, followed by in-depth discussions of its ma-
jor components in Sections 4—6. Section 7 presents those
bugs identified by our framework in the two OpenStack
versions and their related fault-resilience issues. Sec-
tion 8 discusses several interesting aspects of the study,
followed by a discussion of the related work in Section 9.
Finally, Section 10 concludes the paper.

2 Background

In this section, we briefly discuss cloud-management
stacks and then provide background information about
OpenStack, focusing on its major components, support-
ing services, communication mechanisms, as well as
threading model.

2.1 Cloud-Management Stacks

Cloud-management stacks are an emerging software
layer in the cloud ecosystem, responsible for the for-
mation and management of cloud platforms. A cloud-
management stack manages cloud platforms via the co-
operation of distributed services. Typical services in-
clude an external API service for communicating with
external users, an image service for managing VM im-
ages (e.g., registration and deployment), a compute ser-
vice for managing VMs (e.g., creating and deleting
VMs) on supporting hosts, a volume service for man-
aging persistent storage used by VMs (e.g., providing
block devices and object stores) and a network service
for managing networks used by VMs (e.g., creating and
deleting networks, manipulating firewalls on supporting
hosts).

Besides its own services, a cloud-management stack
requires external services to fulfill its functionality. In
particular, it often relies on a hypervisor, such as Xen [6],
KVM [23] or Hyper-V [28], to manage VMs.

2.2 OpenStack

OpenStack [31] is a state-of-the-art open source cloud
management stack, implemented in Python. It consists
of several common services, such as a compute service
group, an image service group, a network service, and
several persistent storage services, as described in Sec-
tion 2.1. Other OpenStack services in a typical cloud
setting include an identity service for authenticating ser-
vices and users and a dashboard service for providing a
graphical interface to users and administrators. In addi-
tion, OpenStack relies on hypervisors installed on com-
pute nodes (i.e., nodes where VMs run) for VM manage-
ment.’ OpenStack also uses a database service to store
persistent states related to its managed cloud.

OpenStack employs two major communication mech-
anisms. Compute services use remote procedure calls
(RPCs) conforming to the Advanced Message Queuing
Protocol (AMQP) for internal communications within
the service group. Other OpenStack services conform to
the REpresentational State Transfer (REST) architecture
and communicate with each other via the Web Server
Gateway Interface (WSGI).

OpenStack uses the SQLAlchemy library to commu-
nicate with database backends, such as MySQL and
SQLite. Interaction with hypervisors is abstracted into
virtualization drivers. Specifically, OpenStack designs
a common hypervisor-driver interface and implements
drivers using common hypervisor APIs, such as libvirt
and Xen APL

OpenStack services are implemented as green threads
via the eventlet and greenlet libraries, which em-
ploy a user-level cooperative multithreading model: a
thread runs non-preemptively until it relinquishes con-
trol. Upon thread yielding, a hub thread becomes ac-
tive, makes a scheduling decision and then transfers con-
trol to the scheduled thread. This model requires sev-
eral standard Python libraries to be patched with green-
thread-compatible implementations, in order to prevent
I/O functions issued by one green thread from blocking
the other in the same process.

3 Overview

This section presents the scope of our project, followed
by a discussion of our design principles. We then present
an overview of the components and the workflow of our
fault-injection framework.

3Recent versions of OpenStack support experimental baremetal
VM provisioning, which does not require hypervisor support.

3.1 Scope of the Project

We target fault-resilience-related programming bugs in
OpenStack, because they affect OpenStack’s intrinsic
fault-resilience from the perspective of its design and
implementation. Configuration bugs, in contrast, are
considered faults in this paper. For example, an er-
roneous configuration may lead to network partitions,
which are in turn used for fault injection in our frame-
work. In addition, bugs that can only be manifested by a
sequence of faults are not in the scope of this paper, due
to the use of single-fault injections.

3.2 Design Principles

Our design builds on prior research in distributed sys-
tems tracing, fault injection, and specification checking.
Instead of proposing a new fault-injection methodology,
we discuss our experience in building an operational
fault-injection prototype for OpenStack, following the
design principles listed below.

Inject faults in service communications. Cloud-
management stacks rely on the cooperation of services
distributed to a cloud environment to fulfill their func-
tionality. This cooperation requires fault-resilient com-
munication mechanisms. Given the importance of ser-
vice communications and the fast advances of sophis-
ticated single-process debugging techniques, our fault-
injection prototype targets service communications in
OpenStack.

Expose domain-specific information. Domain knowl-
edge has proven valuable for debugging, monitoring,
and analyzing distributed systems. Sigelman et al. [36]
showed that developers of applications running in a dis-
tributed environment were willing to expose and exploit
domain knowledge in a production-level tracing infras-
tructure designed for application transparency, despite
the infrastructure’s decent performance without such
knowledge. In our prototype, we expose OpenStack’s
high-level semantics to the fault-injection module and
achieve high fault-injection efficiency by injecting faults
to high-level communication flows instead of generic
low-level events in runtime systems or operating sys-
tems.

Common cases first. It is extremely difficult and costly
to thoroughly investigate every aspect of the fault resi-
lience of cloud-management stacks. We thus focus on
common cases, injecting common faults during the pro-
cessing of OpenStack’s most commonly used external
APIs. The selection of faults is based on existing knowl-
edge of the related work [19, 38], as well as our expe-
rience with large-scale production-level cloud systems.
The selection of APIs is based on our experience with
several experimental OpenStack deployments.

Use building blocks familiar to developers. To facili-
tate adoption of our framework, we use building blocks
that cloud-management stack developers are familiar
with. The choice between the exposure and the inference
of high-level semantics is an exemplification of this prin-
ciple, because developers have built logging and notifi-
cation mechanisms exposing such information. Another
example is that we use a hybrid approach to implement
OpenStack specifications, combining imperative check-
ing via generic Python scripts with declarative checking
via the SQLAIlchemy library, both of which are widely
employed by OpenStack developers.

3.3 Components

Our fault-injection framework consists of three com-
ponents: a logging and coordination module, a fault-
injection module, and a specification-checking module.
The logging and coordination module is responsible for
logging communications among services during exter-
nal request processing and coordinating the execution
of OpenStack and a fault-injection controller. The fault-
injection module is conceptually composed of a fault-
injection controller running at a test server node and
fault-injection stubs running with OpenStack. The fault-
injection controller synthesizes information collected
by the logging and coordination module, makes fault-
injection decisions, and demands fault-injection stubs to
inject faults into OpenStack. The specification-checking
module verifies whether the internal states and the ex-
ternally visible behaviors (e.g., an HTTP status code
returned to an external user) of OpenStack at the end
of each fault-injection experiment comply to predefined
specifications. Figure 1 presents an overview of the sys-
tem and a high-level workflow, the latter discussed in the
next section.

