
Copyright 2014. The Korean Institute of Information Scientists and Engineers pISSN: 1976-4677 eISSN: 2093-8020

Regular Paper
Journal of Computing Science and Engineering,

Vol. 8, No. 3, September 2014, pp. 157-172

Page Replacement for Write References in NAND Flash Based
Virtual Memory Systems

Hyejeong Lee and Hyokyung Bahn*

Department of Computer Engineering, Ewha Womans University, Seoul, Korea

huizh@ewhain.net, bahn@ewha.ac.kr

Kang G. Shin

Department of Electrical Engineering and Computer Science, The University of Michigan, MI, USA

kgshin@umich.edu

Abstract
Contemporary embedded systems often use NAND flash memory instead of hard disks as their swap space of virtual

memory. Since the read/write characteristics of NAND flash memory are very different from those of hard disks, an effi-

cient page replacement algorithm is needed for this environment. Our analysis shows that temporal locality is dominant

in virtual memory references but that is not the case for write references, when the read and write references are moni-

tored separately. Based on this observation, we present a new page replacement algorithm that uses different strategies

for read and write operations in predicting the re-reference likelihood of pages. For read operations, only temporal local-

ity is used; but for write operations, both write frequency and temporal locality are used. The algorithm logically parti-

tions the memory space into read and write areas to keep track of their reference patterns precisely, and then dynamically

adjusts their size based on their reference patterns and I/O costs. Without requiring any external parameter to tune, the

proposed algorithm outperforms CLOCK, CAR, and CFLRU by 20%–66%. It also supports optimized implementations

for virtual memory systems.

Category: Embedded computing

Keywords: Memory; Secondary storage; Storage hierarchies; Swapping; Virtual memory; Flash memory

I. INTRODUCTION

NAND flash memory has become the most popular

secondary storage media in modern embedded systems,

such as smartphones, tablets, and portable media players

(PMPs). As these embedded systems provide an increas-

ing variety of functions, virtual memory support with

swap space is becoming an important issue. Since the tra-

ditional swap space (i.e., the hard disk) of virtual memory

system is now being replaced by NAND flash memory,

an efficient virtual memory management technique is

necessary for this emerging environment.

However, NAND flash memory is known to possess

significantly different physical characteristics from hard

disks. As a result, flash translation layers (FTLs) and

flash-specific file systems have been extensively studied

[1-8]. Unlike these studies, research on virtual memory

systems for NAND flash memory is in its infancy [9-11].

Received 19 June 2014; Revised 23 July 2014; Accepted 8 August 2014

*Corresponding Author

★ A subset of this paper was presented at the 17th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecom-
munication Systems (MASCOTS 2009).

Open Access http://dx.doi.org/10.5626/JCSE.2014.8.3.157 http://jcse.kiise.org
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of Computing Science and Engineering, Vol. 8, No. 3, September 2014, pp. 157-172

http://dx.doi.org/10.5626/JCSE.2014.8.3.157 158 Hyejeong Lee et al.

In this paper, we analyze the page reference characteris-

tics of a virtual memory system that uses NAND flash

memory as its swap space, and present a new page

replacement algorithm for this environment.

Page references in a virtual memory environment have

a temporal locality property, and thus, the least recently

used (LRU) and its approximated CLOCK algorithms

have been widely used. However they do not consider the

different I/O costs of read and write operations in NAND

flash memory when replacing clean and dirty pages.

Dirty pages need to be swapped out or flushed to NAND

flash memory before their eviction, and this incurs a

write I/O that is about 3–10 times slower than a read I/O

[10, 12, 13]. Note that a dirty page is one that has been

modified during its residence in the memory, while a

clean page is one that has not been changed. Thus, an

efficient replacement algorithm needs to take account of

these asymmetric operation costs. Furthermore, the tem-

poral locality of virtual memory references should be

revisited when read and write references are indepen-

dently observed.

In this paper, we analyze the characteristics of virtual

memory read and write references separately in terms of

their temporal locality. We have discovered an important

phenomenon from this analysis; unlike read references

that exhibit strong temporal locality, the temporal locality

of write references is weak and irregular. Specifically,

more recently written pages do not incur more writes in

future for a certain range of page rankings. We call this

phenomenon the ranking inversion of write temporal

locality. Accordingly, temporal locality has limitations in

predicting future references for write operations.

Based on this observation, we propose a new page

replacement algorithm that uses different strategies for

read and write operations in predicting the re-reference

likelihood of pages. For read operations, temporal local-

ity alone is considered; but for write operations, write fre-

quency is used as well as temporal locality. With this

idea, the new algorithm individually keeps track of the

reference patterns of read and write operations, and accu-

rately predicts the likelihood of re-referencing pages. It

logically partitions the memory space into read and write

areas based on the different I/O costs of operations. Then,

it dynamically adjusts the size of each area according to

the change of access patterns. In each area, the recency of

page references is separately captured using a CLOCK

list. Our experimental results with various virtual memory

access traces show that the proposed algorithm, called

CLOCK for read and write (CRAW), significantly improves

the I/O performance of a virtual memory system. Specifi-

cally, it reduces I/O time by 20%–66%, compared to widely

known algorithms, such as CLOCK, CAR, and CFLRU.

Moreover, in contrast to LRU, which needs to perform

list manipulations or time-stamping on every memory

reference, CRAW does not require either time-stamping

or list manipulations unless page faults occur. This makes

CRAW suitable for virtual memory environments that

allow OS controls only upon page fault. Moreover, the

parameters of CRAW are automatically tuned differenti-

ating itself from the other approaches that require manual

parameter tuning to deal with workload changes. The

main contributions of this paper can be summarized as

follows:

1) To capture the characteristics of write operations

that are responsible for a large portion of I/O cost in

flash memory, we separately analyze the temporal

locality of memory accesses for read and write ref-

erences.

2) In the case of read references, we have discovered

that temporal locality is strong, and thus recency-

based algorithms, such as CLOCK, are suitable for

estimating the re-reference likelihood of read refer-

ences.

3) In the case of write references, we have uncovered a

prominent phenomenon that temporal locality is weak

and irregular. Hence, estimating the re-reference

likelihood of write references with temporal locality

only is limited. We propose a new way to estimate

future references by considering write frequency as

well.

4) Considering the different I/O costs and reference

characteristics of read and write operations, we sep-

arately allocate memory space for reads and writes,

and dynamically change the allocated space accord-

ing to the evolution of workloads.

5) We also show how the proposed algorithm can be

easily deployed in various system environments with-

out any modification of existing hardware architec-

tures.

The rest of the paper is organized as follows. Section II

discusses some related work on page references in virtual

memory and reviews replacement algorithms for flash

memory. In Section III, we capture page reference char-

acteristics in virtual memory in terms of read and write

references, and analyze the observation results. Section

IV presents a new page replacement algorithm for virtual

memory systems built on NAND flash memory. Then,

Section V presents our experimental results obtained

through trace-driven simulations to assess the effectiveness

of the proposed algorithm, CRAW. Section VI describes

some practical issues related to the deployment of CRAW

in real system architectures. Finally, we conclude this

paper in Section VII.

