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ABSTRACT

The ever-increasing popularity of location-based services (LBSs)

poses a serious threat to users’ location privacy. Numerous
efforts have been made to protect users’ location privacy
and also to limit the degradation of service quality resulting
from the additional protection layer. Most existing work,
however, relies on a trusted anonymization server, which
can itself become one source of untrustworthiness. In this
paper, we present EMP?—a new location privacy protec-
tion scheme based on a quadtree entropy map that enables
users to protect their location privacy relying only on their
smartphones. EMP? reduces the trusted computing base
(TCB) and is cost-effective, because it eliminates the re-
quirement of a trusted server from the protection system.
In addition, EMP? accurately estimates the uncertainty of
users’ intended destinations from an adversary’s perspec-
tive, and can properly adjust the protection level to defend
against sophisticated inference attacks based on the corre-
lation of user queries. Our evaluation of a prototype imple-
mentation demonstrates that EMP? can effectively protect
users’ location privacy with reasonable computation time
and resource consumption. EMP? complements the com-
mon trusted-server-based protection mechanisms and pro-
vides smartphone users a secure environment for their use

of LBSs.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks|: General—
Security and protection (e.g., firewalls); K.4.1 [Computers
and Society]|: Public Policy Issues— Privacy

General Terms
Privacy, Algorithm, Experimentation

Keywords
Quadtree entropy map, location privacy, location-based ser-
vice

1. INTRODUCTION

Location-based services (LBSs) respond to users’ queries by
making use of the location information contained in the
queries, providing location-aware replies and hence better-
customized service with no/little human intervention. As
smartphones have become increasingly popular and resource-
rich, LBSs have become more feature-rich and versatile. In
general, LBSs improve users’ daily lives, helping them find
restaurants with their favorite menus, obtain just-in-time
coupons from nearby shopping centers, and track their phys-
ical fitness [12]. However, it also poses a serious threat to
users’ location privacy. By collecting the location informa-
tion contained in the LBS queries, an adversary who has
compromised the LBS server can infer sensitive privacy in-
formation about the service recipients, such as their home
locations, life styles, and health conditions.

Simple anonymization techniques, such as replacing real users’
names with pseudonyms or removing all the user ID-related
information before sending a query to the LBS server, can-
not effectively protect the users’ location privacy. In effect,
a number of side channels (such as timestamps in queries,
spatial correlations among consecutive queries, and vehicle-
speed information) as well as sophisticated target-tracking
algorithms (e.g., the Multi Target Tracking (MTT) algo-
rithm [11,21]) allow the adversary to de-anonymize the LBS
queries with high statistical confidence, and thus infer the
query senders’ privacy information.

There have been a number of proposals to mitigate the
threat without significantly degrading the quality of LBS
[23]. Most existing work, however, assumes the existence
of a trusted server to protect the users’ location privacy
via (%) rendering the users’ queries k-anonymous [4,8,10,14,
18], (#) weakening the adversary’s ability to link multiple
pseudonyms to the same user [1], or () hiding the real
queries behind the predicted ones [17]. These approaches,
albeit effective, have some common problems: the trusted
server is a single point of failure, and the assumed long-term
trustworthiness and considerable cost related to the server
make it difficult to deploy them. Other approaches have
been proposed to overcome these drawbacks by eliminat-
ing the assumption about the trusted anonymization server,
including k-anonymity [15, 20], m-unobservability [3], and
cryptographic transformation [9,16,19]. However, a protec-
tion system that (7) can effectively weaken the adversary’s
ability to infer users’ intended destinations, (i:) only relies
on a small trusted computing base, (747) is cost-effective, and



(iv) achieves high efficiency in utilizing limited smartphone
resources still remains difficult to design, implement and de-

ploy.

In this paper, we present EMP?—quadtree Entropy Map-
based location Privacy Protection—as a realization of the
aforementioned location privacy protection. EMP? makes
use of location entropy as its privacy metric. Briefly, lo-
cation entropy represents the uncertainty of the user’s in-
tended destination, given that the user is at a certain loca-
tion. This information can be derived from real-world users’
mobility patterns. The protection system then calculates
the entropy for every location in a certain area and then
generates a multi-layer entropy map in advance, where each
layer corresponds to a pre-defined resolution. With such
a map stored in a user’s smartphone, when the user is to
send queries to an LBS server, EMP? dynamically builds
a quadtree entropy map (QEM) on the smartphone covering
his query area, estimates the uncertainty of his intended des-
tination related to each query location, and selects appropri-
ate nodes as cloaking boxes for location privacy protection.
In particular, EMP? uses only those potential destinations
that are likely to be visited all over the user’s query area for
calculating the location entropy. This approach makes an
adversary unable to reduce the possible destination sets (as
well as the corresponding uncertainty) by eliminating those
destinations unlikely to be visited from some locations along
the sequence of queries. As a result, EMP? accurately esti-
mates the uncertainty from an adversary’s perspective and
can thus adjust the protection level accordingly for better
protection.

