
Reducing Peak Power Consumption in
Multi-Core Systems without Violating

Real-Time Constraints
Jinkyu Lee, Member, IEEE, Buyoung Yun, Student Member, IEEE, and Kang G. Shin, Life Fellow, IEEE

Abstract—The potential of multi-core chips for high performance and reliability at low cost has made them ideal computing platforms

for embedded real-time systems. As a result, power management of a multi-core chip has become an important issue in the design of

embedded real-time systems. Most existing approaches have been designed to regulate the behavior of average power consumption,

such as minimizing the total energy consumption or the chip temperature. However, little attention has been paid to the worst-case

behavior of instantaneous power consumption on a chip, called chip-level peak power consumption, an important design parameter

that determines the cost and/or size of chip design/packaging and the underlying power supply. We address this problem by reducing

the chip-level peak power consumption at design time without violating any real-time constraints. We achieve this by carefully

scheduling real-time tasks, without relying on any additional hardware implementation for power management, such as dynamic

voltage and frequency scaling. Specifically, we propose a new scheduling algorithm FPQ that restricts the concurrent execution of tasks

assigned on different cores, and perform its schedulability analysis. Using this analysis, we develop a method that finds a set of

concurrent executable tasks, such that the design-time chip-level peak power consumption is minimized and all timing requirements

are met. We demonstrate via simulation that the proposed method not only keeps the design-time chip-level peak power consumption

as low as the theoretical lower bound for trivial cases, but also reduces the peak power consumption for non-trivial cases by up to

12:9 percent compared to the case of no restriction on concurrent task execution.

Index Terms—Peak power consumption, system design, multi-core systems, real-time scheduling

Ç

1 INTRODUCTION

WITH the advance of CMOS manufacturing technology,
a single chip multi-processor has become widely

deployed in embedded real-time systems due to its poten-
tial for achieving high performance at low cost. As the size
of a CMOS transistor continuously shrinks, more cores and
electronic devices are getting integrated on a single die.
However, since the power density also rapidly grows on a
modern multi-core chip, proper power management has
become one of the most critical issues in minimizing its
adverse effects on both chip cooling efficiency and chip reli-
ability. To address this issue without violating any timing
requirements, numerous power-management techniques
have been proposed to minimize energy consumption [1],
or to minimize chip temperature [2], [3], [4], by controlling
the average chip power consumption.

However, little has been done on the worst-case behavior
of instantaneous peak power consumption on a chip—called
the chip-level peak power consumption—in embedded real-time

systems. The chip-level peak power consumption is an
important design parameter as the chip should be designed
for efficient and robust delivery of power to all components
on the chip even in the case of worst-case instantaneous (i.e.,
chip-level peak) power consumption. To meet the chip-level
peak power demand during runtime, power supply units
with sufficient capacity are required, and the proper chip
packaging solution should be applied at the chip design
time. However, the chip packaging solution does not always
guarantee robust and efficient power delivery, because the
proper placement of decoupling capacitors is known to be a
non-trivial problem [5]. Thus, the chip-level peak power con-
sumption dictates the cost and the size of such power-related
components, each of which is crucial to commercial embed-
ded real-time products. So far, there have been studies on
how to manage the chip-level peak power consumption for
general-purpose systems [6], [7], [8], but it is unclear how to
adapt them to meet the timing constraints of embedded real-
time applications.

The goal of this paper is to minimize chip-level peak
power consumption at design time without violating any
timing requirements. With this goal achieved, one can opti-
mize the chip design/packaging process and the power-
related components according to the minimized chip-level
peak power consumption (guaranteed at design time), and
then reduce the cost and/or size of the process and compo-
nents by avoiding/minimizing their over-design. To
achieve the above goal, we only rely on scheduling of tasks
(each of which has its own peak power characteristics
shown in Fig. 1) at the software layer without requiring any

� J. Lee is with Department of Computer Science and Engineering, Sung-
kyunkwan University, Suwon, Gyeonggi-Do, South Korea.
E-mail: jinkyu.lee@skku.edu.

� B. Yun and K.G. Shin are with Real-Time Computing Laboratory, Depart-
ment of Electrical Engineering and Computer Science, The University of
Michigan, Ann Arbor, MI 48109-2121, U.S.A.
E-mail: {buyoung,kgshin}@eecs.umich.edu.

Manuscript received 4 Sept. 2012; revised 17 Apr. 2013; accepted 28 Apr.
2013; date of publication 12 May 2013; date of current version 21 Feb. 2014.
Recommended for acceptance by M. Kandemir.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2013.131

1024 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 4, APRIL 2014

1045-9219 � 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

hardware support, such as dynamic voltage/frequency
scaling (DVFS) and power-gating. DVFS has been widely
used for power management in microprocessors [1], [2], [3],
but it suffers from the non-zero switching overhead of
changing the operating voltage/frequency. Also, power-
gating can be used to reduce leakage power efficiently [9],
but due to the complexity of data-retention mechanism and
the large latency in turning power on/off, it is unsuitable
for embedded real-time systems. Thus, one of the main
advantages of our approach is its simplicity in and applica-
bility to any multi-core platform without requiring addi-
tional hardware support. Note that our scheduling-based
approach does not limit the use of any hardware technique
since it is orthogonal to hardware implementation. To the
best of our knowledge, this is the first peak power-aware
scheduling that addresses the problem of designing a multi-
core chip with its power-related components in embedded
real-time systems.

In this paper, our focus is confined to the partitioned
scheduling—in which a task is executed on its desig-
nated core—for simplicity/less overhead (e.g., no task
migration between cores) and/or for efficient utilization
of heterogeneous cores (e.g., different tasks can be exe-
cuted more efficiently on different cores). To reduce the
design-time chip-level peak power consumption using
partitioned scheduling, we need the worst-case instanta-
neous (i.e., task-level peak) power consumption of each
task on its designated core, which will be discussed in
Section 2. We also need to control concurrent execution
of tasks on different cores; otherwise, the tasks with the
highest task-level peak power consumption on each core
(as well as the parts of task execution that dissipate the
power as much as each task’s peak power) can be

executed at the same time, making no reduction of chip-
level peak power consumption.

We extend the traditional partitioned fixed priority
(FP) scheduling algorithm [10] that is widely deployed
in many embedded real-time systems, and develop a
new scheduling algorithm FPQ, which avoids the concur-
rent execution of tasks in a given list Q in Section 4.1. To
meet the timing requirements, we develop a schedulabil-
ity test of FPQ in Section 4.2. The final step is then to
find a list of concurrently executable tasks that mini-
mizes the chip-level peak power consumption at design
time without violating the timing constraints. By deriv-
ing some properties of the schedulability test of FPQ, we
develop a method for finding such a list with low time-
complexity in Section 5. The effectiveness of the pro-
posed method has been demonstrated via simulation in
terms of reduction of chip-level peak power consump-
tion in Section 6; for trivial cases, our method keeps the
peak power consumption as low as the theoretical lower
bound, and for non-trivial cases, it reduces the consump-
tion up to 12:9 percent over the case of no restriction on
concurrent task execution.