II. RELATED WORK

In this section, we briefly describe the characteristics

of page references in virtual memory environments, and

review existing page replacement algorithms for NAND

flash memory.

Page Replacement for Write References in NAND Flash Based Virtual Memory Systems

Hyejeong Lee et al. 159 http://jcse.kiise.org

A. Page References in Virtual Memory

Page references in a virtual memory environment have

temporal locality in that a more recently referenced page

is more likely to be referenced again soon. In terms of the

hit ratio, the LRU replacement algorithm is known to be

optimal for references that exhibit this property [14].

LRU aligns all the pages in the memory in the order of

their most recent reference time, and replaces the LRU

page whenever free page frames are needed. It is the most

popular replacement algorithm in various caching environ-

ments including file system buffer cache, since it performs

well, but has only a constant time and space overhead.

Nevertheless, LRU has a critical weakness in virtual

memory environments. On every memory reference, LRU

needs to move a page to the most recently used (MRU)

position in the list. This involves some list manipulations,

which cannot be handled by the paging unit hardware.

Though LRU can also be implemented by hardware, this

is not feasible in virtual memory systems as it should

maintain the time-stamp of each page and update it upon

every memory reference.

CLOCK was introduced as a one-bit approximation to

LRU [15]. Instead of keeping pages in the order of refer-

ence time, CLOCK only monitors whether a page has

recently been referenced or not. On each hit to a page, the

paging unit hardware sets the reference bit of the page in

the page table entry to 1. Then, pages are maintained in a

circular list. Whenever free page frames are needed,

CLOCK sequentially scans through the pages in the cir-

cular list starting from the current position, that is, next to

the position of the last evicted page. This scan continues

until a page with a reference bit of 0 is found, and that

page is then replaced. For every page with reference bit

of 1 in the course of the scan, CLOCK clears the refer-

ence bit to 0 without removing the page from the list.

The reference bit of each page indicates whether that

page has recently been accessed or not; and a page that is

not referenced until the clock-hand comes round to that

page again is certain to be replaced. Even though CLOCK

does not replace the LRU page, it replaces a page that has

not been recently referenced so that temporal locality is

exploited to some extent. In addition to this, since it does

not require any list manipulation on memory hit, CLOCK

is suitable for virtual memory environments.

Not recently used (NRU) is another version of page

replacement algorithm that exploits the temporal locality

of virtual memory environments. NRU works similarly to

CLOCK using reference bits but it also uses modified bits

to distinguish clean and dirty pages [16]. While reference

bits are periodically cleared by the clock-hand to monitor

the recency of page references, the modified bit of a page

is set when the page becomes dirty, and is not cleared

until it is evicted from memory. The modified bit indi-

cates that the corresponding page should be written back

to secondary storage before eviction. There are four dif-

ferent cases according to the state of the reference and

modified bits.

NRU preferentially replaces pages whose reference bit

is 0 to consider temporal locality. Of them, NRU evicts

the pages with zero modified bit first because they are

clean pages and can thus be evicted without incurring

additional write I/O operations. Similarly, among pages

with reference bit set to 1, NRU gives higher priorities to

pages with a modified bit of 1. In summary, the page

replacement order of NRU according to the state of (ref-

erence bit, modified bit) is (0, 0), (0, 1), (1, 0), and (1, 1).

B. Page Replacement for Flash Memory

Most operating systems, including Linux, are optimized

under the assumption that secondary storage devices will

be hard disk drives, which have almost identical costs for

read and write operations. Page replacement algorithms

therefore focus on maximizing the hit ratio by replacing

the page least likely to be referenced again. In this pro-

cess, the type of operation (read or write) that would be

involved in that reference is not considered. Unlike hard

disks, however, NAND flash memory has asymmetrical

read and write costs. In NAND flash memory, servicing a

write I/O request takes 3–10 times longer than servicing a

read I/O request for the same I/O size as shown in Table 1

[12, 13].

In addition, NAND flash memory requires an erase

operation before writing data on the same place again.

Most systems, therefore, have an FTL, which hides the cost

of erase operations by performing out-of-place-updates.

As a result, traditional page replacement algorithms that

aim to maximize the hit ratio do not perform well in the

systems based on NAND flash memory because their

performance metric is the hit ratio, although it should be

the I/O time.

Clean-first LRU (CFLRU) [10] is a new page replace-

ment algorithm that considers the hit ratio as well as the

physical characteristics of NAND flash memory in which

reading and writing have different I/O costs. CFLRU can

accommodate the different eviction costs of a clean page,

which can simply be discarded, and a dirty page, which

should be written back to flash memory. CFLRU delays

the eviction of dirty pages to reduce the number of writes

Table 1. Read and write performance of NAND flash memory

NAND flash memory NAND-based SSD

SLC

(2 kB page)

MLC

(4 kB page)

Random

(4 kB IOPS)

Sequential

(bandwidth)

Read 25 µs 60 µs 35,000 IOPS 250 MB/s

Write 200 µs 800 µs 3,300 IOPS 70 MB/s

Read : Write 1 : 8 1 : 13.3 1 : 10.6 1 : 3.6

SSD: solid state disk, SLC: single-level cell, MLC: multi-level cell.

Journal of Computing Science and Engineering, Vol. 8, No. 3, September 2014, pp. 157-172

http://dx.doi.org/10.5626/JCSE.2014.8.3.157 160 Hyejeong Lee et al.

to NAND flash memory, unless this will do too much

harm to the hit ratio. Though NRU also delays the

replacement of dirty pages, it uses the modified bit only

as a tiebreaker among pages with the reference bit offset

to 0.

CFLRU manages pages using the LRU list. CFLRU

divides this list into a working region and a clean-first

region as shown in Fig. 1. The working region contains

recently referenced pages that are replaced according to

the LRU policy. The evicted page from the working

region is inserted into the clean-first region, which con-

tains older pages whose last reference was made a rela-

tively long time ago. Dirty pages in the clean-first region

are preserved in the memory as long as a clean page is

available for eviction. CFLRU starts by searching the

clean-first region for a candidate for replacement. The

length of the clean-first region is defined as a fraction of

the total memory size, called the window size. Fig. 1

shows an example of page replacement in CFLRU. P8 is

the LRU page; but when a free page frame is necessary,

CFLRU replaces P7, which is the LRU clean page. Since

dirty pages can only be evicted if no clean page exists in

the window, pages are evicted in the order of P7, P5, P8,

and finally P6.

CFLRU was the first to adapt LRU for NAND flash

memory-based systems. However, its favor on dirty

pages varies greatly across the boundary between the

working region and the clean-first region. Moreover, the

window size should be tuned as the workload changes.

As a consequence, CFLRU does not cope well with

changes in workload characteristics, such as the ratio of

read to write accesses.

LRU with write sequence reordering (LRU-WSR) is

another replacement algorithm that favors dirty pages

[17]. Basically, LRU-WSR also manages pages using the

LRU list. Instead of setting the clean-first region, LRU-

WSR gives one more chance to a dirty page, when it

reaches the LRU position in the list. Specifically, LRU-

WSR keeps a cold flag for each page in the LRU list.