3.4 Workflow

The workflow consists of three stages: fault-free exe-
cution, fault injection, and specification checking. For
a given external request, we start with fault-free execu-
tion of OpenStack, resulting in successful processing of
the request. The logs produced during the fault-free ex-
ecution are then fed to a parser to generate an execution
graph (detailed in Section 5), characterizing communi-
cations among services. Combining the execution graph
and a predefined fault specification, our framework gen-
erates a collection of test plans, each consisting of a fault
type from the fault specification and a fault-injection
location in the execution graph. Fault-injection experi-
ments are then conducted via the collaboration of the
logging and coordination module and the fault-injection
module, with each experiment corresponding to a test

Table 1: Communication log format

Attribute | Value/Explanation
Identifier | Unique for each communication
Tag Unique for each external request

Timestamp |Physical time

Entity OpenStack/external service name

Type RPC cast/call/reply, REST request/response,
database/hypervisor/shell operation
Send/receive, call/return

Direction

plan. Experiment results are checked against predefined
state and behavior specifications. We manually identify
bugs from experiments causing specification violations.

4 Logging and Coordination

After the overview of our framework, we start an in-
depth discussion of its major components with the log-
ging and coordination module.

4.1 Logging High-Level Semantics

Following the design principle of exposing domain-
specific information to the fault-injection controller, our
logging and coordination module explicitly maintains
high-level semantics of several types of communications
in its logs, including RPC, REST, database, hypervisor
and shell operations.* Table 1 enumerates the key at-
tributes in a communication log.

4.2 Unique Tag

A unique tag is created when OpenStack receives an ex-
ternal request. This tag is then propagated through Open-
Stack services along the request processing path. Re-
cent versions of OpenStack employ similar techniques
for tracing the request processing within service groups.
In contrast, our framework assigns a system-wide unique
tag to each external request and traces its processing
within the scope of the entire stack. Unique tags facil-
itate the extraction of log entries related to a given ex-
ternal request. Otherwise, concurrent request process-
ing would cause OpenStack to generate intertwined log
entries and increase the complexity of log analysis. Al-
though our study currently targets fault injection during
the processing of a single external request, the unique tag
is still useful in that it distinguishes the logs related to
request processing from those generated by background
tasks, such as periodic updates of service liveness.

4Shell operations, which OpenStack performs on local nodes via
the execution of local executables, are considered a special type of
communication between a parent process (an OpenStack service) and
a child process (which runs a target executable).

Fault Type:
Receiver Crash

Faulty H
Execution |
I
I
I

H Expected
| State: S’
i

e ety
' Current Execution | 1 fe=========
OpenStack OpenStack : E i I Expected
H Al . ! 11 Behavior: B
— '
! = B1! R
. 25 21 lTottptttoteeoes el I
y ! i v 2
22
Logging and l?au%t Logging and Fault Injection Specification
.o Injection .o X
Coordination Stub Coordination [% 26 Controller Checking
{ 12 ¥ 2 27, { 32
oo mmm T 24 Faulty . (7777
Execution Graph gl Specification i
Result Violations H

Figure 1: System overview and workflow. Boxes with a solid border represent OpenStack and major components of the frame-
work. Boxes with a dashed border represent key non-executable objects in the framework. Three stages—fault-free execution, fault
injection and specification checking—are separated by arrows with a gray border. Step 1.1: log OpenStack communications in a
fault-free execution. Step 1.2: convert logs to an execution graph. Step 2.1: log communications in a fault-injection experiment
and pause communicating entities during logging. Step 2.2: send logs to fault-injection controller. Step 2.3: make fault-injection
decisions according to a test plan. Step 2.4: inform fault-injection stub of the fault-injection decisions. Step 2.5: inject faults. Step
2.6: resume execution. Step 2.7: collect results from fault-injection experiments. Step 3.1: check results against specifications. Step

3.2: report specification violations.

System-wide tag propagation requires modifications
to the communication mechanisms in OpenStack.
Specifically, we insert a new field representing unique
tags in both request contexts used by OpenStack services
and thread-local storage of those services. When a green
thread of a service is activated during the request pro-
cessing, it updates the tag value in its thread-local stor-
age with either the tag in the activating request, if such
a tag exists, or a freshly initialized one. The thread then
associates this tag to all inter-service communications
during its current activation.

Our framework cannot trace a unique tag once it prop-
agates across the OpenStack boundary to external ser-
vices. Consequently, if an OpenStack service communi-
cates with an external service, which in turn communi-
cates with another OpenStack service, then our frame-
work will treat the second communication as indepen-
dent from the first one. So far, we have not encountered
such cases in our study, and the logging mechanism suf-
fices for our use.

4.3 Common Implementation Pattern

We implement the logging module by augmenting the
communication layers between OpenStack and exter-
nal services and libraries. In general, this module can
be implemented at several layers along communication
paths: inside OpenStack’s core application logic where

library 1
wrapper OpenStack hypervisor driver | | SQLAlchemy |
RS '
OpenStack 4 1 OpenStack core application logic 1
[1
_ OpenStack REST OpenStack AMQP OpenStack exec
Wwrapper laye: layer .
ayer ayer wrapper
library

Figure 2: [llustration of logging instrumentation. White boxes
with a solid border represent the instrumented layers for expos-
ing high-level semantics in communications between Open-
Stack core logic and supporting services and libraries.

high-level communications are initiated, at OpenStack’s
wrapper layer of communication libraries, in communi-
cation libraries themselves, as well as in system libraries
and interfaces. Our logging instrumentation resides at
OpenStack’s wrapper layer of communication libraries,
as illustrated in Figure 2. The advantages of logging at
this layer are two-fold. First, high-level semantics can
be accurately exposed instead of being inferred at this
layer. Second, logging at this layer incurs minimum im-
plementation effort, because it consolidates communi-
cations originated from and destined for OpenStack ser-

vices. On the one hand, this layer is shared across Open-
Stack services and can thus use the same implementa-
tion to log communications from different services. On
the other hand, this layer is implemented at the granular-
ity of communication category (e.g., one implementa-
tion for all AMQP client libraries) and can thus use the
same implementation to log communications from sup-
porting services within each category, abstracting away
details related to individual services.

Logging snippets are placed in the WSGI imple-
mentation of OpenStack and the eventlet library, as
well as several OpenStack client-side libraries, for log-
ging REST communications, and in the AMQP inter-
face of OpenStack for logging RPC communications.
For logging communications between OpenStack and
hypervisors, we implement a logging driver compli-
ant with OpenStack’s hypervisor interface and use it to
wrap the real drivers OpenStack selects to communicate
with hypervisors. Communications between OpenStack
and hypervisors are thus intercepted and recorded by
the logging driver. We insert logging snippets into the
SQLAIchemy library for logging database operations.
The compute service implements a helper function to
perform shell operations on local hosts. We also aug-
ment that function to log such operations.

One drawback of this integrated user-level logging
implementation is logging incompleteness. Compared to
a system-level logging approach targeting a language-
level interface (e.g., Java SDK) or an operating system
interface, our approach is incomplete in that it can only
cover major communication mechanisms and is oblivi-
ous to other channels (e.g., a customized socket commu-
nication). Note, however, that in a well-designed cloud-
management stack, the majority of inter-service com-
munications are conducted via several well-defined in-
terfaces, which have been instrumented in our study on
OpenStack. In addition, system-level approaches usu-
ally lead to a significantly larger number of logs, de-
grading system performance and necessitating the use
of advanced log parsing and inference logic in the fault-
injection module. In our framework, we trade logging
completeness for simplicity in exposing high-level se-
mantics and potentially high logging performance.

