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Abstract

Live migration of virtual machines (VMs) can consume
excessive time and resources, and may affect application
performance significantly if VM memory pages get dirtied
faster than their content can be transferred to the destination.
Existing approaches to this problem transfer memory con-
tent faster with high-speed networks, slow down the dirtying
of memory pages by throttling the execution of applications,
or reduce the amount of memory content to be transferred,
for example, using compression. However, these approaches
incur high resource costs or application performance penal-
ties. In this paper, we propose to skip the transfer of VM
memory pages that need not be migrated for the execution
of running applications at the destination, by exploiting ap-
plications’ assistance. We have designed a generic frame-
work for application-assisted live migration and then used it
to build and evaluate JAVMM, which migrates VMs running
various types of Java applications skipping the transfer of
garbage in Java memory. Our experimental results show that
JAVMM can reduce the completion time, the network traffic
of transferring memory pages, and the application downtime
of Java VM migration, all by up to over 90%, compared to
the vanilla Xen VM migration, without incurring noticeable
performance penalty to applications.

*Work done during Kai-Yuan Hou’s attendance of the University of
Michigan.
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Figure 1. Live migration of a 2GB Xen VM running the
Apache Derby database workload from SPECjvm2008.

1. Introduction

Live migration [13, 30] is to move a running virtual ma-
chine (VM) from a physical host to another with minimal
disruption to the execution of the VM. It has been used for
load-balancing [34, 37], fault-tolerance [28, 32], power sav-
ings [11, 14, 29], and performance enhancements [12].

To migrate VMs within a LAN, such as within a data-
center, the primary task is to migrate the contents of VMs’
memory; VM disk contents can be stored in a shared stor-
age. Most migration tools transfer VM memory by using a
pre-copy approach. While a migrating VM continues to run
on the source host, its memory pages are iteratively trans-
ferred to the destination host. All pages are sent in the first
iteration, and at each following iteration, only those pages
dirtied during the previous iteration are sent. Ideally, dirty
pages should be transferred faster than new pages get dirtied,
and the number of dirty pages pending transmission should
decrease iteratively. When the VM is paused for the last iter-
ation, a small number of dirty pages remain to be transferred.
After this short stop-and-copy, the VM resumes execution in
the destination, and the migration completes.

However, this ideal migration is not always achievable,
since the underlying network can become a bottleneck. Fig-
ure 1 shows live migration of a 2GB database Xen VM over a
gigabit Ethernet. Since the database application dirties mem-
ory pages much faster than the pages can be transferred, the



number of dirty pages to be transferred does not decrease it-
eratively; hence the iterations do not keep becoming shorter.
Migration cannot finish with a short stop-and-copy, but is
forced to enter the last iteration after generating excessive
network traffic (a total of 7GB). It incurs a long completion
time (66 secs), causes a noticeable VM downtime (8 secs),
and degrades application performance (by over 20%).

To alleviate the network bottlenecking problem during
migration and its undesirable consequences, approaches
have been proposed to speed up memory transfer using high-
speed networks [21], slow down memory dirtying by throt-
tling application execution [13], or reduce the amount of
memory contents to be transferred, e.g., by using compres-
sion [35]. However, these approaches incur high resource
costs or application performance penalties. The OS’s knowl-
edge can also be utilized to reduce the amount of memory
transfer by not sending clean page cache pages and free
pages [24], but the benefit is limited. Page cache misses
may degrade application performance at the destination,
and skipping free pages may only benefit the migration of
lightly-loaded VMs.

In this paper, we propose to reduce the amount of memory
transfer by exploiting application semantics. Specifically,
we design application-assisted live migration, which skips
transfer of VM memory pages that need not be migrated for
the execution of running applications at the destination. We
build a framework for the proposed approach based on Xen.
Our framework places a paravirtualized stub in the guest
VM to enable collaboration between the migration tool and
applications in the guest. We ask the applications, which
know best their semantics, to identify areas in their memory
that need not be migrated. Based on the applications’ inputs,
we maintain a transfer bitmap that guides the migration tool
to transfer or skip over VM memory pages.

Using the proposed framework, we build JAVMM, which
migrates Java VMs—VMs running various types of Java
applications—without transferring garbage' in Java mem-
ory. Targeting Java applications does not restrict JAVMM’s
applicability, since these applications are nearly ubiquitous;
with over 9 million developers worldwide, Java has become
the global standard for web-based content and enterprise
software, and runs in 89% of computers in the U.S.[3]. Java
applications are increasingly being deployed and run in VMs
for flexible resource sharing and easy deployment. Various
types of Java cloud services are being widely used [5], many
of which are provisioned based on VMs for elasticity. To
migrate Java VMs fast and with little performance impact is
therefore an important task.

In JAVMM, Java Virtual Machine (JVM)? assists in mi-
gration on behalf of Java applications. Right before a mi-

li.e., Java objects that are no longer used

2Note the difference between a JVM, the application-level VM that
executes Java bytecode, and a Java VM, a general-purpose VM in which
Java applications and their JVMs run.

grating Java VM is paused for the last iteration, the run-
ning JVM performs a garbage collection. After the last it-
eration is completed, the VM resumes execution at the des-
tination in a post-collection state: in the Young generation
of the Java heap, only one survivor space may contain live
objects, which survived the collection. JAVMM migrates the
surviving objects in the last iteration, and skips transfer of
the entire Young generation throughout migration.

We prototyped JAVMM using HotSpot JVM [2] in the
proposed framework, and evaluated it in terms of three met-
rics commonly considered for live migration: the time and
resources used by migration, and the impact of migration on
running applications’ performance. Our experimental results
show that compared to Xen live migration, which is agnostic
of application semantics, JAVMM can reduce the comple-
tion time, network traffic and application downtime caused
by Java VM migration, all by more than 90% when the run-
ning Java application has a high object allocation rate and
needs a large Young generation space, without incurring no-
ticeable performance degradation to the application.

The primary contributions of this paper are as follows.

e We propose application-assisted live migration, and es-
tablish a generic framework to skip migration of VM
memory selectively based on application semantics.

e Using the proposed framework, we build JAVMM to mi-
grate Java VMs skipping over garbage with JVM’s assis-
tance, without customizing each Java application.

® Via an in-depth evaluation of JAVMM, we demonstrate
the utility of application-assisted live migration.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews existing approaches to alleviating network
bottleneck during live migration. Section 3 presents our ap-
proach, a generic framework for application-assisted live mi-
gration. Section 4 describes JAVMM, built based on the pro-
posed framework for efficient migration of Java VMs. Sec-
tion 5 evaluates JAVMM experimentally. We discuss future
extensions of this work in Section 6, and conclude the paper
with Section 7.