The key contributions of this paper are:

1. a novel privacy protection scheme that relies only on
users’ smartphones to achieve location privacy protec-
tion for LBS queries, thus reducing the trusted com-
puting base and the cost related to the entire protec-
tion system;

2. a QEM-based approach that can accurately estimate
the location entropy observed by an adversary and thus
adjust the uncertainty level of the query locations to
achieve better protection; and

3. a thorough evaluation of the proposed approach with
real-world user traces, demonstrating its effectiveness
and practicality.

The rest of the paper is organized as follows. Section 2
discusses the system, threat, and trust models. Section 3
presents our EMP? model. In Section 4, we evaluate the
performance of a prototype of EMP? system using real-world
user traces, followed by a discussion of the state-of-the-art of
location privacy protection in Section 5. Section 6 concludes
the paper.

2. SYSTEM, THREAT, AND TRUST MOD-
ELS

We first describe a generic LBS system model, and then
present the threat model, clarifying our assumptions on the
adversary’s goal and capabilities. We conclude this section
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Figure 1: System model.

with a discussion on the trusted components in our proposed
scheme.

2.1 System Model

Figure 1 illustrates our simple and generic system model.
Users utilize their mobile devices (e.g., smartphones) to send
queries to LBS servers. The locations in the queries are ob-
tained via positioning systems, e.g., Global Positioning Sys-
tem (GPS). The queries, as well as their responses from the
LBS servers, are transmitted via communication networks,
e.g., 3G networks. LBS servers are service providers, re-
plying to queries with well-tailored responses based on the
location information in the queries. Note that in our model,
mobile-device users send queries wirelessly to LBS servers,
without any trusted anonymization server in between.

2.2 Threat Model

We assume that the adversary’s goal is to obtain the infor-
mation about where a user has visited during a trip. (A
trip is defined as the movement from a source to a desti-
nation.) In order for an adversary to achieve this goal, we
assume that he can compromise an LBS server and access
all the users’ information stored in the server, such as the
IP address and location information in each query. In addi-
tion, we assume that an adversary, after retrieving one trace
(i-e., a sequence of locations) corresponding to a user’s trip
from the LBS server, can conduct reasonably sophisticated
inference attacks.® Specifically, we assume that the user’s
destination is likely to be visited from each location along
the trace. Resorting to this empirical fact, an adversary can
conduct more accurate inference attacks by only considering
the intersection of likely-to-be-visited destination sets of all
location updates as the user’s possible destination set. This
assumption is reasonable in that, by doing so, the adversary
reduces the uncertainty about the user’s destination with
little overhead.

Query-sending patterns also have impact on the threat to
which a user is exposed. We assume that a user could begin
sending queries to an LBS server at any time during his trip
(i.e., not necessarily at the starting point of the trip), and

"How to retrieve a trace from potentially anonymous loca-
tion updates has been covered by previous work [11].
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LBS

could also stop at will (i.e., not necessarily after arrival at
the destination). Thus, the adversary cannot simply wait
until a user stops sending queries and then infer the user’s
destination only from a small number of points of interest
(POTs)? in the vicinity of the location where his last query
was sent.

2.3 Trust Model

Primarily, we trust users’ smartphones to be secure and
will not leak users’ location information to LBS servers via
side channels outside the control of our protection system.®
Besides, our approach is based on entropy maps (cf. Sec-
tion 3.3). Here we would like to stress that by relying on
entropy maps—the contents provided by a map-generation
server, our protection system does not introduce any addi-
tional trust model into the current LBS architecture. From a
user’s perspective, an entropy map resembles a conventional
geographic map. When a user makes use of a map service
such as Google map, he trusts the maps provided by the
service provider. Similarly, our protection system trusts the
entropy maps downloaded from the map-generation server.
Generally speaking, in the LBS architecture, users trust
contents provided by the service providers. The service
provider, however, can still make use of the collected loca-
tion information to conduct inference attacks. Trust on the
contents by a server does not imply trust on the appropriate
use of collected information at the server side.

