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ABSTRACT

For better controllability and energy-efficiency, more vehi-
cle functions are being implemented via electronic control
systems in place of traditional mechanical control systems.
However, such transitions are creating new, unprecedented
risks such as software bugs or hardware glitches, all of which
can lead to serious safety risks. Recent real-world exam-
ples and research literature have been covering them un-
der the name of wehicle misbehavior. In this paper, we
present a new way of checking norm operations, called BAD
(Brake Anomaly Detection), which detects any vehicle mis-
behavior in the Brake-by-Wire system. We focus on the
braking system since it is a prototypical safety-critical and
cyber-physical system. We first propose a new method for
constructing norm models of braking and then show how
anomalies are detected by BAD using the constructed mod-
els. Finally, we discuss how to verify the results, especially
in the context of false positives. Our evaluation results show
that BAD can effectively detect various types of anomaly in
the braking system.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems]:

Real-time and embedded systems; C.4 [Performance of
Systems]: Reliability, availability, and serviceability

General Terms
Algorithms, Design, Reliability, Verification
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1. INTRODUCTION

Advances in vehicle technology have made vehicles effi-
ciently maneuverable. Sensors and drive-by-wire technolo-
gies — which replace the traditional mechanical control sys-
tems with electronic ones — improve response time, safety,
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control precision, and also reduce weight. Moreover, use of
wireless communication technologies for Vehicle-to-Vehicle
(V2V) and Vehicle-to-Infrastructure (V2I) further improves
safety, enhances traffic manageability, and offers many other
benefits.

Do these bring only benefits to vehicles and their drivers/
passengers? Recent real-world examples and research liter-
ature answer “No” to this question, showing that new types
of defects may lead to critical accidents.

As of January 2010, Toyota recalled approximately 7.5
million vehicles to resolve an “unintended acceleration” prob-
lem. At first, the reasons for this problem were thought to
be a floor mat problem, accelerator pedal problem, or driver
error of pedal misapplication. However, in October 2013,
a jury ruled against Toyota and found that software defi-
ciencies in the Throttle-by-Wire system could have caused
the unintended acceleration. Barr [1] testified that a single
bit flip or stack overflow can trigger unintended accelera-
tion. Moreover, he stated that more than 16 million com-
binations of task deaths can occur in thousands of different
states of the system, possibly causing an unpredictable range
of vehicle misbehavior.! In other words, software bugs and
deficiencies are now major problems in vehicles as they can
cause vehicle misbehavior. Moreover, not only software but
also hardware deficiencies can also cause the misbehavior [2].

The above examples reveal that, ironically, new in-vehicle
electronic components deployed for enhanced controllability
and safety may in fact expose drivers to more risk. The
main risk factor being not human error but vehicle misbe-
havior stemming from software bugs or hardware glitches.
Moreover, the unpredictable range of vehicle misbehavior
would mean drivers or even manufacturers would not know
when and how vehicles can go wrong. Thus, it is essential to
analyze and detect such vehicle misbehavior in real time.

To address the unpredictability of vehicle misbehavior, we
propose an anomaly detection method, called BAD (Brake
Anomaly Detection) for the braking system. Since anomaly
detection is to identify any observation which does not con-
form to an expected pattern or behavior, it is a natural
candidate for detecting unpredictable misbehavior. We will
focus on the Brake-by-Wire system, since it is the most im-
portant vehicle subsystem for safety.?

Wehicle misbehavior refers to the vehicles being maneu-
vered differently from the driver’s intention.

2Due to the safety-critical nature of braking, a fully elec-
tronic Brake-by-Wire system, which simply uses an electric
motor and no hydraulic brake fluid, is yet to be deployed in
passenger cars.
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Figure 1: Cyber-physical approach to checking the
norm operation of braking.

We take a cyber-physical approach by integrating and co-
ordinating cyber and physical parts to detect braking anoma-
lies as in Fig. 1. For the physical parts, there should be an
understanding of the vehicle’s braking characteristics and
the driver’s intention on braking. Moreover, other physical
parts such as the road pavement condition and weather may
also affect the braking characteristics. By taking them into
account in the cyber space, we abstract the physical prop-
erties using a tire-friction model and design BAD using the
abstracted model in detecting any braking anomalies.

The rest of the paper is organized as follows. Section 2
provides background of braking-related theories, and Sec-
tion 3 formally states our problem. Section 4 presents the
proposed consistency check system, and Section 5 describes
how norm models can be constructed. Section 6 presents the
details of BAD, and Section 7 describes the verification pro-
cess. Section 8 evaluates the proposed system using realistic
simulations, and finally, Section 9 concludes the paper.

2. BACKGROUND

While driving a vehicle, tire-road forces are the only forces
that a vehicle experiences from the road. When a force is
applied to the wheels during acceleration or braking, the
tires instantaneously slip on the surface by a certain level
and thus make the vehicle accelerate or decelerate. Tire-
friction models describe the relationship between such level
of slip and the applied tire traction forces.

2.1 Tire Friction Model

The tire-friction model describes the relationship between
the tire slip and the traction force (i.e., slip-force relation-
ship). The model can be used for traction control; for exam-
ple, the tire slip level is used as an input for ABS activation.

Various tire-friction models describe the slip-force rela-
tionship in a numerical form. One simple model is a linear
tire model which is commonly used for the vehicle bicycle
model. On contrary to linear tire models, nonlinear tire
models such as the Pacejka’s tire model [3] and the Brush
model [4] capture the effect of friction variations. These
nonlinear tire-friction models have been shown to suitably
match the field measured data [3-5,7].