4.4 RPC Trampolines

Logging RPC communications within the compute ser-
vice group is implemented in part by modifying Open-
Stack’s AMQP implementation. Such modifications,
however, cannot form a complete picture of RPC com-
munications, because the RPC caller and callee (or pro-
ducer and consumer in AMQP terminology) is decou-
pled by an AMQP broker. An RPC cast from an Open-
Stack compute service is sent to an AMQP exchange at

the broker and then routed to a message queue. Another
compute service subscribing to the message queue then
receives the RPC, thus completing the RPC cast. RPC
calls are similar except that the return value goes through
the AMQP broker as well.

For fine-grained control of fault injection, we in-
tend to differentiate the two stages of RPC message
propagation—the first from the RPC caller to the AMQP
broker and the second from the AMQP broker to the
RPC callee. A straightforward solution would be to ex-
tend our logging module to the implementation of the
AMQP broker (either RabbitMQ or Qpid). This solu-
tion, however, requires a general-purpose AMQP bro-
ker to include OpenStack-specific programming logic.
Moreover, retrieving unique tags from RPC messages
at an AMQP broker implies the elevation of abstraction
layers from the message transferring protocol (detailing
packet formats) to a high-level RPC message with appli-
cation semantics, incurring significant implementation
overhead.

Our implementation leaves the AMQP broker intact
and instead logs its activity via RPC trampolines—
compute service proxies responsible for RPC forward-
ing. We create a trampoline for each compute service
and modify OpenStack’s client-sidle AMQP implemen-
tation so that RPCs addressed to a service are deliv-
ered instead to its trampoline. The trampoline records
those RPCs and forwards them to the original destina-
tion. From the perspective of execution flow logging,
RPC trampolines faithfully represent the AMQP broker,
thus completing the picture of RPC communications.

4.5 Coordination

Besides generating detailed logs with high-level se-
mantics, the logging snippets also serve as coordina-
tion points, synchronizing the execution of OpenStack
and fault-injection servers. During fault-injection exper-
iments, the logging module sends log messages to a
fault-injection server and then blocks the logged Open-
Stack service.> The server makes fault-injection deci-
sions, injects faults when necessary, and resumes the ex-
ecution of the logged service by replying a “continue
execution” message to the logging module. The use of
logging module for coordination is also one major differ-
ence between our implementation and the existing noti-
fication mechanisms in OpenStack.

3Strictly speaking, the logging module blocks the execution of a
green thread of the logged OpenStack service.

0
active —
inactive ----iz
10
——
T—
20
s S
y A —
E
g 30
j
40 -
50
60
% 4 Q [% %
2. v, % Y G %
%, %, G, %o,(. %o, %o, %"»4 %,
Ty e G N f @
% 00 4

Figure 3: Illustration of the execution graph for VM creation,
consisting of REST and RPC communication paths. Solid ar-
rows represent active executions. Dashed arrows represent ei-
ther idleness or waiting for the return of a function call.

S Fault Injection

The fault-injection module is responsible for extracting
execution graphs from logs, generating test plans, and
injecting faults to OpenStack.

5.1 Execution Graphs

An execution graph depicts the execution of OpenStack
during the processing of an external request. It is a
directed acyclic graph extracted from logs of a fault-
free request processing procedure, with each vertex rep-
resenting a communication event in OpenStack. Each
event is characterized by the communicating entity (e.g.,
an image-api service) and the type of communica-
tion (e.g., a REST request send operation). Edges repre-
sent causality among events. An edge connects two ver-
tices (7) if they form a sender-receiver pair or (ii) if they
belong to the same service and one precedes the other.
Figure 3 shows a simplified execution graph related to a
VM-creation request.

5.2 Test Plans

A test plan consists of three elements: an execution
graph, a fault-injection location, and a fault type. We
study two types of faults, namely, server crash® and net-
work partition. These fault types are common causes of
failures in cloud environments and are well-studied in

SWe use the terms server and service interchangeably, assuming
that each service conceptually resides in a dedicated server host.

Procedure 1 Test Plan Generation

test_plans<—an empty list
for all node in exe_graph do
for all fault in fault_specs do
if fault can be injected to node then
new_plan<—TestPlan(exe_graph, node, fault)
test_plans.append(new_plan)
return test_plans

the literature. Other types of faults, such as invalid in-
puts [30] and performance degradation [13], are not con-
sidered. Correlated faults are also common in real-world
deployments but are not within the scope of this paper,
due to the limitation imposed by our current single-fault-
injection implementation.

Procedure 1 demonstrates the generation of test plans.
Iterating over an execution graph, the algorithm exhaus-
tively accounts for all fault types applicable to each ver-
tex (e.g., a sender server crash targeting REST commu-
nications can only be injected to the vertices performing
REST request/response send operations) and generates
test plans accordingly. This procedure provides an op-
portunity for global testing optimization: global in that
the fault-injection module has a view of the entire execu-
tion flow. For example, execution-graph vertices can be
clustered by customized criteria, each cluster assigned
with a testing priority. Vertices within each cluster can
then be selectively tested to reduce overall testing cost.
Given that a fault-injection experiment in our framework
takes several minutes to complete and that an exhaustive
set of test plans for one external request usually leads
to hundreds of experiments, such a global optimization
opportunity provided by an execution graph is valuable
and worth further exploration.

For test plan generation, a fault specification is used to
define the types of faults to be injected and the types of
communications in which faults are injected. The fault
specification functions as a test-case filter, enabling the
design of a set of experiments focusing only on a specific
fault type (e.g., sender server crashes) and/or a specific
communication type (e.g., REST communications). The
format of the specification can be extended to support
other filters, such as confining fault injection to a subset
of OpenStack services.

A test plan is fulfilled via the cooperation of a test
server and the logging and coordination module. The
test server initializes the execution environment and then
re-executes the external request to which the test plan
corresponds. Then, the test server employs the same log
parsing logic for execution graph generation to analyze
each log sent by the logging and coordination module.
It tracks OpenStack’s execution by using the execution
graph in the test plan, until the fault-injection location

has been reached. A fault is then injected as specified in
the plan. And OpenStack runs until the request process-
ing is completed.

5.3 Injection Operations

Server-crash faults are injected by killing relevant ser-
vice processes via systemd. We modify configurations
of systemd such that when it stops the relevant ser-
vices, a SIGKILL signal is sent, instead of the default
SIGTERM signal. Network-partition faults are injected
by inserting iptables rules to service hosts that should be
network-partitioned, forcing them to drop packets from
each other.

6 Specification Checking

The specification-checking module is responsible for
verifying whether the results collected from OpenStack
executions with injected faults comply with expectations
on the states and behaviors of OpenStack.

Writing specifications for a large-scale complex dis-
tributed system is notoriously difficult, due to the numer-
ous interactions and implicit inter-dependencies among
various services and their execution environments. Yet
it is a key task for developing an effective specification-
checking module. In effect, the coverage and the granu-
larity of states and behaviors in the specifications deter-
mine the ability of the checking module to detect erro-
neous behaviors and states of the target system. Several
approaches have been reported in the literature, includ-
ing relying on developers to generate specifications [34],
reusing system design specifications [19], and employ-
ing statistical methods [10].

