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Abstract—In this paper we investigate single-hop multicast
transmission in which randomly located multiple transmitters
multicast packets to a cluster of receivers. Packet retransmission
is known as a promising mechanism for improving the trans-
mission reliability. Our focus is on evaluating (i) the minimum
required delay (retransmission attempts), τ∗, for establishing an
outage-free multicast, where a transmitted packet is successfully
decoded by entire nodes in the cluster, and (ii) Multicast Progress
Radius (MPR) for a given delay constraint. MPR indicates how
far, on average, a packet can successfully progress in a cluster
without outage while the retransmission delay is restricted.
Assuming general fading distribution, we derive closed-form
expressions for the cumulative distribution function of τ∗, and
MPR. By simulations we confirmed our analysis and studied
the impact of several system parameters on the MPR. Based
on results of this paper we conclude that outage-free multicast
requires a very large number of retransmission attempts, thus
not practically achievable only based on retransmission.

I. INTRODUCTION

Multicast-enabled technologies such as IPTV, mobile TV,
and video conferencing provide bandwidth-efficient schedul-
ing and resource allocation for group-based data communi-
cations and multimedia applications [1]. Services including
geographic information updates, such as weather forecasting
and traffic reports also utilize multicast communications [2].
In Machine-to-Machine (M2M) and smart grid communica-
tions, energy tariffs and bills should be multicasted to many
destination nodes to facilitate optimal decision making and
environmentally-friendly usage of electric energy [3].

Understanding multicast transmission and its corresponding
fundamental limits, such as multicast throughput/capacity,
devising efficient scheduling techniques and access policies
are challenging tasks, see, e.g., [1], [4]. Multicasting implies
that the same transmitted packet has to be received by all
the destination receivers, in which re-transmissions might be
needed.

Queuing characteristics and capacity bounds of multicast
networks are among investigated issues in this research area,
see, e.g., [5], [6], [7]. The maximization of throughput under
system stability and packet loss is also investigated in [5] and
a threshold-based policy is proposed for ready receivers. For
the case of memoryless erasure channels, the authors of [6]
analyze the delay performance of a block-based random linear
combination of packets. Bounds on multicast capacity are
derived in [4], [8], [9] and the scaling laws are then provided
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to study the asymptotic behavior of the multicast throughput
when the number of nodes grows unboundedly. Moreover,
the authors of [10] proposed bounds for the minimum energy
required for reliably sending a multicast bit when bandwidth
and delay are immaterial.

The techniques of analyzing multicast throughput/capacity
in [4], [8], [9], [10] are the extensions of those in [11] that is
used to analyze the bound on unicast transport capacity in a
wireless ad hoc network. This parameter is a well understood
performance metric, particularly in wireless ad hoc networks,
and captures the aggregated achievable data rate weighted
with the communication distance between transmitters and
receivers. Nevertheless, outage probability and link failure –
which multicasting is prone to – are almost overlooked. On
the other hand, the transmission capacity suggested in [12],
is designed to incorporate the impacts of outage events and
link failures, and actually measures the area spectral efficiency
[13].

For the multicast scenario, the authors of [14] derived
the transmission capacity, which is defined as the maximum
number of multicast sessions per unit area the network can ac-
commodate subject to the multicast outage probability (MOP)
and decoding delay (number of retransmission attempts) con-
straints. Tools from the cluster point processes [15] are used
for modeling the multicast networks and deriving the MOP.
The path-loss attenuation is then shown to be the main source
of outage degradation that could be mitigated if the clusters
are judiciously tessellated for local retransmissions of packets.
Furthermore, the advantages of retransmission for boosting
multicast transmission capacity are emphasized.

Nevertheless, in the previous studies a number of essential
issues have unfortunately left behind. In essence, it is not obvi-
ous (i) how many retransmissions are exactly necessary before
achieving outage-free multicast cluster; (ii) how effectively the
outage-free zone in a cluster is affected by the retransmission
attempts.

