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ABSTRACT
As smartphones are increasingly used to run apps that provide users
with location-based services, the users’ location privacy has be-
come a major concern. Existing solutions to this concern are defi-
cient in terms of practicality, efficiency, and effectiveness. To ad-
dress this problem, we design, implement, and evaluate LP-Guardian,
a novel and comprehensive framework for location privacy protec-
tion for Android smartphone users. LP-Guardian overcomes the
shortcomings of existing approaches by addressing the tracking,
profiling, and identification threats while maintaining app function-
ality. We have implemented and evaluated LP-Guardian on An-
droid 4.3.1. Our evaluation results show that LP-Guardian effec-
tively thwarts the privacy threats, without deteriorating the user’s
experience (less than 10% overhead in delay and energy). Also,
LP-Guardian’s privacy protection is shown to be achieved at a tol-
erable loss in app functionality.

Categories and Subject Descriptors
C.2.0 [COMPUTER-COMMUNICATION NETWORKS]: Gen-
eral—Security and protection; K.4.1 [COMPUTERS AND SO-
CIETY]: Public Policy Issues—Privacy

General Terms
Algorithms, Design, Measurement

Keywords
Location Privacy; Anonymity; Indistinguishability; Location-Based
Services; Android

1. INTRODUCTION
Location privacy has been a hot topic in research and media over

the last decade or so [3,9,21,27,35,43]. The popularity of location-
aware smartphones has led to the prevalence of apps that access
users’ location in order to provide them personalized/customized
services. Nevertheless, location access has introduced a new class
of privacy threats that users are increasingly becoming aware of.
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These threats range from an adversary’s ability to localize an indi-
vidual to profiling and identifying him based on the places he visits.

Motivation:
To assess users’ perceptions of location privacy and location-aware
apps, we surveyed1 180 smartphone users. We recruited 70 partic-
ipants through social network announcements and the rest through
Amazon Mechanical Turk. We chose Mechanical Turk workers
who have achieved “master qualification," i.e., those who have shown
high competency of performing tasks.

We find the survey results supporting the deployment of a lo-
cation privacy protection mechanism. 78% of the participants be-
lieve that apps accessing their location can pose privacy threats.
Also, 85% of them reported that they care about who accesses their
location information, compared to 87% reported by a Microsoft
survey [27] two years ago. Users are even expected to be more
sensitive towards this issue in relation to the recent revelations on
government accessing their location as collected by apps [3]. In-
terestingly, 52% of the surveyed individuals stated no problem in
supplying apps with imprecise location information to protect their
privacy. Only 18% of the surveyed people objected to supplying
apps with imprecise location information. Finally, 77% of the users
included the term “privacy" as a factor affecting their choice in in-
stalling a privacy protection mechanism.

There have been numerous research proposals for location pri-
vacy protection from various angles and in various scenarios. Un-
fortunately, the vast majority of them have not found their way
to the common users. Existing mechanisms (e.g., see surveys by
Krumm [21] and Shin [35]) suffer several shortcomings that hinder
their deployment in the real world. These shortcomings can be best
described in terms of effectiveness, efficiency, and practicality as
will be more evident in Section 2. Existing mechanisms address
the tracking threats without guaranteeing protection against profil-
ing or identification threats. Also, they impose the same protection
measures regardless of the app and the privacy threat it poses. Fi-
nally, most of these mechanisms rely on unrealistic assumptions,
making their real-world deployment difficult.

In this paper, we present the design, implementation, and evalua-
tion of a new location privacy protection framework, called the Lo-
cation Privacy Guardian (LP-Guardian), that addresses the short-
comings of the existing mechanisms. We show that privacy pro-
tection can be brought to the masses through a client-side solution
at a minimal cost. Although we focus on the Android platform,
LP-Guardian is applicable to other platforms that utilize the per-
mission model to authorize location access (e.g., Windows Phone,

1https://docs.google.com/
forms/d/1VFKlSa3Heq7Wz_
mY4MmL7YNu8D74Gtl-lDNlnXesUTo/viewform
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BlackBerry OS) as well as those that rely on explicit user autho-
rization for every location access (iOS).

Our design philosophy is based on seven main features as dis-
cussed below.

A. The app only accesses location when the user expects it to
do so: A user expects the app to access his location only when
a location-based functionality is required, e.g., localized-search,
place check-in, etc. Most Android apps, however, engage in loca-
tion acquisition without explicit user authorization/awareness. LP-
Guardian addresses this issue by anonymizing location access in
the background and enabling the user to choose the appropriate
anonymization strategy for foreground location access. Finally, LP-
Guardian feeds Advertising and Analytics (A&A) libraries anonymized
location samples to prevent tracking through third parties.

B. The app only accesses location with a granularity suffi-
cient to produce the location-based functionality: A majority of
Android apps request location with a finer granularity than actu-
ally required to deliver necessary service to the user. Our analysis
of the top 1150 location-aware apps in Google Play revealed that
68% of them can accommodate coarser location without significant
losses in quality of service. As a result, LP-Guardian feeds every
app with the location granularity necessary to serve the user. LP-
Guardian can thus safely anonymize location for the majority of the
apps without hindering their functionality.

C. An anonymous app can’t identify the user based on his
frequently visited places: As not all apps can afford an anonymized
location, feeding them with an accurate location might lead to user
identification from frequently visited places (e.g., home and work) [6,
13, 19]. This is applicable even in apps that don’t require explicit
user identity to function, such as games, search apps, etc. In this
paper, we formalize this identification threat and propose a novel
mechanism that addresses this threat.

D. A single app alone poses no significant profiling threats
based on the collected location information: Some places the
user visits are not sensitive to his identity/privacy but might assist
in profiling him (e.g., health clinics, religious places, bars, etc.).
LP-Guardian relies on the user to learn these places and anonymize
the location, if needed, by applying the mechanism of Andrés et
al. [2].

E. An app can’t track the user all the time even when track-
ing is required to perform functionality: Some apps might re-
quire constant monitoring of the user’s location, such as fitness or
speed-monitoring apps. The absolute location matters less than rel-
ative mobility. LP-Guardian reacts by replacing the real location
samples with dummy ones that belong to a synthetic route. This
route preserves the actual route properties (mainly speed) and does
not reveal the actual user’s location to thwart tracking.