2. Related Work

To alleviate network bottlenecking during live migration,
approaches have been proposed to send dirty memory pages
faster, generate dirty memory pages slower, or send less data
for the dirty memory pages generated.

Huang et al. [21] proposed to transfer memory pages
faster using high-speed networks capable of Remote Di-
rect Memory Access (RDMA) like InfiniBand. The network
remains a potential bottleneck even with high-speed links,
though, considering the increasing computation power of in-
dividual VMs and the fact that multiple VMs may be mi-
grated at the same time.

Clark et al. [13] proposed to slow down the memory-
dirtying rate by moving processes to a wait queue after they



generate more than a certain number of dirty pages. This
may degrade application performance, and as the authors
noted, one must be careful not to throttle interactive services.

Our approach falls in the third category, which transfers
less data for the dirty memory pages generated. Compres-
sion [22, 35] and deduplication [15, 16, 38] are popular in
this category, trading CPU for network bandwidth. Our ap-
proach skips transfer of selective memory pages, performing
no computation on the contents of the pages skipped and in-
curring a minimal CPU overhead.

There are also other approaches that skip transfer of se-
lective memory pages, according to different criteria than
ours. Some skip over frequently dirtied pages during live
iterations, but those pages must be transferred in the last
iteration [10, 20, 25, 26], risking a long VM downtime.
Page cache pages can be skipped over in all iterations if
the storage has an identical copy of the pages; the contents
skipped need to be reproduced [23], or VM performance
may degrade after migration [24]. Post-copy migration skips
over all memory pages and removes the pre-copy stage. To
run the VM in the destination, pages are fetched from the
source [18, 19], incurring performance penalties. Exploiting
knowledge of the migrating OS, free pages can be skipped
over and not fetched upon access [24], but only in lightly-
loaded VMs we may find a considerable number of free
pages to be skipped.

Our approach exploits knowledge of the migrating appli-
cations to skip transfer of selective memory pages during
migration. Targeting Java applications, JAVMM skips trans-
fer of garbage in the frequently-dirtied Young generation of
the Java heap. It need not reproduce the contents skipped,
and does not degrade application performance. Application-
Level Ballooning (ALB) [31] is another system that targets
Java applications and leverages application knowledge in a
hypervisor-level mechanism. It extends memory ballooning
to JVM, to move Java memory in and out of the hosting VM
as application demand changes. ALB may be used to shrink
the Java heap before migration begins and send less dirty
data during migration, with the tradeoff of potentially lower
application performance; application performance may de-
grade as the heap becomes smaller since garbage collection
may be triggered more frequently.

The work described in this paper is closest to the memory
deprotection technique discussed in RemusDB [27], a VM-
based high-availability system for databases. RemusDB con-
tinuously replicates checkpoints of VMs running databases.
To reduce system overhead, the authors explored omission
of selective memory contents from VM checkpoints based
on application inputs, although data structures to be suitably
omitted by this technique are yet to be identified.

3. Application-Assisted Live Migration

We take a white-box approach to reducing the amount of
memory transfer for efficient VM live migration: we propose

to skip transfer of selective VM memory based on applica-
tion semantics, by exploiting applications’ assistance.

3.1 What Memory to Skip Migrating?

Generally, memory contents that are reproducible or not re-
quired for correct application execution need not be trans-
ferred during migration; these contents also need no replica-
tion in high-availability systems [27].

Examples of reproducible contents include those recover-
able from application logs and intermediate results that can
be recomputed. It may be beneficial to skip migrating these
contents if regenerating them in the destination is faster than
transferring them from the source.

Memory contents not required for correct application exe-
cution include caches and garbage. Caches of various kinds,
e.g., web cache and database buffer pool, need not be mi-
grated if the performance drop caused by empty caches at
the destination can be mitigated or is acceptable. Garbage is
memory content that is no longer being used. It is a good
candidate to skip migrating, since in its absence at the desti-
nation, applications can execute correctly and without per-
formance degradation. Garbage exists in any applications
written in languages that do not deallocate memory explic-
itly; Java, C# and most scripting languages, e.g., Python and
Ruby, fall in this category.

3.2 Challenges and Design Principles

To skip migration of selective application memory, the key
challenge is to let the migration tool and running applica-
tions collaborate. The migration tool needs to know which
memory pages to skip transferring. For the memory contents
not transferred, the applications need to recover or not access
them in the destination host.

Traditionally, the migration tool and an application in
the guest VM are unaware of the execution of each other.
They do not, and have no existing channel to, communicate.
They also address memory differently: the migration tool
transfers VM memory pages based on Page Frame Numbers
(PFNGs), i.e., the page numbers in the VM'’s contiguous mem-
ory space, while the application executes based on Virtual
Addresses (VAs). For the migration tool and the application
to collaborate, the communication gap and semantic gap be-
tween them must be bridged.

We design a framework to enable their collaboration and
be able to skip migration of selective application memory,
following three principles; each principle describes the re-
sponsibility of one software component in our framework.

e The guest kernel provides system-level support for bridg-
ing the communication gap and semantic gap between the
migration tool and running applications. It coordinates
between the migration tool and the applications as they
perform migration collaboratively, so that the migration
tool need not interact with each application individually.



Domain 0 Guest VM
Migration
App 1l App 2 App3
daemon PP pp PP
o evtchn nisk m nisk m
skip-over
areas
comm.
msgs
/proc
LKM .
{ VA-to-PFN | | Comm.
Transfer bitmap ‘ 1 proxy nisk m
read ﬁ write | evichna

Xen?

Figure 2. A generic framework for application-assisted live
migration, prototyped based on the Xen hypervisor and a
Linux guest. A Loadable Kernel Module (LKM) runs in the
guest to facilitate collaboration between the migration dae-
mon and running applications. It bridges the communica-
tion gap between them by relaying messages for them, using
Xen’s event channel (evtchn) and Linux’s netlink socket
(nlsk). It bridges the semantic gap by performing VA-to-
PFN translations, and manages a transfer bitmap that guides
the migration daemon to skip transfer of selective applica-
tion memory.

¢ A running application identifies which areas of its mem-
ory need not be migrated, and informs the migration tool.
We ask the application to do this, since the application
knows best the semantics of its memory, e.g., what each
memory area is used for and when the content is needed.

e The migration tool needs to know which memory pages
to skip transfer, without incorporating application seman-
tics. This way the tool becomes generic (i.e., application-
independent), and can thus be used for different applica-
tions without modification. This also minimizes changes
to existing live migration mechanisms.

3.3 A Generic Framework

Figure 2 provides an overview of our framework, prototyped
based on Xen 4.1; our guest VM runs Linux 3.1. We added a
Xen management command to invoke application-assisted
live migration. Once invoked, our migration daemon exe-
cutes. Our migration daemon is a modified version of Xen’s.
It communicates with applications in the guest through the
guest kernel, and skips transfer of memory pages guided by a
transfer bitmap. We provide guest kernel support in a Load-
able Kernel Module (LKM).