In summary, this paper makes the following
contributions.

� Introduction of a new multi-core chip design prob-
lem regarding the chip-level peak power consump-
tion for embedded real-time systems;

� Development of a new scheduling algorithm FPQ

that avoids concurrent execution of tasks on dif-
ferent cores in a given list Q, by generalizing the
traditional partitioned FP scheduling algorithm
(i.e., the uniprocessor FP scheduling algorithm
[10] for each core);

� Derivation of a schedulability test of FPQ, a generali-
zation of that of the traditional partitioned FP sched-
uling algorithm (i.e., the exact schedulability test of
the uniprocessor FP scheduling algorithm [11] for
each core);

� Development of a method that reduces the design-
time chip-level peak power consumption using FPQ

and its schedulability analysis, without requiring
any hardware support; and

� Demonstration of the effectiveness of the proposed
method via in-depth simulation.

The rest of this paper is organized as follows. Section 2
presents our system model. Section 3 outlines how to
achieve our design goal. Section 4 presents FPQ and its
schedulability test, which will be used for a method to
achieve the goal, presented in Section 5. Section 6 evaluates
the proposed method, and Section 7 discusses the related
work. Finally, Section 8 concludes the paper.

2 SYSTEM MODEL AND ASSUMPTIONS

We consider a multi-core chip, which consists of m cores
fSjgmj¼1, and the cores may be identical or heterogeneous.
We assume that each task ti is executed only on its des-
ignated core, and let Fj denote a set of tasks assigned to
Sj. Let F denote the entire task set to be executed on the
multi-core chip (i.e., F , [mj¼1 Fj). Also, let jAj denote
the cardinality of the set A.

Fig. 1. An example of power characteristics when “qsort” in MiBench
benchmark suites is running on the selected target core model in
Section 6.

LEE ET AL.: REDUCING PEAK POWER CONSUMPTION IN MULTI-CORE SYSTEMS WITHOUT VIOLATING REAL-TIME CONSTRAINTS 1025

We focus on a sporadic task model [12] in which a real-
time task ti 2 F is modeled as ðTi; Ci;DiÞ, where Ti is the
minimum separation between two successive invocations,
Ci is the worst-case execution time when it is executed on
its designated core, and Di is its relative deadline. We
restrict our attention to the constrained deadline tasks, i.e.,
Ci � Di � Ti, 8ti 2 F. Note that this sporadic task model
is general since it can represent not only typical control
systems that employ periodic sampling, but also event-
triggered functions in computing systems with a specified
minimum time separation between two consecutive events
[12]. Also, the global priority Pi is given to each task ti,
depending on its criticality; the smaller Pi, the higher pri-
ority. Every invocation of ti is called a job, and each job is
separated from its predecessor/successor by at least Ti
time units. In constrained deadline task systems, at most
one active job per task can exist in any time slot, and
hence, for simplicity of presentation, we use the term
“task” also to refer “job of the task” in the rest of this
paper. Like most existing studies on real-time scheduling,
we focus on task sets in which all tasks are independent of
each other. This task model is not as restricted as it may
appear, since there are ways to transform a set of depen-
dent tasks to independent ones, e.g., [13].

In addition, each task consumes a different amount of
electric power during its execution, depending on its char-
acteristics and computational load. To reduce the chip-level
peak power consumption at design time, we need an upper
bound of the instantaneous power dissipation of each task.
For this purpose, we use one more parameter associated
with each task ti: the worst-case instantaneous (i.e., task-
level peak) power consumption (denoted by Bi) of ti. In
other words, any job of ti does not dissipate more instanta-
neous power than Bi at any time during its execution. Let
Bmax be the highest (instantaneous) peak power consumed
by the tasks in F (i.e., Bmax , maxmj¼1maxti2Fj

Bi).
When the task set F and the chip model are given at

design time, Bi of each task ti 2 F can be estimated/
obtained off-line from the readings of the power sensor
attached/embedded in the processor, which is similar to
the power measurement in [14], after the task has been exe-
cuted continuously for a given set of its inputs. For this, the
input of each task should be known, because the amount of
power dissipation can differ depending on its task execu-
tion path determined by the input. However, the task input
data can be collected empirically or estimated as is done for
the estimation of its worst-case execution time (e.g., the sta-
tistics of the wheel/vehicle speed can be used to determine
the set of inputs for the ABS control task in an automotive
control system).

Fig. 1 shows the sampled power dissipation and the
histogram of power consumption when the “qsort”
application in MiBench benchmark suites [15] is executed
on the Wattch power simulator [16], where a core is
modeled as described in Section 6. To obtain the task-
level peak power dissipation during its execution, 10
input sets were randomly generated using the dictionary
database, and the power dissipation was sampled during
each execution with different input sets.

One may think that the current estimation/modeling of
the worst-case instantaneous power consumption of each

task (i.e., Bi) can be overly pessimistic. However, the
“worst-case” profile of power consumption is necessary
since the power-related elements should be designed to
accommodate all possible values of instantaneous power
consumption. To lower the degree of pessimism, we may
divide a task into different phases, provided the internal
structure of the task is known. Then, it is possible to differ-
entiate the worst-case peak power consumption of each
phase, which may be effective when the worst-case peak
power consumption significantly varies with different
phases of a given task. In this paper, we focus on the model-
ing of the per-task peak power consumption; one may easily
extend it to per-phase peak power consumption.

3 OVERVIEW

In this section, we first formally state our goal and identify
issues in achieving the goal. Then, we outline how to address
the issues, which will later be detailed in Sections 4 and 5.

The goal of this paper, as mentioned in Section 1, can be
formally stated as follows:

Given fFjgmj¼1, each task to be executed on its desig-
nated core fSjgmj¼1, respectively, minimize the design
parameter B, such that the following two conditions
are guaranteed at design time: (i) the chip-level peak
power consumption does not exceed B; and (ii) there
is no deadline miss for any job invoked by fFjgmj¼1.

To achieve this goal, we need to address the following
issues:

1. How to guarantee (i) for given B;
2. How to guarantee (ii) for given B; and
3. How to find the minimum B without compromising

(i) and (ii).
We now outline how to address each issue, starting from

issue 1. Let Q� denote a list of tuples of all combinations of
at least two tasks assigned to different cores. Tuples in Q�

are sorted in descending order of the sum of the peak power
consumption of tasks (i.e., sum of Bi) in each tuple. Exam-
ple 1 in the supplementary file, which can be found on the
Computer Society Digital Library at http://doi.ieeecompu-
tersociety.org/10.1109/TPDS.2013.131, illustrates Q�.