F. Privacy protection fits within the existing mobile ecosys-
tem: We implemented LP-Guardian in the Android core platform
by instrumenting the Location object. Our implementation can
be easily incorporated in custom ROM or even in a rooted device
through the Xposed framework [33]. Moreover, it neither requires
modification of the apps nor it relies on additional entities. Most
importantly, it is app-aware as it applies different anonymization
strategies independently for different apps.

G. Privacy protection comes at a minimal cost in usability
and app functionality: Anonymization naturally comes at a cost
in terms of usability, delay, energy, and loss of app functionality.
LP-Guardian minimizes the interaction with the user and makes the
anonymization decisions on his behalf. It also incurs minimal delay
and energy overhead (less than 10%). Finally, LP-Guardian mini-
mizes the instances of anonymization to preserve app functionality
(more than 60% of the sessions are not anonymized). According

to a user study that we performed, such loss of app functionality
is tolerable as it comes in places where users don’t usually require
location-based functionality. This is the first time that a location
privacy protection mechanism is evaluated on real-world app usage
data.

Contributions:
This paper makes the following main contributions: LP-Guardian

1. provides privacy protection on a per-app basis; the protection
level is proportionate to the threat posed and location granu-
larity requirements of the app;

2. packs a novel mechanism to prevent identification by lever-
aging the notion of indistinguishability; and

3. is practical to deploy and use as it achieves protection for
each app independently without modifying the apps and with
minimum user interaction.

Organization:
The paper is organized as follows. Section 3 defines the threat
model, while Section 2 reviews the related work. Section 4 gives
an overview and then details the design of the components of LP-
Guardian. Section 5 details the architecture of LP-Guardian, while
Section 6 describes its implementation. We evaluate LP-Guardian
in Section 7 and make concluding remarks and discuss future work
in Section 8.

2. RELATED WORK
Approaches addressing location privacy fall into two categories:

theoretical and practical.

Theoretical Approaches
These are the approaches that have been evaluated on traces, but
were neither implemented on mobile platforms nor tested with ac-
tual apps. Most of these mechanisms address the tracking threat
[20, 23–25, 36, 37, 42] in that they hide the user’s raw location
while still revealing the high-level features of the user’s mobil-
ity [43], thus becoming not or less effective. These mobility pat-
terns could eventually lead to user profiling and even identification.
LP-Guardian protects user’s privacy at three levels: tracking, pro-
filing, and identification as will be evident later.

Moreover, some of these mechanisms hinge on unrealistic as-
sumptions, such as trusted infrastructure to provide the privacy pro-
tection [12,25], requiring a set of users of the same app at the same
time and same place (e.g., mixzones [11,29]), or focusing on a sub-
set of location accessing apps [32].

Practical Approaches
Researchers have also proposed more practical approaches that fit
within the existing mobile platforms. MockDroid [5] provides users
with OS-based controls to disable access to certain resources in An-
droid, including location. The app will never receive location up-
dates. This is a solution that provides full privacy but zero utility.
Similarly, Micinski et al. [26] coarsen the location supplied to the
apps without considering the threat level or the location granular-
ity required by the app. Last but not least, PlaceMask [31] allows
users to supply fake locations for apps rendering it unusable. LP-
Guardian has the advantage of balancing between privacy require-
ments, usability, and quality of service.

Other proposed systems require changes to the existing mobile
ecosystem to provide the privacy guarantees. Koi [16] relies on a
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cloud-based service to achieve location privacy protection. It also
requires developers to use a different API for location access that is
based on a location matching criterion, rather than the raw location.
Similarly, Caché [1] requires developers to change the way they ac-
cess location in the apps. LP-Guardian requires no modification to
the existing apps or infrastructure (it is a completely device-based
solution), facilitating its deployment.

Finally, several researchers have studied the problem of private
information leakage in mobile devices. For example, TaintDroid [10]
tracks the information propagation in mobile devices and detects
whether private information (including location) has been leaked.
LP-Guardian is complementary to such approaches; it controls what
location information the app gets access to, while taint tracking re-
veals how the apps are managing the accessed location informa-
tion.

3. THREAT MODEL
We assume an honest-but-curious and passive adversary who is

interested in inferring more information about the user from col-
lected location information. Apps constitute the only mechanism
by which the adversary can access the user’s location through the
available location APIs. The adversary won’t attempt to hack into
the system or circumvent any privacy controls. We view the se-
curity challenges as orthogonal to our work. Our objective is not
to implement a solution that prevents a determined adversary from
overriding the operating system’s controls. The existence of such a
solution will further strengthen LP-Guardian.

The adversary will collect user’s location as part of the app’s
operation. The collected location information will enable the ad-
versary to pose the following three types of threats:

• Tracking Threat: the adversary might receive continuous lo-
cation updates that enable him to locate the user in real time.
The adversary might also be able to identify the user’s mobil-
ity patterns (frequently traveled routes) and predict his future
location with high accuracy by leveraging the typical consis-
tency of people’s mobility patterns [18].

• Identification Threat: Even if the adversary sporadically ac-
cesses user’s location, he might still be able to isolate the
user’s frequently visited locations, such as home and work.
The adversary can use these places as quasi-identifiers to re-
veal the user’s identity from anonymous location traces [13,
19].

• Profiling Threat: The user’s mobility trace might not include
places that would reveal his identity, but places that the ad-
versary can use to profile him. Examples include some health
clinics, places with religious significance, etc.

We treat all apps belonging to the same developer or having the
same signature as one sink of location information. We choose to
trust the underlying operating system, since no practical solution
can be implemented without such a trust. The user also trusts his
own device, including the underlying OS, to manage and store all
his personal information.

4. DESIGN

4.1 High-Level Overview
Before delving into the inner-workings of LP-Guardian, we present

a high-level overview as shown in Fig. 1. This diagram highlights
the main operations performed whenever a new location sample is
to be delivered to an app (Section 6.1).

App 
Requests 
Location 

A&A library/back. app 
requested loc. 

Coarsen loc. to 
city-level 

Core fore. app 
requested loc. 

Follow 
rule 

No action Block Hide 

Fitness 
app? 

