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Abstract—The rapid growth of wireless mobile users and
applications has led to high demand of spectrum. Auction is a
powerful tool to improve the utilization of spectrum resource, and
many auction mechanisms have been proposed thus far. However,
none of them has considered both the privacy of bidders and the
revenue gain of the auctioneer together. In this paper, we study
the design of privacy-preserving auction mechanisms. We first
propose a differentially private auction mechanism which can
achieve strategy-proofness and a near optimal expected revenue
based on the concept of virtual valuation. Assuming the knowl-
edge of the bidders’ valuation distributions, the near optimal
differentially private and strategy-proof auction mechanism uses
the generalized Vickrey-Clarke-Groves auction payment scheme
to achieve high revenue with a high probability. To tackle its
high computational complexity, we also propose an approximate
differentially PrivAte, Strategy-proof, and polynomially tractable
Spectrum (PASS) auction mechanism that can achieve a sub-
optimal revenue. PASS uses a monotone allocation algorithm
and the critical payment scheme to achieve strategy-proofness.
We also evaluate PASS extensively via simulation, showing that
it can generate more revenue than existing mechanisms in the
spectrum auction markets.

I. INTRODUCTION

Radio spectrum has become a scarce resource due to the

rapid increase in wireless service demand. Conventionally,

radio spectrum is allocated in a centralized and static way, but

such a policy leaves a large portion of radio spectrum unused

in some geographic areas, while making the idle spectrum

inaccessible to new wireless application providers that do

not have licensed spectrum bands. Consequently, dynamic

spectrum allocation (DSA) is introduced to solve or alleviate

the problem of spectrum shortage.

Auction is a widely accepted way to tackle the problem

of spectrum re-allocation. The Federal Communications Com-

mission (FCC) has adopted it over two decades ago [10]. In

recent years, numerous small-scale spectrum auctions have

been held, and many spectrum auction mechanisms have also

been proposed [36], [37].

There exist three major difficulties in this new spectrum re-

allocation. The first difficulty comes from the spatial reusabil-

ity of each radio spectrum channel. The spatial reusability of

a channel can allow two bidders to use the same spectrum

simultaneously as long as they are geographically far enough

from each other (outside of the interference range). The second

is the seller’s incentive, which is widely studied for spectrum

auction mechanism design [1], [17]. If the seller does not

have enough incentive, he will not release his idle channels.

The last is strategy-proofness that comprises truthfulness and

individual rationality. Intuitively, truthfulness means that no

bidder can get a higher payoff by bidding a value other than

his true valuation for the goods, while individual rationality

means that each bidder gets non-negative utility when bidding

truthfully. In the radio spectrum auction market, the bidders

are rational, and may manipulate the auction by misreporting

to gain benefits. This misreporting, however, may lower the

seller’s revenue as well as the other bidders’ incentive.

Recently, protection of the bid-privacy in spectrum auction

has also become an important issue [14], [38]. In most existing

studies, a strategy-proof spectrum auction mechanism requires

each bidder to report his true valuation, but once the true

valuation of a bidder is reported in public, the other bidders

can infer the true type of that bidder merely based on the

outcome of the auction. In a spectrum auction, a channel is

licensed to the bidders for a certain period of time, and all of

the bidders should compete again for the usage of the same

channel at the end of this period. This makes the inference

of a bidder’s true type even easier. Moreover, the true type

is an important commercial secret for bidders because it can

reflect the potential value of the wireless service carried by

the spectrum.

When the above four difficulties are taken into account,

the problem of designing a privacy-preserving and strategy-

proof spectrum auction mechanism for revenue maximization

can be very challenging. Previously, cryptography was the

main tool for designing privacy-preserving mechanisms [15],

[24], but it often incurs high computation and communica-

tion overheads, and the performance of the resulting mecha-

nisms may suffer greatly. The recently proposed exponential

mechanism, which incorporates techniques originated from

differential privacy [23] and mechanism design, provides us a

preliminary help to solve the problem. Intuitively, differential

privacy means that a single change in the input data set

only has limited impact on the output. Therefore, hardly

can one make an accurate inference on bidders’ bids based

on the winners when the exponential mechanism is applied

as a large deviation of a single bid does not influence the

set of winners much, thereby protecting the bid privacy. To

achieve good performance in terms of revenue maximization,

however, the exponential mechanism often requires an enu-

meration of all possible auction outcomes [16], but it is well-



known that even computing the optimal solution for spectrum

allocation is NP-complete [6] in multi-hop wireless networks.

Besides, exponential mechanisms are often implemented in

an approximate truthful manner [23], [38]. Therefore, it is

necessary to design proper differentially private mechanisms

that can achieve strategy-proofness and approximate revenue

maximization.

In this paper, we study the problem of designing a dif-

ferentially private and strategy-proof auction mechanism for

spectrum reallocation. For simplicity of presentation, we con-

sider the case of bidding for a single channel. Each bidder is

interested in purchasing a short-term license for this channel

in a fixed geographical area. The bidders do not want other

bidders and external agents to know their bidding information.