3.3.1 Bridging the Communication Gap

Our LKM serves as a communication proxy between the
migration daemon and the applications in the guest. It in-
teracts with the migration daemon using event channel,

the event notification primitive provided by Xen. A special
event channel port is created when the guest VM is created,
through which the migration daemon can communicate with
the LKM throughout the migration process.

The LKM interacts with the applications using netlink
sockets, a special socket family for communication between
kernel- and user-space processes. We use netlink because
it is bi-directional, asynchronous and capable of multicast-
ing. Upon loading, the LKM creates a netlink socket, and
associates it with a multicast group, which the applications
subscribe to. The migration daemon communicates with the
applications simply by contacting the LKM, and the LKM
multicasts a netlink message to notify all subscriber applica-
tions. The LKM also relays messages from the applications
to the migration daemon.

3.3.2 Bridging the Semantic Gap

The applications identify areas in their memory that the
migration daemon can skip transfer. They specify each skip-
over area by a VA range, and pass the VA range to the LKM
via a /proc entry. The LKM finds the PFNs of the skip-over
area by page table walks, while the application continues
its normal execution. The LKM may consider a smaller VA
range than that specified by the application. It aligns the start
and end VAs of the specified range to the immediate next
and previous page boundaries, respectively, to ensure pages
found in the skip-over area can be skipped by the migration
daemon in their entirety.

3.3.3 Skipping Transfer with a Transfer Bitmap

The LKM records the PFNSs of the skip-over areas in a trans-
fer bitmap. When transferring VM memory, the migration
daemon examines the transfer bitmap, in addition to the dirty
bitmap maintained by the hypervisor.

The transfer bitmap is created in the guest when the LKM
is loaded, and is shared with the migration daemon when
migration begins. It uses one bit per VM memory page
(PFN), based on the same page size used by the dirty bitmap;
assuming 4KB pages, the transfer bitmap uses 32KB per GB
of VM memory, incurring a negligible memory overhead.
Each transfer bit is either set (1) or cleared (0). A set transfer
bit indicates the page needs to be migrated; the migration
daemon transfers the page if its marked dirty in the dirty
bitmap. A cleared transfer bit indicates migration of the page
can be skipped; the migration daemon does not transfer the
page, even if it is marked dirty.

3.3.4 Updating the Transfer Bitmap

The transfer bitmap is initialized with all bits set; by default,
memory pages are transferred if they are marked dirty. Fig-
ure 3 illustrates how the LKM updates the transfer bitmap to
record the PFNs of the skip-over areas, so that these pages
are not transferred during migration.

The LKM makes the first bitmap update when migration
begins. It queries the applications for skip-over areas. For
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Figure 3. An example of transfer bitmap updates; in the
illustration, filled bits in the transfer bitmap are set. When
migration begins, the LKM clears the transfer bits of the
memory pages in the skip-over area. If the skip-over area
shrinks during migration, the LKM sets the transfer bits of
the pages leaving the area immediately, but when the area
expands, it defers clearing the transfer bits of the pages
joining the area until in the final bitmap update, which is
performed right before the last iteration begins.

each area in the applications’ responses, it remembers the
VA range, finds the associated PFNs by page table walks,
and clears the corresponding bits in the transfer bitmap.
Therefore, the migration daemon does not transfer the pages
in the skip-over areas even if they are dirtied.

In parallel with, and after, the first bitmap update, the VM
continues to run, and each skip-over area may expand or
shrink, i.e., VA ranges and the associated PFNs may join
or leave the area. Subsequent updates to the transfer bitmap
may be needed.

A skip-over area is expected to shrink infrequently and
by a small amount during migration, or the benefit of skip-
ping its migration decreases. When a skip-over area shrinks
during migration, the application should notify the LKM of
the VA ranges leaving the area. The LKM updates its mem-
ory of the area’s VA range, and immediately, sets the transfer
bits of the PFNs leaving the area. These pages may later get
dirtied in a memory area requiring migration. Setting their
transfer bits immediately ensures transfer of their dirty con-

tents in the iteration following the dirtying, and guarantees
the correctness of migration.

Given the VA ranges leaving a skip-over area, the LKM
does not find the PFNs leaving the area via page table walks;
if the area shrinks due to deallocations, the PFNs leaving the
area are reclaimed and can no longer be found in the page
tables. Instead, the LKM caches PFNs as they are found in
a skip-over area and their transfer bits are cleared. It queries
the PFN cache by the VA ranges leaving the skip-over area
to quickly find the PFNs that must have their transfer bits set.
After setting their transfer bits, it removes the PFNs from the
cache. The PEN cache uses little memory: IMB per GB of
skip-over area with 4-byte entries (a 0.1% overhead).

When a skip-over area expands, transfer bitmap updates
are not required. Not clearing the transfer bits of the PFNs
joining the area does not affect the correctness of migration,
although the pages may be unnecessarily migrated. To re-
duce runtime overhead, the application does not notify the
LKM when a skip-over area expands during migration. The
LKM does not clear the transfer bits of the PFNs joining
the area until in the final bitmap update, which is performed
right before the last iteration begins. Dirty pages in the ex-
panded space of a skip-over area will be skipped in the last
iteration to reduce VM downtime.

In the final bitmap update, the LKM queries the applica-
tions again for skip-over areas. It compares the VA ranges
replied by the applications with those in its memory. For any
expanded space, it finds the PFNs joining the areas via page
table walks, and clears their transfer bits. For any shrunk
space, it sets the appropriate transfer bits based on the cached
PFNs. The skip-over areas should not shrink in the short
window of the final bitmap update, to ensure the transfer bits
of all the pages leaving the areas are set; if necessary, the ap-
plications may be paused to meet this requirement. Once the
final bitmap update is completed, the VM is paused, and the
last iteration begins.

In our current implementation, if a PFN joins or leaves a
skip-over area with no changes in the area’s VA range, the
transfer bitmap is not updated. This happens when a virtual
page in a skip-over area has its PFN mapping changed, in
three possible ways: (1) from null to p, when a page frame
is allocated; (2) from p,;4 to p, when the page is remapped
due to page sharing, compaction and migration (within the
guest); and (3) from p,;, to null, when the page is swapped
out. For (1), migration finishes correctly without clearing
the transfer bit of the allocated page joining the skip-over
area. For the events in (2) and (3), we currently assume their
absence in skip-over areas during migration.