Synthetic 
route 

Accommodate 
city-level? 

Coarsen to 
city-level 

Accurate loc. 
Required? 

Identity 
protection 

Safe to 
release? 

Prof. 
protection 

Not safe to 
release? 

Dummy 
loc. 

Figure 1: The decision diagram highlighting LP-Guardian’s
main operations when an app receives a new location update

LP-Guardian first determines if an A&A library or the core app is
receiving the location update (Section 4.4). If the A&A library re-
ceives the location update, then the location is automatically coars-
ened to the city-level. If the app is running in the background,
the location is also coarsened to the city-level (Section 4.3). We
base this design decision on our analysis of the location-accessing
apps. The analysis revealed that only 3% of the apps access user’s
location while running in the background. Thus, location coarsen-
ing in the background has little effect on the functionality of most
apps. If the core app, while running in the foreground or percepti-
ble states, is receiving the location update, we rely on the user’s
preference. The location can be released without modification,
completely blocked, or anonymized. In the case of anonymization,
there are three available options as follows.

1. The app can accommodate coarsening without loss of service
(weather apps), in which case the location is automatically
coarsened to the city-level (the location is replaced by a pair
of coordinates representing the center of the city).

2. The app is monitoring the user’s mobility (fitness app), where
LP-Guardian feeds the app a synthetic route that preserves
some features of the user’s actual route (Section 4.7).

3. The app requires location with high granularity (e.g., geo-
search app). LP-Guardian applies a novel mechanism to con-
trol release of the location to prevent any possible identifica-
tion (Section 4.5).

If the location is safe to be released, LP-Guardian consults with
the user to check if he is comfortable with release of the location. If
the user isn’t comfortable, the location is obfuscated (noise added)
to hide the visited place (Section 4.6), else the location is released
as is. On the other hand, if LP-Guardian decides that it is not safe to
release the location, it replaces the real location with a fake location
as described in Section 4.5. Finally, LP-Guardian minimizes user
interaction as much as possible, in order not to hinder the user expe-
rience. At the same time, it keeps the user in the loop by informing
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him of the anonymization process and asking for his feedback only
when needed (Section 6.2).

In what follows, we elaborate on the main design decisions that
address the various location privacy threats.

4.2 Location Sources
The location APIs are not the only way by which apps can ac-

cess location information. Scanning the nearby WiFi access points
(APs) and cellular towers might help locate the user. Skyhook,
for example, is an online service that maps the signature of nearby
APs to location coordinates. Such location can be fairly accurate
(<30 m accuracy). Google localization service relies on a similar
concept to provide network-based location samples. LP-Guardian
addresses this issue by preventing apps from scanning nearby APs
to limit the apps’ location access to Android’s location APIs.

4.3 Foreground vs. Background
In Android, an app can assume multiple states depending on

its execution status. Android recognizes four app states, three of
which are important to us: running in the foreground, background,
and perceptible to the user. A foreground app is the one that oc-
cupies the screen and the user can interact with. When the user
exits the app, Android caches it for faster re-execution and is thus
moved to the background. An app can also run persistently and
show the user a notification indicating that it is perceptible. For ex-
ample, apps like Google Now run persistently as a service and are
not considered background apps.

Because of elongated periods of location access, tracking threats
are more pronounced in apps accessing location in the background
or when running as a persistent service. We handle the former case
of background location access by coarsening the location to the
city-level. That way, the app will still receive relevant location up-
dates, but won’t be able to pose any viable location privacy threats.
We will also specify how we handle location access in the fore-
ground and as a persistent service.

4.4 A&A Libraries
Most free apps pack A&A libraries to generate revenue by dis-

playing targeted ads to the user running the app. Hence, the apps
need to feed these libraries some information about the user, in-
cluding location [38]. As the number of A&A libraries is limited
as compared to the number of apps, an A&A library is most cer-
tainly to be packed in multiple apps.

Instead of looking at apps as independent sources of the user’s
location trace, A&A libraries can aggregate location traces from
multiple apps. This implies that the location privacy threats posed
by these libraries is more critical. However, apps can thus easily ac-
commodate feeding these libraries with coarsened location samples
to the city-level. These libraries will still receive relevant location
information to display ads to users, but won’t be able to pose any
viable tracking/identification/profiling threats.

Theoretically, it is plausible to coarsen location for A&A li-
braries, but the challenge is how to separate between location re-
quests coming from the A&A library and those coming from the
core app. To deal with this challenge, we studied more than 100
A&A libraries in Android. We collected these libraries from the top
1100 apps in Google Play and from different literature sources [7,
15, 30, 38]. It turns out that 98% of these libraries access location
information from their code space through two mechanisms: the
app (1) enables location collection, or (2) passes them a location
object that they can access. In both cases, the stack trace of every
location access request should reveal whether the request is com-
ing from the app or the packed library. Fig. 2 shows an example of

dalvik.system.vmstack 

java.lang.thread 

android.location.location 

com.medialets.analytics.e 

com.medialets.analytics.mmanalyticsmanager 

com.medialets.analytics.mmanalyticsmanager 

com.medialets.analytics.mmanalyticsmanager 

com.medialets.analytics.mmanalyticsmanager 

com.medialets.advertising.admanagerservice 

android.app.intentservice$servicehandler 

android.os.handler 

android.os.looper 

android.os.handlerthread 

Figure 2: The stack trace for a location request by WebMD app
with the analytics library method calls highlighted.

the stack trace of a location access request from WebMD app; it is
evident how the request originates from Medialets Analytics.

4.5 Identification Protection
As LP-Guardian coarsens location accessed in the background,

accurate location access is limited to the foreground. The apps will
thus only sample the user’s location only when running in the fore-
ground. Foreground sessions are short, sporadic, and occur mostly
within the same place. These facts will be shown later in Section 7
based on three datasets that measure app usage patterns. This im-
plies that there is a one-to-one mapping between an app session
and a visited location. For these apps, the mobility information can
be best viewed in the form of a histogram of visited places. We
model the city which the user is visiting as divided into a 2D grid,
where every cell refers to a city block. The set of city blocks is
Bl = {bl1, bl2, bl3, . . .}. Every resident has a probability distribu-
tion of visiting the blocks in the city as pi = P (bli); this probabil-
ity will be 0 for blocks the user never visits. After a period of app
usage, the app records the number of user visits to every block, thus
forming the histogram. Each bin in the histogram is the number of
times, cbli , the app observes that the user was at the block bli.