Assuming that the seller has a priori knowledge of the

bidders’ valuation distributions, we first design a differentially

private and strategy-proof auction mechanism which achieves

near optimal expected revenue. This mechanism is based on

the exponential mechanism [16]. The near optimal privacy-

preserving mechanism can be viewed as a generalization of

the Vickrey-Clarke-Groves (VCG) mechanism. Here we adopt

the concept of virtual valuation, which is the surplus of the

true valuation and a function of valuation distribution, instead

of the bidders’ original value. This is a widely-used method

for the design of conventional mechanisms [13], [18]. It can

be shown that maximizing expected revenue is equivalent to

maximizing virtual social welfare. The near optimal privacy-

preserving mechanism assigns a probability of being chosen

for each possible outcome to enforce differential privacy.

Nevertheless, this approach is NP-Hard. In order to tackle

the problem of high computational complexity, we propose

an approximate differentially PrivAte, Strategy-proof, and

polynomially tractable Spectrum (PASS) auction mechanism.

PASS uses the technique of graph partitioning and the concept

of virtual channel to address the spatial reusability of the chan-

nel, and a monotone algorithm which combines the features

of exponential mechanism and greedy heuristic to allocate the

channel. The monotone allocation algorithm, together with the

payment rule proposed in [2], guarantees truthfulness. We also

implement PASS, and evaluate its performance extensively.

This paper makes the following main contributions.

• To the best of our knowledge, this is the first to design

differentially private, approximate revenue maximization

and strategy-proof mechanism for spectrum auction.

• We model the problem of spectrum reallocation as a

sealed-bid auction, and design a near optimal privacy-

preserving mechanism. This mechanism is proven to be

privacy-preserving, strategy-proof, and achieve a near

optimal expected revenue.

• By adopting the graph-partitioning technique [1], we

introduce the concept of virtual channel, and propose

PASS to reduce the computational complexity of the

exponential mechanism. PASS is proven to be a privacy-

preserving and strategy-proof auction mechanism, and

can achieve a sub-optimal revenue. The computational

complexity of PASS is O(n2), where n is the number of

bidders. This low computational complexity makes PASS

attractive for short-term lease and large-scale spectrum

auctions.

• We implement PASS, and extensively evaluate its perfor-

mance. Our evaluation results show that PASS achieves

differential privacy and a higher revenue than existing

approaches.

The remainder of this paper is organized as follows. In

Section II, we briefly review the related work in the areas

of incentive mechanism design, differentially private mech-

anisms, and privacy-preserving spectrum auction. Section III

presents the model and reviews some related solution concepts,

while Section IV details the design of a near optimal privacy-

preserving mechanism, and proves its properties. In Section

V, we detail the design of PASS and analyze its properties.

Section VI presents our evaluation results for PASS. Finally,

we conclude the paper with Section VII.

II. RELATED WORK

Numerous efforts have been made to design incentive

mechanisms [2], [25], [33]. Nisan [26] studied the general

combinatorial auction, while Goldberg et al. [11] studied

how to auction multiple digital copies. The authors of [19]

showed how to construct a mechanism with an approximation

algorithm in certain cases via linear programming. The authors

of [8] investigated the power of sampling in designing a

combinatorial auction mechanism. Dobzinski and Nisan [7]

proposed a new method for computing the lower bound for

a combinatorial auction mechanism with sub-modular valua-

tions.

McSherry and Talwar [23] first incorporated the techniques

of differential privacy into mechanism design and proposed

the first differentially private auction mechanism. They used

a differentially private pricing approach, but it could only

be applied to very simple settings. The algorithmic mech-

anism design community then focused on how to design

truthful and computationally efficient, differentially private

auction mechanisms. Leung and Lui [21] studied differentially

private and approximately truthful mechanisms in Bayesian

setting. Nissim et al. [28] modeled privacy loss with dis-

utility functions, and studied truthful mechanisms and their

applicability to electronic polling and digital goods’ pricing.

Chen et al. [3] also proposed a model to measure the privacy

loss, and studied truthful mechanisms and their applicability to

facility allocation and social choice. Nissim et al. [29] studied

how to convert approximately truthful mechanisms to truthful

ones with some privacy loss. In [3], [16], [35], differentially

private and truthful mechanisms were studied.

To the best of our knowledge, there only exist a few privacy

preserving spectrum auction mechanisms. Huang et al. [15]

proposed the first strategy-proof and privacy-preserving spec-

trum auction mechanism. Pan et al. [32] also studied the

problem of designing a privacy-preserving spectrum auction

mechanism to prevent malicious behavior of the auctioneer.

