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Abstract—In future, a massive number of devices are expected
to communicate for pervasive monitoring and measurement,
industrial automation, and home/building energy management.
Nevertheless, such Machine-to-Machine (M2M) communications
are prone to failure due to depletion of machines energy if
the communication system is not designed properly. A key
step in building energy-efficient protocols for large-scale M2M
communications is to assess, model or characterize a network
energy consumption profile. To meet this need, we develop a
theoretical and numerical framework to evaluate the cumulative
distribution function (CDF) of the total energy consumption by
fully exploiting the properties of stochastic geometry. Unlike the
other existing approaches, we model the transmission energy
as a function of transmission power, packet size, and link
affordable capacity that is a logarithmic function of experienced
Signal to Interference plus Noise Ratio (SINR). Since it is very
difficult, if not impossible, to derive a closed-form expression for
the CDF, we derive numerically computable first- and second-
order moments of energy consumption. Applying these moments
we then propose Log-normal and Log-logistic distributions to
approximate the CDF. Our simulation results show that Log-
logistic almost precisely approximates the exact CDF.

I. INTRODUCTION

Numerous applications, such as remote e-health, smart
home, smart power grid, environmental monitoring, and in-
dustrial automation need ubiquitous sensing, widespread data
sharing and decisions, and human-free intervention [1], [2].
Managing wireless access by a massive number of machines
to meet a variety of QoS requirements including reliability,
security, latency, and energy consumption is one of the main
challenges in M2M networks [3], [4]. In this paper we aim to
characterize the energy consumption in a large M2M network.
Energy-based access control and resource allocation were

studied in [3]. However, only a single cell was considered
there. The authors of [5] introduced a new performance metric
called bandwidth-distance product to analyze the scalability of
a hierarchical cyber-physical system. To facilitate communi-
cations, aggregation nodes (ANs) – acting as data collectors
and perhaps compressors [6], [7] – are devised and deployed
to gather and process measurements before relaying to higher
hierarchical components [8]. Random deployment of ANs is
known to be effective and practical in designing (Machine-
to-Machine) M2M networks, and also to provide reliable data
communication links [8], [9]. Signal to Interference plus Noise
Ratio (SINR) distribution and coverage analysis are the main
subjects of [8], [9] where the properties of stochastic geometry

and Poisson Point Process (PPP) [10] are used.

As in [8], [9], we also use stochastic geometry for our analy-
sis due mainly to its flexibility in providing a holistic approach
for modeling the network, and its mathematical amenability
for analyzing the network’s vital performance metrics [11].
However, instead of coverage analysis focused in [8], [9]
our main goal here is on modeling and characterizing the
energy consumption in large-scale M2M communications. The
main motivations behind this investigation are: (i) M2M traffic
is basically comprised of a huge number of short sessions,
in spite of long duration sessions in human-driven traffic
[12], and hence the capacity may not be a prime concern;
(ii) Devices in machine-type communications are battery-
limited and in many cases it is technically and economically
difficult to recharge/replace the batteries; (iii) Green aspects
of future wireless communications are becoming part of the
objectives in engineering and optimization [1], [13]. However,
according to our best knowledge comprehensive assessment
of the energy consumption profile in a large-scale M2M
communications has not been done before. Futuristic network
planning is objectively entangled with energy efficiency, and
the results of this investigation will help establish systematic
guidelines for design of energy-efficient protocols. Further-
more, in scheduling and allocating resources, we need to
consider inherent/engineered limitations on the network energy
consumption profile as in current practices with capacity-
driven objectives using the coverage performance profile.

This paper makes the following contributions. By exploit-
ing stochastic geometry, we model and analyze the energy
consumed in each cell. The transmission energy captures
the capacity, transmission power and packet size. Laplace
transform and moments of the accumulated interference are
further computed. The CDF of the total consumed energy in
each cell is theoretically evaluated by deriving the Laplace
transform and a lower bound. We further consider use of a
log-normal and log-logistic distributions to approximate the
CDF of the consumed energy. Our simulation studies reveal
that log-normal approximations have acceptable accuracy and
follows the trend of the actual CDF. Furthermore, log-logistic
in general outperforms log-normal approximation, and almost
precisely fits the actual trends seen in simulations. Thus, one
may draw a conclusion that the network energy consumption
profile is Log-logistically distributed.
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Fig. 1. A typical M2M communications network consisting of a massive
number of machines and randomly deployed aggregation nodes