Even if the location information is anonymous, an adversary
can map the user’s histogram to the user’s identity given the back-
ground information at the adversary’s side. This is what is widely
referred to as the identification or inference attack in literature [6,
19]. In what follows, we provide the first formal treatment of this
attack. We assume that the adversary has access to background in-
formation in the form of a mapping between a set of individuals’
identities and the probability distribution of visiting each block in
the city. The adversary aims to match the anonymous mobility his-
togram from the app to one of the individuals in his database.

Specifically, the adversary is interested in the probability of the
histogram belonging to any of the individuals, x, in his database,
P (happ|x). If the app records N user sessions, P (happ|x) is the
probability of observing the individual x being at each bli for cbli
times out of a total of N observations, where this individual has
a probability pi of visiting block bli. As a result, the probability
distribution of the histogram follows the multinomial distribution,
assuming that different app sessions are independent, and is given
as:

P (happ|x) =
N !∏Bl
i=1 cbli!

Bl∏
i=1

p
cbli
i . (1)

This model holds when cbli = 0 as cbli! = 1 and pcblii = 1.
If the app can’t accommodate coarsened location (e.g., geo-search

app), then LP-Guardian releases the user’s location as long as the
user’s histogram can’t be mapped to his identity. In other words, the
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probability of the histogram originating from the real user should
be close to the probability of the histogram originating from an-
other individual within the same city. We define the “closeness" of
probability distributions in terms of Eq. 2 which is similar to the δ
disclosure criterion [8]. For two individuals x and y, the histogram
maps to both individuals with a close probability:

e−ε ≤ P (happ|x)
P (happ|y)

≤ eε. (2)

Plugging the probability expression of Eq. 1 into Eq. 2 we get
for two individuals x and y:

e−ε ≤
∏|Bl|
i=1 (P (bli|x))cbli∏|Bl|
i=1 (P (bli|y))cbli

≤ eε. (3)

For the rest of this paper, we assume ε = 0.5. The user’s his-
togram must obey the property of Eq. 3 to satisfy the privacy crite-
rion. As LP-Guardian operates solely on the client side, it has no
information about other individuals in the city, and thus can’t fill in
the probabilities for other potential individuals. Alternatively, we
consider a criterion that other individual must satisfy in the form
of a minimum probability of visiting the blocks that the user visits.
So, we replace the P (bli|y) values in Eq. 3 with a value of pmin.
Now, the privacy criterion states:

The user is indistinguishable within a theoretical set of indi-
viduals who have a minimum probability of pmin of visiting the
places in the user’s histogram.

The value of pmin thus controls the level of the user’s privacy;
the higher pmin the lower the privacy guarantee, as less people
will visit the same places as the user with high probability. On the
other hand, a lower value of pmin will indicate a stricter privacy
guarantee as the user will be potentially indistinguishable within
a larger set of individuals. We rearrange Eq. 3, after applying the
logarithm, to satisfy the following inequality:

−ε ≤
Bl∑
i=1

cbli (ln (P (bli|x))− ln (pmin)) ≤ ε. (4)

This inequality provides a test for releasing the location from a
session or not. For every new app session, the expression of Eq. 4
is evaluated given the past released histogram, the user’s mobility
model, and the value of pmin. If the summation value in Eq. 4
exceeds ε or falls below −ε, then the location can be released; oth-
erwise, a dummy location within the city is released. Eq. 4 pro-
vides an important insight on locations the user visits. If we view
ε as a privacy budget, places that users frequently visit will exhaust
part of the budget. On the other hand, if the user visits a place
with a probability lower than pmin, this will increase the available
privacy budget. The released dummy location is one that the user
visits with a very low probability which helps increase the available
privacy budget.

So far we have assumed the protection mechanism is blind of
background information regarding other users. The availability of
such information, however, can assist in improving the trade-off
between app functionality and privacy. Our idea is based on hiding
the user among a theoretical set of people who have to satisfy a
minimum probability constraint of the visiting the places that the
user visit. If we know that an actual set of people satisfy a more
relaxed constraint, then we can achieve the same privacy level with
much improved usability.

Our mechanism relies on the census data that specifies the popu-
lation in every city block [39]. It identifies the user’s home location
as the most fequently visited place during night time. It then as-
signs the home block location a value of pmin consistent with the
population in the same block. If the number of block residents is
above 500, we automatically assign pmin for the home location the
same value of the user’s probability of visiting the home location.
The privacy criteria then transforms to the subset of the home block
residents who have a minimum probability of pmin of visiting the
other user places of interest. In that sense, the user enjoys a natural
protection level resulting from the fact that he lives in a crowded
place. Our mechanism can be relaxed more in releasing the home
location. This insures protection against the identification threat;
the user will still have the option of hiding his location (or any
other location) as will be evident later.

If a user lives in a sparsely populated area, then he naturally suf-
fers lower privacy guarantees. LP-Guardian reacts by assigning
very low pmin values for these users, meaning they won’t be able
to release locations from frequently visited places (e.g., home or
work) for apps that require location with high precision (e.g., Yelp).
Nevertheless, one could also argue that people who live in sparsely
populated areas have a lower need for location-based services at
home or work as they will tend to be more familiar with the area.

4.6 Profiling Protection
A user could be profiled based on the places that he visits, al-

beit at a low frequency. A user might not be willing to reveal that
he is visiting a particular church, a health clinic, a certain bar, or
some hotel. Revealing these places might enable an entity with ac-
cess to the user’s location to profile him. LP-Guardian addresses
these threats by putting the user in control, as he is the best judge
of determining the places which profile him. Each time the user
invokes an app from a new place, the user has to decide whether
he is willing to hide the place he is currently visiting (more details
in Section 6). If the user opts to hide his place, we leverage the
solution of Andrés et al. [2] to anonymize his location.