However, neither of them makes any performance guarantee

in terms of social welfare or revenue. The authors of [14] pro-

posed the first privacy-preserving spectrum auction mechanism

with a performance guarantee in social welfare. Nevertheless,



all of the above auction mechanisms used cryptographic tools,

and thus induce high computation and communication over-

heads. Zhu et al. [38] proposed the first differentially private

spectrum auction mechanism for revenue maximization, but

their mechanism achieves only approximate truthfulness.

III. PROBLEM FORMULATION

In this section, we present the auction model and some

related solution concepts.

A. Model

We model the problem of privacy-preserving spectrum al-

location as a sealed-bid auction. There is a “seller”, who is

the primary user. He has a single idle channel,1 and wants to

sublease his idle channel to n secondary users (e.g., wireless

service providers), who do not have license to use radio

spectrum. The secondary users are the “bidders”, and want to

buy the license of the idle channel from the seller to provide

services to their customers.

In the auction, the seller is trustworthy, and can act as the

auctioneer. The seller has a single channel C for sale, which

has the interference range d. Let N = {1,2, . . . ,n} be the set of

bidders. Each bidder i ∈N has a valuation vi for C , which is

private information that we want to protect. The valuation can

be calculated as the revenue to be gained by providing wireless

services using C . While the exact valuation vi is private

information, we assume that the distribution of vi, denoted

by Fi, is known to the seller, but the bidders do not have

information about each other’s valuation distribution [17]. Let

fi(v) = dFi(v)/dv be the corresponding density function. Such

information is acquired/inferred from the past transactions.

This is known as the Bayesian setting for spectrum auction [1].

In the auction, the bidders determine their own bids. Let
~b = {b1,b2, . . . ,bn} denote the bid profile which is based on

the bid types. Bidders submit sealed bids to the auctioneer

simultaneously. We assume that each bidder’s valuation and

bid are within a given range [vmin,vmax].
We use a graph G = (N ,E), called conflict graph, to

describe geographical information, where each node repre-

sents a bidder. Any pair of bidders who are separated by a

geographical distance smaller than the interference range of

C are said to have “conflict”, and are connected via an edge

in G . Any pair of bidders who are connected cannot win the

channel simultaneously.

Given the bid vector ~b and the conflict graph G , the

auctioneer determines the outcome of the auction, denoted by

~x(~b) = {x1,x2, . . . ,xn}, where xi is an indicator s.t.,

xi =

{

1, the channel is allocated to i;

0, otherwise.
(1)

The auctioneer also calculates the payment profile, ~p =
{p1, p2, . . . , pn}, where pi is bidder i’s payment. The auc-

tioneer’s revenue, R EV , can be computed as the sum of the

bidders’ payments: R EV = ∑n
i=1 pi.

1This is for the simplicity of presentation, the solution for multiple channels
can be easily generated from our solution.

Bidder i’s utility ui is defined as the difference between his

valuation times the corresponding indicator and his payment:

ui = vixi− pi. We assume that the bidders are rational and each

bidder’s goal is to maximize his own utility.

B. Solution Concepts

Here we review some important and useful concepts in

mechanism design and differential privacy.

Definition 1 (Dominant Strategy [31]). Strategy ai is a player

i’s dominant strategy if for any a′i 6= ai and any strategy profile

of the other players a−i,

ui(ai,~a−i)≥ ui(a
′
i,~a−i).

The concept of truthfulness is based on that of dominant

strategy. Intuitively, truthfulness means that revealing truthful

information is the dominant strategy for every player [22].

Definition 2 (Truthful Mechanism [17]). An auction is truthful

if and only if any bidder i’s (expected) utility of bidding its

true valuation vi is at least its (expected) utility of bidding any

other value bi,

ui(vi,b−i)≥ ui(bi,~b−i). (2)

An immediate theorem which relates the monotone algo-

rithm and truthful auction mechanism design [2] follows as:

Theorem 1. A mechanism is truthful in expectation if and only

if for any agent i and any fixed choice of bids by the other

agents ~b−i ,

1) xi(~b) is monotone nondecreasing in bi;

2) pi(~b) = biyi(~b)−
∫ bi

0 yi(z)dz, where yi(z) is the probabil-

ity that bidder i is selected when his bid is z.

Let’s review concepts related to differential privacy. Infor-

mally, differential privacy means that the outcome of two

nearly identical input data sets (differring in a single input)

should also be nearly identical. Formally,

Definition 3 (Differential Privacy [9]). A randomized compu-

tation M has ε-differential privacy if for any two input sets

A and B with difference in a single input, and for any set of

outcomes R⊆ RANGE(M),

Pr[M(A) ∈ R]≤ exp(ε)×Pr[M(B) ∈ R].

One important property of differential privacy is compos-

ability:

Corollary 1 (Composability [23]). The sequential application

of randomized computation Mi, each giving εi-differential

privacy, yields ∑i εi differential privacy.

There is also a relaxed definition of differential privacy:

Definition 4 (Approximate Differential Privacy [9]). A ran-

domized computation M has (ε,δ)-differential privacy if for

any two input sets A and B with a single data difference, and

for any set of outcomes R⊆ RANGE(M),

Pr[M(A) ∈ R]≤ exp(ε)×Pr[M(B) ∈ R]+δ.