We considered an alternative approach that updates the
transfer bitmap for all of the above cases, working as fol-
lows. The LKM identifies all the pages that join or leave
the skip-over areas in the final bitmap update, by walking
the page tables again to find the PFNs of the skip-over areas
and comparing them with those found in the first bitmap up-
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date. In the last iteration, the migration daemon makes sure
to transfer any pages dirtied after leaving a skip-over area, by
considering all the pages dirtied during migration. This ap-
proach does not require applications to notify skip-over area
shrinkage and performs no updates to the transfer bitmap be-
tween the first and the final updates. However, walking the
page tables of all the skip-over areas slows down the comple-
tion of the final bitmap update, during which the applications
may be paused. We thus defer implementing this approach
while exploring its acceleration by using parallelism.

3.3.5 Migration Workflow

Figure 4 shows the workflow of application-assisted live mi-
gration. Our LKM coordinates between the migration dae-
mon and applications in the guest as they collaborate through
different stages of migration. To ease its job of coordination,
the LKM transitions between states of operation based on
the messages exchanged with the migration daemon and the
applications, and takes different actions in each state as de-
scribed next.

Before migration. Once the guest VM is created, the LKM
may be loaded in preparation for possible migration. Upon
loading, the LKM sets up the communication proxy and
the transfer bitmap, and then enters the initialized state,
ready for migration. If an application has memory areas that
need not be transferred during migration, it creates a netlink
socket as it runs in the VM, to communicate with the LKM
and assist in migration.

Migration begins. The migration daemon connects with the
LKM once it is started. The LKM enters the migration
started state, and multicasts a netlink message to query
running applications for skip-over areas. Based on the ap-
plications’ responses, it performs the first transfer bitmap
update, clearing the transfer bits of the memory pages in
the skip-over areas. As the VM continues execution, the mi-
gration daemon transfers memory pages based on both the
transfer bitmap and the dirty bitmap. The applications are
required to notify the LKM when a skip-over area shrinks.
The LKM updates the transfer bitmap immediately for the
pages leaving the area, as described in Section 3.3.4.
Entering the last iteration. The migration daemon contacts
the LKM again before pausing the VM and entering the
last iteration. The LKM multicasts a netlink message,
asking the applications to prepare for VM suspension. This
message also queries the applications for the current VA
ranges of the skip-over areas, which are needed in the final
transfer bitmap update.

To prepare for VM suspension, the applications are re-
quired to ensure that when the VM resumes running in the
destination, the contents of their skip-over areas, which are
not transferred to the destination, are recoverable or un-
needed. For example, they may need to execute to a known
recoverable state, flush caches or collect garbage. Once com-
pleting the actions required, they notify the LKM, passing
along the current VA ranges of the skip-over areas.

Knowing that the applications are suspension-ready,
the LKM performs the final transfer bitmap update for any
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Figure 5. Java heap usage and GC behavior of sample workloads from SPECjvm2008 running in a 2GB VM; see Table 1 for
workload descriptions. The Young generation of the Java heap is allowed to use at most 1GB memory.

Workload Description

derby Apache Derby [6] database with business logic
compiler OpenJDK 7 front-end compiler [7]

xml Apply style sheets to XML documents

sunflow An open-source image rendering system [9]
serial Serialize and deserialize primitives and objects
crypto Sign and verify with cryptographic hashes
scimark Compute the LU factorization of matrices

mpeg MP3 decoding

compress Compression by a modified Lempel-Ziv method

Table 1. Description of the SPECjvm2008 workloads used
in our experiments.

expanded or shrunk space of the skip-over areas. Once com-
pleting the update, it notifies the migration daemon to sus-
pend the VM and proceed with the last iteration. The con-
tents of the skip-over areas should remain recoverable or un-
needed until VM suspension is completed.

Migration finishes and VM resumed. After the last itera-
tion finishes, the migration daemon activates the VM at the
destination, and notifies the LKM that VM execution has
resumed. The LKM in turn notifies the applications, which
then recover the contents of their skip-over areas, or con-
sider those areas empty as they continue to run. The LKM
returns to the initialized state in preparation for the next
migration.

4. JAVMM: Java-Aware VM Migration

Using the proposed framework for application-assisted live
migration, we have designed and implemented JAVMM,
which migrates VMs running Java applications assisted by
JVM.

In designing JAVMM, we considered skipping transfer
of both the JVM code cache and garbage in the Java heap.
The code cache stores native code compiled for performance
enhancements. If it is not migrated, applications can resume
running interpreted in the destination, but we have observed
a non-trivial performance drop in such a case. Since the
code cache is small relative to the Java heap, we decided

to migrate it as usual, and focus on skipping the transfer of
garbage in the Java heap.

4.1 Background on Java Heap Management

As a Java program runs, objects are created in the heap of its
JVM. Most implementations of JVM (e.g., Oracle’s HotSpot
and JRockit and IBM’s JVM) use a generational heap based
on the weak generational hypothesis [36], i.e., most objects
die young. The remainder of this paper is presented in the
context of HotSpot, based on which JAVMM is prototyped.
The general principles and our design of JAVMM are also
applicable to other JVM implementations.

In HotSpot, the heap is divided into Young and Old gen-
erations. The Young generation is further divided into three
spaces: Eden and two survivor spaces, From and To. Most
objects are allocated in the Eden. When the Eden gets filled
up, JVM performs a minor garbage collection (GC) to re-
claim memory from garbage in the Young generation. Java
(application) threads execute to a Safepoint [1] and pause for
a minor GC, so that GC threads can move objects in the heap
in a consistent manner. A minor GC copies live data in the
Eden to the To space. Live data in the From space are either
copied to the To space, or promoted to the Old generation
if they have survived a number of minor GCs. At the end of
a minor GC, the Eden is completely empty. The From and
To spaces swap roles: From becomes the one that holds live
data, and To becomes empty.

4.2 Garbage in Java Heap

To understand Java heap usage, we experiment with the
SPECjvm2008 suite [8], a benchmark suite for measuring
the performance of Java runtime environments. We run one
workload from each benchmark category for 10 minutes in a
2GB VM, using HotSpot and its parallel garbage collector;
Table 1 describes the workloads used. HotSpot is allowed to
grow the Young generation to the maximum size of 1GB and
the Old generation to use the rest of the VM memory.
Figure 5(a) shows the average memory consumption of
the Java heap. For 8 of the 9 workloads evaluated, the Young
generation grows faster and uses more memory than the Old
generation; up to 98% of the heap memory is consumed



by the Young generation. Only scimark uses more memory
in the Old generation, since that workload has more long-
lived than short-lived objects. We observed that for derby,
compiler, xml and sunflow, the Young generation quickly
grows to the maximum size of 1GB to accommodate the
large number of objects created by the workloads. These
workloads have high object allocation rates.

A large portion of the Young generation memory may
contain garbage when the lifetime of the objects is short. For
all workloads except scimark, over 97% of the Young gener-
ation memory is garbage collected in a minor GC, as shown
in Figure 5(b). The amount of garbage is significant for the
four workloads using a 1GB Young generation. We observed
that these workloads fill the Young generation and trigger
a minor GC frequently, every 3 seconds or so; each minor
GC reclaims almost all of the Young generation memory.
Throughout workload execution, this pattern repeats, and the
entire Young generation is continuously dirtied.