A. Main Results

In this paper we aim to provide answers to the two above
fundamental questions. We borrow the Poisson Cluster Process
(PCP) introduced in [14] for modeling the multicast net-
work. However, instead of evaluating multicast transmission
capacity, in this paper we examine outage-free multicast and
multicast progress radius (MPR). MPR indicates the radius of
a cluster with vanishing multicast outage for given decoding
delay.
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The main contributions of this paper are (i) evaluating
the cumulative distribution function of the minimum required
number of retransmissions for establishing an outage-free
multicast, i.e., all the receiver nodes in a cluster are able
to successfully decode the multicast packet; (ii) obtaining a
closed-form expression for MPR for a given decoding delay.

In particular, the analytical results provided in this paper
suggest that although outage-free multicast is a desirable, it
may compromise the effective throughput of the network as
the number of retransmission attempts required is rather high.
Furthermore, the MPR increases quite slowly with increasing
number of retransmission attempts. Consequently, one of the
main conclusions that can be drawn based on the results in this
paper is that a simple retransmission strategy is most likely not
enough for achieving outage free multicast within a reason-
able number of retransmissions. Therefore, more sophisticated
scheduling strategies and network optimization and multi level
error correcting mechanisms might be needed.

II. MODEL AND DEFINITIONS

In this paper we adopt the system model in [14]. Here
however we utilize this model for investigating outage-free
multicast communications.

The considered multicast communication scenario com-
prises a number of source nodes indexed by i, Xi. Each source
nodes transmits packets to a set of destination nodes which is
referred to as a cluster. Associated with a source node i, we
define a disk Ri with radius s > 1 (in meters). Destination
nodes are randomly placed in each cluster i according to
homogeneous marked Poisson Point Process (PPP), Φri , with
intensity measure λr. For any two clusters i and i′, Φri and Φri′
are independent PPPs. This model allows clusters to overlap,
thus some clusters may contain other active sources and un-
intended destination nodes. In this model, spatial distribution
of the source nodes also forms a homogeneous marked PPP,
Φt, with spatial density λt.

Corresponding to Xi,

Z =
⋃

Xi∈Φt

(Φri ∪Xi),

is defined which forms a Poisson Cluster Process (PCP) with
density kλt, where k = πs2λr is the average number of
receivers. For brevity here we focus on cluster R0 associated
with source node X0 located at the origin. Due to stationarity
of PCP, the results can be easily extended to any source node
in the network coverage area.

Set Φr0 = {(Yj , Hj), Yj ∈ R0, Hj ≥ 0, j ∈ N+} is
a collection of 2-tuples each include the destination node,
Yj , and a corresponding fading mark, Hj , representing the
wireless channel power gain between X0 and Yj . Fading
is also assumed to be location-independent with probability
density function (pdf) of fH(.). Furthermore, transmitters form
Φt = {(Xi, H̃ij), Xi ∈ R2, H̃ij ≥ 0, i ∈ N+, j ∈ N+},
where H̃ij is independent of Hj and is equal to the interfering
channel power gain between transmitter i and receiver j at the
cluster R0 drawn from the same pdf, fH(.).

The quality of link j ∈ Φr0 is determined by Signal-to-
Interference Ratio (SIR)–assuming all transmitters have the
same transmission power and focusing on the interference-
limited scenario–defined as

SIRj =
Hj‖Yj‖−α

Ij
. (1)

In (1), ‖Yj‖ is the Euclidian distance between transmitter X0

and receiver Xj ; α > 2 is the path-loss exponent; ‖Yj‖−α
is the distance-dependent path-loss attenuation, and Ij is the
interference experienced at receiver Yj from all other active
transmitters in the network. We note that this path-loss model
is valid for ‖Yj‖ ≤ 1, however similar to [16], [17] we also use
it for ‖Yj‖ < 1 as it has a negligible effect in our derivations.