This approach is well-suited for sporadic location access. It adds
noise drawn from a polar Laplacian distribution to make the re-
ported location provably indistinguishable from the actual location
within a given radius. Given the user’s actual location as a pair
< x, y > and an anoymization radius r, the added noise can be
computed in terms of a pair < rad, θ > as follows [2]:

• Draw θ from the uniform distribution [0, 2π);

• Draw p from the uniform distribution [0, 1], and set rad =

− r
l
(W−1(

r(p−1)
l

) + 1), where W−1 is the -1 branch of the
Lambert W function and l is a privacy level typically chosen
close to 1.

The new location is just a translation of the original location by
rad and θ. The noise level, r, determines the underlying privacy –
utility trade-off. In LP-Guardian, we rely on a noise value of 200m;
the user’s actual location is hidden among location within a range
of 200m. Still, the location will be of some utility to maintain some
app functionality. As long as the user is visiting the same place, the
anonymized location reported to the app is kept the same to prevent
any additional leakage of information.

Finally, the user’s IP address might reveal the place he is visiting,
especially if he accesses the Internet from a public hotspot [40].
Although not included as part of LP-Guardian, TOR (Android app
is available on Google Play) could be used to anonymize the user’s
IP address and protect his location effectively.
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Figure 3: LP-Guardian’s architecture and interactions of its
components

4.7 Synthetic Route
Fitness apps track the exercising activity of the users. They pro-

vide the user with feedback on the path and distance covered dur-
ing an exercise session. These apps monitor the user’s location in
the background for elongated periods of time and with high loca-
tion precision, thus posing a tracking threat. We approach this type
of apps by separating between the two objectives: distance/speed
and path of the exercise. Instead of crudely anonymizing location
which will render these apps useless, we sacrifice the second ob-
jective to provide privacy while maintaining the first.

LP-Guardian anonymizes the location for these apps by keeping
the distance the user covered the same while modifying the actual
route. It essentially feeds the fitness app a synthetic route that has
the same length of the actual route. Whenever a new fitness track-
ing session starts (such an app is running as persistent service and
location update rate is high), LP-Guardian feeds the app with a ran-
dom location within the current city. Then, as the app receives new
location updates, LP-Guardian reacts by calculating the distance
covered since the last update, and calculates a new location sample
based on this distance and the last reported location.

4.8 Navigation Apps
Navigation apps are the most challenging. They require elon-

gated location access periods with high precision. The current ver-
sion of LP-Guardian doesn’t handle this case, but we provide some
remedies that balance usability and privacy in navigation apps. Of-
fline navigation (e.g., Garmin, Google Maps) can handle part of the
problem by preventing the app from sharing the user’s location in
real time. However, there are no guarantees against an app leaking
this information when it comes online. A possible remedy is to run
the navigation app in a “private mode", where it’s disbarred from
connecting to the Internet, and the stored data is wiped after the ses-
sion ends. The downside is that the app will be deprived of access
to the real-time traffic information that is useful for navigation.

5. ARCHITECTURE
Fig. 3 shows the block diagram that implements LP-Guardian.

Described below are the main components of LP-Guardian and
their interactions.

Location Interceptor
The location interceptor, as its name implies, is responsible for di-
verting the app’s control flow to our service in the event of a lo-
cation access. This module blocks the app, extracts the newly ac-
quired/created location, and sends it (along with the app’s package
name) to our service for further processing. It is also responsible

for delivering the anonymized location to the app so that the con-
trol flow can be resumed. We describe the implementation of this
module in Section 6.1.

Rule Manager
This module selects the appropriate rule—via interaction with the
user—to apply depending on the situation. The rule indicates an
appropriate strategy for the location anonymizer module to follow.
The rule manager module takes as input the app, location sample,
app state (foreground or background), and whether this is a new
or ongoing session from the session acquisition module. A fore-
ground/background session is the time period during which the app
is continuously executing in the foreground/background. The rule
manager also takes input from the place detector module to know
which place/city/block the user is currently visiting. This module
caches the rule from the database for use in subsequent location ac-
cesses of the same session. We define two types of rules as follows.

• Global Rules: indicate the protection mechanisms invoked
for both the foreground and background states. There is only
one global rule per app.

• Per-place Rules: control the protection level of individual
places the user might be visiting. There is one per-place rule
for every app–place combination.

The global rule is always given preference over the per-place rule
as it considers the big picture of the user’s released location traces.
Invoking this rule will determine whether the current location is
safe to be released. If it is to be released, the per-place rule is
invoked to decide if any further protection is needed.

Place/City Detector
This module is responsible for identifying the current place the user
is visiting and for maintaining the user’s mobility model. It per-
forms online processing of the user’s real location trace to identify
spatio-temporal clusters, in a manner similar to that proposed by
Bamis et al. [4]. Formally, we define a place as a cluster of loca-
tions within a radius of 100m and over a minimum duration of 5
minutes. Whenever the place detector receives a new location sam-
ple, it tries to map it to one of the existing places in the database. If
the mapping is successful, it updates the total visiting time of that
place, else it creates a new place. The mobility model is the set of
places the user visited along with the total visiting time of every
place. This enables computation of the probability of visiting ev-
ery place. This module also maps the user’s location to the nearest
city/block.

Location Anonymizer
The location anonymization module is the cornerstone of LP-Guardian.
It takes as an input the location, the app state (foreground or back-
ground), and the rule from the rule manager module, and outputs
the anonymized location back to the location interceptor module.
The rule dictates the appropriate anonymization strategy to be fol-
lowed as indicated in Section 4.

6. IMPLEMENTATION

6.1 Core Implementation
Android provides apps with two mechanisms with which they

can access the user’s location: the older Location Manager Service
and the newer Google Play Services. In both mechanisms, the apps
request regular updates by registering a location listener which acts
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Figure 4: Location access mechanisms in Android (left & mid-
dle) and LP-Guardian’s deployment within Android (right)

as a callback function (Fig. 4 – left). Whenever a new location is
ready, the callback function is invoked, and the app receives a new
location object.

To enforce any kind of location protection mechanism, the loca-
tion passed to the app has to be modified. Moreover, such a mech-
anism has to be app-aware so that it may modify the location on a
per-app basis. There are two options for modifying the location on
a per-app basis. The first involves instrumenting the app’s location
accessing interfaces and intercepting location updates before they
reach the app. While the other option involves instrumenting the
platform and changing the location object before reaching the app.