When a page is referenced, LRU-WSR moves the page to

the MRU position of the list. Additionally, if it is a dirty

page, LRU-WSR clears the cold flag of that page. When

replacement is needed, LRU-WSR checks the page in the

LRU position. If the page is clean, it is replaced. Other-

wise, the cold flag is checked. If it is set to 1, LRU-WSR

replaces the page. If the cold flag of the page is 0, LRU-

WSR sets the cold flag to 1, moves the page to the MRU

position to give one more chance, and checks another

page at the LRU position. In this way, LRU-WSR consid-

ers asymmetric operation costs of reads and writes in the

flash memory, but it still does not consider their exact

costs in the algorithm design.

There are some categories of replacement algorithms

that exploit the device-specific information of NAND

flash memory. Since most of this information cannot be

delivered to virtual memory and/or file systems in current

system interfaces, the algorithms are usually targeted to

device-specific buffer managers, or some specific sys-

tems. Flash-aware buffer management (FAB) is proposed

as a replacement algorithm of DRAM buffer in flash-

based PMP systems [18]. PMP systems commonly have

long sequential accesses for media data and some short

accesses for metadata at the same time. One problem

with this situation is that short write accesses cannot be

buffered for a long time because they are pushed away by

a large amount of sequential data. This eventually incurs

frequent random write I/Os, leading to degraded I/O per-

formances due to full merge operations in log-block FTLs

[5, 19]. To cope with this problem, FAB manages buffered

data from the same NAND flash block as a group and

replaces them together. When free buffers are needed,

FAB evicts a NAND block group with the largest number

of buffers. If more than one group have the same largest

number of buffers, the LRU order is used as a tiebreaker.

Block padding least recently used (BPLRU) is a write

buffer management algorithm to improve the random write

performance of flash storage in desktop environments

[20]. BPLRU manages an LRU list for RAM buffers.

Similar to FAB, BPLRU groups buffers from the same

NAND flash block and replaces them together. When a

buffer is accessed by a write operation, buffers in the

same group are moved together to the MRU position of

the list. BPLRU selects buffers in the LRU position as a

victim and flushes all data in the group. This block-level

flushing reduces the total merge cost of NAND flash

memory in log-block FTLs. BPLRU also uses two heu-

ristics, called page padding and LRU compensation. Page

padding makes a partially buffered NAND block into a

fully buffered one by reading the rest of NAND pages

from the flash just before evicting the block. LRU com-

pensation is a heuristic that evicts a fully buffered NAND

block first.

Cold and largest cluster (CLC) is another write buffer

replacement algorithm for NAND flash memory [21].

Unlike FAB and BPLRU, CLC uses byte-addressable

non-volatile memory as its write buffer. Similar to FAB

and BPLRU, CLC manages pages from the same NAND

flash blocks together. When replacement is needed, CLC

selects a NAND block group with the largest number of

pages among groups that have not recently been refer-

enced.

Fig. 1. An example of page replacement in clean-first LRU
(CFLRU). LRU: least recently used, MRU: most recently used.

Page Replacement for Write References in NAND Flash Based Virtual Memory Systems

Hyejeong Lee et al. 161 http://jcse.kiise.org

III. PAGE REFERENCES IN VIRTUAL MEMORY

In this section, we analyze and capture page references

in virtual memory systems specially focusing on the tem-

poral locality of read and write operations. For write

operations, we also analyze the write frequency as well as

temporal locality to more precisely characterize the page

reference behavior. We capture the virtual memory access

traces from four different applications used on Linux X

Windows, namely, the xmms mp3 player, the gqview

image viewer, the gedit word processor, and the freecell

game. The characteristics of these traces will be

explained later in Section V. We first analyze the tempo-

ral locality of total references in the traces, and then clas-

sify them into read and write references to more precisely

examine the re-reference likelihood of each operation.

A. Temporal Locality

As shown in Fig. 2, virtual memory accesses exhibit

strong temporal locality. In the figure, the x-axis repre-

sents the page ranking in the LRU list (i.e., the LRU stack

distance). For example, the ranking 1 in the x-axis refers

to the page at the most recently referenced position in the

LRU list. Increase in ranking along the x-axis indicates

that the pages were referenced a relatively long time ago.

The y-axis represents the number of references that occur

for the page ranking in the x-axis.

As shown in Fig. 2, the shape of the curve can be well

modeled by a monotonic decreasing function, implying

that a more recently referenced page is more likely to be

referenced again. For this reference pattern, the LRU

algorithm is known to perform well [14].

Fig. 2 shows the temporal locality of total page refer-

ences including both read and write references. Figs. 3

and 4 separately show the temporal locality of read and

write references. For example, the x-axis in Fig. 3 repre-

sents the recency ranking of read references and the y-

axis represents the number of read references that occur

for the given ranking. As shown in Fig. 3, read references

exhibit strong temporal locality. Unlike the plots in

Fig. 2(a) and (b) that contain some projecting points, the

plots in Fig. 3(a) and (b) are more fluent. This means that

the temporal locality of read references is stronger than

that of total references including both read and write ref-

erences.

Fig. 2. Reference counts versus temporal locality ranking for
total references including reads and writes. (a) xmms, (b) gqview,
(c) gedit, and (d) freecell.

Fig. 4. Number of write references occurred versus temporal
locality ranking of write references. (a) xmms, (b) gqview, (c)
gedit, and (d) freecell.

Fig. 3. Number of read references occurred versus temporal
locality ranking of read references. (a) xmms, (b) gqview, (c) gedit,
and (d) freecell.

Journal of Computing Science and Engineering, Vol. 8, No. 3, September 2014, pp. 157-172

http://dx.doi.org/10.5626/JCSE.2014.8.3.157 162 Hyejeong Lee et al.

Now, let us examine the write references. As shown in

Fig. 4, the temporal locality of write references is rather

irregular. Specifically, Fig. 4 shows the ranking inversion

of temporal locality, i.e., a more recently written page

shows a smaller fraction of re-writes in some ranges of

ranking. We can clearly observe this phenomenon from

Fig. 4(a) and (b), which contain a relatively large number

of write references.

Based on this observation, we can conclude that tem-

poral locality alone is not sufficient to estimate the re-

reference likelihood of write references in virtual mem-

ory. We cannot pinpoint the exact reason for this phenom-

enon, but we conjecture that it is due to the write-back

operation of the CPU cache memory. Since a certain por-

tion of memory references are absorbed by the cache

memory, page references observed at the virtual memory

layer contain only the references that are cache-missed.

In the case of read references, cache-missed requests

directly propagate to the virtual memory layer, thus not

much affecting temporal locality, although it becomes

rather weak. However, in the case of write references,

cache-missed requests do not propagate directly to virtual

memory but are just written to the cache memory. Then,

the write references are delivered to virtual memory only

after the data are evicted from the cache memory. This

implies that the time a write request arrives is asynchro-

nous with the time that the request is delivered to main

memory. This is the reason why temporal locality of

write references is considerably dispersed.

B. Frequency of Write References

In Section III-A, we observed that the temporal local-

ity of write references in virtual memory is greatly dis-

persed. Here, we analyze the effect of write frequency on

the re-reference likelihood of write references. We can

consider two different types of frequency. The first is the

total write frequency, which counts the total number of

writes that appear in the trace; and the second is the so-

far-write-frequency, which counts the number of writes

that have occurred to the current point. We use the latter

in order to observe the impact of frequency on estimating

a page’s re-reference likelihood each time in comparison

with temporal locality. To do this, we maintain the rank-

ing of pages according to their past write counts, and

examine the number of write operations that occur again

for each ranking.