In this model time is slotted into frames and the sources
adopt slotted ALOHA protocol for multi-access, where each
source node independently decides whether or not to transmit.
Interference, Ij , is therefore

Ij =
∑

i∈Φt/X0

H̃ij‖Xi − Yj‖−α. (2)

Outage is experienced if SIRj < β, where β is the receiver
SIR threshold. Following the same line of argument as in [14],
one can show that it is sufficient to focus on the statistic of
I0–the aggregated interference measured at the origin.

Since the packets must be successfully decoded by all
the destination nodes, in some cases the packet needs to be
retransmitted. Maximum number of retransmissions is referred
to permissible decoding delay τ . Assuming unit time slot
duration, τ also represents the maximum number of retrans-
missions.

III. MULTICAST OUTAGE

Multicast outage is experienced where the transmitted
packet is not being successfully decoded by any of the
destination nodes in the corresponding cluster. A key perfor-
mance metric for evaluating the efficiency of the multicast
communications is the probability of multicast outage.

Let destination-connected set, Ω0, be the collection of all
destination nodes managed to successfully decode the packet
at least once during τ transmission attempts. Definition of the
destination-connected set is inspired by the similar concept
of the receiver-connected process originally proposed in [14].
Random variable δj is associated to destination node Yj as

δj =

τ∑
t=1

1 (SIRj ≥ β) , (3)

where 1(.) is an indicator function. Note that δj is the number
of occasions, where user j is able to successfully decode
multicast packets. Multicast outage occurs if for some j ∈ Φr0,
δj = 0. Therefore,

Ω0 = {j ∈ Φr0 : δj > 0}. (4)
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A. Effect of the Number of Retransmissions

Due to independent fading and negligible spatial correlation
in the received interferences, in each transmission attempt,
destination nodes in a cluster are independently marked by
P{SIR ≥ β}. Therefore, for a destination node located at Yj
in Ω0, it is independently marked by P{δj > 0}, where

P{δj > 0} = 1− P

{
τ∑
t=1

1 (SIRj(t) ≥ β) = 0

}
= 1− P {SIRj(t) < β,∀t = {1, . . . , τ}}

= 1−
τ∏
t=1

P {SIRj(t) < β}

= 1− (P {SIRj(t) ≤ β})τ

(a)
= 1− (EI [FH(β‖Yj‖αI0)])

τ
. (5)

In (5), (a) follows from the result of Eq. (36) in [14]. Hence
the density of the points in Ω0 at location ‖Yj‖ is simply the
multiplication of λr and (5).

The multicast outage probability is equal to the void prob-
ability of the Poisson process:

P{Ω0 = ∅} = exp

(
−2πλr

∫ s

0

P{δr > 0}rdr
)
. (6)

Substituting (5) in (6), following with straightforward mathe-
matical derivations, one can show:

P{Ω0 = ∅} = exp (−k[1− ER (EI [FH(βRαI0)])
τ
]) , (7)

where R is a random variable with the support interval [0, s]
and pdf of fR(r) = 2r/s2.

As it is seen in (7) by increasing number of retransmissions,
the probability of outage is also reduced. The question however
is “how many retransmissions are required to have an outage-
free multicast?”

The formation of the outage-free multicast coincides with
the event by which all the receivers in a typical cluster happens
to be able to successfully decode the multicast packet within
τ retransmissions.

Let τ∗ be a random variable denoting the minimum num-
ber of required retransmissions for attaining the outage-free
multicast and Ω0(t) be the destination-connected set for t
retransmissions, then

P{τ∗ = τ} = e−k
∞∑
n=1

kn

n!
P

{
N [Ω0(τ)] = n

,N [Ω0(τ − t)] < n,∀t ∈ [1, τ − 1]

}
, (8)

where N [A] is cardinality of set A. Note that τ = τ∗, if at
τ all the destination nodes in the cluster decode the packet
successfully for the first time.

For a given realization of Φr0, sets Ω0(t) are independent
for different values of t due to the independence of fading

fluctuations and interference. Therefore,

P{τ∗ = τ} = e−k
∞∑
n=1

kn

n!
P{N [Ω0(τ)] = n}

τ−1∏
t=1

P{N [Ω0(τ − t)] < n}. (9)

Using (5), (7),

P{N [Ω0(t)] = m} = e−2πλr
∫ s
0
P{δr(t)>0}rdr

×
(2πλr

∫ s
0
P{δr(t) > 0}rdr)m

m!
, (10)

where

P{δr(t) > 0} = 1− (EI [FH(βrαI0)])
t
.