The first option could be implemented with a mechanism sim-
ilar to Aurasium [41]. Albeit effective, this mechanism requires
unpacking, instrumenting, and then repackaging the app. Repack-
aging the app will change its signature. This will break any future
updates to the app, and affect any functionality requiring an au-
thentic app signature. Moreover, the users will have to download
the app from a different app store that requires an entity to manage
and keep it up-to-date. Instead, we opted to implement a platform-
based solution that treats the apps as black boxes and maintains
their full functionality.

Android relies on two mechanisms to relay location updates to
the apps. So, any platform-based solution has to instrument both
mechanisms to intercept and then modify the location object be-
fore reaching the app. Nevertheless, Android ships Google Play
Services as a closed-source app, and hence, its instrumentation is
not straightforward. Fortunately, both mechanisms create a loca-
tion object prior to propagating it to the app. The location class is
included in Android code and can be altered easily (Fig. 4 – mid-
dle).

The location object is merely a data holder, but has to be created
within the app process space before delivering it to the app. We
added a static context field to the location class that is populated
when the app is invoked, particularly when a context is created
for the app. A context is what enables an app in Android to in-
teract with the OS resources. Enabling the location object with a
context enabled us to (1) know what app is currently creating a lo-
cation object, and (2) communicate with OS or other processes, if
needed. We instrumented the location object and pushed the loca-
tion privacy logic to an independent system app that can be easily
updated, if needed. Since the location object has a reference to the
app’s context, it can communicate with that external service (Fig. 4
– right) whenever a new location object is created.

Anonymization incurs a processing cost. It might be prohibitive
subjecting every location update to the anonymization operation,
especially in case of very high location update rates. It is un-
likely that the user’s position will change within a second, even

Figure 5: The displayed prompts to set the global (left) and
per-place (right) rules

with speeds up to 100 mph. Consequently, LP-Guardian only com-
municates with the anonymization service once every 750ms.

6.2 User Interface
Our design philosophy is to rely on the user’s input as infre-

quently as possible. LP-Guardian makes decisions on his behalf
to control different configuration and anonymization parameters.
Nevertheless, there are some situations where the user needs to in-
teract with LP-Guardian to enable three features: bootstrapping,
per-place, and per-session controls. Each of these features is elab-
orated next.

6.2.1 Bootstrapping
Initially, the mechanism is blind and doesn’t have enough infor-

mation to function. The two main missing pieces of information are
user mobility data and per-app anonymization rules. As explained
earlier, our identification protection mechanism requires mobility
data to function. LP-Guardian can’t collect mobility data at run-
time, as by the time we have this information, other apps will have
access to it. At the very first time when the LP-Guardian boots, the
user has to set his top N visited places by tapping on a map (the
user still has the option of adding places later through an advanced
settings menu). We then set the initial probabilities of visiting these
places according to the model proposed by González et al. [14].
Specifically, LP-Guardian assigns every place a probability of visit
inversely proportional to its rank of visit, then normalizes the prob-
abilities to form a PDF.

The second piece of the bootstrapping includes setting the rule
for every app. The first time the app accesses location, LP-Guardian
present prompts (Fig. 5 – left) the user to set the app’s anonymiza-
tion rule. The user only gets to choose one of two self-explanatory
options: “Do nothing" and “Hide Me." When the user chooses the
second option, LP-Guardian chooses the appropriate anonymiza-
tion mechanism depending on the app. It applies city-level coars-
ening for apps that accommodate such granularity. For the rest of
the apps, it chooses identification protection with a default value of
pmin = 0.0005. Additionally, LP-Guardian sets the per-place rule
for the location the user is currently visiting. We use 0.0005 as the
default value, which amounts to spending 30 minutes at a certain
place each 40 days. LP-Guardian also has an advanced settings
menu that allows the user to set fine-grained pmin for each app.

6.2.2 Per-place/session controls
The per-place rules control the profiling protection level. As LP-

Guardian can’t infer places sensitive to the user, it relies on explicit
user input to set these rules. Whenever an app attempts to access the
user’s location from a new place (one the app hasn’t seen before),
LP-Guardian will prompt the user to ask for his decision (Fig. 5 –
right). The user has to choose one of three options: hide the place
every time (Section 4.6, reveal this place only during the current
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Figure 6: The displayed notifications when anonymization is
disabled (left) and enabled (right)

session, and reveal this place always. If the user chooses the second
option, LP-Guardian will keep on issuing the prompt from the same
place until the user chooses a permanent option (either the first or
third option).

Finally, LP-Guardian always ensures that the user is aware of
the anonymization if it takes place. Whenever the user is run-
ning an app and anonymization takes place, a notification is dis-
played (Android notifications are placed in the top left corner and
are non-intrusive). This notification, shown in Fig. 6, displays
the app, a note to the user, and an option to temporarily disable
the anonymization during the current session. If the user disables
anonymization, the notification will include an option to re-enable
location anonymization.

6.2.3 Properties of the prompts
Authorizing resource access in software has been studied before.

Livshits [22] proposed a set of four requirements for valid place-
ment of user prompts that control for resource access (including
location) in mobile platforms. They are: safety, frugality, visibil-
ity, and non-repetitiveness. To achieve safety, a user prompt must
precede every resource access. A prompt is frugal if it is only dis-
played in the event of a resource access. Visibility indicates that a
user prompt must only be displayed if the app currently executing
in the foreground is attempting to access a resource. Finally, a user
prompt is not repetitive if it is never displayed for a resource access
when a more critical resource of the same type has already been
authorized.

LP-Guardian satisfies the last three constraints by prompting the
user only in the event of a location request and while running in the
foreground thus satisfying both frugality and visibility. As for non-
repetitiveness, it is already ensured through Android’s permission
model. If an app is granted fine location permission, it is automat-
ically allowed access for coarse location, but the inverse doesn’t
hold.