Incorporating differential privacy, one powerful tool in

mechanism design is the exponential mechanism [16], [23].

Mapping the input data set A and an outcome r in the outcome

space R to a certain score function q(A,r), the exponential

mechanism εε
q(A) satisfies: Pr[εε

q(A) = r] ∝ exp(εq(A,r)).
This exponential mechanism guarantees a 2ε∆-differential

privacy, where ∆ is an upper-bound of difference of two data

sets. An immediate theorem can also be derived as [12]:

Theorem 2. When used to select an output r ∈ R, the expo-

nential mechanism εε
q(A) yields 2ε∆-differential privacy. Let

ROPT denote the subset of R achieving q(A,r) = maxrq(A,r),
then the exponential mechanism ensures that

Pr

[

q(A,εε
q(A))< max

r
q(A,r)− ln(|R|/|ROPT |)

ε
− t

ε

]

≤exp(−t). (3)

The goal of our auction mechanism design is to achieve

strategy-proofness, privacy preservation and revenue maxi-

mization. The problem of revenue maximization can be for-

mulated as a binary programming problem as:

Objective:

Maximize R EV =
n

∑
i=1

pixi

Subject to:

xi + x j ≤ 1, ∀(i, j) ∈ E ; (4)

xi ∈ {0,1}, ∀i ∈N , (5)

but this is known to be computationally intractable [34],

nor is it privacy-preserving. Therefore, we need to seek an

approximation approach.

IV. NEAR OPTIMAL PRIVACY-PRESERVING MECHANISM

We now present a near optimal privacy-preserving mecha-

nism. This mechanism is based on the exponential mechanism

proposed in [16], which is a strategy-proof mechanism that

maximizes the auctioneer’s expected free social welfare (see

[16] for the meaning of free social welfare). We first adopt

the concept of virtual valuation [27], which is essential for

revenue maximization. We apply the exponential mechanism

on the virtual valuations, which guarantees the maximum

expected free revenue while enforcing strategy-proofness and

ε-differential privacy.

A. Virtual Valuation and Virtual Surplus

We first adopt the concept of virtual valuation and virtual

surplus from [27]:

Definition 5. The virtual valuation of agent i with valuation

vi is:

φi(vi) = vi−
1−Fi(vi)

fi(vi)
. (6)

A company concept is the virtual bid, which is calculated

by plugging in the bid into Eq. (6). The virtual bid profile of

the bidders is denoted by ~φ(~b) = {φ1(b1),φ2(b2) . . . ,φn(bn)}.

Definition 6. Given valuations, vi , and the corresponding

virtual valuations, φi(vi), the virtual surplus of allocation ~x
is:

n

∑
i=1

φi(vi)xi. (7)

We further assume that the distributions of the bidder-

s satisfy the monotone hazard rate (i.e., fi(v)/(1− Fi(v))
is monotone non-decreasing), so that the virtual valuations

are monotone non-decreasing. This is a sufficient condition

for a strategy-proof mechanism [27]. We also assume that

for each bidder i, his virtual valuations are bounded by

[φi(vmin),φi(vmax)], and the difference between φi(vmax) and

φi(vmin) is denoted by ∆.
An immediate theorem is that any truthful mechanism has

an expected revenue equal to its expected virtual surplus:

Theorem 3. The expected profit of any truthful mechanism is

equal to its expected virtual surplus:

E[R EV ] = E

[

n

∑
i=1

φi(vi)xi

]

. (8)

Due to space limitation, we omit the proof here, but the

proof of this theorem can be found in [27].

B. Design Details

With the help of virtual valuations and virtual surplus,

the problem of designing privacy-preserving and near optimal

maximization spectrum auction can be solved with the expo-

nential mechanism. Following the guiding principle of [16],

the mechanism assigns each outcome a probability, which is

proportional to the exponential of its revenue, and then selects

an outcome accordingly. The mechanism also charges each

bidder a VCG-like payment to enforce strategy-proofness. The

detailed auction works as follows.

1) For each bidder i, calculate the virtual bid

φi(bi) = bi−
1−Fi(bi)

fi(bi)
. (9)

2) Select an outcome ~x satisfies Eqs. (4)and (5) with

probability

Pr[~x] ∝ exp

(

ε

2∆ ∑
i

φi(bi) · xi

)

. (10)

3) The payment for a winner bidder i is pi = φ−1
i (p′i), where

p′i =− E
~x∼EXPR

ε (φi(bi),~φ−i(~b−i))

[

∑
k 6=i

φk(bk)xk

]

− 2∆

ε
·S
(

EXPR
ε (φi(bi),~φ−i(~b−i))

)

+
2∆

ε
· ln
(

∑
~x

exp

(

ε

2∆ ∑
k 6=i

φk(bk)xk

))

, (11)

where

~b−i = {b1, . . . ,bi−1,bi+1, . . . ,bn} (12)



~φ−i = {φ1(b1), . . . ,φi−1(bi−1),φi+1(bi+1), . . . ,φn(bn)}
(13)

is the virtual bid profile of all bidders other than i,
EXPR

ε is the assigned probability distribution over the

virtual bid profile of all bidders in Step 2, and S(·) is

the Shannon entropy [5].