Figure 5(c) shows the average time required to collect
Young generation garbage by a minor GC. Our results sug-
gest that it may be faster to collect the garbage than to
transfer them over a bottleneck network link. This applies
to all workloads except scimark, which has exceptionally
small amounts of garbage. Even for compiler, which has the
longest GC duration of the workloads, its 950MB of garbage
takes 1.5 seconds to be collected, but would take more than
7 seconds to be transferred over the gigabit Ethernet link in
our testbed. Note, however, that for Old generation garbage,
collection may not be faster than transmission. In our exper-
iments, a full GC can take as long as 4 seconds to collect
only 93MB of garbage in the Old generation.

In summary, for a wide range of Java workloads we have
made the following observations.

Observation 1. The Young generation can be large and
continuously dirtied, due to the high object allocation rate
of the workload.

Observation 2. A significant portion of the Young genera-
tion memory may contain garbage, due to the workload’s use
of short-lived objects.

Observation 3. Collecting Young generation garbage may
be faster than sending them over a bottleneck network link.

4.3 JAVMM

The Young generation can generate a large number of dirty
pages during the migration of a Java VM, yet many of the
dirty pages may contain garbage (Observations 1 and 2).
JAVMM thus skips transfer of the garbage with assistance
of JVM, which knows where garbage objects are located in
memory.

Garbage objects are scattered among live data, and their
locations keep changing as objects become unreferenced. It
is impractical to keep track of the locations of garbage ob-
jects in order to skip their migration. Instead, JAVMM en-
forces a minor GC to collect garbage for efficient migra-

HotSpot VM

Garbage collector
(Paral l el O d&O)

enforceaminor GC —+———>

get Young gen VArange < ils
[ callback_|<———— enforced GC finished

+——{_calback_<——————{— Young gen shrink

|
_____  ——
—— LM [vaope| [ il
Migration 5 T e g

daemon g

Figure 6. An overview of JAVMM, built based on the
generic framework for application-assisted live migration. It
is a zoom-in view of Figure 2 with Java application being
the running application. JVM collaborates with the migra-
tion daemon through the LKM on behalf of Java application.
We use HotSpot JVM in our prototype, and provide most of
the functionalities required of JVM in a loadable agent writ-
ten by JVM Tool Interface (TT).

tion, since collection may be faster than network transmis-
sion (Observation 3).

Built based on the proposed application-assisted live mi-
gration framework, JAVMM enforces a minor GC only once
during migration, when running applications are notified by
the LKM to prepare for VM suspension. After the enforced
GC completes, the VM is suspended. In the Young gener-
ation, the Eden and To spaces are empty. The From space
may contain live data, which are the data surviving the en-
forced GC. These live data are the only Young generation
data that will be used when the VM resumes running in the
destination.

JAVMM makes sure to transfer these live data in the last
iteration, and throughout migration, it skips transfer of the
memory pages in the Young generation, even if they are
dirtied. JAVMM is thus beneficial for migrating Java VMs
with a large and frequently-dirtied Young generation; this
typically happens when the running Java applications are
characterized by high object allocation rates.

4.3.1 System Overview

In JAVMM, JVM provides all the assistance needed for VM
migration on behalf of Java applications; no modifications to
Java applications are required. Figure 6 shows how JAVMM
is built based on the proposed application-assisted live mi-
gration framework; our prototype uses HotSpot JVM (Open-
JDK 7) and its parallel garbage collector.

We enable JVM to communicate with our LKM and
collaborate with the migration daemon through the LKM.



LKM TI agent HotSpot

INITIALIZED: Create nlsk

MIGRATION STARTED: I . 9
skip-over areas': Young gen VA range?
—_—2 ° 5

First transfer bitmap update
VA range

More transfer bitmap updates

VA range left Young gen shrunk

ENTERING LAST ITER:
Ask apps to be prepared

do a minor GC!
GC is done!

skip-over areas?
prep for suspension! |

-~
ready for suspension! M)
SUSPENSION READY: VA range
Final transfer bitmap update
Ask migration to pause VM
RESUMED:
Notify apps VM resumed! resume Java threads!

Go back to INITIALIZED
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and our TI agent’s actions to fulfill the requirements on
application assisting in migration in our framework, shown
in the gray boxes of Figure 4.

To provide most of the functionalities required of JVM as
pluggable modules and minimize modifications to the core
HotSpot code, we implemented an agent using JVM Tool
Interface (TT) [4], a native programming interface for in-
specting and controlling JVM. The TI agent compiles to
a dynamic library to be loaded as Java applications run; it
runs in the same OS process as the JVM/Java applications.
JVM interacts with the LKM through the TI agent. When
the functionality required is beyond the current scope of TI,
we extend TI with the necessary modifications to HotSpot.

4.3.2 Workflow of JAVMM

Figure 7 shows the workflow of JAVMM. It details how
JVM accomplishes the actions required of an application
assisting in migration using our framework, sketched in the
gray boxes of Figure 4.

As a Java application runs, our TI agent is loaded. It
creates a netlink socket to communicate with the LKM.

The agent is notified by the LKM when migration begins,
and is queried for skip-over areas. It obtains the VA range
of the Young generation from JVM, and tells the LKM.
Based on the agent’s response, the LKM performs the first
transfer bitmap update. It clears the transfer bits of the Young
generation pages, so the pages will not be transferred even if
they are dirtied.

During migration, the agent notifies the LKM when mem-
ory pages leave the Young generation, so that the transfer
bitmap can be updated. In HotSpot, memory pages may be
freed from the Young generation at the end of a GC. We
slightly modify HotSpot to notify when this happens, based
on TT’s notification interface of GC events. A callback in our
agent is invoked to pass to the LKM the VA range with mem-

ory pages freed, and the LKM immediately sets the transfer
bits of the pages leaving the Young generation.

The agent is notified by the LKM again when migration
is about to enter the last iteration, and is asked to prepare
for VM suspension. It enforces a minor GC to collect Young
generation garbage; we modify HotSpot to ensure that this
GC is not silently ignored.?

As usual, Java threads execute to a Safepoint and pause,
and JVM performs a collection. Once the collection is fin-
ished, a callback in our agent is executed; at this time, the
Eden and To spaces are empty, and the Java threads are
still paused. Without giving JVM control to release the Java
threads from the Safepoint and resume their execution, the
agent notifies the LKM that the application is ready for VM
suspension. The Java threads are thus prevented from using
the heap, and this ensures the Eden and To spaces remain
empty until VM suspension is completed.