2.2 Slip Ratio

The amount of tire slip is represented by a metric called
the slip ratio:

o= TetiOu =V __ (1)
max (Tef fWw, V')

where rey¢y is the rolling tire radius, w., the wheel angular
velocity, and V' the vehicle speed. During acceleration, the
instantaneous wheel speed, 7 s fw., is higher than V', so o >
0. On the other hand, the wheel speed drops below V' during
braking, leading to ¢ < 0. Due to the dynamics in driving,
and noise and error in measurements, it is unlikely that the
measured slip ratio is 0, i.e., o # 0.

Since the slip ratio is derived from the speeds of the vehicle
and wheels, this metric can be used to characterize the ve-
hicle behavior. Details of how the slip ratio can be acquired
through measurements are provided in Appendix A.

2.3 Normalized Traction Force

Normalized traction force is derived by dividing the ap-
plied longitudinal and lateral force on the tire by the normal
vertical load on the tire. The longitudinal force is generated
during braking or acceleration, while the lateral force is gen-
erated when cornering. Since our focus is on braking, we will
just consider the longitudinal forces on tires. The normal-
ized longitudinal force can thus be expressed as

where F, and F, represent the longitudinal and normal
forces acting on a tire, respectively. Since we only need
to extract the longitudinal force of the tires, in the remain-
der of this paper, we will use the terms “normalized traction
force” and “normalized longitudinal force”, interchangeably.
The normalized traction force is proportional to the brake
torque, which is, in turn, proportional to the brake pedal
position. Thus, this metric captures the driver’s intention
on braking. Appendix B details the derivation of normalized
traction force using in-vehicle sensor measurements.

2.4 Friction Coefficient

The maximum achievable traction force varies with the
road pavement condition that a vehicle is running on. When
running on roads with low friction (e.g., snowy roads), the
maximum degree of achievable normalized traction force is
lower than that for roads with high friction (e.g., dry roads).
Such maximum degree is defined as the friction coefficient,
i, 1.e., o = max |pz|. This implies that during acceleration,
pe cannot possibly exceed the road’s friction coeflicient, u,
whereas during braking, it cannot go below —u. Typically, p
ranges between 0 and 1, which varies in the range of 0.8~1,
0.4~0.7, and 0.1~0.3 for dry, wet, and snowy /icy pavements,
respectively.

The friction coefficient not only implies the limits of nor-
malized traction force but also affects the slip-force relation-
ship. More details on such a relationship will be provided
when we discuss the Brush tire-friction model in Section 5.1.
Since the friction coefficient is dependent on the road condi-
tion and irrelevant to the vehicle’s characteristics, this met-
ric can be considered as a representation of the environment.

3. PROBLEM STATEMENT

Due to the introduction of new technologies on vehicle
subsystems, many critical issues such as software bugs or
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Figure 2: Checking consistency between the
driver’s intention and vehicle braking behavior,
and brake data and environment.

hardware glitches are emerging and causing potential threats.
They can occur for numerous reasons and scenarios, and can
result in unpredictable braking misbehavior.

In the unintended acceleration example, there is a mis-
match between the driver’s intention to slow down the ve-
hicle by pressing the brake pedal and the actual vehicle be-
havior which was acceleration.

Due to such new possibilities of unintended behavior, a
vehicle should now be able to discover, via consistency check-
ing, any vehicle behavior that is inconsistent with the driver’s
intention or the environment. Our goal in this paper is thus
to construct a real-time consistency check system that can
reliably detect, in real time, any abnormal brake data from
the vehicle’s braking system. Abnormal brake data refers
to in-vehicle data that can trigger unintended and unpre-
dictable vehicle misbehavior. We define brake data as a tu-
ple of slip ratio and normalized traction force, (o, p=), each
representing the vehicle behavior and the driver’s intention,
respectively.

Using the measured brake data during acceleration or
braking, the norm model of braking can be constructed. By
using the thus-constructed norm model, we want to detect
any abnormal brake data that can lead to vehicle misbehav-
ior. Further verifications on false-positive results are done
using other in-vehicle sensor data.

4. CONSISTENCY CHECK SYSTEM

To detect vehicle misbehavior in braking, we propose a
consistency check system as shown in Fig. 2. The vehicle’s
behavior should be consistent with the driver’s intention as
well as with the driving environment (e.g., friction coeffi-
cient). To meet these requirements, the system cross-checks
the measured brake data in two different ways.

C1. Driver’s Intention vs. Vehicle Braking Behavior: The
system first checks whether the vehicle behavior is con-
sistent with the driver’s intention of braking. Through
measurements on the brake pedal position and brake
torque, the normalized traction force that represents
the driver’s intention on braking is determined. More-
over, the slip ratio value, which represents the vehicle
behavior, is also acquired via in-vehicle sensors. By
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Figure 3: Norm braking models, which are based
on the Brush tire-friction model and constructed
by extrapolating low slip measurements.

using a tire-friction model, which would be a reference
for the norm model for braking, consistency check be-
tween the driver’s intention (normalized traction force)
and the vehicle’s behavior (slip ratio) is performed.

C2. Brake Data vs. Environment: The system also checks
whether the brake data, (o, ps), is in accordance with
environmental conditions around the vehicle. As stated
in Section 2.4, the achievable degree of traction force is
dependent on, and limited by, the road’s friction coef-
ficient (typifying the driving environment). Exploiting
such a fact, if the measured brake data yields a fric-
tion coefficient that is inconsistent with the current
road condition or with the reality, we consider it as an
indicator of vehicle misbehavior.