II. ENERGY CONSUMPTION IN M2M NETWORKS
Fig. 1 shows a schematic of the considered system model

in this paper. A M2M network consists of aggregation nodes
(ANs) and machines, both randomly scattered in the coverage
area. In such a topology, ANs form a homogenous PPP (HPPP)
Φ1 with density λ1. Similarly, machines belong to an HPPP
Φ0 independently of Φ1 with density λ0. We use subscripts
i and j to respectively refer to the i-th machine and the j-th
AN. Machines send the measured/sensed data to the closest
AN. Accordingly, the concept of the cell in our system model
is based on the geographical proximity, i.e., the cell associated
with AN j consists of the all machines associated with it.
We consider a wireless communication session of total

bandwidth ω Hz that is divided into W flat fading sub-
channels, each with a bandwidth smaller than the channel’s
coherence bandwidth. Let τ be the frame duration that is
divided into T equal parts, each of which is referred to as
a time slot. Each machine should transmit data to its serving
AN on a designated sub-channel and during a time slot.
The transmission energy is a function of data rate, power,

and packet size. Here we do not consider the drain efficiency of
the transmitter, energy of the sleeping mode, and the energy
consumed by processing components. But, this is generally
straightforward to incorporate these sources of energy con-
sumption (at least via appropriate approximations) into the
model. The data rate is a function of transmission power,
distance between sender and receiver, and noise power as well
as inter-cell interference, and is determined by the Signal-to-
Interference-plus-Noise Ratio (SINR). Let AN j receive data
from machine i, then SINR is given by

SINRij = P0
D(‖Xi − Yj‖)Hij

n + Ij(w, t)
, (1)

where n is an AWGN with power σ2. All machines transmit
packets with fixed power P0. Distance-dependent path-loss
attenuation is modeled as D(‖Xi − Yj‖) = min{1, ‖Xi −
Yj‖−α} where α > 2 is the path-loss exponent and ‖Xi−Yj‖

is the Euclidian distance between machine i located at Xi and
AN j located at Yj . Note that to prevent power amplification
for distances less than 1 meter, we used minimum operation.
Hij is the channel power gain between machine i and AN j
that is in general location-independent and drawn from a com-
mon pdf fH(.). Let Φj(w, t) be a set of machines that transmit
data on sub-channel w in time slot t. Also, let Φ̃j denote a
set of other-cell machines transmitting on sub-channel w in
time slot t as Φ̃j(w, t) =

{
i ∈ Φ0(w, t)

⋂
V

c
j(Φ1)

}
, where

Vj(Φ1) is the Voronoi cell induced by AN j and V
c
j(Φ1)

is the complementary set of Vj(Φ1). Note that only 1/TW
of all machines outside Vj(Φ1) use the same time slot and
sub-channel as machine i in Vj(Φ1). This is valid since ANs
assign time slots and sub-channels independently. Ij(w, t),
the accumulated interference from machines transmitting in
neighbor cells, i.e., {i ∈ Φ0

⋂
V

c
j(Φ1)}, on sub-channel w in

time slot t, is then formulated as

Ij(w, t) =
∑

i′∈Φ̃j(w,t)

P0D(‖Xi′ − Yj‖)H̃i′j ,

where H̃i′j independent of Hij for i ∈ Vj(Φ1) is the channel
power gain between machine i′ and the AN j that is drawn
from the pdf fH(.). The capacity link in bits per second
between machine i and AN j can be obtained from the
Shannon formula

Cij =
ω

W
log (1 + SINRij) .

Each machine has a packet of B bits to transmit to AN j on
the link with capacity Cij . Transmission energy, Eij , is then
the product of transmission power P0 and transmission time
B

Cij
:

Eij =
P0B

ω
W log (1 + SINRij)

. (2)

Let Σj denote the overall energy consumed by the machines
served by AN j which is, in general, a random variable. In
this paper, we want to characterize this random variable by
approximating its cumulative distribution function (CDF) or
complementary CDF (CCDF). We first model the interference
in M2M communications.

III. INTERFERENCE MODELING
Due to the stationarity of PPPs, we only need to focus on the

statistics of interference at the origin, I0(w, t). In the following
Proposition, we derive the Laplace transform LI0(w,t)(s).
Proposition 1: The Laplace transform of a random variable

I0(w, t), LI0(w,t)(s), is

=
∞∑

n=0

(−λ0/TW )n

n!

∫
R2

. . .