The safety requirement ensures that no location access goes un-
checked. Theoretically, this is an optimal requirement to protect
the user’s privacy. Nevertheless, the users can’t be expected to as-
sess the implications of every resource access and thus can’t always
make informed decisions. Second, protecting every resource access
with a user prompt will affect the user experience negatively as the
app execution will be interrupted frequently. One option, as imple-
mented in iOS, is to prompt the user at the first time location access
with an option to remember the decision. Still, that doesn’t appro-
priately address the two issues. If the user chooses to remember the
decision, this will certainly reduce the frequency of the prompts but
will not necessarily protect the user’s privacy.

LP-Guardian addresses the above two issues by balancing be-
tween the frequency of prompts and privacy guarantees. Only the
first location access from every newly visited place is preceded by
a prompt to allow the user to make a choice. LP-Guardian then
makes the subsequent decisions on the behalf of the user. It asks
users to make decisions in terms of hiding or revealing places rather
than asking them to authorize location accesses. Needless to say,
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Figure 7: The delay overhead (left) and battery depletion rate
(right) of LP-Guardian for Galaxy Nexus

0 250 500 750 1000
0

5

10

15

20

25

30
Delay Overhead

inter−request interval (ms)

d
e
la

y
 (

m
s
)

 

 

overall

binder

inside

0 20 40 60 80
10

20

30

40

50

60

70

80

90

100

Energy Overhead

time (hr)

B
a
tt
e
ry

 (
%

)

 

 

5s−plain

5s−Guar.

No loc.

Figure 8: The delay overhead (left) and battery depletion rate
(right) of LP-Guardian for Galaxy S3

users can relate better to places rather than raw location samples. It
is worth noting that the frequency of prompting might be high at the
beginning. It should, however, decrease after LP-Guardian learns
the places the user visits as people tend to exhibit consistency in
their mobility.

7. EVALUATION
We now evaluate LP-Guardian in terms of performance, privacy

guarantees, and usability.

7.1 Performance
First, we validated that LP-Guardian can effectively obfuscate

the location delivered to the apps and verified that it doesn’t cause
the apps to crash. We manually installed, ran, and verified 40 rep-
resentative location-accessing apps. We then evaluated delay and
energy overheads on three devices: Google Galaxy Nexus, Sam-
sung Galaxy S3, and Samsung Galaxy S4 running Android 4.3.1.

To evaluate the delay overhead, we simulated location access
through an app that accesses location with a varying frequency. We
then measured the delay between the time the location is created
and the time the modified location is delivered to the app. The left
plots of Figs. 7–9 show the average delay for each of the three de-
vices versus the inter-request interval. Bearing in mind that LP-
Guardian temporarily caches location, the delay value increases
with the increase of the inter-request interval.
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Figure 9: The delay overhead (left) and battery depletion rate
(right) of LP-Guardian for Galaxy S4

We also measured the anonymization delay for the worst-case
scenario where the anonymization actually takes place (i.e., com-
munication with the anonymization service). The delay was less
than 20ms for two devices and less than 30ms for the Galaxy S3
(the curve labeled “inside" in every plot of the delay overhead plots
(left plots of Figs. 7–9). LP-Guardian imposes a maximum delay
of 30ms every 750ms which shouldn’t impact the app usability.

To evaluate the energy overhead, we considered two scenarios:
no location access, and a load of location access of one request
per 5 seconds. We measured the rate of battery depletion for each
scenario with LP-Guardian running and compared it with the rate
when the framework is not running. The right plots of Figs. 7–9
show the rate of battery depletion for each of the three devices and
for the two loads.

For a location access rate of 1/5 Hz (one request per 5 sec), the
battery depletion rate when LP-Guardian is running is very close to
the case when it is not. This is evident from the the curves close to
the y-axis in the energy overhead plots (the right plots of Figs. 7–
9) for each of the three devices, with an energy overhead less than
10% for the three devices. In the case of no location access, while
LP-Guardian was running, the battery lasted more than 24 hours
for Galaxy Nexus (Fig. 7 – right) and more than 60 hours for both
Samsung Galaxy S3 (Fig. 8 – right) and S4 (Fig. 9 – right). Ac-
tually, LP-Guardian doesn’t do any processing in the background
except for location acquisition to maintain the mobility model. All
other processes are invoked in response to a location request by the
app.

7.2 Privacy
In Section 4, we proposed a set of mechanisms to cope with the

identification and tracking threats. In what follows, we evaluate
the privacy protection mechanisms and their impact on quality of
service.

7.2.1 Datasets
We evaluated LP-Guardian over three datasets that contain app

usage information for 100 users over a period varying between 1
week and 1 year in three different cities. The first dataset includes
25 Android users (running Android 4.0.3 or higher) that we re-
cruited from our institution over the period of 8 months. We col-
lected app sessions and whether the app collected location while
running. The second dataset consists of 49 Android users whom
we recruited through PhoneLab [28], a smartphone measurement
testbed from the State University of New York, Buffalo. We also
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Figure 10: The distribution of the released sessions for our
dataset

collected app sessions from these users over 4 months. Finally, we
relied on the dataset from the LiveLab project from Rice Univer-
sity [34]. They collected app sessions from 30 iPhone users for a
period of one year. The subsequent analysis assumes a worst-case
scenario of an app accessing location whenever it runs and then
sharing it with the service provider.

7.2.2 Identification Protection
We evaluate the loss in app functionality when LP-Guardian is

applied in two scenarios: a conservative privacy requirement of
pmin = 0.0005, and more relaxed one of 0.05. In what follows,
we report the percentage of sessions in which app functionality is
negatively affected. For every scenario, we report the distribution
of the percentage loss of sessions for every app–user combination.
We report this distribution when the mechanism is applied plainly,
when we add dummy queries, and when we add the mobility data
from the US census data [39].

Figs. 10–12 show the potential loss in app functionality for each
of the three datasets, ours, LiveLab’s and PhoneLab’s datasets con-
secutively. We can draw the following conclusions from observing
these figures.

• More relaxed privacy constraints will enable releasing more
of the user’s location (comparing the left and right plots in
every figure).

• Adding dummy locations and including the mobility data
greatly increases the number of released sessions (compar-
ing the dashed and dotted lines in every plot).

• Users with more diversity in their mobility patterns (visit
more places) enjoy naturally higher privacy protection and
can thus release more sessions (comparing our and LiveLab’s
datasets with PhoneLab’s).