C. Analysis of the Near Optimal Privacy-Preserving Mecha-

nism

Here we analyze the properties of the near optimal privacy-

preserving mechanism. We first show that our design can

achieve near optimal expected revenue; we then show that

together with our VCG-like payment design, the mechanism

achieves strategy-proofness; we finally show that the mecha-

nism achieves ε-differential privacy.

1) Near Optimal Expected Revenue

By Theorem 3, we show that the expected revenue of the

mechanism is equivalent to the expected virtual surplus. There-

fore, we analyze the expected virtual surplus. One important

concept that can help us is the “free energy” in the literature

of physics and chemistry [30]. Similarly, we first define the

free virtual surplus (F V S )

F V S(F ) = E
~x∼F

[

n

∑
k=1

φk(bk) · xk

]

+
2∆

ε
·S(F ), (14)

where F is a distribution over ~x. We prove the following

theorem, which states that when the distribution F in Eq. (14)

is chosen as in Step 2 of the near optimal mechanism, the free

virtual surplus is maximized over the input bid profile of the

bidders

Theorem 4. Given bid vector ~b, F V S is maximized when

F = EXPR
ε (~φ(~b)),

and the maximum value is

2∆

ε ∑
~x

ln

(

∑
~x

exp
( ε

2∆
〈~φ(~b),~x〉

)

)

, (15)

where ~x∼ EXPR
ε (φi(bi),~φ−i(~b−i)).

Due to space limitation, we omit the proof here; see our

technical report for the details of the proof [39].

Now that the free virtual surplus is equal to the expected

revenue plus a term, the mechanism achieves a near optimal

expected revenue.

2) Strategy-proofness

With the above theorem, we are now ready to prove that

the near optimal privacy-preserving mechanism achieves truth-

fulness. Recall that in the VCG auction [4], each winning

bidder is charged the externality he exerts on the rest of the

bidders (e.g., the payment of a winner i is the difference

between the optimal social welfare of the bidders other than

i and the optimal social welfare of all the bidders minus i’s

bid); otherwise, the bidder is charged 0.

We start by proving that the near optimal privacy-preserving

mechanism achieves truthfulness.

Lemma 1. The proposed mechanism achieves truthfulness.

We then show that the near optimal privacy-preserving

mechanism achieves individual rationality.

Lemma 2. The proposed mechanism achieves individual ra-

tionality.

Due to space limitation, we omit the proof; see our technical

report for the details of the proof [39].

3) Differential Privacy

We finally state that the near optimal privacy-preserving

mechanism can preserve the bidders’ valuation privacy.

Theorem 5. The near optimal privacy-preserving mechanism

preserves ε-differential privacy for bidders’ valuation privacy.

This theorem is a corollary of Theorem 2.

V. PASS: A DIFFERENTIALLY PRIVATE AND

STRATEGY-PROOF SPECTRUM AUCTION MECHANISM

The near optimal auction mechanism introduced in the

previous section can protect the bidders’ bid privacy as well

as generate a near optimal expected revenue. Nevertheless, its

computational complexity is prohibitively high, thus making

it unsuitable for large-scale spectrum markets. Therefore, by

adopting the graph partitioning technique [1], and introducing

the concept of virtual channel, we propose PASS, which is

a polynomially tractable, differentially private, and strategy-

proof spectrum auction mechanism. PASS achieves good per-

formance in terms of approximate revenue maximization.

A. Design Rationale

PASS integrates the exponential mechanism with the greedy

heuristic for a single-minded combinatorial auction mecha-

nism [20] into spectrum auction to achieve both approximate

revenue maximization and differential privacy. Basically, PASS

chooses the winning bidders iteratively. In each iteration, each

remaining bidder is assigned a probability of being chosen, and

PASS chooses one of them as a winning bidder. The main idea

of PASS is to first apply the technique of graph partitioning,

and create a set of virtual channels that capture the conflict

among the bidders for each bidder, thus transorming the

spectrum auction into a single-minded combinatorial auction

like scenario. Finally, PASS computes the probability of being

chosen for each bidder based on a specific norm, and chooses

the set of winning bidders iteratively, and determines the

payment for each bidder.

B. Design Details

Following the guidelines in Section V-A, we describe PASS

in detail. PASS performs the auction in four steps. It first

partitions the conflict graph into uniform hexagons, thus divid-

ing the bidders into groups. Afterwards, PASS creates virtual

channels for bidders according to their geographical locations

and the conflict graph. PASS then computes the probability

of being chosen for each bidder, and chooses winning bidders

randomly based on the assigned probability iteratively. Finally,

PASS determines the payment for each bidder.