If all tasks in Q�ðyÞ simultaneously execute on their des-
ignated cores, the parts of the tasks that dissipate the power
as much as each task’s peak power can also execute at the
same time. In this case, the chip-level power consumption
can be up to the sum of the peak power consumption of the
tasks (i.e., sum of Bi) as shown in the second column of
Table 1. Therefore, to guarantee (i) for given B at design
time, we need to control the concurrent execution of tasks
on different cores. Without such controls (e.g., any tradi-
tional partitioned scheduling algorithm in which the sched-
ule of tasks in a core is independent of that of tasks in other
cores), all tasks in Q�ð1Þ can be executed at the same time,
meaning that we cannot guarantee (i) if B is less than the
sum of the peak power consumption of tasks in Q�ð1Þ.

To address issue 1, the following lemma provides a
relationship between the control of concurrent task exe-
cution and an upper bound of the chip-level peak power
consumption.

1026 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 4, APRIL 2014

Lemma 1. Let Q ¼ ½Q�ð1Þ;Q�ð2Þ; . . . ;Q�ðyÞ�. If we avoid the
concurrent execution of tasks in all tuples in Q, then we
can guarantee that the chip-level peak power consumption
does not exceed max

�
Bmax;

P
tk2Q�ðyþ1ÞBk

�
, where

Bmax , maxmj¼1maxti2Fj
Bi.

Proof. Since we can prevent all the concurrent task execu-
tion whose upper bound on the chip-level power con-
sumption is larger than that of Q�ðyþ 1Þ, we can
guarantee that the chip-level peak power consumption
does not exceed

P
tk2Q�ðyþ1ÞBk, if at least two tasks are

concurrently executed on different cores.

However, if only one task is executed on the multi-
core chip, its power consumption amounts to at most
Bmax. Therefore, we choose the maximum between Bmax

and
P

tk2Q�ðyþ1ÞBk.
Using Lemma 1, we can set Q for given B; note that B

is infeasible if B < Bmax. Then, the remaining step is to
develop a new scheduling algorithm that can avoid all
the concurrent execution of tasks in each tuple of Q.
However, the maximum size of Q (i.e., the size of Q�) is
the number of all combinations of at least two tasks on
different cores, which is Oð

Pm
j¼2 n

j � ðmj ÞÞ, where
n , maxmj¼1jFjj. Therefore, the maximum size of u

increases exponentially with m, e.g., if n ¼ 10 and
m ¼ 10, the size of u is at least in the order of 1010.

For scalability, we logically divide a multi-core chip
into several groups of cores, and achieve the goal for
each group. In this paper, we consider each group with
two cores, and then the maximum size of Q for each
group is only O

�
n2
�
. Tables 2 and 3 show each Q� (maxi-

mum Q) when the four-core chip in Example 1 is
divided into two groups: fS1;S2g and fS3;S4g. Then, the
size of Q� is reduced from 29 (in Table 1) to 2 (in Table 2
or 3), and the scheduling algorithm for each group needs

to maintain only a small number of pairs instead of a
huge number of tuples.

In Section 4.1, we will develop FPQ, a new scheduling
algorithm that generalizes the traditional partitioned FP
scheduling algorithm with restriction of the concurrent exe-
cution of tasks in all pairs in given Q.

Then, to address issue 2, we will, in Section 4.2, develop a
schedulability test of FPQ, determining whether a task set is
schedulable by FPQ or not.

Once FPQ and its schedulability test are developed,
the remaining step for issue 3 is to develop a method for
determining Q that minimizes B. In Section 5, we will
derive some properties of the schedulability test of FPQ,
and then develop such a method, by utilizing FPQ and
its schedulability analysis to guarantee (i) and (ii),
respectively.

In summary, we will achieve this by addressing issues 1,
2 and 3 as follows:

1. In Section 4.1, we will develop the FPQ scheduling
algorithm that can avoid the concurrent execution of
tasks in all pairs in given Q;

2. In Section 4.2, we will develop a schedulability test
of FPQ; and

3. In Section 5, we divide a multi-core chip in groups of
two cores each, and find per-group Q that minimizes
B such that (i) is guaranteed by the FPQ scheduling
algorithm itself and (ii) is guaranteed by the schedul-
ability test of FPQ.

4 FPQQ SCHEDULING ALGORITHM AND ITS

SCHEDULABILITY ANALYSIS

As mentioned in Section 3, we need a new scheduling algo-
rithm that can avoid the concurrent execution of tasks on
different cores in all pairs in given Q. To meet this need, we
first present a new scheduling algorithm, FPQ, and then
develop its schedulability test.

4.1 FPQQ Scheduling Algorithm

In the traditional partitioned fixed priority scheduling algo-
rithm (i.e., the uniprocessor FP scheduling algorithm [10]
on each core), one of multiple ready tasks is scheduled on
each core according to their (fixed) priority. To extend this
algorithm with the restriction of concurrent task execution
in all pairs in given Q, we need to decide which task should
be chosen when both tasks in a pair are ready. The (global)
fixed priority of each task is also used for this decision, and
we call this algorithm FPQ (fixed priority with the restriction
of concurrent task execution in all pairs in Q). Algorithm 1
shows a formal description of FPQ. In the beginning, QðtÞ
and EðtÞ are set to all active tasks and no task, respectively,

TABLE 2
An Upper-Bound of the Power Consumption of fS1;S2gWhen
Two Tasks on Different Cores Are Executed at the Same Time

TABLE 3
An Upper-Bound on the Power Consumption of fS3;S4gWhen
Two Tasks on Different Cores Are Executed at the Same Time

TABLE 1
An Upper-Bound for the Chip-Level Power Consumption

When At Least Two Tasks on Different Cores Are
Executed at the Same Time

LEE ET AL.: REDUCING PEAK POWER CONSUMPTION IN MULTI-CORE SYSTEMS WITHOUT VIOLATING REAL-TIME CONSTRAINTS 1027

in Steps 1 and 2. Then, via Steps 3-7, each task in QðtÞ is
either moved to EðtÞ or deleted. Finally, in Step 8, EðtÞ has a
set of tasks to be executed at t. Note that we describe FPQ

for any number of cores while illustrating it for a two-core
group as mentioned in Section 3. The scheduling overhead
of Algorithm 1 is not significant in that FPQ additionally
needs to sort a set of active tasks, compared to the
traditional partitioned FP scheduling. Example 2 in the sup-
plementary file, available online, illustrates how FPQ in
Algorithm 1 operates.

Then, FPQ guarantees no concurrent execution of any
pair in Q, and the following lemma states it.

Lemma 2. The FPQ scheduling algorithm guarantees that any
pair of tasks in Q is not executed at the same time.