To the best of our knowledge, OpenStack does not
provide detailed and comprehensive specifications on
system behaviors or state transitions during the process-
ing of external requests.” The specifications we use in
this study are generated based on our understanding of
OpenStack, existing knowledge in fault-resilient system
design, and first principles, which mirrors the developer-
specification-generation approach.

Specifically, we manually generate specifications by
inferring OpenStack developers’ assumptions and ex-
pectations on system states and behaviors. This pro-
cess requires extensive reverse-engineering efforts, such
as source-code reading and log analysis. Specifications
generated in such a manner may require further debug-
ging and refinements (similar to fixing incorrect expec-
tations in Pip [34]). In addition, such specifications are

7OpenStack does publish certain state-transition diagrams, such as
transitions of VM states [32]. But they do not cover all the aspects we
consider in our study.

Specification 1 VM State Stabilization Specification

query = select VM from compute_database

where VM state in collection(VM unstable states)
if query.count() = O then

return Pass
return Fail

best-efforts, with a coverage constrained by our under-
standing of OpenStack. Nevertheless, the usefulness of
such specifications is demonstrated by the identification
of bugs reported in this paper.

6.1 Specification-Generation Guidelines

Listed below are our specification-generation guidelines.

Do not block external users. OpenStack should not
block external users due to faults during request process-
ing.

Present clear error messages via well-defined inter-
faces. OpenStack should expose clear error states to ex-
ternal users via well-defined interfaces and avoid con-
fusing information.

Stabilize system states eventually. Upon restoration of
faulty services and with the quiescence of externally-
triggered activities, OpenStack should eventually stabi-
lize inconsistent states caused by faults during request
processing.

6.2 Spec Checking Implementation

Specification checking can be implemented via a
general-purpose programming language or a specially-
designed specification language, using an imperative ap-
proach or a declarative approach. Following the princi-
ple of using developer-familiar building blocks (cf. Sec-
tion 3), we adopt a hybrid approach, applying declara-
tive checking on persistent states stored in OpenStack’s
databases and imperative checking on the other states
and behaviors of OpenStack. Specifically, database-re-
lated checks are implemented via the SQLAlchemy li-
brary. Others are implemented as generic Python scripts.
This hybrid approach largely conforms to OpenStack’s
existing implementation: OpenStack adopts the same ap-
proaches to controlling its states and behaviors.

We implement specifications for OpenStack’s states
stored in databases and local filesystems, as well as
OpenStack’s behaviors, such as the HTTP status code
returned to an external user after processing a request.
We also specify the expected states of cloud platforms
managed by OpenStack, such as the states of local hy-
pervisors on compute hosts and the Ethernet bridge con-
figurations.

Below we present three specification examples.

Specification 2 Ethernet Configuration Specification

if VM .state = ACTIVE) and
((VM_.host .Ethernet not setup) or
(network_controller.Ethernet not setup)) then
return Fail

return Pass

Specification 3 Image Local Store Specification

query = select image from image_database
where image.location is local

if local image _store.images = query.all() then
return Pass

return Fail

Specification 1 indicates the expectation of VM state
stabilization. The state of a VM, after the processing of
an external request (e.g., a VM creation) and a sufficient
period of quiescence, should enter a stable state (e.g., the
ACTIVE state, indicating that the VM is actively run-
ning) instead of remaining in a transient state (e.g., the
BUILD state, indicating that the VM is in the process of
creation). This is an example of using declarative check-
ing on database states.

Specification 2 requires that, when a VM is actively
running, the Ethernet bridges on the compute host where
that VM resides and the host running the network con-
troller service have been correctly set up. Specifically,
we check whether the bridges have been associated with
the correct Ethernet interfaces dedicated to the subnet
to which the VM belongs. It exemplifies the imperative
checking on OpenStack-managed cloud platforms.

Specification 3 checks whether the states maintained
in the database of OpenStack image service regarding
the image store in the local filesystem are in accordance
with the view of the filesystem. It requires that if an im-
age is uploaded to the local image store and thus exists in
the filesystem of the image service host, then its location
attribute in the image database should be 1ocal, and
vice versa. This specification shows a combined check
on the views of a database and the filesystem of a ser-
vice host.

7 Results

In this section, we discuss the bugs uncovered by our
framework. We apply it to OpenStack essex and grizzly
versions, and find 23 bugs in total: 13 common to both
versions, 9 unique to essex, and 1 unique to grizzly.

7.1 Experiment Setting

Our study covers three OpenStack service groups: the
identity service (keystone), the image service (glance),
and the compute service (nova). For external services,
our framework supports the Qpid messaging service, the
MySQL database service, the libvirt service for hypervi-
sor interaction and the Apache HTTP server (used as an
image store for OpenStack).

We configure the identity service to use UUID to-
kens for authentication. Regarding the image service, we
configure it to use either a local filesystem or an HTTP
server as its backend store. As for the compute service,
we use QEMU as the backend hypervisor, controlled by
the libvirt interface. In essex, we limit the reconnection
from the Qpid client library to the backend broker to 1.

We run OpenStack services in VMs with 1 virtual
CPU and 2GB memory. All OpenStack VMs run on an
HP BladeSystem c7000 enclosure, each blade equipped
with 2 AMD Opteron 2214HE (2.2GHz) processors and
8GB memory. For each fault-injection experiment, all
services are deployed in one VM by default, each started
as a single instance. There are two exceptions to the
above deployment guideline. If a shell-operation fault
should be injected to a compute service, then that service
is placed in one VM and the other services are placed in
another VM in order to prevent interference among sim-
ilar shell operations of different services. If a network-
partition fault should be injected, then the pair of to-be-
partitioned services are placed in two VMs and the other
services are launched in a third VM.

7.2 Bugs in OpenStack

We test 11 external OpenStack APIs, inject 3848 faults,
implement 26 specifications, detect 1520 violations and
identify 23 bugs. Our results are summarized in Table 2.
This table shows the significance of the bugs and issues
discovered in our study, because they are manifested (7)
in several frequently used APIs and (i7) in numerous lo-
cations along the execution paths of those APIs. The for-
mer observation is drawn from the fact that the sum of
bugs in the table exceeds by far the number of distinct
bugs, and the latter from the fact that the ratio of specifi-
cation violations to bugs is greater than 1 for each API,
which is also shown in Figure 4.

We classify the bugs into seven categories (cf. Ta-
ble 3) and present an in-depth discussion of each cate-
gory. Compared to our preliminary work [22], this paper
contains newly-identified bugs in OpenStack and also
discusses the evolution of bugs and fixes across the two
OpenStack versions that we study, demonstrating both
the improvement of OpenStack’s fault resilience and the
remaining issues.

Table 2: Summary of fault-injection results. The results of image service APIs are broken down according to whether a local file
system or an HTTP service is used as the image store. Specification violations related to an API are counted as the number of
fault-injection experiments in which at least one violation is detected. The network-partition fault is abbreviated to “Part.”