Phase 1: Graph Partition

PASS first partitions the geographical area [1]. Since the

interference range of C is d, PASS divides the entire area

into small hexagons with side-length equal to half of the

interference range of C (i.e., the side-length is d/2). Suppose

there are a total of m hexagons, and correspondingly, m bidder

groups, denoted by A = {a1,a2, . . . ,am}. Each bidder i belongs

to exactly one hexagon a j (i.e.,
⋃m

j=1 a j = N ). An illustrative

example of the partition with m = 24 is shown Fig. 1.

Fig. 1. An illustrative example of partition.

The partition satisfies that the maximum distance within a

single hexagon is less than or equal to d (i.e., the diametrical

length) so that all the bidders in a single hexagon are mutually

conflict (i.e., the conflict graph over a single hexagon is a

complete graph).

Fact 1. Any pair of bidders from the same hexagon are

conflicting bidders, and can not be allocated to the channel

simultaneously.

The graph partition technique is the basis of virtual channel,

and the intuition behind this partition is that in the single-

minded combinatorial auction, the approximation ratio is equal

to
√

k [20], where k is the maximum size of the bundles of all

the bidders; while in PASS, the maximum size of the bundles

is determined by the number of virtual channels each bidder is

interested in. By partitioning the geographical area, the number

of virtual channels each bidder is interested in is cut down.

Phase 2: Virtual Channel Assignment

With the partitioned graph, PASS introduces virtual channel

to capture the interference among the bidders. Specifically, a

virtual channel vc j,k ( j and k can be the same) is assigned to

bidder i if he satisfies one of the following two conditions:

1) i locates in a j, and he is in conflict with at least one

bidder i′ in ak (i.e., i and i′ cannot be granted the channel

simultaneously).

2) i locates in ak, and he is in conflict with at least one

bidder i′ in a j (i.e., i and i′ cannot be granted the channel

simultaneously).

For convenience, let ~r = {r1,r2, . . . ,rn} denote the set of

virtual channels assigned to each bidder, where ri is the

bundle of virtual channels assigned to bidder i. In other

words, i is interested in the bundle of virtual channels ri. The

formal process of assigning virtual channels to each bidder

is described in Algorithm 1, where DISTANCE(i, i′) is the

geographical distance of bidders i and i′. The assignment of

virtual channels guarantees that the intersection of the sets of

virtual channels assigned to a pair of conflict bidders is non-

empty.

Lemma 3. For any pair of bidders i and j, if i and j are in

conflict (i.e., (i. j) ∈ E), then ri∩ r j 6= /0.

Algorithm 1 Virtual Channel Assignment

Input: A conflict G = {N ,E}. A partitioned groups A .
Output: A vector of bundles of virtual channels each bidder

is interested in ~r.
1: ~r←~/0.
2: for all a j ∈ A ,ak ∈ A do

3: for all i ∈ a j, i
′(6= i) ∈ ak do

4: if DISTANCE(i, i′)≤ d then

5: ri ← ri∪{vc j,k},ri′ ← ri′ ∪{vc j,k}.
6: end if

7: end for

8: end for

9: return ~r.

Phase 3: Winner Determination

Based on the partitioned graph and each bidder’s interested

virtual channel. PASS first calculates each bidder’s virtual bid,

and then assigns each bidder i a probability of being chosen

with respect to a specific norm, which is the bidder’s virtual

bid over the square root of the size of the set of virtual channels

he is interested in, i.e.,

φi(bi)
√

|ri|
. (16)

PASS then chooses the winning bidders iteratively, and

maintains a set of remaining bidders, denoted by R . Initially,

R = N . In each iteration, for all the bidders i ∈ R , the

probability of being chosen is proportional to the exponential

of the norm defined in Eq. (16) times a constant; otherwise,

the probability is 0, i.e.,

Pr[W ←W ∪{i}] ∝







exp

(

ε′ φi(bi)√
|ri|

)

if i ∈ R ,

0, otherwise.

(17)

where ε′ = ε/(e∆ ln(e/δ)) and W is the set of winning

bidders. PASS then normalizes the values and chooses a

winning bidder accordingly, i.e.,

Pr[W ←W ∪{i}] =







exp
(

ε′·φi(bi)/
√
|ri|
)

∑ j∈R exp(ε′·φ j(b j)/
√
|r j |)

if i ∈ R ,

0, otherwise.

(18)

Suppose bidder i is chosen as a winner. Then, PASS removes

i from R . If bidder j ∈R is in conflict with i (i.e., ri∩r j 6= /0),

then j is also removed from R . PASS repeats this until there

is no bidder left in R . Selection of the winner is described

formally in Algorithm 2.