• The number of unreleased sessions with potential loss in func-
tionality is low. More than 60% of the sessions are released
for more than 60% of the users in the more privacy-constraint
scenario of pmin = 0.0005.

• Although not shown in the figures, most of the unreleased
sessions belong to top visited places (mostly home and work)
for each user. These places are more critical to the user’s
identity.
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Figure 11: The distribution of the released sessions for Live-
Lab’s dataset
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Figure 12: The distribution of the released sessions for
PhoneLab’s dataset

7.2.3 Tracking
As for the tracking threat, our mechanism blocks location access

in the background, which leaves tracking limited to foreground ses-
sions that are sporadic (mostly invoked at most once a day), short
(average session length less than 5 minutes) and invoked from the
same location for more than 98% of the time. Furthermore, our
high-level privacy protection schemes hide locations in some ses-
sions that are critical to the user’s privacy. However, as noticed
above, a considerable number of the sessions will be released. We
evaluated the tracking threat each app could pose through the time
tracked per day (similar to the time-to-confusion metric [17]). We
evaluate the total time (in seconds) per day during which an app re-
ceives accurate location updates. We focus only on the case where
most of the sessions will be released (pmin = 0.05) as it constitutes
the worst-case scenario in terms of tracking.

Figs. 13–15 show the distribution of the time tracked per day for
each of the three datasets (ours, LiveLab, and PhoneLab respec-
tively). In all three plots, the approach with dummy and mobil-
ity data (labeled dummy+mob) releases the most of the sessions
and thus has the most tracking threat. In all of the cases, 90% of
the user–app combinations have tracked time per day of less than
500sec/day; most apps can’t track the user for more than 8 minutes
a day. It is important to note that most of the foreground sessions
happen when the user is stationary, which prevents the adversary
from tracking the user while moving. This limits tracking to count-
ing the places that the user visits. LP-Guardian’s identification and
profiling prevention schemes handle threats resulting from the in-
ference attacks based on the patterns of visited places.
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Figure 13: The distribution of the time tracked per day metric
for our dataset
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Figure 14: The distribution of the time tracked per day metric
for LiveLab’s dataset

7.3 User Study
LP-Guardian achieves theoretical guarantees on privacy with an

inevitable loss of quality of service, albeit kept to a minimum. Most
of these hidden sessions belong to home and work locations. To
assess the user’s perception of such loss in app functionality, we
asked the participants (same as those of Section 3) whether they
could accommodate reduced functionality of their apps from home
and work locations for six classes of apps.

• Geo-search (e.g., Yelp): We asked participants (107 have
such an app installed) about the level of comfort (scale 1–
5) if they receive inaccurate search results while performing
a search from either home or work. The majority of the par-
ticipants (57%) indicated a comfort level larger than or equal
to 3.

• Social networking (e.g., Facebook): We asked the partici-
pants (156 have such an app installed) whether they share
location while being either at home or work. Most of the
participants (62%) answered that they don’t, 29% answered
that would sometimes invoke this feature from either places.
Also, 82% of the participants answered that they have no
problem with sharing a city-level location instead of the ac-
tual home or work locations. The rest of participants either
had no idea (5%), or prefer sharing the actual location (13%).

• Messaging/chatting (e.g., Whatsapp): The participants who
reported installing such apps (123) don’t normally invoke
the location sharing feature from home and work. Only 6%
perform such location sharing regularly, and 14% perform
it sometimes. Also, most participants (78%) indicated that
they have no problem in sharing a city-level location instead
of home or work actual locations.
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Figure 15: The distribution of the time tracked per day metric
for PhoneLab’s dataset

• Sports/fitness tracking (e.g., Runkeeper): Users rely on these
apps to monitor their exercising activity. Thirty participants
have reported installing and running a fitness tracking app.
Only 6% of the participants care about viewing their actual
tracks, while the rest either care more about the distance
(36%) or both the distance and viewing the tracks (58%).

• Gaming (e.g., Angry Birds): Most of these apps access lo-
cation to feed A&A libraries in order to generate revenue.
Of the participants who play games on their smartphones
(131/180), 88% reported that their gaming experience won’t
be different despite possible location anonymization.

• Weather (e.g., Weather Bug): More than half the partici-
pants reported that weather information won’t differ inside
the same city, indicating that coarsening location information
supplied for weather apps won’t hinder their functionality.

It is evident from the survey that users generally won’t mind
some loss of app functionality at home and work. This is actually
expected as users would rely more on location based functionality
at unfamiliar places as opposed to places that they live or work at.
For example, the user study shows that users would have no prob-
lem searching for relatively far places from their home or work
locations when utilizing geo-search apps. Also, users seldom share
their home or work locations while using social networking or chat-
ting apps. Moreover, users are relatively open to the possibility of
loss of quality of service when using sports tracking apps. In sum-
mary, LP-Guardian provides users with privacy at a tolerable loss
of app functionality.

8. CONCLUSION & FUTURE WORK
In this paper, we proposed LP-Guardian, a novel location privacy

protection framework for Android smartphone users that is practi-
cal, effective, and efficient.

• Practical: We fully implemented LP-Guardian on Android
4.3. It is compatible with all the apps, and is not difficult
to deploy. LP-Guardian also incurs acceptable energy and
delay overheads.

• Effective: LP-Guardian addresses location privacy threats over
three levels. It addresses the tracking threats through reduc-
ing the time tracked per day. It addresses the profiling threat
by enabling the user to hide sensitive places. Finally, it ad-
dresses identification threats through a novel mechanism that
makes the user’s mobility pattern indistinguishable.

• Efficient: LP-Guardian provides privacy guarantees at a tol-
erable loss in app functionality. User’s location is hidden

for a small number of sessions and at places where location-
based functionality is less needed.

In the future we plan to pursue the deployment challenges re-
lated to location privacy protection. We are planning to deploy LP-
Guardian in the phones of a set of diverse participants with limited
technical background for a period of six months. This usability
study will allow us to fine-tune LP-Guardian and identify areas
where the privacy–usability tradeoff could be improved. Finally,
we will consider incorporating LP-Guardian as a part of a custom
ROM (e.g., CyanogenMod) to reach a larger audience.
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