3. EMP> METHODOLOGY

This section details the design of our EMP? model. First,
we describe, at a high level, how EMP? protects users’ lo-
cation privacy, followed by an introduction to the location
privacy metric used in EMP?. We then discuss the concept
of entropy map in general and QEM in particular. Finally,
we discuss the algorithm for cloaking box generation.

3.1 A High-Level View of EMP*

Figure 2 illustrates the high-level workflow of the EMP?
model. Before sending queries to LBS servers, the user needs
to configure EMP? with his privacy protection requirement
(i.e., the entropy threshold) and his current query area—a
predicted region that bounds the locations where he could
possibly send queries. The user can designate the region by

2The words destination and POI are used interchangeably
in this paper.

3Researchers have proposed numerous approaches to secur-
ing users’ handsets, and interested readers are referred to
related references [2].

simply specifying a center and a radius. Based on the con-
figuration, EMP? generates a minimum QEM that covers
the area. Then for each query, EMP? generates a cloaking
box (i.e., a rectangular area on the map) that covers the ex-
act location of the query and also satisfies the user-specified
privacy protection level. EMP? then replaces the location
information with the cloaking box, and sends it to the server.

3.2 Location Privacy Metric

We use entropy as the location privacy metric. The general
form of location entropy is widely accepted in the location
privacy research community, although different researchers
use different attributes to quantify it [1,3,17,26]. Similar to
LISA [3], we use the conditional probability of visiting POIs
from a given location to measure the location entropy.

DEFINITION 1. The entropy of a location j is defined as

n
e= = pi;log, pi;
i=1

with p;|; being the conditional probability of visiting the i-th
POI given that the user is at location j.

This metric well represents a user’s location privacy level
when he sends a query from his current location to an LBS
provider. This is because an adversary can hardly infer
the user’s privacy without the ability to relate a location
to any POI. Furthermore, this metric can be easily applied
to our smartphone-based protection approach, because the
entropy can be calculated on the smartphone. In contrast,
other well-known metrics, such as k-anonymity, usually need
a trusted server [10] or the cooperation of nearby unknown
users [7], thus rendering them unsuitable for our approach.

3.3 Entropy Map
In EMP?, a quadtree covering the query region is dynami-
cally generated using layered entropy maps.

DEFINITION 2. An entropy map is a map with each grid
containing the entropy of the location represented by the grid.

An entropy map is stored in EMP? as a matrix, each element
of which represents a grid on the map and consists of the
location information (e.g., the local Cartesian coordinate, or
longitude and latitude) as well as the conditional probability



of visiting each POI from that location. Similar usage of
such a matrix can be found in [1,3,17,26].

One single-layer entropy map—with each grid representing
a finest-resolution grid on the map—is insufficient for pro-
tecting users’ location privacy for the following two reasons.
First, the entropy of the finest-resolution grid covering a
user’s accurate location may not exceed the entropy thresh-
old, in which case a lower-resolution grid should be used
with the hope that it could increase the entropy by covering
a broader area. As a result, we need multi-layer maps with
nodes of different resolutions. Second, multi-layer maps are
necessary for defending against attacks employing the corre-
lation among consecutive queries. By combining the infor-
mation in consecutive queries, an adversary can reduce the
uncertainty related to each location by considering only the
POIs that are likely to be visited from all locations in the
queries. To mitigate this effect, our system uses only the
intersection of likely-to-be-visited POIs all over the query
area for entropy calculation. However, note that the POI
intersection for the finest grid layer may not be sufficient
for achieving users’ protection target. This necessitates the
intersection calculation for lower resolution layers, which in
turn requires the use of multi-layer maps.

The above reasoning justifies the need of a hierarchical multi-
layer entropy map that can avoid the aforementioned draw-
backs.

3.4 Quadtree Entropy Map

Quadtree [6] is a data structure in which each internal node
has up to four children. It is a well-studied data structure
for efficiently partitioning data in a two-dimensional space,
and is widely used in geographic information and computer
vision systems. Our use of quadtree for location privacy pro-
tection is inspired by Xu and Cai’s work [26] which proposes
the use of a pyramid structure in a trusted anonymization
server to store users’ footprints and generate cloaking boxes.
In EMP?, we employ quadtrees to organize entropy maps.
Described below is the generation of a quadtree entropy map