Proof. This trivially holds by Step 6(b) of Algorithm 1.

4.2 Schedulability Analysis of FPQQ

Using Lemma 2, we address issue 1 in Section 3. However,
we need to guarantee no job will miss its deadline (i.e., issue 2
in Section 3). For this, we first derive some properties of FPQ.
Based on these properties, we develop a schedulability test
of FPQ. This test will be used to find Q that minimizes B, the
“design-time” chip-level peak power consumption (i.e.,
issue 3 in Section 3), to be presented in Section 5. Note that
while Algorithm 1 is for online operation, other parts includ-
ing the schedulability test and Section 5 work offline.

To determine whether a given task set is schedulable or
not, we use the response time analysis which has been
widely used for schedulability analysis (e.g., [11]). In this
analysis, we calculate the maximum duration between the
release time and the finishing time of any job of each task
(i.e., called the task response time). To do this, we calculate
the maximum duration for a task’s job to be blocked by the
jobs of higher-priority tasks. Then, the task’s response
time is upper-bounded by the sum of its execution time and
the maximum blocking time. Finally, a task set is deemed
schedulable if the upper-bound of the response time of each
task is not greater than its relative deadline. We also follow
this to develop a schedulability test of FPQ.

Let Hk be a set of higher-priority tasks than tk, desig-
nated on the same core, and Gk be a set of tasks that can
block the execution of tk’s jobs. Then, under the traditional
partitioned FP scheduling algorithm, Gk ¼ Hk holds since
jobs of any higher-priority task on the same core can block

the execution of a job of tk while jobs of any other task can-
not. Then, the following lemma provides the properties of
Gk for the traditional partitioned FP scheduling algorithm.

Lemma 3. The traditional partitioned FP scheduling algorithm
has the following properties:

P1: If ti 2 Gk, then Gi � Gk.
P2: The maximum blocking time of tk by tasks in Gk in an

interval of length l is upper-bounded by

X

ti2Gk

l

Ti

� �
� Ci: (1)

Proof. Since a task is blocked by only higher-priority tasks
on the same core, P1 trivially holds.

P2 is implicitly used in [11], and follows from the fact
that the synchronous release of a task with higher-priority
tasks is the critical instant [10]. The proof is also given in
Lemma 4 to be presented later, and the lemma is a generali-
zation of P2.

However, under FPQ, a job of tk can be blocked by the
jobs of a higher-priority task ti designated on a different
core, if Q includes a pair of ðti; tkÞ. Let F k denote a set of
higher-priority tasks (than tk) which belong to Q as a pair
with tk. Then, under FPQ, Gk ¼ Hk [F k holds.

The two properties of the traditional partitioned FP
scheduling algorithm presented in Lemma 3 do not neces-
sarily hold for FPQ as shown in Fig. 2 in this paper and
Example 3 in the supplementary file (available online).

As shown in Example 3, P1 and P2 in Lemma 3 do not
hold for FPQ. However, P2 can hold for FPQ under some
conditions related to P1, as stated in the following lemma.

Lemma 4. Let G0k denote fti 2 GkjGi � Gkg. Then, the maximum
blocking time of tk by tasks in G0k in an interval of length l is
upper-bounded by

X

ti2G0
k

l

Ti

� �
� Ci: (2)

Proof. We consider two cases: (a) any ti 2 G0k does not have
its carry-in job1 in an interval of length l; and (b) some
ti 2 G0k does.

In Case (a), there are at most
�
l
Ti

�
jobs of ti that can be

executed within an interval of length l, and thus, the

Fig. 2. The maximum blocking time of t5 by tasks in G5 ¼ ft4g in an inter-
val of length 2; we do not include t3 since its execution is irrelevant to t5.

1. A carry-in job in an interval means its release before the interval,
but it finishes execution within the interval.

1028 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 4, APRIL 2014

maximum blocking time of tk by tasks in G0k in an interval of
length l is upper-bounded by Eq. (2).

In Case (b), suppose tj 2 G0k has its carry-in job in ½t; tþ lÞ
of length l, and the job is released at t� x (x > 0). In ½t� x; tÞ,
tj itself or tasks in Gj are executed. Since Gj � Gk, the tasks (tj
or tasks in Gj) belong to Gk. Therefore, the blocking time of tk
by tasks in G0k in ½t� x; t� xþ lÞ is not smaller than that in
½t; tþ lÞ. This interval shift can be repeated until there is no
carry-in job of tasks in G0k in an interval of interest. Then, the
blocking time of tk by tasks in G0k in the final interval is not
smaller than that in the original interval. Since there is no
carry-in job in the final interval, this belongs to Case (a).

Using Lemma 4, we can upper-bound the blocking time
of tk by tasks in fti 2 GkjGi � Gkg. However, how to handle
the other tasks in Gk still remains open. To address this
issue, in the following lemma we present an upper bound
on the blocking time of tk by any ti 2 Gk.

Lemma 5. The amount of execution of ti’s jobs in an interval of
length l is upper-bounded by

l lþRi � Ci
Ti

m
� Ci; (3)

where Ri is an upper bound of ti’s response time.

Proof. We consider the following execution pattern of ti
which maximizes the amount of execution of jobs of ti in
an interval starting at t, as shown in Fig. 3. Given an
interval ½t; tþ lÞ of length l, the first job of ti starts its exe-
cution at t and ends at tþ Ci. Here tþ Ci �Ri is the job’s
release time, meaning that the job’s response time is Ri.
Thereafter, jobs of ti will be released and scheduled as
soon as possible. In this case, the number of jobs of ti to
be executed in ½t; tþ lÞ is upper-bounded by dlþRi�CiTi

e.
Using Lemmas 4 and 5, we develop a schedulability test

of FPQ in the following theorem.

Theorem 1. A task set F , fFjgmj¼1 is schedulable by FPQ on
their designated core fSjgmj¼1, if Rk � Dk holds for all ti 2 F,
where Rk ¼ Rx

k when the following formula converges (i.e.,
Rxþ1
k ¼ Rx

k) starting from R0
k ¼ Ck:

Rxþ1
k Ck þ

X

ti2Gk

Rx
k þ dðk;iÞ
Ti

� �
� Ci; (4)

where

dðk;iÞ ¼
0; if Gi � Gk;
Ri � Ci; otherwise.

�
(5)

Note that Rk is calculated from the highest-priority task to
the lowest-priority one.