In Fig. 5, the x-axis represents the ranking of pages

based on their past write counts. The y-axis represents the

number of writes that occur on that ranking. To construct

the curve, we maintain the page ranking each time, and as

a page in a certain ranking is written again, we increase

the value of y-axis for that ranking by one, possibly

resulting in a reordering of the page rankings.

As shown in Fig. 5, most write references that are

made are in the range of top ranking. This means that a

page referenced frequently in the past is likely to be refer-

enced again in the future. Unlike the temporal locality of

write references, the frequency of write references does

not show the ranking inversion problem. It also exhibits

larger reference counts than temporal locality for a cer-

tain range of top ranking.

In summary, the re-reference likelihood of read refer-

ences can be well modeled by temporal locality. For write

references, however, using the write frequency as well as

temporal locality will be more effective. To predict future

write references more accurately, a page replacement

algorithm should consider the write frequency as well as

the recency of the references.

IV. A NEW PAGE REPLACEMENT ALGORITHM

In this section, we present a new page replacement

algorithm for virtual memory systems, called CRAW,

which uses NAND flash memory as its swap device.

CRAW separately allocates memory areas for read and

write operations so as to minimize the total I/O costs. It

does this by finding the contribution of each area and

dynamically adjusting their size.

For each area, replacement is efficiently performed,

similar to the implementation of the CLOCK algorithm.

To select a victim page in each area, CRAW exploits the

read and write characteristics of virtual memory explained

in Section III. That is, for read references, temporal local-

ity is exploited, and for write references, both temporal

locality and write frequency are used to predict the re-

reference likelihood of pages. All the pages in the write

area are dirty pages, which need 3–10 times higher cost

in terms of time to evict than clean pages. CRAW gives

Fig. 5. Number of write references occurred versus frequency
ranking of write references. (a) xmms, (b) gqview, (c) gedit, and
(d) freecell.

Page Replacement for Write References in NAND Flash Based Virtual Memory Systems

Hyejeong Lee et al. 163 http://jcse.kiise.org

higher priority to write pages that incur relatively high

costs; but it also preserves read pages if they are fre-

quently referenced and thus their contribution to improv-

ing I/O performance is significant.

A. Adjusting the Size of Each Area

CRAW employs ghost areas to evaluate and adjust the

size of the read and write areas as shown in Fig. 6. Ghost

areas only maintain the metadata of recently evicted

pages without their actual data. By observing references

to a page in the ghost areas, CRAW predicts the effect

that extending each area would have on performance. If

there are frequent hits on pages in the ghost read area,

CRAW extends the read area to reduce the number of

page faults. The write area can be extended in the same

way. In addition to the hits to pages in the ghost areas, the

different cost of a read and a write is also considered in

adjusting the size of each area.

The size of each ghost area is adjusted as the size of

corresponding area changes such that the total number of

pages in these two areas is equal to the total number of

page frames, which is referred to as S. For example, after

extending the read area to accommodate one more page,

CRAW shrinks the ghost read area by one. This is

because the hit ratio for the whole memory can be pre-

dicted, if the sum of the allocated pages and the ghost

pages is equal to S. As explained in Fig. 6, S ghost pages

are sufficient for both read and write areas because S

pages are actually allocated. Maintaining this number of

ghost pages has very low overhead because a ghost page

only contains 20 bytes of information including pointers

and a page identifier, whereas each of the actual pages

contains 4 kB of data [22-26].

Fig. 6 briefly shows the read area R, the write area W,

and their ghost areas. In practice, however, R and W may

share pages. For example, a page that has been recently

read as well as written, is kept in both R and W. In this

case, the page data is in one page frame, and the page

descriptor is linked to both R and W using different link

pointers in order to independently and accurately manage

the areas. Consequently, |R|+|W| can be larger than S, and

the number of ghost pages can be equal to or less than S.

Since CRAW allows pages to be linked to multiple areas

simultaneously, a page can be evicted from physical

memory only if it is not linked to any area.

B. Details of the Algorithm

We now describe how the CRAW algorithm works in

detail. Fig. 7 depicts the basic structure of CRAW. Pages

in memory are managed by read area R and write area W.

The metadata of evicted pages from these areas are kept

in ghost read area R' and ghost write area W', respectively.

Page replacement for each area is independently man-

aged by using an efficient design similar to the CLOCK

algorithm. When CRAW searches for a victim to evict

from the read area, it checks the read bit of the page to

which the clock-hand points as CLOCK also does. If the

read bit is 1, it is cleared; otherwise, the page is deleted

from the area. The clock-hand scans clockwise through

the pages until it finds a page with a zero read bit. When

CRAW searches for a victim in the write area, the write

bit instead of the read bit is investigated. In fact, the read

and write bits have similar meanings to the reference and

modified bits that are set by the paging unit hardware

during every memory access. The metadata for pages

deleted from R and W are inserted into ghost areas R' and

W', respectively. When a replacement is needed in a

ghost area, the least recently inserted page is deleted.

Note that this is identical to the FIFO order in the ghost

areas. As shown in Fig. 7, a newly inserted page is linked

to the MRU location in the ghost area, and the oldest

page is evicted from the LRU location.

Since write frequency is also important to predict the

re-reference likelihood of write references, CRAW man-

ages the internal structure of write area W by two parti-

tioned sub-areas, namely write temporal locality area

W1, and write frequency area W2 as shown in Fig. 8.

Ghost areas for W1 and W2 are also managed separately.

Fig. 6. Adjusting the sizes of the read and write areas by using
ghost areas.

Fig. 7. Basic structure of CRAW. LRU: least recently used, MRU:
most recently used, CRAW: CLOCK for read and write.

Journal of Computing Science and Engineering, Vol. 8, No. 3, September 2014, pp. 157-172

http://dx.doi.org/10.5626/JCSE.2014.8.3.157 164 Hyejeong Lee et al.

Similar to R and W, the sizes of W1 and W2 are adjusted

by page hits in ghost areas W1' and W2'. W1 maintains

pages that are written once while their metadata are resi-

dent in memory, and W2 maintains pages that are written

more than once.

A page may not be included in the write area directly

even after a write reference to that page happens. This is

the same for read references. For example, if a page is not

in write area W1 or W2 but exists in read area R, no page

fault occurs upon a write reference, and thus list manipu-

lation by kernel is not possible. In this case, the write bit

of this page is just set by the paging unit hardware, and

the page still remains only in the read area. The page is

finally included in the write area when the write bit is

found during the scanning of the read area to find a victim.

Now we will give further details of the CRAW algo-

rithm following the pseudocode in Fig. 9. If the CPU ref-

erences a page that is already in memory, CRAW does

nothing except for bit setting. The read bit of the page is

set on a read reference and the write bit of the page is set

on a write reference.