S. NORM MODEL CONSTRUCTION

To address difficulties in predicting the range of vehicle
misbehavior, we take an anomaly detection approach, iden-
tifying any observations that do not conform to an expected
pattern or behavior. Thus, for anomaly detection, a norm
model describing the expected pattern or behavior should be
constructed beforehand. Since tire-friction models represent
the norm relationship between the slip ratio and the normal-
ized traction force (i.e., a norm slip-force relationship), we
use it as a basis for norm model construction.

5.1 Brush Tire-Friction Model

Among existing non-linear tire models, we choose the Brush
model [4] to represent the norm slip-force relationship. It is
a physics-based model and is shown to fit well with field
measurement data. The model describes the slip-force re-
lationship by constructing the model using two parameters:
tire stiffness, C', and friction coefficient, p. The tire stiffness
represents the braking efficiency and is dependent on infla-
tion pressure, tire wear, temperature, and tire type [5,7].
In other words, tire stiffness is a parameter that reflects the
vehicle characteristic in general and the tire characteristic
in particular. In addition, the friction coefficient represents
the limit of achievable traction and the road condition.

Given C and g, the Brush model expresses the relationship



between the traction force, p, and the slip ratio, o as

C,p o) =
pz"(0) {u.sign(o_)

Three different Brush models with the same C but differ-
ent p values are shown in Fig. 3 as an example. We define
each model as the norm braking model for a specific road
condition since it represents the norm slip-force relationship
under a certain p value. Moreover, we define the set of con-
structed norm braking models as a norm model set.

In the region where slip ratio is low (i.e., |o| & 0), ps &~
C'o, meaning that the slip-force relationship is linear with
its slope equal to tire stiffness,® but is independent of the
friction coefficient. This in turn means that, for a given
vehicle, norm braking models with different p values will all
have the same slip-force relationship in the low slip region.
Field measurements show that this relationship holds for
lo| < Olinear, where typically oiineqr ~ 0.02 [5,7,8]. We will
refer to the region where |o| < Gjineqr as the low slip region,
and |o| > Olinear as the mid-high slip region.

As the absolute slip ratio increases, the tire stiffness has
less influence on the slip-force relationship. The friction co-
efficient then takes over that role and affects the shape of
the slip-force curve. Therefore, the slip-force relationship be-
comes non-linear in the mid—high slip region. Accordingly,
as shown in Fig. 3, the norm braking models have different
values depending on the friction coefficient.

During ordinary driving, the absolute slip ratio rarely ex-
ceeds 1~2% (= 0linear), and thus the slip-force relationship
is usually linear [10]. Moreover, the tire stiffness is the same
for both acceleration (o > 0) and braking (o < 0), i.e., the
slip-force curve has a symmetric characteristic.

The benefits of using the Brush model to construct the
norm braking model are as follows. First, since it only has
two parameters to construct the model, it is easy to learn the
parameters and construct the norm model. Second, even in
normal driving scenarios when the absolute slip ratio is low
(0~2%), the entire slip-force curve can be constructed just
by measuring brake data in the low slip region and extrap-
olating it outside the measurement region. Lastly, due to
the symmetric characteristic of the slip-force curve between
acceleration and braking, the norm model of braking can be
constructed based on in-vehicle data while accelerating, and
be used while braking.

5.2 Tire Stiffness Identification

Norm braking models can be constructed once the tire
stiffness parameter of the Brush model is identified. The
other parameter, p, is then used as an input to construct
different types of norm models for different pavement condi-
tions as in Fig. 3. For example, a model with ;= 0.9 can be
interpreted as a dry road norm model, whereas a model with
p = 0.1 can be interpreted as a snowy road norm model.

Exploiting the symmetrical characteristic of the norm slip-
force curve, we can identify the tire stiffness, and accordingly
construct the norm braking model during acceleration. This
approach has the following advantages.

: 3
if o] <&

otherwise.
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e Since the construction is based on acceleration data,
any abnormal brake data generated during braking
does no harm to the norm model construction.

3For these reasons, the tire stiffness is also called the slip
slope [10].

Algorithm 1 Norm model construction and BAD in the low
slip region

1: Initialize:

©[0] =0

P[0] =61

: function TSUPDATE(z, y, €)
—1

K[n] 1+)\ilm7}f[[7rzl];1[]:—[z]]x[n]
P[n] + A"Y(P[n — 1] — K[n]zT[n]P[n — 1]).
¢[n] + ¢ln — 1] + K[nle[n]

2 > Update tire stiffness
3

4

5

6: return ¢[n]

7

8

9

: end function
: for n'" step do
measure and derive pg[n] and o[n]

10: z[n] « on]

11: yn] « pa[n]

12: if |z[n]| < olineqr then > Linear region
13: e[n] « y[n] — z[n)Tp[n — 1]

14: if x[n]>0 then > Tire stiffness identification
15: Chrorm < TSUPDATE(z[n], y[n], e[n])

16: else > BAD via error monitoring
17: if |e[n]| > Tanomaily then

18: go to Verification stage

19: else

20: Crorm < TSUPDATE(z[n], y[n], e[n])

21: end if

22: end if

23: end if

24: Construct norm model set based on Chorm

25: end for

e Most of the driving time is composed of acceleration
rather than braking, and hence, there should be suffi-
cient data to construct the norm model.

e Since acceleration and braking are performed in turn,
not simultaneously, the norm model constructed dur-
ing acceleration can be immediately applied to brak-
ing. This provides freshness in using the norm model.