The Cumulative Distribution Function of random variable τ∗

is then obtained using (10) in (9), which is valid for any fading
distribution.

B. Multicast Outage in Rayleigh Fading

For particular case of Rayleigh fading we can write

P{δr(t) > 0} = 1− e−πλtβ
2
α K̃(α)tr2

,

where K̃(α) = Γ(1 + 2/α)Γ(1− 2/α). Therefore,

P{N [Ω0(t)] = m} =
1

m!
e
−k+λre

−πλtβ
2
α K̃(α)ts2

λtβ
2
α K̃(α)t

×

(
k − λre

−πλtβ
2
α K̃(α)ts2

λtβ
2
α K̃(α)t

)m
.

Using this alongwith (9), a closed-form for P{τ∗ = τ} is then
obtained.

For other fading distributions, it might be hard to derive a
closed-form expression. Later in this paper we have proposed
a procedure to derive an approximation for P{δr(t) > 0},
which provides an approximation of P{τ∗ = τ}.

Looking at P{τ∗ ≤ τ} in Fig. 1 it is seen, as expected, that
retransmission in fact contributes toward reducing multicast
outage probability. Surprisingly however, for larger number of
re-transmissions, τ > 10, the rate of increase in the probability
of outage free multicast is rather low.

Based on the above we draw the conclusion that achieving
outage-free multicast only based on re-transmissions results in
very long delays due to very large number of required retrans-
missions. This significantly compromise multi-cast throughput
performance. In practice however, only a limited number of
retransmissions could be assumed feasible hence the notion
of partially outage-free multicast is considered as a practical
objective in designing multicast systems.
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Fig. 1. P{τ∗ ≤ τ} for the cluster radius s = 10.

IV. PARTIALLY OUTAGE FREE MULTICAST

The performance of partially outage-free multicast, for a
maximum value of τ , is then directly related to the percentage
of the destination nodes in a cluster that successfully decode
the transmitted packet. To analyze this, here is this paper we
define multicast progress radius (MPR) as a new performance
metric:

Definition 1: For a given maximum number of re-
transmissions, Multicast Progress Radius (MPR), η is defined
as the maximum average distance a multicast packet can
successfully traverse in each cluster:

η , E
[
max
j∈Ω0

‖Yj‖
]
. (11)

Remark: Please note that MPR is reminiscent of the notion
of progress for measuring single-hop unicast progress distance
toward the eventual destination in multi-hop ad-hoc communi-
cation networks [16]. Apparently, the fundamental differences
exist between the definitions and implications of MPR and
progress, while progress may not be a meaningful metric for
evaluating the performance of multicast in our system mdel.
Note that MPR is not a trivial extension of progress introduced
in [16] due to the following two reasons. Firstly, the multicast
packet should be received by several destination nodes in a
cluster so that the effective distance involves in the definition
is actually the maximum distances between the transmitter and
outage-free receivers. Secondly, since a packet is retransmitted
up to τ times, the progress should be examined against the
receiver-connected set Ω0 not the pool of all potential relay
nodes.

MPR in (11) indicates the average radius of the outage-
free multicast coverage for a given circular multicast cluster
of radius s. Therefore, MPR on average represents the perfect
cluster size. The following proposition provides a closed-form
for η.

Proposition 1: In a multicast PCP-based wireless network

η = s−
∫ s

0

e−2πλr
∫ s
l
r(1−(EI [FH(βrαI0)])τ )drdl, (12)

where λt is the source node density, s is the cluster radius,
λr is the destination node density in a cluster and τ is the
maximum number of retransmissions.