Along with the notification of the application being
suspension-ready, the agent passes to the LKM the current
VA range of the Young generation and also that of the oc-
cupied From space, which contains the live data surviving
the enforced GC. Based on these information, the LKM per-
forms the final transfer bitmap update. It considers the oc-
cupied From pages “leaving” the Young generation, and sets
their transfer bits, in order to ensure transfer of live Young
generation data in the last iteration.

Once the final transfer bitmap update is completed, the
migration daemon suspends the VM, and finishes migration
with the last iteration. When the VM resumes in the destina-
tion, our agent is notified by the LKM. It returns control to
JVM, which in turn releases the Java threads from the Safe-
point. The Java application then resumes execution with all
live data available in the destination.

5. Evaluation

We now evaluate JAVMM in comparison with Xen VM live
migration, which is a traditional pre-copy approach that is
agnostic of the applications running in the migrating VM.

5.1 Experimental Setup

Our evaluation uses both real-life applications and bench-
marks from SPECjvm2008 [8], the same benchmark suite
used to profile Java heap usage in Section 4.2.

We run each workload for 10 minutes in a VM config-
ured with 2GB memory and 4 vCPUs. Halfway through the
workload execution, we migrate the VM, between two HP
Proliant BL465c¢ blades in the same gigabit Ethernet LAN;
each blade is equipped with two dual-core AMD Opteron
2.2 GHz CPUs and 12GB RAM.

Alongside each workload, we run a custom analyzer that
sends out the number of operations completed by the work-

3HotSpot may ignore GC requests when several requests are enqueued
at about the same time due to simultaneous allocation failures in multiple
threads—only one of these requests needs to be executed.
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Figure 8. Progress of migrating a VM running the compiler
workload from SPECjvm2008. Each box represents a mi-
gration iteration; the width shows the duration and the area
shows the amount of traffic sent. In (b), the second last itera-
tion of JAVMM generates little network traffic while waiting
for the workload to execute to a Safepoint (0.7 sec) and a mi-
nor GC to be done (0.1 sec).

load once every second. We observe workload throughput
from outside of the VM using a time source that is not af-
fected by temporary suspension of the VM, which happens
before completing migration.

Each experiment is repeated at least three times. Unless
otherwise mentioned, we report the average of the measure-
ments, and show 90% confidence intervals in bar graphs.

5.2 Progress of Migration

We begin by analyzing how a Java VM is migrated itera-
tively by Xen and JAVMM, respectively. We use a VM run-
ning the compiler workload from SPECjvm2008 as an ex-
ample; see Table 1 for the workload description. Figure 8
plots the progress of migrating the VM in an experimental
run. We plot each iteration by a box, and show the duration
and the amount of traffic sent by the width and area of the
box, respectively.

In the first iteration, Xen and JAVMM perform equally
well. They both skip sending about S00MB of memory, as
shown in Figure 9. Xen skips over pages that are dirtied
before transmission, since these pages will be transferred
in the next iteration, which makes transferring them in the
current iteration redundant. Prototyped on Xen, JAVMM
also skips over pages that are already dirtied, and in addition,
all Young generation pages. The workload is using a 512MB
Young generation when migrated, and most of the space is
skipped over by both Xen and JAVMM in the first iteration.

Xen and JAVMM start to progress differently from the
second iteration. Although they both have more than S00MB
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Figure 9. Amount of memory processed when migrating a
VM running the compiler workload from SPECjvm2008. In
(b), the 4—-10th iterations of JAVMM each processes less than
2MB of dirty memory.

of dirty memory pending transmission in the second iter-
ation, they transfer different amounts. JAVMM sends only
64MB of the dirty memory, skipping over both repeatedly
dirtied pages and Young generation pages. Xen has to send
more than 200MB of the dirty memory, since it can only skip
over repeatedly dirtied pages.

Since JAVMM sends less dirty data, it finishes the second
iteration faster, during which less memory gets dirtied. As a
result, it has even less dirty data to send in the third iteration.
JAVMM reduces the amount of memory transfer effectively
as iterations progress. After 10 iterations, little dirty memory
remains to be sent. JAVMM then finishes migration with a
short stop-and-copy at the 11th iteration, using 17 seconds
and sending 1.6GB of network traffic.

However, for Xen, the amount of memory transfer does
not decrease over the iterations. Migration is forced to enter
stop-and-copy when it reaches the maximum 30 iterations
allowed by Xen’s default. The stop-and-copy takes long,
since over 400MB of dirty memory remains to be sent. Xen
finishes migration taking 58 seconds and sending 6.1GB of
network traffic, i.e., over 3x longer time and more traffic than
JAVMM.

5.3 Performance of Migration

Next, we evaluate JAVMM for workloads with different
characteristics of Java heap usage.

Workload characterization. When profiling sample work-
loads from SPECjvm2008 in Section 4.2, we found the
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Figure 10. Performance of JAVMM and Xen live migration for workloads with different characteristics of Java heap usage.

Max allowed Observed when migrated

Workload

Young gen  Young gen Old gen

(MB) (MB) (MB)

derby 1024 1024 259
crypto 1024 456 18
scimark 1024 128 486

Table 2. Experimental settings of workloads with different
characteristics of Java heap usage.

workloads fall in the following three categories according
to Java heap usage; see Table 1 for description of the work-
loads.

e Category 1. The workload has a high object allocation
rate, and uses mostly short-lived objects. As a result, the
Young generation quickly grows to the maximum size.
The derby, compiler, xml and sunflow workloads are in
this category.

e Category 2. The workload has a medium object alloca-
tion rate, and uses mostly short-lived objects. The Young
generation grows faster than the Old generation, albeit
not maximally utilized. The serial, crypto, mpeg and
compress workloads are in this category.

Category 3. The workload has a low object allocation
rate, and uses mostly long-lived objects. It thus has a
small Young generation and a large Old generation. Sci-
mark is the only workload in this category.

Our observations on object allocation rates are consistent
with the measurements by other researchers [33].

We evaluate JAVMM using one workload from each cat-
egory. For Category 1, which is the most favorable workload
scenario for JAVMM, we evaluate derby; in the workloads of
this category, derby uses the largest Old generation, which
JAVMM has to transfer. For category 2, we evaluate crypto.
For category 3, which is the least favorable workload sce-
nario for JAVMM, we evaluate scimark.

Derby, crypto and scimark are all CPU-intensive work-
loads. They use up 90% of CPU, and perform no network
I/Os. Table 2 shows their experimental settings. While each
workload can use a maximum 1GB Young generation, when

migrated, the Young generations of derby, crypto and sci-
mark are using 1GB, 0.4GB and 0.1GB of memory, respec-
tively.