Since each vehicle would have different tire stiffness, the
identification process should be individually performed to
construct its own norm braking model. Considering the fact
that the tire stiffness, C' is the slip slope in the low slip
region, we formulate the identification of tire stiffness as a
linear parameter identification problem:

yln] = 2" [n]e[n] + eln] (4)

where y[n] = p, is the measured normalized traction force,
z[n] = o the measured slip ratio, and ¢[n] = C the unknown
tire stiffness parameter. Note that this formulation is only
valid in the low slip region.

For identifying the unknown parameter C, we use the Re-
cursive Least Square (RLS) algorithm [11], which considers
the residual as a metric and aims to minimize the sum of
the squares in the modeling errors.

Other identification algorithms such as Total Least Square
(TLS) and Damped Least Square (DLS) can be used. In
contrast to RLS, TLS considers the true Euclidean distance
and performs an orthogonal linear regression, whereas DLS
identifies the parameter based on non-linear regression. Due
to such aspects of TLS and DLS, they might identify the tire
stiffness with higher accuracy than RLS.

However, for the purpose of real-time anomaly detection,
gain of such a higher identification accuracy from using TLS
or DLS is offset by their high complexity. TLS requires
an execution of the Singular Value Decomposition (SVD),



a non-recursive matrix decomposition, and thus would be
computationally expensive to be used for real-time identi-
fication. Moreover, in some cases, DLS can only find the
local minimum for curve fitting. Thus, to find the global
minimum, a large number of iterations and careful determi-
nation of the search start point are required.

RLS algorithms are known to have a computation com-
plexity of O(N?) per time iteration, where N is the size of
the data matrix. However, for our purpose of norm model
construction, we only use a single brake data at each step,
and thus incurs low computational complexity. We will later
show through evaluation that RLS is sufficient for identify-
ing the tire stiffness, and thus constructing norm models.

The tire stiffness identification process is shown in lines 9
to 15 in Algorithm 1. After initializing the unknown param-
eter ¢[n|=0, and the covariance matrix P[n] as P[0] = 01,
where § is a RLS parameter that determines the initial es-
timate of P[n], the measured slip ratio, z[n], and the nor-
malized traction force, y[n], is used for identification. First,
the identification error is derived using the measurements at
step n and the estimated parameter at step n — 1 as in line
13. Then, by using a TSUPDATE function, the gain vector,
K|n], and the covariance matrix, P[n], are updated so that
the tire stiffness, ¢[n], can be identified. This procedure of
tire identification continues iteratively during acceleration.

In the TSUPDATE function, we use an RLS parameter,
A, which is a forgetting factor. Since old information is less
representative for the current status, by giving exponentially
less weight with a factor of A™! to older error samples, their
influence is reduced, providing a fresher result. Moreover,
as samples get older, their effect on the result becomes neg-
ligible and can thus be discarded. As a result, only a limited
amount of recent data is required to be stored in the system.
A typical value of A ranges from 0.9 to 1.

Once the tire stiffness of the vehicle, Chorm, is learned,
by plugging in that and different friction coefficient values
into Eq. (3), a norm model set consisting of various norm
braking models can be constructed as shown in Fig. 3.

6. BAD - BRAKE ANOMALY DETECTION

Once the norm braking models are constructed, BAD can
be performed. BAD is divided into two parts: one for the
low slip region and the other for the mid-high slip region.
The reason for this division is that the two regions show
different characteristics of the slip-force curve’s linearity. An
overview of the proposed BAD algorithm is shown in Fig. 4,
and elaborated in the following subsections.

6.1 Low Slip Region

In the low slip region, the slip-force relationship is not
only linear but also independent of the friction coefficient.
In other words, the brake data is independent of the envi-
ronment, meaning no need to perform the consistency check,
C2. BAD, therefore, only performs consistency check, C1, be-
tween the driver’s intention (normalized traction force) and
vehicle behavior (slip ratio).

By using the linear relationship between the two elements
of brake data, BAD exploits the RLS algorithm in detecting
abnormal brake data. We also numerically show the strength
of BAD in the low slip region.

6.1.1 BAD via Identification Error Monitoring
The objective of BAD is to detect, if any, abnormal brake
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data that deviates greatly from the norm braking models.
Since the friction coefficient has negligible impact on the
slip-force relationship in the low slip region, a single norm
braking model is sufficient to represent all cases of norm
behavior.

BAD in low slip region is shown in lines 16 to 22 in Al-
gorithm 1, which basically runs the same RLS procedure
with an additional step of monitoring the degree of identifi-
cation error, |e[n]|, during braking. e[n] can be considered
as the residual which is not explained by the norm model.
Thus, the magnitude of the residual, |e[n]| is used as the
anomaly score of the examined brake data. If the score does
not exceed a pre-determined threshold, I'4nomaty, the data is
considered normal, and the tire stiffness parameter, Cyorm
is updated as in line 20. On the other hand, if it exceeds the
threshold and shows a high anomaly score, the brake data
might be an anomaly. To deal with possible false-positives,
a verification process is performed.

6.1.2 Properties of BAD in low slip region

BAD achieves high detection capability and accuracy by
amplifying the anomaly score caused by consecutive vehicle
misbehavior. Unusually large changes in the brake data are
also detected.