Proof: Similar to Section III here we also assume inde-
pendent fading fluctuations among transmitters and receivers
as well as negligible spatial correlation of the received interfer-
ences in different time slots. Therefore, in each retransmission
attempt, destination nodes in cluster are identically and inde-
pendently marked by P{SIR ≥ β} [14], [18]. Accordingly, it
is safe to assume that for an arbitrary destination node Yj in
Ω0, it is independently marked by

P{δj > 0} = 1− P

{
τ∑
t=1

1 (SIRj(t) ≥ β) = 0

}
= 1− P {SIRj(t) < β,∀t = {1, . . . , τ}}

= 1−
τ∏
t=1

P {SIRj(t) < β}

= 1− (P {SIRj(t) ≤ β})τ

(a)
= 1− (EI [FH(βrαI0)])

τ
, r ∈ [0, s], (13)

where (a) follows from the result of Eq. (36) in [14].
We define random variable L = maxj∈Ω0 ‖Yj‖. Its cumu-

lative distribution function is

P{L ≤ l} = E

 ∏
Yj∈Ω0

1(‖Yj‖ ≤ l)


= E

 ∏
Yj∈Ω0

eln 1(‖Yj‖≤l)


= E

[
e
∑
Yj∈Ω0

ln 1(‖Yj‖≤l)
]

= e−2πλr
∫ s
0

(1−e− ln 1(r≤l))P{δr>0}rdr (14)
= e−2πλr

∫ s
l
P{δr>0}rdr, l ∈ [0, s]. (15)

Substituting (13) into (15) yields

P{L ≤ l} = e−2πλr
∫ s
l
r(1−(EI [FH(βrαI0)])τ )dr. (16)

MPR is

η = s−
s∫

0

P{L ≤ l}dl,

which gives the result after substituting (16).
For a special case of Rayleigh fading (12) is reduced to

η = s−
s∫

0

exp

(
− λrβ

− 2
α

λtK̃(α)

τ∑
t=1

(
τ

t

)
(−1)t+1

t(
e−πλtK̃(α)β

2
α tl2 − e−πλtK̃(α)β

2
α ts2

))
dl (17)

For the general fading distribution, the following proposition
provides an approximation of the MPR.

Proposition 2: For a multicast PCP-based wireless network

η ' s−
∫ s

0

e
−πλr(s2−l2)

τ∑
m=1

( τm)(−1)m+1[1− (l2+s2)

2β
− 2
α

mπλt∆(α)]

dl,
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where λt is the source node density, s is the cluster radius, λr
is the destination node density in a cluster, τ is the maximum
number of retransmissions, and ∆(α) = E[H

2
α ]E[H−

2
α ].

Proof: We first obtain EI [FH(βrαI0)] by the following
steps

EI [FH(βrαI0)] = 1− EI
[∫ ∞

βrαI0

fH(h)dh

]
= 1− E

[∫ H
βrα

0

fI(x) dx

]

= 1− E
[
P
{
I0 ≤

H

βrα

∣∣∣∣H}]
(b)
≈ 1− E

[
e−πλtβ

2
α E[H

2
α ]H−

2
α r2

]
, (18)

where the approximation (b) follows from the dominant
interferer approach proposed in [17]. In particular, for a
realization H = h, transmitter i is a dominant interferer if
H̃i‖Yi‖−α > hr−α/β. Collecting all dominant interferers
together, event {I0 > hr−α/β} surely occurs in the case when
there is at least one dominant interferer.

Consequently, the probability of event {I0 ≤ hr−α/β} is
upper-bounded by the probability that there is no dominant
interferer, which is equal to exp(−λt

∫
R2 P{H̃‖Y ‖−α >

hr−α/β}dY ). Then, (18) is obtained after switching the inte-
gral to the polar coordination and performing some algebraic
manipulation. Equation (18) is in fact a tight upper bound on
EI [FH(βrαI0)], thus can be considered as an approximation
of EI [FH(βrαI0)]. Therefore,∫ s

l

r (1− (EI [FH(βrαI0)])
τ
) dr ≈

τ∑
m=1

(
τ

m

)
(−1)m+1

∫ s

l

r

(
E
[
e−πλtβ

2
α E[H

2
α ]H−

2
α r2

])m
dr.