Proof. By Lemma 4, the maximum blocking time of tk by

tasks in G0k , fti 2 GkjGi � Gkg in an interval of length

Rx
k is upper-bounded by

P
ti2G0

k
dR

x
k
Ti
e � Ci. By Lemma 5,

the maximum blocking time of tk by a task ti 2 Gk in an

interval of length Rx
k is upper-bounded by dR

x
k
þRi�Ci
Ti

e � Ci.
Therefore, the maximum blocking time of tk by tasks in

Gk is upper-bounded by
P

ti2Gk
dR

x
k
þdðk;iÞ
Ti
e � Ci. This means,

if the RHS of Eq. (4) is equal to Rx
k , tk finishes its execu-

tion within Rx
k in any case. Therefore, Rk resulting from

this theorem is an upper-bound of the response time of
tk’s jobs.

We show in the supplementary file, available online, how
Theorem 1 operates in Example 4.

5 SYSTEM DESIGN WITH THE LOWEST CHIP-LEVEL

PEAK POWER CONSUMPTION

We would now like to minimize the chip-level peak power
consumption using FPQ and its schedulability analysis
developed in Section 4. For this, we first derive some prop-
erties of the schedulability analysis of FPQ. Then, we
develop a method to find Q that minimizes the chip-level
peak power consumption at design time, and prove its cor-
rectness and optimality.

Lemma 6. FPQ in Algorithm 1 and its schedulability analysis in
Theorem 1 are generalizations of the traditional partitioned FP
scheduling algorithm (i.e., the uniprocessor FP scheduling
algorithm [10] for each core) and its exact schedulability analy-
sis (i.e., the exact schedulability analysis of uniprocessor FP
scheduling algorithm [11] for each core), respectively.

Proof. We show that FPQ and its schedulability analysis are
equivalent to their counterparts when Q ¼ ;.
If Q ¼ ;, then the FPQ scheduling algorithm is trivially

equivalent to the traditional partitioned FP scheduling algo-
rithm. Any task ti 2 Gk thus satisfies Gi � Gk by Lemma 3,
implying that dðk;iÞ in Theorem 1 is always 0 regardless of k
and i. Therefore, Theorem 1 is equivalent to the exact sched-
ulability test of the uniprocessor FP scheduling algorithm
[11] for each core.

Also, the schedulability analysis of FPQ in Theorem 1 is
sustainable with respect to Q, as stated in the following
lemma.

Lemma 7. Suppose Q0 � Q00. If the schedulability test in Theorem
1 sees a task set unschedulable by FPQ with Q ¼ Q0, then the
test also sees the task set unschedulable by FPQ with Q ¼ Q00.
If the test sees a task set schedulable by FPQ with Q ¼ Q00,
then the test also sees the task set schedulable by FPQ with
Q ¼ Q0.

Proof. Suppose Q0 � Q00. Then, it is trivial that for any task
ti, Gi when Q ¼ Q0 is a subset of Gi when Q ¼ Q00. There-
fore, for any task ti; Ri when Q ¼ Q0 is always smaller
than or equal to Ri when Q ¼ Q00.

Using the properties in Lemmas 6 and 7, we can effi-
ciently find Q which minimizes the design parameter B
such that (i) the chip-level peak power consumption does
not exceed B and (ii) no job will miss its deadline. The basic
idea is to find such Q using a binary search. That is, if FPQ

Fig. 3. An execution pattern of jobs of ti that maximizes the amount of
execution of jobs of ti in an interval starting at t.

LEE ET AL.: REDUCING PEAK POWER CONSUMPTION IN MULTI-CORE SYSTEMS WITHOUT VIOLATING REAL-TIME CONSTRAINTS 1029

with Q ¼ ½Q�ð1Þ; . . . ;Q�ðyÞ� for given y ¼ x is deemed
schedulable (unschedulable) by Theorem 1, we need not
test Q ¼ ½Q�ð1Þ; . . . ;Q�ðyÞ� for given y ¼ x0 if x0 < x (x0 > x)
thanks to Lemma 7. Algorithm 2 describes how to find such
Q, and requires only O

�
logðjQ�jÞ

�
iterations in Steps 7–10

since we use a binary search.

Example 5 in the supplementary file, available online,
shows how Algorithm 2 works.

We now prove the correctness of Algorithm 2 and state
its optimality in the following two lemmas.

Lemma 8 (Correctness of Algorithm 2). If a task set is schedu-
lable by the traditional partitioned FP scheduling algorithm, the
task set is also schedulable by FPQ with Q from Algorithm 2.

Proof. In Step 3(a), we check if the task set is schedulable by
the traditional partitioned FP scheduling algorithm (i.e.,
FPQ with Q ¼ ;). If schedulable, Algorithm 2 finally
returns FEASIBLE in either Step 3(b) or 11(b). Then, FPQ

with Q from Algorithm 2 is schedulable by Theorem 1,
which is tested in Step 3(b) or 8.

Lemma 9 (Optimality of Algorithm 2). Q produced by Algo-
rithm 2 minimizes B (the design-time chip-level peak power
consumption) with respect to the FPQ schedulability analysis
in Theorem 1.

Proof. Let Q0 and Q00 denote Q produced by Algorithm 2
and any arbitrary Q, respectively. Let B0 and B00 denote B
corresponding to Q0 and Q00, respectively. We prove
B0 � B00 by contradiction.

Suppose B0 > B00. We consider two cases: (a) B00 ¼ Bmax

and (b) B00 > Bmax. In Case (a), it holds Q00 	 Q�; otherwise,
B00 > Bmax. Then, by Lemma 7, Theorem 1 deems the task
set schedulable by FPQ with Q ¼ Q�. Therefore, Step 3(b) of
Algorithm 2 returns FEASIBLE with Q ¼ Q� in which
B0 ¼ Bmax holds. This is a contradiction of B0 > B00.

In Case (b), let Q�ðyÞ denote a pair of tasks whose sum of
the peak power consumption (i.e., sum of Bi) is equal to B00.
Then, Q�ðxÞ 2 Q00; 8x ¼ 1; . . . ; y� 1. Similar to Case (a), by
Lemma 7, Theorem 1 deems the task set schedulable by FPQ

with Q ¼ ½Q�ð1Þ; . . . ;Q�ðy� 1Þ�, meaning that Step 8 of
Algorithm 2 sets succ y� 1. Therefore, in Step 11,
succ
 y� 1, meaning that B0 is at most the sum of the peak
power consumption of tasks in Q�ðyÞ (i.e., equal to B00) by
Step 11. This contradicts the condition B0 > B00.

6 EVALUATION

In this section, we evaluate the effectiveness of the proposed
design via simulation with a set of synthetic tasks running
on a target multi-core chip. We first describe how the task
sets are generated with realistic peak power parameters,
and then demonstrate quantitative improvements by the
proposed method.

6.1 Task Set Generation

We generated task sets using the technique in [17], which
has been widely used in the real-time systems community
(see the supplementary file, available online, for details).