Let us consider a case where abnormal vehicle behavior
has occurred at step n, where y[n] highly deviates from the
expected value of p[n — 1]z[n]. According to the update
equations of e[n] and ¢[n], the anomaly score at the next
step, n + 1, can be derived as

eln+1= Ay —pln — Az + (L+r)ef],  (5)

where Az = z[n + 1] — z[n], Ay = y[n + 1] — y[n], and
k = K[n]z[n 4+ 1]. According to the update equation for
Kn], K > 0. Due to the abnormal behavior at step n,
e[n] would be larger than usual. Referring to (5), this value
gets amplified by 1 + k at the next step. In other words,



Input Brake Data

Weak Hypothesis Hypothesis Norm Braking cen Norm Braking
Learner 1 i N Model 1 Model N
W, Wit w, Wy,
w, w, w, w,

Combine Combine

4 ¥

Strong New New
Learner Classifier Estimator

4 4

Figure 5: Ensemble learning in general (left) and in
BAD (right).

even though I'4nomaty is set to a high threshold value to
lower the false positive rate, if there are consecutive abnor-
mal brake data, the score would continuously be amplified
in the following steps and eventually exceed the detection
threshold. Thanks to this error-amplification property of
BAD, the choice of I'unomaiy is not critical.

Another portion of e[n + 1] is Ay — ¢[n — 1JAz. That
is, if there are unusually large changes in x or y within the
sampling step, this can also be detected by BAD. Note that
in ordinary driving, the change of slip ratio and normalized
traction force would be small since the brake pedal is grad-
ually pressed. In other words, Az and Ay would be low.

6.2 Mid-High Slip Region

As the level of slip ratio increases and enters the mid—high
slip region (0 > Glinear), the slip-force relationship becomes
non-linear. In contrast to the low slip region, brake data
is dependent on the friction coefficient, thus requiring the
consistency check of not only C1 but also C2. Accordingly,
while BAD in the low slip region was able to be performed
using a single norm braking model, BAD in the mid—high slip
region cannot use the same approach.

One naive way of performing it would be as follows. First,
based on the constructed norm braking models in the norm
model set, derive the residuals of the measured brake data
from each of them.® Next, find the norm braking model
that has the minimum residual. Then, use the friction co-
efficient value of that norm model as the estimated friction
coefficient. Finally, check whether that estimated value is
consistent with the actual road condition.

However, deriving deviations from all the models in the
norm model set can be a bottleneck in the detection process.
Since p is a continuous value typically ranging from 0 to
1, the cardinality of the norm model set can be infinitely
large. In other words, to detect anomalies, the number of
comparisons can be infinite in the worst case. This would
incur high computation overhead and thus high detection
delay, which is not desirable in vehicles that are typically
resource-limited and require real-time detection.

Therefore, to perform BAD in real time by using only a
small size of the norm model set, we use a supervised ma-
chine learning technique called Ensemble Learning [12]. The
basic procedures for BAD in the mid-high slip region are

4Due to randomness in road conditions, the brake data can
conform to any of the possible norm braking models. There-
fore, we must compare the data with all of them.

Algorithm 2 BAD in mid-high slip region

1: Inputs:
(z[n], y[n]) < (a[n], pz[n])

2: Initialize:
Pifjl « f(¢iln]),jin=1,.. . K
wilj] < 1/K,j=1,.., K

3: if |z[n]| > olinear then > Non-linear region

4: for Each norm braking model i do > Weak Learner
5: $iln] < yln] — C;(aln])zln]
6: 7% + arg min w;[j]
J
7 w;[j*] + 1/K
8: Pi[5*] = f(i[n])
9: Pm < > wil5] P[4
J
10: H; ¢ 3 log 2
11: for Each training sample j do
12: wi [5] <= ws[jlexp(—P;[j]Hi)
13: normalize w;[j] so that > w;[j] =1
J
14: end for
15: end for
16: if max H; ~ 0 then > Check 1
17: go to Verification stage
18: else
19: test < > (Hipi)/ > H; > Strong Learner
20: if |pest — preqr] > 0 then > Check 2
21: go to Verification stage
22: end if
23: end if
24: end if

shown in Fig. 5. Ensemble learning combines multiple base
hypotheses, weak learners, in a weighted manner to form a
better hypothesis, a strong learner, and predicts the status.
In contrast to other supervised learning techniques such as
neural networks or support vector machines (SVMs), due to
its characteristic of combining weak learners, the hypotheses
space can be enlarged even with a concrete finite set of base
hypotheses. As a result, it incurs low computation overhead
and algorithmic complexity.

By exploiting the ensemble learning, we can achieve anomaly
detection even with a small norm model set. In this paper,
we construct the norm model set consisting of three different
models: dry, wet, and snowy models as in Fig. 3.

Of the various ensemble learning techniques, we choose
the Real AdaBoost algorithm [13] since our system deals
with continuous real values. We consider each norm model
in the set as a hypothesis (i.e., weak learner). In using Real
AdaBoost for BAD, there are certain requirements to be met.

First, the input should be represented as a probability
value. Moreover, the probability of the weak learner should
be at least 0.5.

6.2.1 Translation into a Probabilistic Value

To satisfy the requirements, the collected brake data, (o, ps)
are translated into a probability value so that it can be used
as an input to the learning process. First, the residual of
the measured brake data from a norm braking model ¢ with
1 = pi is computed as

¢i[n] = y[n] — Gi(z[n])z[n], (6)
where ) 5
normll _ Chormalol 3p4
Cl(a) - norm + 3pg - 27!/%2 ’ ‘O.‘ < Cnl:'rm
‘%"‘ , otherwise

(7)



which is derived from Eq. (3). Here, Chorm is the value ac-
quired from the norm model construction stage. The derived
residual, ¢;, is then plugged into the probability model and
translated into a probabilistic value as:

oo = (1+ ﬁ) 2, ®)

which basically follows the shape of a normal distribution
and has a minimum boundary of 0.5. As a result, the two re-
quirements for Real AdaBoost input are met. The standard
deviation of the probability model, ¢, is set as an increas-
ing function of the slip ratio as in §(o). This is to conform
to field measurements, showing that deviations in slip-force
relationship becomes larger as |o| increases [7].