Faults Specification Violations Bugs
API essex grizzly essex grizzly essex grizzly
Crash| Part.| Crash| Part.| Crash| Part.| Crash| Part.| Crash| Part.| Crash| Part.
VM create 217 133 311 229 93 43 150 49 8 6 3 2
VM delete 79 61 102 82 51 15 45 23 9 5 5 2
VM pause 24 17 35 29 16 13 6 4 5 6 2 1
VM reboot 64 36 139 104 9 11 0 5 3 4 0 1
VM rebuild 159 106 242 183 103 67 0 13 5 5 0 1
VM image create (local) 142 119 171 150 59 106 90 79 4 2 3 3
VM image create (HTTP) 107 92 171 150 24 84 79 71 3 2 3 3
VM image delete (local) 59 44 22 15 23 37 12 9 3 2 2 2
VM image delete (HTTP) 59 44 22 15 23 37 10 8 2 2 1 1
Tenant create 7 6 7 6 0 6 0 6 0 1 0 1
User create 7 6 7 6 0 6 0 6 0 1 0 1
Role create 7 6 7 6 0 6 0 6 0 1 0 1
User-role create 9 8 10 9 0 8 0 9 0 1 0 1
Sum 940 678| 1246 984 401 439 392 288 42 38 19 20
1000 O Table 3: Bug Categories
" grizzly Count
.é Category Common| essex only|grizzly only
3 100 7 Timeout 1 1 0
g Periodic checking 6 4 0
'*5 State transition 1 0 1
E 104 Return code checking 4 1 0
& : Cross-layer coordination 0 1 0
. q Library interference 0 1 0
1+ H I: i : Miscellaneous 1 1 0
1 6 11 16 21 Total 13 9 1
Bug id

Figure 4: Bug distribution. The Y-axis shows the number of
fault-injection experiments in which at least one specification
violation leading to the identification of a given bug is detected.

7.2.1 Timeout

Timeout is a common mechanism in distributed systems
to prevent one faulty service from indefinitely block-
ing other services and affecting system-wide functional-
ity. OpenStack extensively uses the timeout mechanism,
with settings scattered across multiple service configura-
tions to control various timeout behaviors of both Open-
Stack services and external supporting services. Setting
correct timeout values, however, is known to be difficult.
Given the numerous interactions and inter-dependencies
among service groups and the variety of deployment
environments, it is very difficult, if not impossible, for
OpenStack to provide a comprehensive set of timeout
values covering all execution paths that can potentially

block the system.

For example, REST communications, one of the two
major communication mechanisms used in OpenStack
(cf. Section 2), fall out of the safety net of the time-
out mechanism in the OpenStack essex version. Con-
sequently, a service waiting for a response from an-
other service via the REST mechanism may be indef-
initely blocked if the two services become network-
partitioned after the request is sent but before the re-
sponse is received. This also exemplifies the advan-
tage of our execution-graph-based fault injection over
coarser-grained approaches [8]: such a bug can hardly
be efficiently revealed by the latter due to the require-
ment on the synchronization between fault injection and
send/receive operations.

This bug is fixed in the OpenStack grizzly version
by supporting timeout values for REST communications
and exposing such settings in its configurations. For in-
stance, the image client library provides a default time-
out of 600 seconds. The identity client library, on the

other hand, uses a default value of None, effectively dis-
abling the timeout mechanism. While a system-wide de-
fault timeout value for REST communications might be
a better solution, the fault resilience of OpenStack has
been clearly enhanced due to the support of this critical
timeout setting.

7.2.2 Periodic Checking

Periodic checking is another critical mechanism for
achieving fault resilience in OpenStack. In a cloud en-
vironment where faults are inevitable, periodic checking
can monitor service liveness, resume interrupted execu-
tions, clean up garbage, and prevent resource leakage.

Our fault-injection framework identifies several bugs
caused by the lack of proper periodic checking mech-
anisms. Take the processing of a VM creation request
as an example. During fault-free request processing, the
state of the VM transits from None (i.e., non-existence)
to BUILD (i.e., under construction) to ACTIVE (i.e., ac-
tively running). If the execution is interrupted after the
VM has transited to BUILD, it is possible that, in es-
sex, the VM indefinitely remains in that transient state.
This is a bug because a VM creation should cause the
VM to enter a stable state (ACTIVE if the processing
is successful and ERROR otherwise) in a timely manner,
despite faults.

This bug can be fixed by a periodic checking logic
that converts a VM’s state from BUILD to ERROR if the
related VM creation request is detected to have failed.
A bug fix has been integrated into grizzly, conducting
such a transition based on a configurable VM creation
timeout value. This fix, albeit effective in preventing the
prolonged BUILD state, leads to a state transition bug
(cf. Section 7.2.3).

Another bug in both OpenStack versions that can be
fixed by periodic checking is related to database access
in a fault-handling logic. OpenStack implements a dec-
orator function wrap_instance_fault, injecting a
fault record into a database table upon detection of VM
related faults. This fault-handling logic fails when the
VM related fault that it intends to log is itself a data-
base fault (e.g., a database service crash fault during a
VM creation). In such situation, the fault record is dis-
carded, making it difficult for postmortem fault analysis.
This bug can be fixed by keeping a temporary log of the
fault messages that cannot be stored in the designated
database table at the time when they are generated, then
periodically checking the state of the database service
and merging those temporary messages into the database
when possible.

7.2.3 State Transition

OpenStack maintains a large number of states in its data-
bases, with complicated state-transition diagrams among
them. Our tool indicates that, in faulty situations, users
may experience problematic state transitions.

For example, grizzly employs a periodic task to con-
vert a VM from BUILD to ERROR if it exceeds the max-
imum time that a VM is allowed to remain in BUILD.
However, OpenStack does not cancel the VM creation
request related to that VM. Thus, if a VM creation re-
quest experiences a transient fault, then a VM may tran-
sit from BUILD to ERROR and then to ACT IVE, because
it can be created after the execution of the periodic task
and the disappearance of the fault.

The state transition from ERROR to ACTIVE with-
out external event triggering can be confusing and prob-
lematic. According to our experience, upon receipt of a
VM creation error, an external user is likely to issue an-
other VM creation request. The bug fix for the previous
periodic-checking-related problem thus induces a new
state-transition bug, potentially creating more VMs than
needed for an external user. We suggest canceling an ex-
ternal request and negating its effect once it is believed
to be erroneous, in addition to the state stabilization em-
ployed by OpenStack.

7.2.4 Return Code Checking

Return code is commonly used as an indicator of the exe-
cution state from a function callee to its caller. Although
thorough checking on return codes has long been estab-
lished as a good programming practice, prior work has
identified return code related bugs to be a major source
of bugs even in well-organized projects [20, 27]. Our
study on OpenStack confirms this observation.

For example, during the processing of a VM creation
request, when the identity service cannot authenticate
a user-provided token passed from a compute API ser-
vice due to an internal fault, it returns an error code to
the compute API service, correctly indicating the service
fault. Due to a flawed return code checking logic, how-
ever, the compute API service attributes such an error to
the invalidity of the token, generates a misleading error
message accordingly, and returns it to the external user.

Another example in this category is related to the exe-
cution of shell commands. OpenStack compute services
implement a common function for executing shell com-
mands, allowing the caller to specify a list of expected
return codes. If the return value falls out of that list, an
exception is raised. A common bug pattern related to im-
proper use of this function results from disabling its re-
turn code checking logic, causing OpenStack, when ex-
ecuting under faults, to digress from expected execution
flows without being detected. For example, during the

network setup procedure related to a VM creation, the
brctl addif command is used to associate an Eth-
ernet interface with a bridge on the compute host where
the VM is placed. OpenStack assumes that the command
can be successfully executed and, without checking its
return code, proceeds to start the VM. As a result, the
VM may lose network connectivity if a fault occurs dur-
ing the execution of that command.