Since we logically divide the cores in the chip by
groups of two cores and apply our method to each
group independently, the total improvement for a multi-
core chip is just the sum of that when the proposed
method is applied to each group. Therefore, we only
show the result of a two-core chip model (i.e., m ¼ 2);
we generate 20,000 two-core chip task sets (i.e., F), by
arbitrarily choosing two per-core task sets among the
generated 20,000 ones without redundancy.

Then, for each per-chip task set, we determine the global
priority of each task (Pi) according to the RM (Rate Mono-
tonic) and DM (Deadline Monotonic) policies for implicit
and constrained deadline task sets, respectively, i.e., the
smaller period (Ti) or relative deadline (Di), the higher the
priority. Note that RM and DM are known as the optimal
static priority assignment, respectively, for implicit and con-
strained deadline task sets in uniprocessor platforms.

To determine the peak power of each task (Bi), we
first modeled each core as a core in Intel Xeon Processor,
65nm CMOS technology, operating at 3:4 GHz [18]. To
obtain the realistic power dissipation on the target core
model, we ran several embedded benchmark programs
with their various inputs in MiBench benchmark suites
[15] on the Wattch power simulator [16], and obtained
the sampled dynamic power dissipation during the exe-
cution of each application as shown in Fig. 1a. For each
task, 10 inputs were randomly selected as task inputs to
obtain the sampled power traces on different execution
paths. Because the Wattch simulator does not support
the selected target microprocessor and technology and
the leakage power model, we used the McPAT power
simulator [19] to model the leakage power and the peak
power consumption on the selected target core. Then,
the linear scaling methods in [20] were applied to the
power traces obtained from the Wattch simulator,
assuming that the power variation over time on the
Wattch simulator is the same as the power variation on
the target core.

1030 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 4, APRIL 2014

So, based on the measurement shown in Table 4, we set
the peak power consumption of each task between the mini-
mum and maximum values of the 12 tasks in Table 4, i.e., Bi

was uniformly distributed in ½20:74; 33:09Þ. Note that while
we use Intel Xeon processor, such a peak power difference
between different applications is a general phenomenon
and hence applicable to other processors. For example, dif-
ferent applications with a 2:0 GHz Power PC 970 processor
have different peak power (roughly ranging from 28 to
50 W), as shown in [21, Fig. 10]; likewise, Intel Sandy Bridge
and PXA255 processors have different peak power depend-
ing on different underlying applications [22], [23]. Since the
variation of Bi depends on processors and applications and
schedulability varies greatly with the variation of Bi, rather
than the number of different tasks, we fixed the 12 tasks
and then explored two more settings for the distribution of
Bi for each task set: half variation (Bi 2 ½20:74; 26:92Þ) and
double variation (Bi 2 ½20:74; 45:55Þ).

6.2 Reduction of Chip-Level Peak Power
Consumption

In this section, we compare the design-time chip-level
peak power consumption of the proposed method
(denoted by “Ours”) with that without controlling con-
current task execution (denoted by “Base”), which is the
sum of the largest task-level peak power consumption
on each core (i.e., maxti2F1

Bi þmaxti2F2
Bi). In other

words, Base is the design-time chip-level peak power
consumption by any traditional partitioned scheduling
algorithm, because without controlling concurrent task
execution, two tasks that yield the largest peak power in
each core eventually execute at the same time. We also
include Bmax as a reference (denoted by Bmax); since
Bmax means the maximum of the task-level peak power
consumption on the core (i.e., Bmax , max2

j¼1maxti2Fj
Bi),

no method can make the design-time chip-level peak
power consumption lower than Bmax even if the timing
requirements are not guaranteed (assuming every task
will eventually be executed).

Figs. 4a, 4b and 4c show the ratios of Ours to Base, and of
Bmax to Base for implicit deadline task sets in which Bi is
uniformly distributed within intervals with small, medium
and large variations, respectively. In these figures, each plot
shows an average ratio for task sets with utilization
(Usys ,

P
ti2F Ci=Ti) in ½Usys; Usys þ 0:1Þ. For example, it is

shown in Fig. 4c that the average ratio of Ours to Base is
0:871 when 1:0 � Usys < 1:1. This means that the proposed
method reduces the design-time chip-level peak power con-
sumption by 12:9 percent on average, compared to the base
approach which does not control concurrent execution.
Therefore, a smaller ratio implies a larger reduction of the
peak power by the proposed method. We did not include
results for constrained deadline task sets since their behav-
ior is similar to that of implicit deadline task sets.

First, if we focus on Usys > 1:0, Ours=Base grows as Usys
increases. This is consistent with an intuition: it is more dif-
ficult to add constraints of concurrent task execution as the
system gets overloaded. While our method can reduce
the design-time chip-level peak power consumption up to
12:9 percent compared to Base, the amount of reduction
varies with the variation of Bi; a larger variation results in
a larger reduction. For example, when 1:0 � Usys < 1:1,
Ours=Base ¼ 0:950, 0:916 and 0:871, respectively, in
Figs. 4a, 4b and 4c (i.e., 5:0 percent, 8:4 percent and 12:9 per-
cent reduction, respectively). We expect a more variation of
Bi to yield a more reduction.

The second observation is that Ours=Base is the same as
Bmax=Base when Usys � 0:69. Since limn!1n � ð2

1
n � 1Þ �

0:69 is the sufficient utilization bound of RM on a single-
core chip [10], a certain optimal method can schedule all
task sets with Usys � 0:69 on a two-core chip without con-
current execution of tasks on different cores. The proposed
method achieves the same optimality, so Ours is equal
to Bmax.

One may wonder why the behavior of Ours=Base is so
different when Usys � 0:69 and Usys > 1:0. This is because
(i) it is inevitable for some pair of tasks on different cores to
execute at the same time when Usys > 1:0, while (ii) it is pos-
sible to avoid all concurrent task executions on different
cores when Usys � 0:69. For example, consider a task set in
Fig. 4a with maxti2F1

Bi ¼ 26, maxti2F2
Bi ¼ 25, minti2F1

Bi ¼
22, and minti2F2

Bi ¼ 21. Then, Base ¼ 26þ 25 ¼ 51 and
Bmax ¼ 26 hold. If some pair of tasks on different cores
should be executed concurrently (in case of Usys > 1:0),
Ours is at least 22þ 21 ¼ 43. Thus, there is inherently a
large gap between the lower bound of Ours=Base for

TABLE 4
The Measured Task-Level Peak Power Consumption

of Mibench Testbench Applications (W)

Fig. 4. Ratio of the chip-level peak power consumption of no control of concurrent task execution to that of our method.

LEE ET AL.: REDUCING PEAK POWER CONSUMPTION IN MULTI-CORE SYSTEMS WITHOUT VIOLATING REAL-TIME CONSTRAINTS 1031

Usys � 0:69 and Usys > 1:0 (i.e.,26=51 ¼ 0:51 versus 43=51 ¼
0:84). For this reason, when 0:69 < Usys � 1:0 in which task
sets satisfying (i) and those satisfying (ii) are mixed, we
observe a sharp increase of Ours=Base.