PASS takes O(n2) time to assign virtual channels. For

the winner determination, PASS takes O(n) time to assign

the probability of being chosen to each remaining bidder

in an iteration. Since there are at most n iterations, PASS



takes O(n2) to determine the winners. Therefore, the total

computational complexity of PASS is O(n2).

Phase 4: Payment Scheme

PASS’s winner determination algorithm is monotonic (see

the next subsection for a proof). According to Theorem 1, the

payment for a bidder i is

pi(~b) = biyi(~b)−
∫ bi

0
yi(z)dz, (19)

where yi(z) is generalized to be the probability that bidder i

wins the channel when his bid is z.

Algorithm 2 Differentially Private and Strategy-Proof Spec-

trum Auction Mechanism

Input: A conflict graph G = {N ,E}, a virtual bid vector
~φ(~b), and a vector of virtual channel requests ~r

Output: A set of winners W .
1: W ← /0,ε′← ε/(∆ · e ln(e/δ)) ,R ←N .
2: while R 6= /0 do

3: for all i ∈ R do

4: Pr[W ←W ∪{i}] =
exp
(

ε′·φi(bi)/
√
|ri|
)

∑ j∈R exp(ε′·φ j(b j)/
√
|r j |)

.

5: end for

6: Select i according to the computed probability distribu-

tion.

7: if i is selected then

8: R ← R \{i}.
9: for all j ∈ R do

10: if r j ∧ ri 6= /0 then

11: R ← R \{ j}.
12: end if

13: end for

14: end if

15: end while

16: return W .

C. Analysis of PASS

The properties of PASS are analyzed in this subsection.

1) Revenue

We first analyze the revenue guarantee of PASS. One of

our key steps is to provide an upper-bound for the size of the

virtual channels bundle assigned to each bidder.

Lemma 4. The size of the virtual channels bundle assigned

to each bidder is less than or equal to 12:

|ri| ≤ 12 ∀i ∈N . (20)

Proof. Consider the hexagon a10 in Fig. 2 as an example.

Due to its topological symmetry, we divide a10 into 12

identical right triangles. We take one of them and denote it

by T (as shown in the shaded area in a10). After some simple

calculation, we can conclude that all the bidders in conflict

with any of the bidders in T lie in the 12 colored hexagons,

and no bidder from other hexagon will be in conflict with

bidders in T. An arbitrary bidder i must be in one of the right

triangles, and hence |ri| ≤ 12.

Fig. 2. Bounding ri.

We are now ready to prove the revenue guarantee of PASS:

Theorem 6. With the probability of at least 1−1/nO(1), PASS

can generate a set of winners with a revenue of at least

R EV
∗
/12−O(lnn). Here R EV

∗
is the optimal revenue.

Due to space limitation, we omit the proof; see our technical

report for the details of the proof [39].

2) Strategy-proofness

Here we prove that PASS achieves strategy-proofness. Ac-

cording to Theorem 1, what we need to prove is that the

allocation rule of PASS is monotone (i.e., for each bidder i,
the probability that he is selected as a winner is monotonically

non-decreasing with his bid).

Lemma 5. For each bidder i, the probability that he is selected

as a winner is monotonically non-decreasing with his bid bi.

Due to space limitation, we omit the proof; see our technical

report for the details of the proof [39].

By the above Lemmas and Theorem 1, we can conclude

that PASS achieves strategy-proofness.

Theorem 7. PASS achieves strategy-proofness.

3) Differential Privacy

We finally prove that PASS can preserve the bidders’

valuation privacy.

Theorem 8. For any δ ≤ 1/2, PASS preserves (ε′(e −
1)∆ ln(e/δ),δ) differential privacy for bidders’ virtual bids.

Due to space limitation, we omit some intermediate steps;

see our technical report for the details of the proof [39].

VI. NUMERICAL RESULTS

We have implemented PASS (in a simulator) and extensively

evaluated its performance. Our evaluation results show that

PASS can not only generate a relatively high revenue, but also

achieves good differential privacy.

A. Methodology

To evaluate the performance of PASS in terms of revenue

maximization, we compare PASS with DEAR, which is a

differentially private and approximately truthful mechanism



for spectrum auction proposed in [38] and a truthful spectrum

auction mechanism (denoted as “TSAWAP”) proposed in [1].

The number of bidders is varied from 100 to 1500 with

a step of 100, and the bidders are randomly deployed in a

square area of 1000m×1000m. Each bidder has an interference

range of 425m [38]. We assume that each bidder’s bid follows

a uniform distribution over [0,1]. We vary the number of

channels from 5 to 15 with a step of 5. We set the privacy

constant ε to 0.1 and 0.5, and δ to 0.25.2 All the results are

averaged over 1000 runs.