7.2.5 Cross-Layer Coordination

OpenStack relies on various supporting services to
maintain its functionality and supports interaction with
multiple services in each external service category via
a set of layers of abstraction. Take the RPC messaging
services as an example. OpenStack implements a uni-
fied layer for the AMQP protocol used for RPC commu-
nications, delegating operations to a lower layer imple-
mented for a specific AMQP broker. The lower layer is
a wrapper of the client-side library provided by its cor-
responding broker, such as RabbitMQ and Qpid. This
client-side library comprises messaging implementation
details and is responsible for the actual communication
with the AMQP broker.

This multi-layer abstraction stack, albeit valuable and
well-designed, imposes stringent requirements on cross-
layer coordination. Incorrect interpretations of behaviors
of one layer may lead to subtle bugs in another layer. For
instance, the Qpid client library is configured to auto-
matically reconnect to the AMQP broker after a connec-
tion disruption in essex. A threshold value is designed to
control the maximum number of reconnections. A con-
nection maintained by the client library resides in a tem-
porary erroneous state until the threshold is reached, at
which time the connection enters a permanent erroneous
state. The OpenStack wrapper of the client library does
not coordinate properly with the client library regarding
the temporary-permanent error state transition, causing
the wrapper to vainly retry a connection that has been
marked as irrecoverable by the client library.

7.2.6 Library Interference

The extensive use of external libraries commonly found
in large-scale software systems may lead to unexpected
library interference. For example, OpenStack uses a
patched version of Python standard library functions to
support cooperative thread scheduling (cf. Section 2).
Subtle incompatibility in the patched functions, how-
ever, can engender bugs that are hard to detect.

Take the communication between OpenStack and a
Qpid broker again as an example. During a reconnection
from the Qpid client library to a Qpid broker service, the
client internally uses a conventional consumer/producer

synchronization via a select/read call pattern on a
pipe. Due to incompatibility between the patched ver-
sion of select and its counterpart in Python standard
library, this Qpid client library, when invoked in essex,
may perform a read on the read-end of a pipe that is
not yet ready for reading, thus permanently blocking an
entire compute service.

7.2.7 Miscellaneous Bugs

Our framework also detects a simple implementation
bug: in essex, when a fault disrupts a connection opening
procedure in the Qpid wrapper layer, a subsequent open
call is issued without first invoking close to clean up
stale states in the connection object resulting from the
previously failed open, causing all following retries to
fail with an “already open” error message.

7.3 Resilience Evolution in OpenStack

Comparing the results of the two versions, we iden-
tify several interesting aspects in the evolution of Open-
Stack’s fault resilience.

Timeout is necessary. Using timeouts to bound the
execution of distributed operations is a well-known
and important approach to fault-resilience improvement
(e.g., Falcon [24]). As discussed in Section 7.2.1, the use
of timeout for REST communications effectively solves
the indefinite sender blocking issue in essex. Systemat-
ically configuring timeouts, however, remains an open
question. For instance, different components in a REST
communication flow (e.g., a WSGI pipeline) have dif-
ferent default timeout values. Moreover, the timeout set-
tings of some important supporting services cannot be
controlled by OpenStack. For example, OpenStack does
not specify the timeout for SQL statement execution,
thus causing long blocking time if the SQL statement
issuing service and the database backend is network par-
titioned. These issues need to be properly addressed to
further improve the fault resilience of OpenStack.

Return code matters. Carefully checking return codes
enables prompt error detection. For example, in grizzly,
during the processing of a VM deletion request, the com-
pute service issues a RPC call, instead of a RPC cast as
in essex, to the network service, demanding the latter
to reclaim relevant network resources. This modification
allows the compute service to detect errors in the net-
work service and reacts accordingly (e.g., transiting the
VM to the ERROR state), reducing the possibility of net-
work resource leakage under faults.®

8We classify this bug in the periodic checking category, because it
belongs to a general resource leakage issue that can be systematically
addressed by the periodic checking mechanism. The fix in grizzly, in
contrast, presents a simpler approach to solve this specific problem.

Keep cross-layer coordination simple. By simplify-
ing the cross-layer coordination, OpenStack reduces the
chances of bugs hiding between abstraction layers. For
example, by disabling automatic reconnection in the
Qpid client library and reserving full control only in its
wrapper layer, OpenStack avoids the bug discussed in
Section 7.2.5. In general, confining the decision-making
logic regarding a specific aspect of a cloud-management
stack to a single layer, instead of coordinating the de-
cision making in different layers, is considered a good
design practice.

8 Discussions

We now discuss our additional thoughts on this fault-
resilience study.

8.1 Applicability to Real-World Issues

Our framework can be applied to solve fault-resilience
issues related to cloud-management stacks in real-world
deployments. For example, one of Amazon’s cascading
failures [4] was caused by a memory leakage bug on
storage servers, which was triggered by the crash of a
data-collection server, the subsequent inability to con-
nect to that failed server from storage servers, and the de-
ficient memory reclamation for failed connections. This
bug can be detected by our framework via the combina-
tion of a crash fault injected to the data-collection server
and a specification on the memory usage of the data-
reporting logic on storage servers. However, our frame-
work needs to be extended for supporting injection of
multiple faults and scaling specification-checking logic
from an individual request to multiple requests. Such im-
provements will enable our framework to handle compli-
cated issues with multiple root causes [3].

8.2 Generality of Our Study

One may consider the generality of our study in two as-
pects: the reusability of implementation and applicabil-
ity of our findings to other cloud-management stacks.
As to implementation reusability, the fault-injection
module and the specification-checking module of our
framework are reusable in relevant studies for other
cloud-management stacks. The logging and coordina-
tion module and the specifications used for checking the
behaviors and states of OpenStack are domain-specific
and require porting efforts. This also holds for our study
across the two OpenStack versions. In general, such
cross-version porting is straightforward. The logging
and coordination module integrated in OpenStack con-
tains about 800 lines of code, most of which are reusable

across the two versions. Specifications need to be mod-
erately adjusted to cope with minor semantic evolution
(e.g., database schema changes).

Regarding our findings, the specific bugs and the re-
lated analysis presented in this paper are OpenStack-
specific and cannot be generalized to other cloud-
management stacks. The bug categories and the related
fault-resilience issues, however, are general. Despite the
numerous differences in the detailed design and imple-
mentation of cloud-management stacks, many of them
[11,15] share a common high-level scheme: they have
similar service groups, rely on similar external support-
ing services, and employ similar communication mech-
anisms. Thus, our findings in this paper have the po-
tential to shed light on fault resilience in other cloud-
management stacks with a similar design.

8.3 Use of Execution Graphs

The use of execution graphs and test plans is optional.
Instead of obtaining an execution graph related to re-
quest processing and generating test plans based on the
graph before fault-injection experiments, we could start
an experiment without prior knowledge and inject faults
when a relevant communication event occurs.