∫
R2

n∏
m=1

[1 − EH̃e−sP0D(‖xm‖)H̃ ]dxm

×
⎡
⎣1 −

n∑
m=1

(−1)m+1
∑

1≤l1≤l2≤...≤lm≤n

e−λ1S(xl1 ,xl2 ,...,xlm )

⎤
⎦ ,

where S(xl1 , xl2 , . . . , xlm) is the area of union section of m
disks located at xlm with the corresponding radius ‖xlm‖.
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Proof: By definition, the Laplace transform of the random
variable I0(w, t) is

LI0(w,t)(s) = E

∏
i∈Φ̃0(w,t)

EH̃i
e−sP0D(‖Xi‖)H̃i , (3)

in which we used the independence of the fading fluctuations
at different locations. Adopting Campbell’s Theorem, we get

LI0(w,t)(s) = E
0
1e

− λ0
T W

∫
Vc
0(Φ1)

[1−EH̃e−sP0D(‖x‖)H̃ ]dx

= E
0
1

∞∑
n=0

(− λ0
TW )n

n!

⎛
⎜⎝ ∫

Vc
0(Φ1)

[1 − EH̃e−sP0D(‖x‖)H̃ ]dx

⎞
⎟⎠

n

=
∞∑

n=0

(− λ0
TW )n

n!
E

0
1

∫
Vc

0(Φ1)

. . .

∫
Vc

0(Φ1)

×

n∏
m=1

[1 − EH̃e−sP0D(‖xm‖)H̃ ]dx1 . . . dxn

=
∞∑

n=0

(− λ0
TW )n

n!
E

0
1

∫
R2

. . .

∫
R2

n∏
m=1

[1 − EH̃e−sP0D(‖xm‖)H̃ ]

×1{(x1,...,xm)∈Vc
0(Φ1)}dx1 . . . dxn

=
∞∑

n=0

(− λ0
TW )n

n!

∫
R2

. . .

∫
R2

n∏
m=1

[1 − EH̃e−sP0D(‖xm‖)H̃ ]

×P{(x1, . . . , xm) ∈ V
c
0(Φ1)}dx1 . . . dxn

=
∞∑

n=0

(− λ0
TW )n

n!

∫
R2

. . .

∫
R2

n∏
m=1

[1 − EH̃e−sP0D(‖xm‖)H̃ ]

×
[
1 − P

{
n⋃

m=1

xm ∈ V0(Φ1)

}]
dx1 . . . dxn, (4)

where in the last step we applied Demorga’s law. Here E
0
1

denotes the expectation with respect to the Palm distribution
of the point process Φ1. Note that from the rule of the union
probability, we get

P

{
n⋃

m=1

xm ∈ V0(Φ1)

}
=

n∑
m=1

(−1)m+1
∑

1≤l1≤l2≤...≤lm≤n

×P {(xl1 , xl2 , . . . , xlm) ∈ V0(Φ1)} , (5)

in which

P {(xl1 , xl2 , . . . , xlm) ∈ V0(Φ1)} = e−λ1S(xl1 ,xl2 ,...,xlm )

(6)
where S(xl1 , xl2 , . . . , xlm) is the area of unioned section of
m disks located at xlm with the corresponding radius ‖xlm‖.
By substituting (6) into (5) and inserting the result in (4), the
desired result follows. Q.E.D.
Though Laplace transform entirely characterizes the statisti-

cal behavior of the interference in the network, unfortunately,
Proposition 1 may not yield a numerically computable integral
form. Consequently, an alternative approach is needed to
appropriately approximate the impact of interference on energy

consumption. A widely accepted and sufficiently accurate
approach is to approximate the true pdf using moments of
the random variable I0(w, t). For the case of Rayleigh fading,
our simulation results are plotted in Fig. 2. The histogram
is shown to have heavy-tailed skews. In this figure, we also
added fitted Gaussian and log-normal distributions. The log-
normal distribution is shown to be able to capture these two
phenomena, and hence it is used for approximating the in-
terference. To apply the Log-Normal approximation, we need
to evaluate the first and second cumulants of the interference.
The first-order cumulant, β1, is

β1 = P0
λ0

TW

∫
R2

D(‖x‖)P {x ∈ V
c
0(Φ1)} dx, (7)

where P {x ∈ V
c
0(Φ1)} = 1 − e−πλ1‖x‖2

. The second-order
cumulant or variance is obtained as

β2 = E

�=∑
i,i′∈Φ̃0(w,t)

P 2
0 H̃iH̃i′D(‖Xi‖)D(‖Xi′‖) (8)

+ E

∑
i∈Φ̃0(w,t)

P 2
0 D2(‖Xi‖)H̃2

i − (β1)2. (9)

It is then straightforward to verify

(9) = P 2
0 EH2 λ0

TW

∫
R2

D2(‖x‖)
(
1 − e−πλ1‖x‖2

)
dx − (β1)2.