We use two metrics to evaluate the performance of PASS—

–revenue and privacy. Revenue refers to the sum of charges

to the bidders. A mechanism guarantees good privacy if the

probability distribution over an arbitrary outcome has as small

a change as possible when any bidder unilaterally reports a

different bid. Following the definition of differential privacy,

we definite the the notion of Privacy Leakage (note that this

is different from the one proposed in [38]) to quantitatively

measure the privacy guarantee of PASS:

Definition 7 (Privacy Leakage). Given a mechanism M , let
~φ and ~φ′ be virtual bid vectors for bidding profiles ~b and ~b′,
which only differ in a single entry, respectively. Let O be the

outcome space The privacy leakage between the two bidding

profiles is the maximum of absolute differences between the

logarithmic probabilities of any outcome, i.e.,

max
o∈O

| lnπo− lnπ′o|, (21)

where π and π′ is the probability distribution over the outcome

space with respect to ~φ and ~φ′, respectively.

B. Revenue

We first evaluate PASS’s performances in terms of revenue.

Fig. 3(a) shows the comparison of PASS with DEAR and

TSAWAP, when the number of channels is 5. From these

results, PASS is shown to outperform DEAR and TSWAP in

nearly all the cases in terms of revenue. The only exception

is when the number of bidders is 500 (for both ε = 0.1
and ε = 0.5), DEAR can generate slightly more revenue than

PASS. This is because PASS relies on the existence of critical

neighbors to generate revenue. When the number of bidders

grows, PASS can find critical neighbors with higher bids.

Fig. 3(b) compares PASS with DEAR and TSAWAP, when

the number of channels is 10. From these results, PASS is

outperforms DEAR and TSWAP in nearly all of the cases in

terms of revenue. The only exception is when the number of

bidders is less than 1000 (for both ε= 0.1 and ε= 0.5), DEAR

can generate more revenues than PASS. This is because when

the number of channels increases, PASS cannot find enough

critical neighbors to generate revenue. When the number of

bidders grows, it is easier for PASS to find critical neighbors.

Fig. 3(c) shows the comparison results of PASS with DEAR

and TSAWAP, when the number of channels is 15. From these

results, PASS is shown to outperform DEAR and TSWAP in

2The range of each bidder’s valuation/bid, budget, and the value of ε, and δ
can be chosen differently from those used here. However, the results of using
different setups are similar to those shown in this paper. Therefore, we only
show the results for the above setup.

most of the cases in terms of revenue. The only exception are

when the number of bidders is less than 1000 (for ε= 0.5), and

when the number of bidders is than 1500 (for ε = 0.1), DEAR

can generate more revenue than PASS. This is also because

PASS relies on the existence of critical neighbors to generate

revenue. When the number of channels is large, PASS cannot

find enough critical neighbors.

All of the above figures show that PASS outperforms

TSAWAP because TSAWAP can only use critical neighbors

in the same hexagon to generate revenue while PASS can use

critical neighbors in other hexagons to generate revenue. This

leads to critical neighbors with higher bids.

In summary, PASS is shown to be suitable for large-

scale secondary spectrum markets, especially when spectrum

channels are scarce.

C. Privacy

Next, PASS is evaluated in terms of privacy preservation.

Fig. 4(a) shows the privacy leakage of PASS when ε = 0.1
and ε = 0.5 (under this setting, PASS is supposed to achieve

((e−1)/10e,0.25) and ((e−1)/2e,0.25) differential privacy),

respectively. The number of channels is 5. The results show

that PASS’s privacy leakage is always less than 0.04 when

ε = 0.1, and it is always less than 0.15 when ε = 0.5. The

results also show that when the number of bidders increases,

the privacy leakage of PASS decreases. This is because with

more bidders, the probability of each outcome becomes small-

er. Besides, we can see that the privacy performance of PASS

is far better than ((e− 1)/10e,0.25) and ((e− 1)/10e,0.25)
differential privacy when ε = 0.1 and 0.5, respectively. There-

fore, it is nearly impossible for any agent to learn the bid

information of the bidders when PASS is implemented.

Figs. 4(b) and 4(c) show the privacy leakage of PASS, when

the number of channels auctioned are 10 and 15, respectively.

The results show that the privacy leakage follows the same

pattern as the case of 5 channels. We can also observe that

PASS reduces privacy leakage when the number of channels

grows. This is because when the number of channels grows,

the number of winning bidders as well as the outcome gets

larger, thus preserving privacy better.

These results show that PASS achieves good differential

privacy.

VII. CONCLUSION

In this paper, we have presented a differentially private and

strategy-proof spectrum auction mechanism with approximate

revenue maximization, which is the first of its kind. Assuming

that the seller has prior knowledge of the bidders’ valuation

distributions, we have first presented a differentially private

and strategy-proof auction mechanism which achieves a n-

ear optimal expected revenue.To tackle the problem of high

computational complexity, we have then presented PASS, an

approximate differentially private, strategy-proof, and poly-

nomially tractable auction mechanism. We have theoretically

analyzed both mechanisms in terms of strategy-proofness,

revenue maximization, and privacy preservation. We have also

implemented and evaluated PASS, demonstrating its relatively

high revenue generation while preserving bid privacy.
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