Through translation, f(¢;) would now represent how well
the norm braking model ¢ fits the measured brake data. In
other words, the higher the value of f(¢;) is, the more prob-
able that the brake data was generated for a road with the
friction coefficient of ;.

6.2.2 BAD via Real AdaBoost

Once the measured brake data is translated into a prob-
abilistic form as an input for Real AdaBoost, BAD in the
mid—high slip region is performed according to Algorithm 2.

The ensemble learning algorithm takes K training samples
of brake data. For each norm braking model ¢, the likelihood
probability P;[j] = f(¢;) and the hypothesis weight w; 5] for
all K samples are stored in a table. Note that all brake data
used in this process has to satisfy |o[n]| > oiincar-

Upon collecting the (K +1)™ data, the ensemble learn-
ing process is executed. For each norm braking model 1,
the sample with the minimum weight in each table of ¢ is
replaced with the most recently collected data as in lines 7
and 8. This allows the learning process to take inputs of
brake data with higher probability in concluding the status.
Also, it allows freshness in the input data. Next, the weight
of the weak learner is updated as in line 10, and the weight
for each training sample is also updated. Using the derived
weights of each weak learner (i.e., norm braking model), a
strong learner is constructed through a weighted combina-
tion of the weak learners as in line 19. The strong learner
gives an estimation of the friction coefficient, piest-

Since the method exploits a combination of weak learners,
the result would be inaccurate if the diversity among them
is low. As an example, three weak learners with pu = 0.1,
0.2, and 0.3 will not be able to conclude on a status of p = 1.
On the other hand, three weak learners with u = 0.1, 0.4,
and 0.9 would have high diversity and thus be capable of
representing various statuses of u, spanning from 0 to 1.

Not only higher diversity but also more number of weak
learners also enhances the accuracy of BAD. However, since
BAD has a computational complexity of O(M N), where M is
the number of weak learners and N the number of brake data
samples, i.e., K, at each step, the computational complexity
would also increase. Therefore, to balance between accuracy
and complexity, we use three weak learners with © = 0.1, 0.4,
and 0.9.

To detect anomalies, we need two checks.

e Validity of weights (line 16): At least one hypothesis
in the norm model set should show a non-negligible
likelihood. Failing to meet this condition means all
hypotheses do not fit with the brake data. If the weak

learners are carefully constructed with high diversity,
such a case can only occur in case of anomalies.

e Conformance to the environment (line 20): The esti-
mated friction coefficient from the strong learner, fies¢,
should show a value similar to the real friction coeffi-
cient, fireai- frear would reflect the actual pavement
condition whereas ji.s¢ would be an estimate based on
the brake data. Any dissimilarity between pes: and
lrear means that the brake data is inconsistent with
the environment, thus being an anomaly.

The former requirement would be based on consistency check
C1, whereas the latter would be C2. If a possible anomaly
is detected by BAD, further verification is processed.

6.2.3 Comparison between pcs; and piyca

Usually, pest is expected to match piyeqi. However, for
vehicle misbehavior, brake data would be abnormal and thus
Hest F fhreal- S0, how should pireq: be obtained if we cannot
use brake data since it might not be trustworthy?

There are many published approaches that derive pirecar
without using them. In [14], the slip angle is derived by
measuring the lateral carcass detection through a wireless
piezoelectric tire sensor. By using the Brush friction model
as a reference, li,eqi is obtained through the derived slip an-
gle. In [15], optical sensors are used to measure and analyze
the spectrum of backscattered laser radiation from the road
surface to obtain pircq;. Cameras and online road informa-
tion can also be used. In [16], fireq: is derived by using ma-
chine learning classification. Besides camera images, online
road information from a Road Weather information System
(RWiS) can also help estimate the road condition [17].

Using one of these enumerated methods, ftreq can be ob-
tained and used for checking the similarity to peest.

7. VERIFICATION

During the acceleration phase, tire stiffness is identified for
norm model construction. Then, during the braking phase,
the identified parameter is updated and used for BAD. The
tire stiffness is dependent on inflation pressure, tire wear,
temperature, and tire type. Since these factors can vary with
time, there is a possibility that the tire stiffness changes be-
tween the acceleration and the braking phases. Even though
the tire stiffness was accurately identified and used for norm
model construction, if that value changes before entering the
next braking phase, a wrong norm model would be used for
detection until it is newly updated. A false-positive can thus
occur during the detection phase.

Thus, when an anomaly is detected, we further need to
check whether there is any significant change in the tire stiff-
ness between the end of the acceleration phase and the start
of the next braking phase.> To achieve this, we analyze how
the dependent factors have changed. Between the two con-
secutive stages of acceleration and braking, tire type and
wear are unlikely to change. So, we exclude them from the
possible candidates to change the norm model.

On the other hand, inflation pressure and temperature
may change between the two consecutive stages. Therefore,
we measure whether there were any abrupt changes in the

®Note that any changes during the braking phase need not
be considered since the tire stiffness is updated during that
phase as well (line 20 in Algorithm 1).



two values by monitoring the measurements from the in-
vehicle tire pressure monitoring sensor and in-tire temper-
ature sensor. If the changes in those values are high, the
detected anomaly is likely to be a false-positive. Otherwise,
it is declared as an anomaly.