When a page fault occurs because a referenced page is

not in memory, CRAW first checks if there is a free page

frame. If not, CRAW invokes the reclaim() function to

get a free page frame by evicting a page from memory and

then stores the requested page in the frame after retrieving

it from secondary storage (we provide the description of

CRAW from a theoretical aspect here. Actually, commodity

operating systems do not invoke reclaim() function

on demand but reserve a certain number of free page

frames in advance). Then, CRAW inserts the page in the

area corresponding to the access type, and adjusts the size

of their areas, if necessary.

If a page fault results from a read access, CRAW

inserts the page at the tail position of the read area. If the

history of the page exists in the ghost read area R', it is

deleted from R', and if necessary, the size of R is increased.

The size of R' is then reduced to preserve the balance

between R and R'.

If a page fault results from a write access, there are

three different cases. First, if the history of the page exists

in W1', CRAW deletes it and inserts the page into the tail

position of W2. In this case, a hit occurs in ghost write

area W1' and thus the size of W1 is increased, and if nec-

essary, the sizes of other areas including ghost areas are

adjusted. Second, if the history of the page exists in W2',

CRAW deletes it and inserts the page to the tail position

of W2. In this case, a hit occurs in ghost write area W2'

and thus the size of W2 is increased, and if necessary, the

sizes of other areas including ghost areas are adjusted.

Third, if the page history does not exist in any of ghost

write areas, it is inserted to the tail position of W1.

Now, we describe the reclamation procedure used to

obtain a free page frame. The reclaim() function first

selects the area from which to evict a page. Since CRAW

maintains and adjusts the desired size for each area

according to the hits from ghost areas, it basically selects

an area containing more pages than its desired size as the

victim area.

In practice, however, there may be more than one area

that satisfies this condition, because CRAW allows a

page to be shared by multiple areas. In this case, CRAW

selects the area that has the largest ratio of current size to

the desired size as the victim area. For example, let us

assume that the desired sizes of R, W1, and W2 are 3, 4,

and 5, and the current sizes of them are 4, 5, and 5,

respectively. In this example, both R and W1 have more

pages than their desired sizes. Since R has a larger ratio

of current to desired size, R is selected as the victim area

in this case.

As explained earlier, when reclaim() chooses to

evict a page from the read area, it first checks the read bit

of the page to which the clock-hand points as CLOCK

does. If the read bit is 1, reclaim() clears the bit and

moves to the next page. Otherwise, reclaim() deletes

the page from the area and returns. In this process, if a

page is found with its write bit set in the read area,

CRAW clears the write bit and links that page to the tail

of write area W1 if the page is not already in the write

area. If reclaim() selects W1 or W2 to evict a page,

the write bit is checked in the same way. That is, if a page

is found with its read bit set to 1, CRAW clears the read

bit and links that page to the tail of read area R if the page

is not in R. This process is simple and fast because it only

requires a bit and a list pointer to be checked, and some

list manipulations are performed only when needed. Fig.

10 depicts the conceptual flow of the CRAW algorithm.

V. PERFORMANCE EVALUATION

We now present the performance evaluation results to

assess the effectiveness of the CRAW algorithm. A trace-

driven simulation is performed to manage the replace-

ment algorithm of a virtual memory system with accurate

Fig. 8. The internal structure of the write area considering both
temporal locality and write frequency.

Page Replacement for Write References in NAND Flash Based Virtual Memory Systems

Hyejeong Lee et al. 165 http://jcse.kiise.org

Fig. 9. Pseudocode of CRAW (CLOCK for read and write).

Journal of Computing Science and Engineering, Vol. 8, No. 3, September 2014, pp. 157-172

http://dx.doi.org/10.5626/JCSE.2014.8.3.157 166 Hyejeong Lee et al.

I/O timing of NAND flash memory and software over-

heads of replacement algorithms. The size of a virtual

memory page is set to 4 kB, which is common to most

operating systems including Linux. Secondary storage is

assumed to consist of a large block SLC NAND flash

memory, where a block contains 64 pages and a page has

2 kB of data. The I/O time of a read and a write operation

for each flash page is set to 25 µs and 200 µs, respec-

tively, as listed in Table 1.

A. Experimental Setup

The traces are acquired by a modified version of the

Cachegrind tool from the Valgrind 3.2.3 toolset [27, 28].

Fig. 11 shows the form of each request in the trace. Mem-

ory accesses in the traces can be classified into instruc-

tion reads, data reads, and data writes.

We capture the virtual memory access traces from six

different applications used on Linux X Windows, namely,

the xmms mp3 player, the gqview image viewer, the gedit

word processor, the freecell game, the kghostview PDF

file viewer, and the tar_gzip archiving and compression

utilities. We filter out memory references that are accessed

directly from the CPU cache memory, and also reflect the

write-back property of the cache memory. The character-

istics of these traces are described in Table 2.

The xmms trace shows a lot of write operations even

though it is a multimedia playing program. Multimedia

players seldom make write I/O requests upon the data

file, but in the virtual memory, it decodes the data to a

playable data stream and writes the decoded data, which

is usually much larger than the encoded data, to another

page frame.

We compare the performance of CRAW with CLOCK,

CAR (CLOCK with adaptive replacement) [22], and

CFCLOCK [10]. CFCLOCK is a modified version of

CFLRU to work efficiently in virtual memory environ-

ments. On hit to a page, CFCLOCK just sets the reference

bit or modified bit and does not perform any list manipu-

lations. Similar to CFLRU, CFCLOCK has a window

size parameter that specifies how many pages it should

first search for clean pages starting from the current

clock-hand position. If it succeeds in finding a clean page

with a reference bit set to 0 in the window, CFCLOCK

replaces it. Otherwise, it scans through the pages in the

window again and replaces a dirty page whose reference

bit is not set. If there is no such page, then CFCLOCK

searches for a page with a reference bit set to 0 starting

from the next position. Whenever a free page frame is

needed, CFCLOCK first scans through the window size

of pages. In our experiments, the window size is set to

Fig. 10. A conceptual flow of CLOCK for read and write (CRAW).

Reference type Virtual address Access size (byte)

readi 0x04000BE0 2

write 0xBEFFFACC 4

readi 0x04000C30 1

write 0xBEFFFABC 4

readd 0x0401582C 4

: : :

Fig. 11. Form of each request in the trace.

Table 2. Memory usage and reference count for each workload

Workload Memory footprint (kB) Ratio of operations (read : write) Total access count

xmms 8,050 1 : 5.13 1,168,939

gqview 7,430 1 : 1.30 610,685

gedit 14,460 12.05 : 1 1,733,763

freecell 10,080 7.16 :1 490,175

kghostview 17,390 13.93 : 1 1,546,135

tar_gzip 752 5.23 : 1 4,535

Page Replacement for Write References in NAND Flash Based Virtual Memory Systems

Hyejeong Lee et al. 167 http://jcse.kiise.org

one third of the total number of page frames according to

the window size of the swap system used in the original

CFLRU simulations [10].

B. Experimental Results

The performance of page replacement algorithms is

measured by the total I/O time for a given workload.

Fig. 12 shows the total I/O time of the four algorithms as

a function of the memory size ranging from 1% to 100%

of maximum memory usage of the traces. The 100%

memory size means the unrealistic condition that a com-

plete memory footprint can be loaded at the same time,

and thus page replacement is not needed. In this environ-

ment, all algorithms perform the same. For each work-

load, the graphs show the total I/O time of each algorithm

normalized to the CLOCK algorithm.