Furthermore,

(8) = P 2
0

(
λ0

TW

)2 ∫
R2

∫
R2

D(‖x‖)D(‖x′‖) ×

P {(x, x′) ∈ V
c
0(Φ1)} dxdx′. (10)

where the term P {(x, x′) ∈ V
c
0(Φ1)} can be evaluated via

Demorga’s law as:

P {(x, x′) ∈ V
c
0(Φ1)} = 1 − P {x ∈ V0(Φ1)}

−P {x′ ∈ V0(Φ1)} + P {(x, x′) ∈ V0(Φ1)} . (11)

Substituting this in (10), (8) becomes

=

⎛
⎝P0

λ0

TW

∫
R2

D(‖x‖)dx

⎞
⎠

2

− 2P 2
0

(
λ0

TW

)2 ∫
R2

D(‖x‖)e−πλ1‖x‖2
dx

∫
R2

D(‖x′‖)dx′

+ P 2
0

(
λ0

TW

)2 ∫
R2

∫
R2

D(‖x‖)D(‖x′‖) ×

P {(x, x′) ∈ V0(Φ1)} dxdx′. (12)

It is then possible to apply [14] to calculate the above quantity.
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Fig. 2. Empirical histogram of the experienced accumulated interference.

IV. CDF OF TRANSMISSION ENERGY CONSUMPTION
We now evaluate the CDF of the total consumed energy in

a cell. For this goal we first derive the Laplace transform of
the total consumed energy at the typical cell. The following
proposition suggests an expression for its Laplace transform.
Proposition 2: LΣ0(s) is

LΣ0(s) =
∞∑

n=0

(−λ0)n

n!

∫
R2

. . .

∫
R2

e−λ1S(x1,x2,...,xn)

×
n∏

m=1

[1 − EHEIe
−s

P0B

ω
W

log
(
1+P0

D(‖xm‖)H

σ2+I

)
]dxm.

Proof: One may show that the Laplace transform of Σ0 is

LΣ0(s) = E
0
1e

−λ0
∫

V0(Φ1)
[1−EHEIe

−s
P0B

ω
W

log(1+SINRx) ]dx

.(13)

We then need to follow the lines in the proof of Proposition
1 to prove the proposition statement. Q.E.D.
Note that again it seems impossible to derive a closed-

form expression for the Laplace transform, thus making the
evaluation of the CDF very challenging. An alternative might
be to derive a lower-bound of the CCDF. The following
proposition provides a lower-bound of the CCDF of the
transmission energy.
Proposition 3: A lower-bound on CCDF of the transmis-

sion energy may be

P{Σ0 > x} ≥
∞∑

n=1

(−1)n+1 (λ0)n

n!

∫
R2

. . .

∫
R2

e−λ1S(x1,x2,...,xn)

×
n∏

m=1

EIFH

(
2

BW P0
xω − 1
P0

(σ2 + I)D(‖xm‖)
)

dxm.

Proof: First, let’s define set Φ̌0

Φ̌0(x) =
{

i ∈ Φ0/Φ̃0 :
P0B

ω
W log (1 + SINRi0)

> x
}

, (14)

which contains those machines associated with AN 0 with
energy consumption more than a given energy threshold x.

A simple manipulation reveals that this set can also be
expressed via the SIR requirement {SINRi < ρ(x)} where
ρ(x) is defined as ρ(x) = 2

BW P0
xω − 1. A lower-bound on

CCDF is then suggested as

P

⎧⎨
⎩

∑
i∈Φ0

⋂
V0(Φ1)

Ei > x

⎫⎬
⎭ ≥ 1 − P{Φ̌0(x) = ∅}, (15)

or equivalently,

P{Σ0 > x} ≥ 1 − Ee
−λ0

∫
V0(Φ1)

P{SINRx<ρ(x)}dx

, (16)

which leads to the statement after applying Taylor expansion
of the exponential function and following the lines in the proof
of Proposition 1. Q.E.D.
On the other hand, evaluating this lower-bound is again

rather complicated and may not end up with a closed-from
expression. We therefore approximate the true CDF with some
appropriate distributions. The log-normal distribution and log-
logistic distribution are among the options we will consider
with acceptable computational complexity.
Fig. 3 illustrates some simulation results on an empirical

histogram of the consumed energy in a cell. This figure also
shows the fitted log-logistic distribution. As shown in all
cases, the log-logistic distribution provides a very accurate
approximation, so we will henceforth assume that the actual
CDF is log-logistic. It is thus necessary to derive the first and
second moments as follows.
Let’s start with E

0[Σ0] which is equal to

= E

∑
i∈Φ0

1 (i ∈ V0(Φ1))×EHi0EI
P0B

ω
W log

(
1 + P0

D(‖Xi‖)Hi0
σ2+β2

)