False-positive results are likely to occur due to a change
in the tire stiffness during the period of transition from ac-
celeration to braking. However, since the transition period
is usually very short, such a false-positive would be unlikely.

8. EVALUATION

We now evaluate the proposed system. We first introduce
the evaluation settings, and then evaluate the validity of
norm model construction and the performance of BAD.

8.1 Evaluation Settings

We use CarSim [18] to obtain realistic sensor readings for
the slip ratio and the normalized traction force. CarSim
is high-fidelity commercial software that predicts the per-
formance of vehicles in response to control from the driver.
Due to its close agreement between simulation and field test
results, it is widely used by over 30 automotive manufac-
turers, 60 suppliers, 150 research labs and universities. It
exploits math models that characterize various aspects of
the vehicles to precisely reproduce their behaviors.

We employ an E-class sedan-type car with 225/60 R18
tires and a brake system with boost and thermal effects.
We adopt the following two driving scenarios, each of which
is fed as an input to the CarSim simulator to obtain required
sensor values.

e Ordinary driving: to obtain realistic values for ordi-
nary driving, i.e., with an absolute slip ratio of up
to 2%, we use the Environmental Protection Agency
(EPA) Urban Dynamometer Driving Schedule (UDDS),
which represents a city driving condition for 20 min-
utes [19].

e Aggressive driving: to build a driving scenario reflect-
ing aggressive acceleration and braking of vehicles, we
modify the vehicle maneuver so as to incur an abso-
lute slip ratio of up to 30%. This scenario is used to
evaluate cases with larger slip ratios.

To simulate a wide range of road conditions, we manually
change the friction coefficient parameter in the simulation
settings.

8.2 Validity of Norm Model Construction

Norm braking models are constructed by just measuring
the brake data in the low slip region and extrapolating the
data outside of the measurement region. In this subsection,
we evaluate whether such extrapolated norm models also
conform to the actual slip-force relationship in the mid—high
slip region. To do so, we plug in the Aggressive driving
pattern into CarSim to acquire simulated measurements in
both mid—high and low slip regions, and add Gaussian noise
to the simulated values to create realistic scenarios. The
values for the variances of Gaussian noise were determined
based on experimental data from [5,7].

Fig. 6 shows three norm braking models constructed dur-
ing the acceleration period solely by using measurements in
the low slip region. Sample-labeled plots represent the out-
puts from the simulation of Aggressive scenario on a dry
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Figure 6: Conformance of the constructed norm
model to the actual slip-force relationship.

road (1 = 0.8). Among the three norm models which are
extrapolations with different p values, the dry model with
1 = 0.8 is shown to fit well with the actual, Sample-labeled
measurements even for high slip regions. This reveals that
the proposed method of norm model construction is capable
of generating the entire norm slip-force curve based only on
measurements from the low slip region.

8.3 Efficiency of BAD

Next, we evaluate the performance of BAD in detecting
anomalies either by using identification error monitoring or
ensemble learning, depending on the slip ratio value. Since
the former focuses on low slip regions where |o| < diinear,
we use the Ordinary scenario. On the other hand, the latter
deals with high slip regions only occurring in extreme driving
cases, and hence, we use the Aggressive scenario for evalua-
tion. Abnormal brake data are generated by manipulating
the results obtained from simulation.

8.3.1 Detection for Low-Slip Region

In low slip regions, the identification error monitoring
scheme is exploited to detect any vehicle misbehavior while
braking. In Fig. 7, Norm-labeled data correspond to the
slip-force relationship with Gaussian noise added, which in-
deed captures the norm braking behavior. To examine the
efficiency of BAD, we inject falsified data in three different
ways to yield various vehicle misbehavior cases as follows.

T1. 0 = 0, po < 0. Even though the brake was applied,
the slip ratio continues to have values near 0. In such
case, the activation of ABS system would be bypassed
when needed.

T2. 0 < 0, pp ~ 0. The slip ratio continuously shows a
negative value (i.e., instantaneous decrease of wheel
speed) even though the brake is not applied.

T3. ¢ > 0, po < 0. The slip ratio shows a positive value
even during the braking phase. Such a case would
mean unintended acceleration.

These abnormal data were injected at 173.2, 543.5, 1178 sec-
onds, respectively, during the braking phase in the Ordinary
scenario. T1 is set to quickly variate from the true data,
whereas T2 and T3 are set to slowly drift away from it. A
forgetting factor of 0.9994 was used for the RLS operation.
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Figure 10: Hypotheses’ weights of weak learners and the output from the strong learner in BAD.

The results of running BAD in the low slip region are plot-
ted in Fig. 8, showing three notable peaks of anomaly scores.
Each of them occurs at the point where the falsified brake
data were inserted. Thus, by using BAD, the listed vehicle
anomalies can be detected with I'anomaiy = 0.3 (or a higher
value if the duration of misbehavior was increased). The ini-
tial anomaly score is slightly high due to insufficient data for
learning the tire stiffness, thus not being able to converge.
However, the convergence delay can be adjusted from the
RLS parameter P[0] = §1.

Fig. 8 also shows the magnified plot of anomaly scores dur-
ing 542~547 seconds. It can be seen that consecutive vehi-
cle misbehavior leads to continuous increase in the anomaly
score, conforming to the analysis on the error-amplification
property of BAD.

8.3.2 Detection for Mid—High Slip Region

In mid-high slip regions, ensemble learning is used to
learn the weights of each norm model and construct a strong
learner that concludes on the estimated friction coefficient.
Verification of the maximum hypothesis weight and com-
parison between the estimated and actual friction coefficient
are performed. To evaluate BAD in the mid—high slip region,
the Aggressive driving scenario was simulated using CarSim,
part of which was manipulated to emulate the vehicle mis-
behavior. The table size of weak learner was set as K = 5,
and three weak learners with = 0.1, 0.4, and 0.9 were used.
Fig. 9 shows the data points that were examined. Each data
point lies in the mid-high slip region and represents the fol-
lowing.