CRAW outperforms the other algorithms for a wide range

of memory size and a variety of workloads. In compari-

son with CLOCK, CRAW reduced the total I/O time by

an average of 23.9% and up to 66.5%. The performance

improvements of CRAW over CAR and CFCLOCK are

in the range of 25%–66% and 16%–58%, respectively.

Although CFCLOCK reduces the number of expensive

write I/O operations by preserving dirty pages as much as

possible, it falls behind CLOCK and CAR in dealing with

some read-intensive workloads, such as freecell and

gedit, for small memory sizes. Note that these two traces

are read-intensive and their locality is also strong. Since

CFCLOCK provides too much memory space to dirty

pages, it fails to preserve a large amount of clean pages

that only incur read operations. This shows that

CFCLOCK is unable to adapt to workload changes in

some read-intensive jobs. On the other hand, CRAW

dynamically adapts to the changes of workload pattern

and memory capacity, resulting in consistently good per-

formances.

Figs. 13 and 14 show the number of read and write I/

Os performed on flash memory for each workload. This

figure shows how CRAW could reduce total I/O time by

compromising the cost of read and write operations for

given workload and memory space.

In the case of xmms and gqview traces, there are more

write references than read references. In these environ-

ments, CRAW preserves dirty pages in the memory as

much as possible by enlarging write areas, which eventu-

Fig. 12. Total I/O time for CLOCK, CAR, CFCLOCK, and CRAW as a
function of the memory size. (a) xmms, (b) gqview, (c) gedit, (d)
freecell, (e) kghostview, and (f) tar_gzip. CAR: CLOCK with
adaptive replacement, CFCLOCK: clean-first CLOCK, CRAW: CLOCK
for read and write.

Fig. 13. Number of read I/Os made by CLOCK, CAR, CFCLOCK,
and CRAW as a function of the memory size. (a) xmms, (b)
gqview, (c) gedit, and (d) freecell. CAR: CLOCK with adaptive
replacement, CFCLOCK: clean-first CLOCK, CRAW: CLOCK for read
and write.

Journal of Computing Science and Engineering, Vol. 8, No. 3, September 2014, pp. 157-172

http://dx.doi.org/10.5626/JCSE.2014.8.3.157 168 Hyejeong Lee et al.

ally reduces the number of write I/Os and total I/O time.

In the case of gedit and freecell traces, however, read ref-

erences are dominant. As shown in Figs. 13(c)–(d) and

14(c)–(d), CRAW focuses on reducing the number of

expensive write I/Os, but it also keeps the number of read

I/Os to a certain limited range. This leads to improved

performance in terms of the total I/O time. CFCLOCK

dramatically reduces write I/Os, but it performs even

worse than CLOCK and CAR when the memory size is

relatively small. Observe the amount of read I/Os of

CFCLOCK in Fig. 13(c) that is almost 200% of CLOCK.

Fig. 15 shows how CRAW changes the size of each

area as time progresses. The figure plots the desired sizes

of the read area and the two write areas at each time a

page fault occurs when the xmms trace is used. As shown

in the figure, we can notice that the memory space is

dynamically allocated according to the change of refer-

ence patterns.

C. Overhead of CRAW

Traditional real-time embedded systems simulta-

neously load the whole address space of a process into

physical memory, instead of using virtual memory,

thereby providing deadline-guaranteed services. How-

ever, as contemporary embedded systems provide multi-

tasking, virtual memory is being supported and page

faults inevitably occur. This paper focuses on such sys-

tems, and thus its goal is not pursuing the deadline-guar-

anteed service but reducing the overhead of page faults.

Compared with the page fault handling process that

accompanies slow storage accesses, the additional soft-

ware overhead of CRAW is quite small. Actually, the

additional software overhead of CRAW is already

reflected in our experimental results shown in Fig. 12,

which confirms that the reduced storage I/O overhead by

CRAW has greatly influenced the overall performances.

The time complexity of CRAW is identical to that of

the original CLOCK algorithm, in which the only non-

constant part is involved in the clock-hand scanning pro-

cess to find the replacement victim. In this process, the

worst case time complexity is O(n), where n is the num-

ber of page frames. However, in practical situations, the

scanning requires only a few movements of the clock-

hand, implying that in practical terms, it has constant

time complexity. Actually, worst case analysis like time

complexity analysis does not consider the practical situa-

tions of real system environments, but just uses unrealis-

tic conditions for worst cases to the algorithm. For

example, LRU has the time complexity of O(1), even

though its overhead is much larger than that of CLOCK

in real systems. We believe that our experimental results

cover a wide variety of cases, including the worst cases

as well as the common cases of real system environ-

ments, which show that the overhead of CRAW is suffi-

ciently small.

VI. REALIZATION IN REAL SYSTEM ARCHI-
TECTURES

In this section, we describe how the CRAW algorithm

can easily be deployed in existing system architectures.

The CRAW algorithm can be realized when the read and

write bits are supported in the paging unit hardware. This

is done by simple modification of bit settings in the exist-

ing architectures. Specifically, current paging unit hard-

ware sets the reference bit to 1 when a read or a write

reference occurs, and the modified bit to 1 when a write

reference occurs. Instead of this setting, a new version of

the paging unit hardware should set the reference bit only

for a read reference. This simple modification allows the

Fig. 14. Number of write I/Os made by CLOCK, CAR, CFCLOCK,
and CRAW as a function of the memory size. (a) xmms, (b)
gqview, (c) gedit, and (d) freecell. CAR: CLOCK with adaptive
replacement, CFCLOCK: clean-first CLOCK, CRAW: CLOCK for read
and write.

Fig. 15. The size of each area as time progresses.

Page Replacement for Write References in NAND Flash Based Virtual Memory Systems

Hyejeong Lee et al. 169 http://jcse.kiise.org

implementation of the original CRAW algorithm in real

systems. However, we show in this section that CRAW

can also be used in the existing system architectures with-

out hardware modifications by some approximated

implementation or software support.

A. Implementation with Reference and Modified
Bits

In the system architectures that support reference and

modified bits, it may not be feasible to manipulate the

read and write bits. Since the reference bit is set by either

a read or a write operation, extracting read information

alone from the reference bit is a challenging problem. In

such a case, we need to consider an approximated imple-

mentation of the read area of CRAW by using the refer-

ence bit.

We tried to use the total reference area (including both

read and write references) and the write area instead of

the read area and the write area. In this case, if a page is

written, it is included into both the total reference area

and the write area. To manage the two areas, reference

and modified bits can be used instead of read and write

bits. Since the original CRAW also allows duplication of

a page in both areas, this modified version can work rea-

sonably well. This is also consistent with the analysis

shown in Section III, in which the temporal locality of

read references is very similar to that of the total refer-

ences. Fig. 16 depicts this approximated implementation

of the CRAW algorithm, called CRAW-A.

To quantify the effect of CRAW-A on the performance

of virtual memory systems, we compare the previous

results in Fig. 12 with CRAW-A. From these experi-

ments, we found that the performance of CRAW-A is

almost identical to the original CRAW implementation.