(QEM).
3.4.1 Trace Collection

The generation of entropy maps, or more generally, the cal-
culation of location entropy for privacy protection, is based
on trace collection. We assume that anonymized trace col-
lection is done by some well-reputed wireless service providers
(WSPs). They could select a short period of time (e.g., sev-
eral days) in one or several years, during which they establish
a map-generation server, encourage volunteers to contribute
to the trace collection, and ask them to periodically update
their accurate location information. Specifically, the col-
lected information consists of timestamps, user identifiers,
and locations. Since WSPs have long been able to generate
users’ traces based on their collected data and it is com-
mon for subscribers to trust these large well-reputed com-
panies not to abuse their data, our model does not incur
additional requirements on the operation of WSPs, or the
trace-collection-service volunteers’ trust on WSPs. In par-
ticular, note that users of the entropy map need not trust
the map-generation server. In addition, since POI distri-
bution, road connectivity, and people’s travel patterns re-
main relatively stable, the entropy map, like a normal ge-

ographic map, need not be updated frequently. Hence, the
duration, the cost, and the risk of maintaining an entropy
map-generation server are significantly lower than those re-
lated to a trusted anonymization server which must always
be operational.

3.4.2 Generation of Quadtree Nodes

After collecting traces, the map server generates QEM nodes
and then distributes them to users’ smartphones. Specif-
ically, it pixelates a geographic map into grids according
to the predefined finest resolution, and then generates one
record per grid consisting of a mapping from each POI to
collected traces passing through the grid and ending at that
POI. The server-side mapping contains the detailed infor-
mation including trace IDs for accurate counting of traces
and calculation of the visiting probability. The smartphone-
side mapping, on the contrary, only relates each POI with
the total count of traces ending at that POI to avoid infor-
mation leakage via the deployment of entropy maps. Conse-
quently, the server-side entropy map nodes above the finest-
resolution level can be generated iteratively due to the avail-
ability of the detailed information. The smartphone-side
entropy map nodes are generated according to their corre-
sponding server-side nodes at the same level.

However, storing all the nodes on the smartphone is resource-
demanding. As an optimization, we propose an alternative
lightweight approach, which only stores the finest-resolution
layer of the map and uses a simplistic node merging method
to calculate the probability of visiting POIs from lower-
resolution grids. Specifically, it generates internal nodes by
assigning the total of POI visit counts in the child nodes
to the corresponding POI record in the parent nodes. We
compare the performance and resource consumption of these
two approaches in Section 4.

3.4.3 QEM Generation

On the smartphone side, when a user indicates a query area,
EMP? sets the root node to be the center of the region, and
dynamically generates a QEM covering the region in a re-
cursive manner. Regarding the original EMP?, all nodes
for the construction of a QEM are ready for use (i.e., gen-
erated by the map-generation server) so that the tree can
be easily built. As for the lightweight EMP? approach, the
aforementioned simplistic merging method is employed to
construct QEM nodes other than those belonging to the
finest-resolution layer, along with the generation of the tree
itself.

3.5 EMP? Protection Mechanism

We now describe how to use a QEM to generate cloaking
boxes and protect users’ location privacy. Briefly, EMP?
first selects a candidate POI set that could be used for loca-
tion entropy calculation over the query area, then generates
one cloaking box for each query using the selected POI set.

3.5.1 Set of Candidate POls

As mentioned in Section 3.1, for each query, EMP? gener-
ates a cloaking box that satisfies the predefined protection
threshold, and uses it as the location information sent to an
LBS. It is problematic, as described Section 3.3, to use all
POIs for entropy calculation and to always select the finest



Algorithm 1 Candidate POI set selection

Require: QEM @, entropy threshold e, percentage thresh-
old p of nodes having entropy > e, likely-to-visit thresh-
old vpihia

: function CandPOISelect(Q, e, p, vPthid)

: result = Null

for | = 0 to Height(Q) do
if CheckIntersec(l, e, p, vpihid, result) = true then

break

return result

: function CheckIntersec(l, e, p, vpihid, result)

: /* calculate the POI intersection of level [ */

10: result = N;{i : p;|; > vPinia, node; € level 1}

11: /* check whether the selection criterion is satisfied */
12: if C'heckRoot then

13:  entropy = GetEntropy(root, result)

14:  if entropy < e then

© XD @

15: return false

16: if CheckCurrentLevel then

17 pass =0

18:  for each node j at level | do

19: entropy = GetEntropy(j, result)
20: if entropy > e then

21: pass++

22: if number of Irjnifises at level [ <p then
23: return false

24: return true

25:

26: function GetEntropy(j, pois)
27: Normalize(j, pois) /*so that Y. p;; = 1 for i € pois*/
28: return entropy = — . p;); log, p;); for i € pois

grids reaching the protection level in the QEM as cloaking
boxes. Instead, only the POIs that are likely to be visited
along a sequence of query locations should be used to calcu-
late the entropy for cloaking box generation.