D1. Brake data that deviates significantly from all norm
models. This can happen if the vehicle does not get
enough slip for deceleration, even though the brake is
pressed hard.

D2. Brake data from a vehicle running on a dry road of
1=0.8. This would represent the case where the data
does not exactly conform to any of the norm models

but still has a valid friction coefficient.

D3. Even though the brake pedal is pressed little, the slip
ratio tends to have a value near —1, which in turn

might activate the ABS.

The anomaly detection results for the dataset are shown in
Figures 10(a) to 10(c), where the upper subplot shows the
hypothesis weights, i.e., weights of the weak learners, and
the lower subplot shows the estimated friction coefficient for
each brake data, i.e., the output from the strong learner.
Moreover, the results are summarized in Table 1.

Test No. H; validity pest Result
D1 Invalid 0.89 C1 Fail
D2 Valid 0.79  C2 Check (ftest = prear?)
D3 Valid 0.14  C2 Check (ftest = treal?)

Table 1: Summary of BAD in mid—high slip region

First, for the results from D1 shown in Fig. 10(a), al-
though pes: (= 0.9) seems valid, all the hypothesis weights
show a value near 0, meaning invalid hypothesis weights.
In other words, such data would be determined as anomaly
since Check 1 (line 16 of Algorithm 2) would fail.



Next, results for D2 and D3 are shown in Figures 10(b)
and 10(c), respectively. The system is shown to accurately
estimate the friction coefficient using the ensemble learn-
ing. Since the maximum hypothesis weights, max H;, for
both cases are non-negligible (i.e., valid hypothesis weights),
Check 1 will pass. Thus, Check 2 (line 20 of Algorithm 2)
should be performed further. Suppose D2 occurred while
driving on a snowy road yielding low fireqr, and D3 oc-
curred while driving on a dry asphalt road yielding high
treal- Then, through Check 2, since fiest # fireal, the brake
data would be declared as an anomaly.

9. CONCLUSION

Advanced vehicle technologies have brought new threats
and dangers such as sudden unintended acceleration or brak-
ing due to software bugs or hardware glitches. In this paper,
after constructing a norm braking model, we proposed a real-
time anomaly detection method, called BAD, which compares
the brake data with the norm model to detect any anoma-
lies in the Brake-by-Wire system. BAD exploits both RLS
error monitoring in low slip regions and ensemble learning
in mid-high slip regions, and is supplemented by a verifica-
tion process to further check the anomalies, thereby mini-
mizing false-positives. Our evaluation results demonstrated
that the proposed methods are indeed valid and efficient. In
the future, we would like to analyze root causes and con-
duct field measurements. Also, it would be interesting to
explore the recovery actions to be taken upon detection of
anomalies.
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APPENDIX
A. SLIP RATIO DERIVATION

The slip ratio, z[n] = o, is derived from the measured wheel
speed, T¢ffww, and the vehicle speed, V. The wheel angular
velocity, wq,, is measured by the wheel speed sensors that monitor
the time-varying magnetic flux of the tone wheel and convert it
to angular velocity. The effective rolling tire radius, 7., can be
casily measured as in [10] or assumed to be given [8]. Finally,
the vehicle speed can be measured using the non-driven wheel
speed sensors or an accelerometer with assistance from a carrier-
phase-based GPS system [8]. Such measurements are broadcast
on the Controller Area Network (CAN) bus for various vehicle
operations, and thus can be easily acquired.

B. NORMALIZED TRACTION FORCE
DERIVATION

To derive the normalized traction force, y[n] = pg, the longi-
tudinal and the vertical normal forces have to be calculated or
measured. The longitudinal force at each tire, F} ;, can be cal-
culated based on the rotational dynamics of each wheel as

Tengi i — Torake,i — lwtw,i
gine,i rake,t wWuw,i

’ Teff

where the subscripts i = fl, fr, rl, rr represent four wheels, Tepgine,i
denotes the engine torque, Ty,qke,; the brake torque, and I, the
inertia of the wheel. Here, Iy, rcff, and wy, ; are variables that
can be easily measured or assumed to be given [8]. The engine
and the brake torque values are typically available over the CAN
bus; if not, they can be derived by measuring the accelerator and
brake pedal position and converting them to torque values using
the driver demand torque map stored in each subsystem.

To derive the vertical normal force at each tire, the static force
model of the vehicle can be used as in [9]:

mgLy —mhV — CoV2hq
2L '

Fopr=Fapr = (10)

mgLy +mhV + CqV2hq (1)
2L '

where m denotes the vehicle mass, C; the aerodynamic drag pa-
rameter, g the acceleration of gravity, and Ly, L,, the distance
from the front and rear tire, respectively. Moreover, h and h,
denote the height of the center of gravity and of the aerodynamic
drag force. Each variable on the right-hand side can be measured,
calculated, and pre-determined [8,9]. Depending on the available
sensors, the normal force can also be derived by exploiting the
vehicle pitch dynamics [5] or wheel suspension dynamics [6]. The
details of these are omitted due to space limitation.

In conclusion, using various sensor measurements available via
the CAN bus, the normalized traction force can be determined.
The results in [5,6,8,9] show that the numerically derived values
match well with the actual ones.

Fz,rl = Fz,r'r =