As shown in Fig. 17, for most cases, the performances of

CRAW and CRAW-A are so similar that they are almost

impossible to distinguish. Furthermore, in some cases,

CRAW-A performs better than the original CRAW. From

this result, we can conclude that CRAW can be effectively

implemented as CRAW-A in existing system architectures

without any modification of the paging unit hardware.

B. Implementation without Additional Bits

Some embedded system architectures do not provide

reference and/or modified bits for the paging unit hard-

ware. Even though such bits are not provided by hard-

ware, the system still needs to keep track of the reference

and modified bits to determine the replacement victim

and flushing target. Thus, in this architecture, setting the

reference and modified bits is usually handled not by

hardware but by kernel in the way of intentional page

faults.

In the case of the ARM architecture, when a page is

first created, it is marked as read-only [29]. The first

write to such a page (a clean page) will cause a permis-

sion fault, and the kernel data abort handler will be

called. The memory management code will mark the

page as dirty, if the page should indeed be writable. The

page table entry is modified to make it allow both reads

and writes, and the abort handler then returns to retry the

faulting access in the application. A similar technique is

Fig. 16. CRAW-A: an approximated implementation of CLOCK
for read and write (CRAW). LRU: least recently used, MRU: most
recently used.

Fig. 17. Performance comparison of original CLOCK for read
and write (CRAW) and its approximated algorithm CRAW-A. (a)
xmms, (b) gqview, (c) gedit, (d) freecell, (e) kghostview, and (f)
tar_gzip. CAR: CLOCK with adaptive replacement, CFCLOCK:
clean-first CLOCK.

Journal of Computing Science and Engineering, Vol. 8, No. 3, September 2014, pp. 157-172

http://dx.doi.org/10.5626/JCSE.2014.8.3.157 170 Hyejeong Lee et al.

used to emulate the reference bit, which shows when a

page has been accessed. Read and write accesses to the

page generate an abort. The reference bit is then set

within the handler, and the access permissions are

changed. This is all done transparently to the application

that actually accesses the memory. The kernel makes use

of these bits when swapping pages in and out of memory;

it is preferred to swap out pages that have not been

recently used, and it is also ensured that pages that have

been written to have their new contents copied to the

backing store.

CRAW can be efficiently implemented in this environ-

ment as a software module by setting the read and the

write bits through the simple modification of kernel simi-

lar to the way of abort mechanisms performed by the

ARM architecture. This implies that CRAW can also be

applied to the virtual memory of mobile embedded sys-

tems that does not support reference and modified bits for

the paging unit hardware.

VII. CONCLUSIONS

Recently, NAND flash memory has been used as the

swap space of virtual memory as well as the file system

of embedded devices. Since temporal locality is domi-

nant in page references of virtual memory, recency-based

algorithms have been widely used. However, we showed

that this is not the case for write references. We sepa-

rately analyzed the characteristics of read and write refer-

ences in virtual memory and found that the temporal

locality of write references is weak and irregular. This

implies that temporal locality alone is not sufficient to

predict future references in the case of write operations.

Based on this observation, we proposed and evaluated

a new page replacement algorithm, called CRAW, that

considers write frequency as well as temporal locality to

predict the re-reference likelihood of write operations.

CRAW analyzes the reference patterns of read and write

operations separately depending on the characteristics of

each operation, and predicts the re-reference likelihood

of pages more accurately. To do this, CRAW partitions

the memory space into a read area and a write area, and

then dynamically adjusts their size according to the

change of access patterns and the different I/O costs of

read and write operations. Trace-driven simulations with

various virtual memory access traces have shown that the

proposed algorithm significantly improves the I/O perfor-

mance of virtual memory systems. Specifically, it reduces

I/O time by 20%–66% compared to widely known algo-

rithms, such as CLOCK, CAR, and CFLRU.

In this paper, we focused on the temporal locality of

read and write references. In future, we will analyze the

inter-reference recency (IRR) property of read and write

references [30]. We expect this to yield more interesting

results. Various cost-aware algorithms will also be uti-

lized. In this paper, we only considered the different I/O

costs of read and write operations in terms of time among

the various characteristics of NAND flash memory. We

plan to consider more specific characteristics of NAND

flash memory in the future.

AKNOWLEDGMENTS

This work was supported by a National Research

Foundation of Korea (NRF) grant funded by the Korea

government (No. 2011-0028825) and by the IT R&D pro-

gram MKE/KEIT (No. 10041608, Embedded System

Software for New-memory based Smart Devices).

REFERENCES

1. J. W. Hsieh, C. H. Wu, and G. M. Chiu, “MFTL: a design

and implementation for MLC flash memory storage sys-

tems,” ACM Transactions on Storage, vol. 8, no. 2, article

no. 7, 2012.

2. Intel Corporation, Understanding the Flash Translation

Layer (FTL) Specification, Denver: Intel Corporation, 1998.

3. W. K. Josephson, L. A. Bongo, K. Li, and D. Flynn, “DFS:

a file system for virtualized flash storage,” ACM Transac-

tions on Storage, vol. 6, no. 3, article no. 14, 2010.

4. A. Kawaguchi, S. Nishioka, and H. Motoda, “A flash-mem-

ory based file system,” in Proceedings of USENIX Techni-

cal Conference, New Orleans, LA, 1995.

5. J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, “A

space-efficient flash translation layer for CompactFlash sys-

tems,” IEEE Transaction on Consumer Electronics, vol. 48,

no. 2, pp. 366-375, 2002.

6. O. Kwon, K. Koh, J. Lee, and H. Bahn, “FeGC: an efficient

garbage collection scheme for flash memory based storage

systems,” Journal of Systems and Software, vol. 84, no. 9,

pp. 1507-1523, 2011.

7. D. Woodhouse, “JFFS: the journaling flash file system,” in

Proceedings of Ottawa Linux Symposium, Ottawa, Canada,

2001.

8. YAFFS: Yet Another Flash File System, http://www.yaffs.net/.

9. C. Park, J. U. Kang, S. Y. Park, and J. S. Kim, “Energy-

aware demand paging on NAND flash-based embedded stor-

ages,” in Proceedings of International Symposium on Low

Power Electronics and Design, New Port, CA, 2004, pp.

338-343.

10. S. Y. Park, D. Jung, J. U. Kang, J. S. Kim, and J. Lee,

“CFLRU: replacement algorithm for flash memory,” in Pro-

ceedings of the International Conference on Compilers,

Architecture and Synthesis for Embedded Systems, Seoul,

Korea, 2006, pp. 234-241.

11. L. Shi, C. J. Xue, and X. Zhou, “Cooperating write buffer

cache and virtual memory management for flash memory

based systems,” in Proceedings of the 17th IEEE Real-Time

and Embedded Technology and Applications Symposium,

Chicago, IL, 2011, pp. 147-156.

12. J. Park, H. Bahn, and K. Koh, “Buffer cache management

Page Replacement for Write References in NAND Flash Based Virtual Memory Systems

Hyejeong Lee et al. 171 http://jcse.kiise.org

for combined MLC and SLC flash memories using both vol-

atile and nonvolatile RAMs,” in Proceedings of the IEEE

International Conference on Embedded and Real-Time Com-

puting Systems and Applications, Beijing, China, 2009, pp.