(19)
The integral in (19) can be extended as∫ s

l

r

(
E
[
e−πλtβ

2
α E[H

2
α ]H−

2
α r2

])m
dr

=

∫ s

l

r

∫
h1

. . .

∫
hm

e−πλtβ
2
α E[H

2
α ]

∑m
n=1 h

− 2
α

n r2
m∏
n=1

dF (hn)dr

=

∫
h1

. . .

∫
hm

m∏
n=1

dF (hn)×

e−πλtβ
2
α E[H

2
α ]

∑m
n=1 h

− 2
α

n l2 − e−πλtβ
2
α E[H

2
α ]

∑m
n=1 h

− 2
α

n s2

2πλtβ
2
αE[H

2
α ]
∑m
n=1 h

− 2
α

n

(c)
≈ 1

2
(s2 − l2)

∫
h1

. . .

∫
hm

m∏
n=1

dF (hn)×{
1− 1

2
(l2 + s2)πλtβ

2
αE[H

2
α ]

m∑
n=1

h
− 2
α

n

}
, (20)
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Fig. 2. MPR vs. λt for different values of λr .

where the approximation (c) follows from the second-
order Taylor expansion for the exponential function
along with some straightforward manipulations. Thus,∫ s
l
r (1− (EI [FH(βrαI0)])

τ
) dr in (19) can be approximated

by

(s2 − l2)

2

τ∑
m=1

(
τ

m

)
(−1)m+1

(
1− (l2 + s2)

2
mπλtβ

2
α∆(α)

)
,

(21)
where ∆(α) , E[H

2
α ]E[H−

2
α ]. Substituting (21) into (16)

yields

P{L ≤ l} ≈ exp

{
− πλr(s2 − l2)

τ∑
m=1

(
τ

m

)
(−1)m+1

[
1− 1

2
(l2 + s2)mπλtβ

2
α∆(α)

]}
.

Finally, substituting this into (12) (Proposition 1) completes
the proof.

V. SIMULATIONS

Here our main objective is to examine the impact of
important system parameters including, τ , s, λt and λr, on
the MPR. The Monte-Carlo simulation set up is as follows.
We generated a million snapshots of the network including
the source and destined nodes. In each snapshot we randomly
locate source nodes in a disk with radius 10000 meters. Then
destined nodes are randomly scattered in disks with radius
s meters around each transmitter. Fading follows Rayleigh
distribution with zero mean and unit variance.

Fig. 2 shows the MPR versus the density of transmitters in a
multicast wireless network with cluster radius s = 10 and de-
coding delay τ = 5. The result of our analysis closely follows
the trend of the simulation results. Furthermore, by increasing
λt, MPR decreases due to the increasingly deteriorating effect
of the aggregated interference. For small values of λt, MPR is
not changed by varying λt. Note that as the density of receivers
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increases, MPR is also improved. The rate of improvement is
fast for small values of λr, but slow for large enough λr.

Fig. 3 shows MPR versus cluster radius and decoding delay
for λt = 10−3, and λr = 0.02. For the case of τ = 1, a cluster
with radius s/2 is shown to be a perfect design choice, and
hence the destined nodes located farther than s/2 will likely
suffer higher probability of multicast outages. Furthermore,
retransmissions are observed to enhance MPR, particularly for
rather large values of s.

VI. CONCLUSION

In this paper, we investigated the performance of a multicast
network constituting of many coexisted clusters. It was shown
that in general the network’s performance is reluctant to
increasing umber of retransmissions, although a small number
of retransmissions is capable of boosting the system outage
performance. We further defined and analysed the notion of
multicast progress radius (MPR) for a given delay constraint.
MPR measures the outage-free radius and indicates the per-
centage of a cluster that decode the packet for an affordable
delay. We derived a closed-form for the MPR. By simulations
we confirmed our analysis and studied the impact of several
system parameters on the MPR.
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