How fast does JAVMM migrate a Java VM? Figure 10(a)
shows the time required to migrate the VMs running the
three workloads. JAVMM migrates the derby VM fastest,
taking only 12 seconds. Compared to Xen, which takes over
a minute to migrate the VM, JAVMM reduces the migration
time by 82%. JAVMM also achieves a 69% reduction of
migration time for the crypto VM. For scimark, JAVMM
can skip over little Young generation memory. It migrates
the VM using a comparable amount of time as Xen.

How much resource does JAVMM use for migration?
Figure 10(b) shows the amount of network traffic transferred
to migrate the VMs. For derby and crypto, JAVMM migrates
the VM sending even less traffic than the VM size, while Xen
sends up to 3.5x the VM size of migration traffic. Compared
to Xen, JAVMM reduces migration traffic for derby and
crypto by 84% and 72%, respectively. For scimark, JAVMM
achieves a 10% reduction of migration traffic.

Thanks to the reduced data transfer, JAVMM also uses up

to 84% less CPU time than Xen in migrating the VMs. In
these experiments, JAVMM uses at most IMB of memory
for the transfer bitmap and PFN cache.
How much does JAVMM affect application performance?
Figure 11 shows the throughputs of the workloads. For each
workload, the VM is migrated after the workload runs for
300 seconds. Using JAVMM, the workload experiences no
noticeable throughput degradation during migration, except
the short pause before migration finishes. When migrated by
Xen, the workload can experience an extended downtime.

Figure 10(c) shows the workload downtime. The down-
time includes the time spent in the last iteration and the re-
sumption time. The resumption time is required to reconnect
VM devices and activate VM execution in the destination;
this time is short, only about 170 ms in our measurements.
For JAVMM, the downtime also includes the time required
to finish the enforced GC while the workloads pause at a
Safepoint, as well as the time required by the final trans-
fer bitmap update. The final bitmap update is completed
quickly, within 300 us in all our experiments.



280 300 320 340 360 380 400
Workload runtime (sec)

(a) Derby

Xen ——
JAVMM —— 35

0.8
o o
& &
% 06 @
c j =
S S
g i
g 04r @
o joN
o o

02

0 Il Il Il Il Il Il Il Il

Xen
JAVMM ——

280 300 320 340 360 380 400
Workload runtime (sec)

(b) Crypto

Operations/sec

0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

Xen ——
B JAVMM ——

280 300 320 340 360 380 400
Workload runtime (sec)

(c) Scimark

Figure 11. Effect of VM migration on the throughput of running application, i.e., the number of operations completed per
second. Migration begins after the application runs for 300 seconds.

80

[J Xen
H JAVMM

Time (sec)

Traffic (GB)
OFRP NWMUIUIONO®©

xml derby compiler xml

(a) Total migration time

derby

(b) Total migration traffic

O Xen 14 - [ Xen
H JAVMM 12 E JAVMM
]
&2
[}
£
€
2
o
a
compiler xml derby compiler

(c) Workload downtime due to migration

Figure 12. Performance of JAVMM and Xen live migration for Category 1 workloads with different size Young generations.

Derby experiences 1.2 seconds of downtime when the
VM is migrated by JAVMM, 83% shorter than the 9-second
downtime when the VM is migrated by Xen. Derby dirt-
ies the 1GB Young generation rapidly, but JAVMM can still
reduce the amount of memory transfer iteratively, by skip-
ping transfer of Young generation pages. In the last itera-
tion, JAVMM sends only 11MB of dirty data skipping over
Young generation garbage, while Xen has over 900MB of
dirty data to be sent. JAVMM thus reduces the downtime
of derby significantly compared to Xen, even though it uses
0.9 second to finish the enforced GC; the GC duration can
be further shortened with Java heap fine-tuning or increased
parallelism. For crypto, JAVMM also achieves a 73% shorter
downtime than Xen.

However, for scimark, JAVMM imposes a 10% longer
downtime than Xen. Scimark is paused for 1.2 and 1.3 sec-
onds when the VM is migrated by Xen and JAVMM, respec-
tively. For this workload, JAVMM takes time to perform the
enforced GC, but the amount of data to be transferred in the
last iteration is not reduced. Most of scimark’s objects are
long-lived. They survive the GC enforced, and must be sent
in the last iteration.

Summary. JAVMM is advantageous in migrating the VMs
running derby and crypto, representatives of workloads with
a non-trivial object allocation rate and mostly short-lived
objects. Compared to Xen, JAVMM migrates these VMs
achieving shorter completion time, smaller network traf-

Max allowed Observed when migrated

Workload Young gen Young gen Old gen
(MB) (MB) (MB)

xml 1536 1536 28
derby 1024 1024 259
compiler 512 512 86

Table 3. Experimental settings of workloads with a high
object allocation rate and mostly short-lived objects.

fic and shorter downtime. Scimark represents workloads
with a low object allocation rate and mostly long-lived ob-
jects. Compared to Xen, JAVMM migrates this VM with a
slightly longer downtime, although it achieves comparable,
or slightly better migration time and traffic.

5.4 Impact of Young Generation Size

We conducted a second set of experiments for the workloads
most favorable for JAVMM, Category 1 workloads that has
a high object allocation rate and mostly short-lived objects.
We evaluate the benefit of using JAVMM for these work-
loads with varying sizes of Young generation, focusing on
the same three evaluation questions discussed in Section 5.3.

We experimented with derby and two additional work-
loads, xml and compiler, from Category 1. All three work-
loads are CPU-intensive and without network I/Os. We spec-
ify different maximum sizes for the Young generations of the



workloads, as shown in Table 3. When migration begins, the
Young generations of xml, derby and compiler all reach the
maximum sizes. They are using 1.5GB, 1GB and 0.5GB of
memory, namely, 75%, 50% and 25% of the VM memory,
respectively.

Figure 12(a) shows the time required to migrate the VMs
running the three workloads. With high object allocation
rates, the workloads dirty the entire Young generation space
rapidly. For Xen, the larger the Young generation, the more
dirty memory are repeatedly transferred, and the longer it
takes to migrate the VM. On the contrary, JAVMM mi-
grates the VMs with larger Young generations faster, since
more dirty memory are skipped over. JAVMM thus achieves
greater reductions of migration time for the VMs with larger
Young generations, than Xen. For the xml, derby and com-
piler workloads, JAVMM migrates the VM using 91%, 82%
and 69% less time than Xen, respectively.

A similar trend is observed for the amount of network
traffic sent for migrating the VMs, as shown in Figure 12(b).
For JAVMM, the larger the Young generation, the less mi-
gration traffic is sent, and it achieves a greater traffic reduc-
tion than Xen. JAVMM sends 93% less traffic than Xen to
migrate the VM running xml, which has the largest Young
generation of the workloads.