7 RELATED WORK

A large body of research has been done on power/
energy management. For embedded real-time systems,
most prior research has mainly focused on energy/tem-
perature management for uniprocessor or multi-core
platforms without considering instantaneous peak power
consumption. Fisher et al. [3] analyzed the global ther-
mal-aware scheduling of sporadic tasks on a multi-core
chip to minimize the peak temperature. Based on
dynamic voltage and frequency scaling and the heat
transfer model of the chip, the optimal speed of cores is
derived to meet both the thermal and the timing con-
straints. Likewise, Wang et al. [4] proposed a scheduling
analysis for minimization of the energy consumption on
a multi-core chip under the thermal constraint without
violating the tasks’ timing constraints. However, because
the scheduling decisions in these algorithms were
intended to reduce the energy or temperature by control-
ling the average power consumption, it is not easy to
modify/adapt them to real-time systems in which both
the timing constraints and the chip-level peak power
constraints should be guaranteed at design time.

For general-purpose computing systems, how to guaran-
tee the chip-level power constraints has been studied in
recent years, but most of them have not dealt with the tim-
ing constraints. Isci and Martonosi [6] proposed the global
power-management schemes using DVFS which minimize
the peak power consumption at runtime subject to some
performance loss constraints. Meng et al. [8] also explored
power management by reconfiguring the processor speed
or the size of cache adaptively at runtime to guarantee the
peak power constraints. However, these global runtime
schemes treated the peak power requirement as a soft con-
straint, whereas we treat it as a hard constraint since our
goal is to reduce the peak power consumption design time.
Similarly, Kontorinis et al. [7] proposed a reconfigurable
micro-architecture to meet the peak power constraints. By
adaptively changing the size of micro-blocks of the proces-
sor at runtime, the peak power constraint violation was
avoided at the expense of considerable reconfiguration
overhead. However, this adaptive microprocessor cannot
be used for real-time systems either, due to unpredictable
task execution times during a processor reconfiguration. In
contrast with these peak power control techniques for gen-
eral-purpose systems, our approach relies only on a soft-
ware-layer scheduling algorithm without any hardware
support to reduce the chip-level peak power consumption
at design time while guaranteeing the timing requirements.

8 CONCLUSION

In this paper, we have addressed the problem of controlling
chip-level peak power consumption on a multi-core chip in
embedded real-time systems. We have developed a new
scheduling algorithm FPQ and its schedulability analysis,

and demonstrated its ability to effectively reduce the chip-
level peak power consumption at design time without any
hardware support.

While this is the first peak power-aware scheduling that
addresses the design problem of controlling peak power
consumption on a multi-core chip in embedded real-time
systems, several directions we can take to improve its effec-
tiveness. First, we may relax some of the assumptions used.
For example, instead of assuming global task priority is
given, we may develop and incorporate optimal priority
assignment (OPA). The traditional approach of efficient
OPA [24] cannot be applied to our current method, thus
needing an efficient way of OPA. More broadly, we may
also consider relaxation of the assumption of a partitioned,
fixed-priority approach. It would then be interesting to
develop a new global scheduling algorithm that can further
reduce the peak power consumption beyond FPQ. Second,
we may consider a multi-core chip in which hardware
implementation for power management such as DVFS is
supported. We may then compare the performance of a
hardware control method (e.g., DVFS) with that of a soft-
ware control (i.e., scheduling) method such as our present
work, and develop a method that exploits both hardware
and software controls.

ACKNOWLEDGMENTS

The work reported in this paper was supported in part by
the NSF under grants CNS-0930813 and CNS-1138200. The
work reported in this paper was also supported in part by
National Research Foundation of Korea Grant funded by
the Korean Government (Ministry of Education, Science
and Technology) [NRF-2011-357-D00186].

REFERENCES

[1] P. Pillai and K.G. Shin, “Real-Time Dynamic Voltage Scaling for
Low-Power Embedded Operating Systems,” Proc. 18th ACM
Symp. Operating Systems Principles (SOSP), pp. 89-102, 2001.

[2] J.-J. Chen, S. Wang, and L. Thiele, “Proactive Speed Scheduling for
Real-Time Tasks under Thermal Constraints,” Proc. 15th IEEE
Real-Time Technology and Applications Symp. (RTAS), pp. 141-150,
2009.

[3] N. Fisher, J.-J. Chen, S. Wang, and L. Thiele, “Thermal-Aware
Global Real-Time Scheduling on Multicore Systems,” Proc. 15th
IEEE Real-Time Technology and Applications Symp. (RTAS), pp. 131-
140, 2009.

[4] S. Wang, J.-J. Chen, Z. Shi, and L. Thiele, “Energy-Efficient Speed
Scheduling for Real-Time Tasks under Thermal Constraints,”
Proc. 15th IEEE Int’l Conf. Embedded and Real-Time Computing Sys-
tems and Applications (RTCSA), pp. 201-209, 2009.

[5] M.D. Pant, P. Pant, and D.S. Wills, “On-Chip Decoupling Capaci-
tor Optimization Using Architectural Level Prediction,” IEEE
Trans. Very Large Scale Integration Systems, vol. 10, no. 3, pp. 319-
326, June 2002.

[6] C. Isci and M. Martonosi, “Runtime Power Monitoring in High-
End Processors: Methodology and Empirical Data,” Proc. 36th
IEEE/ACM Int’l Symp. Microarchitecture (MICRO), pp. 93-104, 2003.

[7] V. Kontorinis, A. Shayan, R. Kumar, and D. Tullsen, “Reducing
Peak Power with a Table-Driven Adaptive Processor Core,” Proc.
42nd Ann. IEEE/ACM Int’l Symp. Microarchitecture (MICRO),
pp. 189-200, 2009.

[8] K. Meng, R. Joseph, R.P. Dick, and L. Shang, “Multi-Optimization
Power Management for Chip Multiprocessors,” Proc. 17th Int’l
Conf. Parallel Architectures and Compilation Techniques (PACT),
pp. 177-186, 2008.

[9] B. Calhoun, F. Honore, and A. Chandrakasan, “A Leakage Reduc-
tion Methodology for Distributed MTCMOS,” IEEE J. Solid-State
Circuits, vol. 39, no. 5, pp. 818-826, May 2004.

1032 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 25, NO. 4, APRIL 2014

[10] C. Liu and J. Layland, “Scheduling Algorithms for Multi-Pro-
gramming in a Hard-Real-Time Environment,” J. ACM, vol. 20,
no. 1, pp. 46-61, 1973.