Our choice of the use of execution graph is mainly
for future extensibility of our framework. On the one
hand, an execution graph depicts the entire execution
flow related to the processing of an external request and
thus allows an intelligent test planner to conduct fault-
injection experiments with better test coverage and less
resource consumption (cf. Section 5.2). On the other
hand, execution graphs are useful for fault-resilience
studies other than our current fault-injection framework,
such as graph-comparison-based online fault detection
[10]. We plan to investigate such uses in future.

8.4 Nondeterminism

In our framework, we require that the external request
processing during a fault-injection experiment match its
execution graph up to the fault-injection location. In
other words, communication events observable by our
framework in fault-free execution generally need to be
deterministic. This requirement is satisfied in most of
our experiments.

There are, however, cases where additional care is re-
quired to accommodate nondeterminism. One source of
nondeterminism is periodic tasks, which is resolved by
deferring the tasks interfering with our experiments. An-
other source is environmental inputs. For example, the
operations taken by a compute service for network setup
on its local host depend on whether the compute service
and a network service are co-located on the same host.

We handle such cases by annotating related execution
graphs so that all the paths observed in fault-free exe-
cution are marked as valid. For other rare nondetermin-
istic events, we effectively bypass them by re-executing
failed fault-injection experiments.

9 Related Work

Cloud-management stacks are a type of distributed sys-
tem. Our study of the fault resilience of this layer bene-
fits from prior research on fault resilience of distributed
systems in general and cloud systems in particular. In
this section, we compare our work with existing fault-
resilience studies. We also compare our execution path
extraction and specification checking with similar tech-
niques employed in distributed systems debugging and
failure detection.

Fault-resilience studies. Fault injection is commonly
used to study the fault resilience of cloud systems.
FATE is a fault-injection framework targeting the recov-
ery logic in cloud applications, systematically explor-
ing failure scenarios with multiple-failure injection [19].
Dinu and Ng injected crash faults to components on
Hadoop’s compute nodes and studied their effects on ap-
plication performance [12]. In contrast, our framework
targets cloud-management stacks and examines the re-
covery logic by conducting single-fault injection during
the processing of external requests. Similar to the target
of FATE, we study the functionality and correctness of
recovery logic, which is difficult to be made correct [21].

Failure as a Service (FaaS) is proposed as a new
generic service to improve the fault resilience of cloud
applications in real deployments [18]. We suggest an al-
ternative approach for cloud-management stacks, pre-
senting an integrated fault-injection framework with
domain knowledge. By combining the two, cloud-
management stacks may enhance fault resilience by bet-
ter balancing the cost and coverage of fault injection.

Model checking (e.g., Modist [38]) is another com-
mon approach to examining the fault resilience of dis-
tributed systems. Compared to our fault-injection-based
approach, it checks the target system more thoroughly
by exploring all possible execution paths instead of those
observed by a fault-injection framework. This same thor-
oughness, however, necessitates the extensive use of do-
main knowledge in order to make it practical to check
highly complicated operations (e.g., VM creation) in
cloud-management stacks.

Execution path extraction. Execution paths have
been extensively used for workload modeling [5, 37],
performance [1,35] and correctness debugging [10, 16,
17], and evolution analysis [7] in distributed systems.
Such information is either exposed via special logging

modules (at either system or user level) or inferred in
sophisticated post-processing. Applying existing knowl-
edge to our framework, we extract execution paths re-
lated to external request processing via user-level log-
ging, which explicitly exposes high-level semantics.

Specification checking. Prior research has explored
various approaches to specification checking in dis-
tributed systems. Regarding specification expression,
both imperative approaches [25,26] and declarative ap-
proaches [19, 34] have been studied. In our framework,
we employ a hybrid approach in expressing specifica-
tions on the states and behaviors of cloud-management
stacks, combining imperative checking and declarative
checking. Similar combinations have been used to query
and analyze distributed trace events [14]. Regarding
specification generation, most existing approaches, in-
cluding ours, require developers to implement specifi-
cations. Recent advances in filesystem-checker testing
leverage the characteristics in the checkers to automat-
ically generate implicit specifications [9]. The applica-
bility of similar approaches to cloud-management stacks
remains an open question.

10 Conclusions

In this paper, we conducted a systematic study on the
fault resilience of OpenStack. We designed and imple-
mented a prototype fault-injection framework that in-
jects faults during the processing of external requests.
Using this framework, we uncovered 23 bugs in two
OpenStack versions, classified them into seven cate-
gories, and presented an in-depth discussion of the fault-
resilience issues, which must be addressed in order to
build fault-resilient cloud-management stacks. Our fu-
ture work consists of refining and automating specifica-
tion generation logic and exploring potential use of exe-
cution graphs in fault-resilience-related areas.

Acknowledgments

We thank Benjamin Reed (our shepherd) and the anony-
mous reviewers for their comments and suggestions. The
work reported in this paper was supported in part by the
US Air Force Office of Scientific Research under Grant
No. FA9550-10-1-0393.

References

[1] M. K. Aguilera, J. C. Mogul, J. L. Wiener,
P. Reynolds, and A. Muthitacharoen. Performance
debugging for distributed systems of black boxes.
In Proceedings of the nineteenth ACM symposium

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

on Operating systems principles, SOSP *03, pages
74-89, New York, NY, USA, 2003. ACM.

Amazon. Amazon elastic compute cloud (Amazon
EC2). http://aws.amazon.com/ec2/. Re-
trieved in September 2013.

Amazon. Summary of the Amazon EC2 and
Amazon RDS service disruption in the US
east region. http://aws.amazon.com/
message/65648/. Retrieved in September
2013.

Amazon. Summary of the October 22, 2012 AWS
service event in the US-east region. http://
aws.amazon.com/message/680342/. Re-
trieved in September 2013.

P. Barham, A. Donnelly, R. Isaacs, and R. Mortier.
Using magpie for request extraction and workload
modelling. In Proceedings of the 6th conference on
Symposium on Opearting Systems Design & Im-
plementation - Volume 6, OSDI’04, pages 1818,
Berkeley, CA, USA, 2004. USENIX Association.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Har-
ris, A. Ho, R. Neugebauer, 1. Pratt, and A. Warfield.
Xen and the art of virtualization. In Proceedings of
the nineteenth ACM symposium on Operating sys-
tems principles, SOSP 03, pages 164—177, New
York, NY, USA, 2003. ACM.

S. A. Baset, C. Tang, B. C. Tak, and L. Wang. Dis-
secting open source cloud evolution: An openstack
case study. In USENIX Workshop on Hot Topics in
Cloud Computing, HotCloud’ 13. USENIX Associ-
ation, 2013.

C. Bennett and A. Tseitlin. Chaos monkey
released into the wild. http://techblog.
netflix.com/2012/07/chaos—monkey-
released-into-wild.html. Retrieved in
September 2013.

J. Carreira, R. Rodrigues, G. Candea, and R. Ma-
jumdar. Scalable testing of file system checkers. In
Proceedings of the 7th ACM european conference
on Computer Systems, EuroSys ’12, pages 239—
252, New York, NY, USA, 2012. ACM.

M. Y. Chen, A. Accardi, E. Kiciman, J. Lloyd,
D. Patterson, A. Fox, and E. Brewer. Path-based
failure and evolution management. In Proceedings
of the Ist conference on Symposium on Networked
Systems Design and Implementation - Volume 1,
NSDI’'04, Berkeley, CA, USA, 2004. USENIX As-
sociation.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

CloudStack. Apache CloudStack: Open source
cloud computing. http://cloudstack.
apache.org/. Retrieved in September 2013.