Figure 12(c) shows the downtime incurred by the work-
loads before migration is completed. When the VM is mi-
grated by Xen, the workloads with larger Young generations
incur longer downtimes. A large portion of the Young gener-
ation keeps getting dirtied until the VM is paused for the last
iteration, due to the workloads’ high object allocation rates.
Xen has up to 1.5GB of data to send in the last iteration,
resulting in up to 13 seconds of downtime.

For JAVMM, there is not a direct relationship between the
downtime and the Young generation size, since the down-
time is also affected by other factors, i.e., the duration of the
enforced GC and the amount of surviving data to be sent in
the last iteration. The three workloads experience about 1.2
seconds of downtime when the VM is migrated by JAVMM,
up to 91% shorter than their respective downtimes incurred
when migrated by Xen.

6. Discussions and Future Extensions

When to use JAVMM? JAVMM is most beneficial for the
cases which are most problematic to traditional pre-copy
approaches—when the VM to be migrated runs Java appli-
cations with large Young generations and high object alloca-
tion rates.

In some cases, JAVMM should be used with considera-
tion of the resulting application downtime. The first is when
the application requires long minor GCs, since the duration
of the enforced GC increases downtime. The second is when
the application has a high object survival rate. Many objects
may survive the enforced GC and must be transferred dur-
ing stop-and-copy. Scimark is such an example. The third is

when the application is read-intensive, for which traditional
pre-copy approaches can reduce downtime effectively; the
GC enforced by JAVMM is likely to increase downtime.
Use JAVMM for large VMs with fast networks. Our eval-
uation has shown benefits of JAVMM by migrating a 2GB
VM over a gigabit Ethernet. These benefits remain as VMs
configured with tens or hundreds of GBs of memory are mi-
grated over 10 Gbps or faster networks, since in such sce-
narios, the VM processing power, application memory foot-
prints and memory-dirtying rates likely increase proportion-
ally. As we continue to deploy JAVMM in upgraded environ-
ments, the underlying network may remain as much a bottle-
neck as in our current testbed.

Use JAVMM with other garbage collectors. JAVMM
works with garbage collectors that aggregate live data while
application threads are paused. With live data aggregated,
JAVMM can easily identify and transfer the data surviving
the enforced GC in the last iteration. Having application
threads paused during the enforced GC helps JAVMM en-
sure the heap space collected remains empty until the mi-
grated VM resumes in the destination. Such garbage collec-
tors are often referred to as compacting and non-concurrent,
and most Young generation collectors fall in this category.
We are particularly interested in porting JAVMM to run
with collectors that use non-contiguous VA ranges for the
Young generation for performance evaluation and optimiza-
tion. HotSpot’s garbage-first garbage collector [17] is one
such example.

Apply the proposed application-assisted live migration
framework to other applications. In addition to Java
applications, JAVMM can be used for applications writ-
ten in other languages that run on JVM and use JVM'’s
garbage collectors. For example, Jython, an implementa-
tion of Python, and JRuby, an implementation of Ruby, can
leverage JAVMM as it is. As a matter of fact, the proposed
framework can be applied to any application runtime that is
GC-based, provided that the runtime has a compacting, non-
concurrent garbage collector; the Microsoft .NET frame-
work is one such example. In all these applicable cases, only
the application runtime, not every individual application,
needs to be modified to run in our framework.

Our framework can also be applied to applications with
caching functionality; examples include Apache HTTP server,
which uses a web cache, memcached, a distributed caching
system, and Oracle Coherence, a proprietary distributed
caching system that replicates cache data for backup. The
application can specify a portion of its caching memory
space to be skipped over by the migration daemon, effec-
tively shrinking the cache in the destination. To reduce the
resulting performance impact, when informed by our frame-
work to shrink the cache, the application can purge the least
frequently and/or the least recently used cache data; appli-
cations with cache data redundancy like Oracle Coherence
can consider purging backup cache data. Note that after the



cache shrinkage, the remaining valid data need to be com-
pact in the caching memory space for our framework to work
well.

Support large and multiple applications. In our proposed
framework, the LKM updates the transfer bitmap on ap-
plications’ behalf. It can coordinate concurrent bitmap up-
dates from multiple applications, and prevent the applica-
tions from manipulating others’ memory. While we have im-
plemented the LKM to notify a set of applications by multi-
cast, care is needed to collect responses from all of the ap-
plications and handle any straggler. We are also investigat-
ing parallelization of transfer bitmap updates to handle large
skip-over areas efficiently.

Enhance the proposed framework for security. Since our
approach uses applications’ assistance during live migration,
it does require applications running in the migrating VM to
be benign and cooperative. While application authentication
is a broad subject that is beyond the scope of this paper,
there is room for framework enhancements towards security.
For example, in the current framework, if an application
does not cooperate by responding to the LKM’s queries
and requests at different stages of migration, the migration
process can incur unbounded delays. One way to prevent
this is to incorporate timeouts in the interactions between
the LKM and the applications.

Make the proposed framework intelligent. Our focus has
been providing mechanisms for live migration to use appli-
cations’ assistance in the proposed framework. We are ex-
tending our efforts to add intelligence into the framework,
devising policies based on which the framework can adapt
to workload and resource dynamics for best migration per-
formance.

For example, while an application may report all of its

skip-over areas to the LKM, the LKM can make a more in-
formed decision on which ones to skip transferring in a par-
ticular migration event, if information such as the sizes of
the VM and the skip-over areas, the current network speed
and the average memory dirtying rate is available and taken
into account. Another example is in the case of JAVMM.
We have identified workload scenarios in which JAVMM
should be used with consideration of the resulting applica-
tion downtime, as discussed above. We can incorporate this
knowledge back to the system. In the simplest form, we may
have the LKM turn off JAVMM and let migration proceed
with traditional pre-copying when those workload scenarios
are encountered.
Incorporate compression. Compression can reduce the
amount of memory transfer during migration, but it is CPU-
expensive. To exploit compression at a lower CPU cost, we
are extending the framework to compress only the memory
pages that have not been skipped over. The transfer bitmap
can use multiple bits per VM memory page to indicate the
suitable compression methods to apply before sending the
page contents over the network.

7. Conclusions

In this paper, we have proposed application-assisted live mi-
gration, skipping transfer of selective VM memory pages
based on application semantics. We have built a generic
framework for the proposed approach, which is then used
to build JAVMM, a system that migrates VMs running Java
applications skipping transfer of garbage in Java memory.
Our experimental results have shown that JAVMM can mi-
grate a Java VM with up to more than 90% less completion
time, less network traffic and shorter application downtime
than Xen live VM migration, which is agnostic of applica-
tion semantics. JAVMM also incurs a lower CPU cost than
Xen live VM migration and a negligible memory overhead.
In JAVMM, JVM is enabled to provide all the assistance
needed for migration on behalf of Java applications; no mod-
ifications to Java applications are required by JAVMM for
efficient migration of a VM.
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