[11] N. Audsley, A. Burns, M. Richardson, and A. Wellings, “Hard
Real-Time Scheduling: The Deadline-Monotonic Approach,” Proc.
IEEE Workshop on Real-Time Operating Systems and Software,
pp. 133-137, May. 1991.

[12] A. Mok, “Fundamental Design Problems of Distributed Systems
for the Hard-Real-Time Environment,” PhD dissertation, Massa-
chusetts Inst. of Technology, 1983.

[13] S. Kodase, S. Wang, Z. Gu, and K.G. Shin, “Improving Scalability
of Task Allocation and Scheduling in Large Distributed Real-Time
Systems Using Shared Buffers,” Proc. Ninth IEEE Real-Time Tech-
nology and Applications Symp. (RTAS), pp. 181-188, 2003.

[14] R. McGowen, C. Poirier, C. Bostak, J. Ignowski, M. Millican, W.
Parks, and S. Naffziger, “Power and Temperature Control on a
90-nm Itanium Family Processor,” IEEE J. Solid-State Circuits,
vol. 41, no. 1, pp. 229-237, Jan. 2006.

[15] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge,
and R.B. Brown, “MiBench: A Free, Commercially Representative
Embedded Benchmark Suite,” Proc. Fourth IEEE Ann. Workshop on
Workload Characterization, pp. 3-14, 2001.

[16] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework
for Architectural-Level Power Analysis and Optimizations,” Proc.
27th Ann. Int’l Symp. Computer Architecture (ISCA), pp. 83-94, 2000.

[17] T.P. Baker, “Comparison of Empirical Success Rates of Global vs.
Partitioned Fixed-Priority and EDF Scheduling for Hand Real
Time,” Technical Report TR-050601, Dept. of CS, Florida State
Univ., 2005.

[18] S. Rusu, S. Tam, H. Muljono, D. Ayers, and J. Chang, “A Dual-
Core Multi-Threaded Xeon Processor with 16MB L3 Cache,” Proc.
IEEE Int’l Solid State Circuits Conf. (ISSCC), pp. 315-324, 2006.

[19] S. Li, J.H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi,
“McPAT: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures,” Proc.
42nd Ann. IEEE/ACM Int’l Symp. Microarchitecture (MICRO),
pp. 469-480, 2009.

[20] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan, and D. Tullsen,
“Single-ISA Heterogeneous Multi-Core Architectures: the Poten-
tial for Processor Power Reduction,” Proc. 36th Ann. IEEE/ACM
Int’l Symp. Microarchitecture (MICRO), pp. 81-92, 2003.

[21] W. Felter, K. Rajamani, T. Keller, and C. Rusu, “Performance-Con-
serving Approach for Reducing Peak Power Consumption in
Server Systems,” Proc. 19th Ann. Int’l Conf. Supercomputing,
pp. 293-302, 2005.

[22] J. Dongarra, H. Ltaief, P. Luszczek, and V.M. Weaver, “Energy
Footprint of Advanced Dense Numerical Linear Algebra Using
Tile Algorithms on Multicore Architectures,” Proc. Second Int’l
Conf. Cloud and Green Computing, pp. 274-281, 2012.

[23] G. Contreras, M. Martonosi, J. Peng, G.-Y. Lueh, and R. Ju, “The
XTREM Power and Performance Simulator for the Intel Xscale
Core: Design and Experiences,” ACM Trans. Embedded Computing
Systems, vol. 6, no. 1, pp. 1-25, 2007.

[24] N. Audsley, “Optimal Priority Assignment and Feasibility of
Static Priority Tasks with Arbitrary Start Times,” Technical Report
YCS164, Dept. of CS, Univ. of York, 1991.

Jinkyu Lee is an assistant professor in Depart-
ment of Computer Science and Engineering,
Sungkyunkwan University, South Korea, where
he joined in 2014. He received the BS, MS, and
PhD degrees in computer science from the Korea
Advanced Institute of Science and Technology
(KAIST), South Korea, in 2004, 2006, and 2011,
respectively. He has been a research fellow/visit-
ing scholar in the Department of Electrical Engi-
neering and Computer Science, University of
Michigan until 2014. His research interests

include system design and analysis with timing guarantees, QoS sup-
port, and resource management in real-time embedded systems and
cyber-physical systems. He won the best student paper award from the
17th IEEE Real-Time and Embedded Technology and Applications Sym-
posium (RTAS) in 2011, and the Best Paper Award from the 33rd IEEE
Real-Time Systems Symposium (RTSS) in 2012.

Buyoung Yun received the BS degree in electri-
cal engineering from POSTECH, Korea, in 2005,
and the MS degree from the University of Michi-
gan in 2008. He is currently working toward the
PhD degree at the Department of Electrical Engi-
neering and Computer Science, University of
Michigan, Ann Arbor. Since 2008, he has been a
research assistant at the Real-Time Computing
Laboratory in the EECS Department, University
of Michigan. His research interests include fault-
tolerant real-time systems, power and tempera-

ture management in real-time and embedded systems. He has been
awarded the Korea Institute of Energy Technology Scholarship in 2006-
2008 for outstanding graduate students studying abroad. He is a student
member of the IEEE.

Kang G. Shin is the Kevin & Nancy O’Connor
Professor of Computer Science in the Depart-
ment of Electrical Engineering and Computer Sci-
ence, University of Michigan, Ann Arbor. His
current research focuses on QoS-sensitive com-
puting and networking as well as on embedded
real-time and cyber-physical systems. He has
supervised the completion of 74 PhDs, and auth-
ored/coauthored more than 800 technical articles
(more than 300 of these are in archival journals),
a textbook and more than 20 patents or invention

disclosures, and received numerous best paper awards, including the
Best Paper Awards from the 2011 ACM International Conference on
Mobile Computing and Networking (MobiCom ’11), the 2011 IEEE Inter-
national Conference on Autonomic Computing, the 2010 and 2000 USE-
NIX Annual Technical Conferences, as well as the 2003 IEEE
Communications Society William R. Bennett Prize Paper Award and the
1987 Outstanding IEEE Transactions of Automatic Control Paper
Award. He has also received several institutional awards, including the
Research Excellence Award in 1989, Outstanding Achievement Award
in 1999, Distinguished Faculty Achievement Award in 2001, and Ste-
phen Attwood Award in 2004 from University of Michigan (the highest
honor bestowed to Michigan Engineering faculty); a Distinguished
Alumni Award of the College of Engineering, Seoul National University
in 2002; 2003 IEEE RTC Technical Achievement Award; and 2006 Ho-
Am Prize in Engineering (the highest honor bestowed to Korean-origin
engineers). He is a life fellow of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LEE ET AL.: REDUCING PEAK POWER CONSUMPTION IN MULTI-CORE SYSTEMS WITHOUT VIOLATING REAL-TIME CONSTRAINTS 1033

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