F. Dinu and T. E. Ng. Understanding the ef-
fects and implications of compute node related fail-
ures in hadoop. In Proceedings of the 21st inter-
national symposium on High-Performance Paral-
lel and Distributed Computing, HPDC 12, pages
187-198, New York, NY, USA, 2012. ACM.

T. Do, M. Hao, T. Leesatapornwongsa, T. Patana-
anake, and H. S. Gunawi. Limplock: Understand-
ing the impact of limpware on scale-out cloud sys-
tems. In 2013 ACM Symposium on Cloud Comput-
ing, SOCC’13, New York, NY, USA, 2013. ACM.

U. Erlingsson, M. Peinado, S. Peter, M. Budiu, and
G. Mainar-Ruiz. Fay: Extensible distributed trac-
ing from kernels to clusters. ACM Trans. Comput.
Syst., 30(4):13:1-13:35, Nov. 2012.

Eucalyptus. The Eucalyptus cloud. http:
//www.eucalyptus.com/eucalyptus—
cloud/iaas. Retrieved in September 2013.

R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and
I. Stoica. X-trace: a pervasive network tracing
framework. In Proceedings of the 4th USENIX
conference on Networked systems design and im-
plementation, NSDI’07, pages 271-284, Berkeley,
CA, USA, 2007. USENIX Association.

D. Geels, G. Altekar, S. Shenker, and 1. Stoica. Re-
play debugging for distributed applications. In Pro-
ceedings of the annual conference on USENIX "06
Annual Technical Conference, ATEC °06, Berke-
ley, CA, USA, 2006. USENIX Association.

H. S. Gunawi, T. Do, J. M. Hellerstein, 1. Stoica,
D. Borthakur, and J. Robbins. Failure as a service
(faas): A cloud service for large-scale, online fail-
ure drills. In Technical Report UCB/EECS-2011-
87.

H. S. Gunawi, T. Do, P. Joshi, P. Alvaro, J. M.
Hellerstein, A. C. Arpaci-Dusseau, R. H. Arpaci-
Dusseau, K. Sen, and D. Borthakur. FATE and
DESTINI: a framework for cloud recovery test-
ing. In Proceedings of the 8th USENIX conference
on Networked systems design and implementation,
NSDI'11, Berkeley, CA, USA, 2011. USENIX As-
sociation.

H. S. Gunawi, C. Rubio-Gonzélez, A. C. Arpaci-
Dusseau, R. H. Arpaci-Dussea, and B. Liblit. Eio:
error handling is occasionally correct. In Proceed-
ings of the 6th USENIX Conference on File and

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Storage Technologies, FAST 08, pages 207-222,
Berkeley, CA, USA, 2008. USENIX Association.

Z. Guo, S. McDirmid, M. Yang, L. Zhuang,
P. Zhang, Y. Luo, T. Bergan, P. Bodik, M. Musu-
vathi, Z. Zhang, and L. Zhou. Failure recovery:
When the cure is worse than the disease. In Work-
shop on Hot Topics in Operating Systems, HotOS
XIV. USENIX Association, 2013.

X. Ju, L. Soares, K. G. Shin, and K. D. Ryu. To-
wards a fault-resilient cloud management stack. In
USENIX Workshop on Hot Topics in Cloud Com-
puting, HotCloud’13. USENIX Association, 2013.

A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liguori. kvm: the Linux virtual machine mon-
itor. In Ottawa Linux Symposium, pages 225-230,
2007.

J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera,
and M. Walfish. Detecting failures in distributed
systems with the falcon spy network. In Proceed-
ings of the Twenty-Third ACM Symposium on Op-
erating Systems Principles, SOSP *11, pages 279—
294, New York, NY, USA, 2011. ACM.

X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian,
J. Tang, M. Wu, M. F. Kaashoek, and Z. Zhang.
D3S: debugging deployed distributed systems. In
Proceedings of the 5th USENIX Symposium on
Networked Systems Design and Implementation,
NSDI'08, pages 423-437, Berkeley, CA, USA,
2008. USENIX Association.

X. Liu, W. Lin, A. Pan, and Z. Zhang. Wids
checker: combating bugs in distributed systems.
In Proceedings of the 4th USENIX conference
on Networked systems design and implementation,
NSDI'07, pages 19-19, Berkeley, CA, USA, 2007.
USENIX Association.

P. D. Marinescu and G. Candea. Efficient testing
of recovery code using fault injection. ACM Trans.
Comput. Syst., 29(4):11:1-11:38, Dec. 2011.

Microsoft. Microsoft Hyper-V server 2012.
http://www.microsoft.com/en-
us/server—-cloud/hyper-v-server/
default .aspx. Retrieved in September 2013.

Microsoft. Summary of Windows Azure ser-
vice disruption on Feb 29th, 2012. http:
//blogs.msdn.com/b/windowsazure/
archive/2012/03/09/summary—-of—
windows—azure-service-disruption-
on-feb-29th-2012.aspx. Retrieved in
September 2013.

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

B. P. Miller, L. Fredriksen, and B. So. An empirical
study of the reliability of UNIX utilities. Commun.
ACM, 33(12):32-44, Dec. 1990.

OpenStack. OpenStack open source cloud com-
puting software. http://www.openstack.
org/. Retrieved in September 2013.

OpenStack. Virtual machine states and transi-
tions. http://docs.openstack.org/
developer/nova/devref/vmstates.
html. Retrieved in September 2013.

A. Reddy. DevOps: The IBM approach. Technical
report, IBM, 2013.

P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul,
M. A. Shah, and A. Vahdat. Pip: detecting the un-
expected in distributed systems. In Proceedings of
the 3rd conference on Networked Systems Design
and Implementation - Volume 3, NSDI’06, Berke-
ley, CA, USA, 2006. USENIX Association.

P. Reynolds, J. L. Wiener, J. C. Mogul, M. K.
Aguilera, and A. Vahdat. WAPS: black-box perfor-
mance debugging for wide-area systems. In Pro-
ceedings of the 15th international conference on
World Wide Web, WWW ’06, pages 347-356, New
York, NY, USA, 2006. ACM.

B. H. Sigelman, L. A. Barroso, M. Burrows,
P. Stephenson, M. Plakal, D. Beaver, S. Jaspan,
and C. Shanbhag. Dapper, a large-scale distributed
systems tracing infrastructure. Technical report,
Google, Inc., 2010.

B. C. Tak, C. Tang, C. Zhang, S. Govindan, B. Ur-
gaonkar, and R. N. Chang. vpath: precise discovery
of request processing paths from black-box obser-
vations of thread and network activities. In Pro-
ceedings of the 2009 conference on USENIX An-
nual technical conference, USENIX’09, pages 19—
19, Berkeley, CA, USA, 2009. USENIX Associa-
tion.

J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin,
M. Yang, F. Long, L. Zhang, and L. Zhou. Modist:
transparent model checking of unmodified dis-
tributed systems. In Proceedings of the 6th
USENIX symposium on Networked systems de-
sign and implementation, NSDI’09, pages 213—
228, Berkeley, CA, USA, 2009. USENIX Associa-
tion.