= λ0P0E
0
1

∫
V0(Φ1)

EHEI
1

ω
W log

(
1 + P0

D(‖x‖)H
σ2+I

)dx,

Noting the convexity of
1

ω
W log

(
1 + P0

D(‖x‖)H
σ2+I

) ,
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Fig. 3. Empirical histogram of the total consumed energy in a cell.

with respect to fading power gain, we derive a lower-bound
E

0
1[Σ0] as follows

E
0
1[Σ0] ≥ λ0P0E

0
1

∫
V0(Φ1)

EI
1

ω
W log

(
1 + P0

D(‖x‖)EHH
σ2+I

)dx

= λ0P0E
0
1

∫
V0(Φ1)

EI
1

ω
W log

(
1 + P0

D(‖x‖)
σ2+I

)dx

= λ0P0B

∫
R2

EI
e−πλ1‖x‖2

ω
W log

(
1 + P0

D(‖x‖)
σ2+I

)dx.

This way E
0[Σ2

0] may also be lower-bounded as

≥ λ0P
2
0 B2

E
0
1

∫
V0(Φ1)

EI

⎛
⎝ 1

ω
W log

(
1 + P0

D(‖x‖)
σ2+I

)
⎞
⎠

2

dx

+λ2
0P

2
0 B2

E
0
1

∫
V0(Φ1)

∫
V0(Φ1)

EI

(
ω
W log

(
1 + P0

D(‖x‖)
σ2+I

))−1

ω
W log

(
1 + P0

D(‖y‖)
σ2+I

) dydx.

Having the moments, it is easy to provide an approximate CDF
with the log-normal distribution.
Fig. 4 shows the CDF of Σ0 for different densities of

machines and ANs1. For comparison we also show the log-
logistic approximation. The log-logistic distribution is shown
to be a very accurate and follow the trends observed in
the actual CDF. We also study the accuracy of log-normal
approximation in Fig. 5. It is observed that the log-normal
distribution is fairly accurate, particularly when λ1/λ0 is
small enough. Increasing λ1 reduces the accuracy of log-
normal approximation as it cannot exactly capture the phase
transition observed in the actual CDF. Note that this phase
transition is more pronounced for large λ1. Furthermore, by
increasing the path-loss exponent α, the accuracy of log-
normal approximation is also degraded. On the other hand,
comparison of Fig. 4and Fig. 5 indicates that the log-logistic
distribution is more accurate in approximating the true CDF
than log-normal distribution.
1For simulation we set W = 1028, ω = 10 MHz, T = 20 and σ2 =

10−12 Watts.

A. Discussions
One of the main applications of the findings of this paper

can be the design of the M2M systems. In the following we
provide a brief guideline for this goal. Assume the designer
is interested in designing the network by selecting the best
density of ANs. The optimization problem for this goal can
be designed as the following. The objective is to minimize
the deployment cost of the networks taking into account the
costs of installing ANs and backhaul links connecting them
to a central processor with specified capacities. The tentative
constraints are:

• The probability that the net energy consumption per cell
exceeds a given threshold has to be kept below a given
parameter. The provided analysis in this paper can be
used for the evaluation of this probability.

• All the machines should be able to successfully transmit
their data on the designated time-slot. Since, the link
capacity is a random variable there are possibilities that
some machines require longer time slot for the transmis-
sion, which results in a time-slot overflow phenomenon.
The designer has to guarantee that such events rarely
happen by properly selecting the number of ANs.

• The designated capacity of the backhauls connecting ANs
and central processors are limited. This may lead to the
occasions that the accumulated traffic at an AN exceeds
the corresponding backhaul’s capacity. One may decide
to increase the density of the ANs to reduce the traffic
originating from the associated machines.

Our future investigations will comprehensively deal with these
design problems.

V. CONCLUSIONS AND DISCUSSIONS
We borrowed tools from stochastic geometry and Poisson

point process to model and study energy consumption in
large-scale M2M communications by deriving the cumula-
tive distribution function (CDF) of energy consumption. The
transmission energy modeled in this paper was a function of
transmission power, packet size, and link affordable capacity.
We derived the laplace transform of the interference and then
approximated it via log-normal distribution. We also calculated
the Laplace transform of, and a lower bound on, the CDF
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Fig. 4. CDF of the total energy consumption per cell with Log-Logistic Approximation.
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Fig. 5. CDF of the total energy consumption per cell with Log-Normal Approximation.

of the energy consumption in a cell. An empirical histogram
revealed the suitability of the log-logistic distribution for
approximating the CDF of energy consumption.
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