228-235.

13. Intel Corporation, “Intel X-18M/X-25M SATA Solid State

Drive (product manual),” http://download.intel.com/design/

flash/nand/mainstream/mainstream-sata-ssd-datasheet.pdf.

14. E. G. Coffman and P. J. Denning, Operating Systems The-

ory, Englewood Cliffs: Prentice-Hall, 1973.

15. F. J. Corbato, A Paging Experiment with the Multics System

(MAC-M-384), Cambridge: MIT Press, 1969.

16. R. W. Carr and J. L. Hennessy, “WSCLOCK—a simple and

effective algorithm for virtual memory management,” in

Proceedings of the 8th ACM Symposium on Operating Sys-

tems Principles, Pacific Grove, CA, 1981, pp. 87-95.

17. H. Jung, H. Shim, S. Park, S. Kang, and J. Cha, “LRU-

WSR: integration of LRU and writes sequence reordering

for flash memory,” IEEE Transactions on Consumer Elec-

tronics, vol. 54, no. 3, pp. 1215-1223, 2008.

18. H. Jo, J. U. Kang, S. Y. Park, J. S. Kim, and J. Lee, “FAB:

flash-aware buffer management policy for portable media

players,” IEEE Transactions on Consumer Electronics, vol.

52, no. 2, pp. 485-493, 2006.

19. S. W. Lee, D. J. Park, T. S. Chung, D. H. Lee, S. Park, and

H. J. Song, “A log buffer-based flash translation layer using

fully-associative sector translation,” ACM Transactions on

Embedded Computing Systems, vol. 6, no. 3, article no. 18,

2007.

20. H. Kim and S. Ahn, “BPLRU: a buffer management scheme

for improving random writes in flash storage,” in Proceed-

ings of the 6th USENIX Conference on File and Storage

Technologies, San Jose, CA, 2008, pp. 239-252.

21. S. Kang, S. Park, H. Jung, H. Shim, and J. Cha, “Perfor-

mance trade-offs in using NVRAM write buffer for flash

memory-based storage devices,” IEEE Transactions on Com-

puters, vol. 58, no. 6, pp. 744-758, 2009.

22. S. Bansal and D. S. Modha, “CAR: clock with adaptive

replacement,” in Proceedings of the 3rd USENIX Confer-

ence on File and Storage Technologies, San Francisco, CA,

2004, pp. 187-200.

23. T. Johnson and D. Shasha, “2Q: A low overhead high per-

formance buffer management replacement algorithm,” in

Proceedings of the 20th International Conference on Very

Large Data Bases, Santiago de Chile, Chile, 1994, pp. 439-

450.

24. Y. Zhou, J. F. Philbin, and K. Li, “The multi-queue replace-

ment algorithm for second level buffer caches,” in Proceed-

ings of the USENIX Annual Technical Conference, Boston,

MA, 2001, pp. 91-404.

25. N. Megiddo, and D. S. Modha, “ARC: a self-tuning, low

overhead replacement cache,” in Proceedings of the 2nd

USENIX Conference on File and Storage Technologies, San

Francisco, CA, 2003, pp. 115-130.

26. E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The LRU-K

page replacement algorithm for database disk buffering,” in

Proceedings of ACM SIGMOD International Conference on

Management of Data, Washington, DC, 1993, pp. 297-306.

27. N. Nethercote and J. Seward, “Valgrind: a program supervi-

sion framework,” Electronic Notes in Theoretical Computer

Science, vol. 89, no. 2, pp. 44-66, 2003.

28. Valgrind, http://valgrind.org/.

29. ARM, “Cortex-A series: programmer’s guide,” http://info-

center.arm.com/help/index.jsp?topic=/com.arm.doc.den0013b.

30. S. Jiang, F. Chen, and X. Zhang, “CLOCK-Pro: an effective

improvement of the CLOCK replacement,” in Proceedings

of the USENIX Annual Technical Conference, Anaheim, CA,

2005, pp. 323-336.

Hyejeong Lee

Hyejeong Lee received the B.S. degree in computer science and engineering from Ewha Womans University,
Seoul, Republic of Korea, in 2006. She is currently an M.S. candidate in computer science and engineering,
Ewha Womans University, Seoul, Republic of Korea. Her research interests include system security, operating
systems, distributed systems, low power systems, intelligent storage systems, system optimization,
ubiquitous computing, and embedded systems.

Journal of Computing Science and Engineering, Vol. 8, No. 3, September 2014, pp. 157-172

http://dx.doi.org/10.5626/JCSE.2014.8.3.157 172 Hyejeong Lee et al.

Hyokyung Bahn

Hyokyung Bahn received the B.S., M.S., and Ph.D. degrees in computer science and engineering from Seoul
National University, in 1997, 1999, and 2002, respectively. He is currently a professor of computer science and
engineering at Ewha Womans University, Seoul, Republic of Korea. His research interests include operating
systems, caching algorithms, storage systems, embedded systems, system optimizations, and real-time
systems. He received the Best Paper Awards at the USENIX Conference on File and Storage Technologies in
2013. Prof. Bahn is a member of the IEEE Computer Society, the IEICE, and the KIISE.

Kang G. Shin

Kang G. Shin is the Kevin & Nancy O'Connor Professor of Computer Science in the Department of Electrical
Engineering and Computer Science, The University of Michigan, Ann Arbor. His current research focuses on
QoS-sensitive computing and networking as well as on embedded real-time and cyber-physical systems. He
has supervised the completion of 74 PhDs, and authored/coauthored more than 800 technical articles (more
than 300 of these are in archival journals), one textbook and more than 20 patents or invention disclosures,
and received numerous best paper awards, including the Best Paper Awards from the 2011 ACM
International Conference on Mobile Computing and Networking, the 2011 IEEE International Conference on
Autonomic Computing, the 2010 and 2000 USENIX Annual Technical Conferences, as well as the 2003 IEEE
Communications Society William R. Bennett Prize Paper Award and the 1987 Outstanding IEEE Transactions
of Automatic Control Paper Award. He has also received several institutional awards, including the Research
Excellence Award in 1989, Outstanding Achievement Award in 1999, Distinguished Faculty Achievement
Award in 2001, and Stephen Attwood Award in 2004 from The University of Michigan (the highest honor
bestowed to Michigan Engineering faculty); a Distinguished Alumni Award of the College of Engineering,
Seoul National University in 2002; 2003 IEEE RTC Technical Achievement Award; and 2006 Ho-Am Prize in
Engineering (the highest honor bestowed to Korean-origin engineers). He has chaired several major
conferences, including 2009 ACM MobiCom, 2008 IEEE SECON, 2005 ACM/USENIX MobiSys, 2000 IEEE RTAS,
and 1987 IEEE RTSS. He is the fellow of both IEEE and ACM, and served on editorial boards, including IEEE
TPDS and ACM TECS. He has also served or is serving on numerous government committees, such as the US
NSF Cyber-Physical Systems Executive Committee and the Korean Government R&D Strategy Advisory
Committee. He has also co-founded a couple of startups.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 900
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