Given that the locations at which a user may send queries
are unpredictable, EMP? first calculates the per-level inter-
sections of likely-to-visit POIs over the query area, and then
selects one intersection that passes a certain candidate POI
selection criterion as the candidate POI set. Algorithm 1
and Figure 3 illustrate the candidate POI set selection pro-
cedure. This procedure is executed in the initialization stage
of EMP?, before the first query is sent along the trace.

Since the candidate POI selection criterion is designed to
facilitate the generation of high-quality cloaking boxes, we
will first discuss our cloaking box generation approach, and
then revisit the design of the POI selection criterion.

3.5.2 Cloaking Box Generation

With a selected candidate POI set, for each query, EMP?
uses a bottom-up approach to generate a cloaking box cov-
ering the accurate location of the query. Specifically, EMP?
first pinpoints the QEM node with the finest possible reso-
lution that covers the location, then repeatedly checks the
following two conditions from that node up to the root node,
and uses the first node satisfying both conditions as the
cloaking box.

R
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Figure 3: Candidate set selection. Step 1: Locate the cur-
rent level of QEM. Each color inside a grid represents the
possibility of visiting the POI (a Smiley face) with that color
from the grid. Step 2: Calculate the intersection of likely-
to-be-visited POIs. Step 3: Eliminate unlikely-to-be-visited
POIs from QEM. Step 4: Normalize POI visiting possibil-
ity and check against selection criteria. The left branch il-
lustrates root node checking, the right branch current level
checking. Step 1’: If checks fail at Step 4, then restart the
whole process at a higher level at QEM. Otherwise the pro-
cess completes.

CONDITION 1 (SUBSET CONDITION). The candidate POIs
are a subset of the likely-to-visit POI set of this node (de-
noted as node j); that is,

Vi € {candidate POIs},p;; > vDthid- (1)

CONDITION 2 (ENTROPY CONDITION). The entropy of
the node calculated by the candidate POIs is larger than, or
equal to, the threshold value, that is,

€e=- Z pi|j logy pij; > threshold. (2)
{i|POI; € candidate POI set}

The rationale behind the first condition is that, since the
POIs in the candidate set are those used by EMP? for en-
tropy calculation, they need to be likely-to-visit POIs from
the selected node. Otherwise, the adversary can eliminate
those unlikely to be visited POIs and recalculate the en-
tropy, which may diverge from EMP?’s expected value. The
second condition is straightforward, because EMP? needs to
satisfy the user’s protection requirement.

3.5.3 Candidate POIs Selection Criterion

A properly selected set of candidate POIs enables EMP? to
generate high-quality cloaking boxes that can preserve loca-
tion privacy and remain small in size. Specifically, to meet
the entropy condition in Section 3.5.2, the set of candidate
POIs should be large enough for the entropy of a node cal-
culated via this set to properly represent the uncertainty
related to that location. Considering the subset condition,
the selected set should not be too large to unduly rule out
otherwise valid QEM nodes only because the former is not
a subset of the latter’s likely-to-visit POlIs.



Two selection criteria are studied, as illustrated in function
CheckIntersec in Algorithm 1. For the CheckRoot option
(lines 12-15), we target the intersection selection criterion
at the root node, and select an intersection if the entropy of
the root calculated by this POI set exceeds the threshold.
The rationale behind this option is that the user’s location
privacy is expected to be protected at least by using the
root node as the cloaking box. This option is the least re-
strictive in the sense that it only sets the worst-case upper
bound to the top-level node, without verifying if the nodes
at the selected level could be used as cloaking boxes. This
loose check also leads to a relatively small candidate POI
set, which makes the subset condition easy to be satisfied
but the entropy condition hard to be satisfied. Another op-
tion (lines 16-23 in Algorithm 1 with p = 100%) is to target
the criterion at the level corresponding to the current inter-
section of POls, and select the intersection if at that level,
each node can satisfy the entropy threshold. This option
guarantees that the sizes of the cloaking boxes are upper-
bounded by the resolution of the selected level. Such a rig-
orous check leads to a large candidate POI set, favored by
the entropy condition but disfavored by the subset condi-
tion. Table 1 summarizes these two options. The candidate
POI selection criterion used in our current implementation
falls in between these two extremes, requiring at least 50%
of the nodes at the selected level, as well as the root node,
to satisfy the threshold (i.e., setting both CheckRoot and
CheckCurrentLevel to be true and p = 50%).

4. EVALUATION

This section presents a thorough evaluation of the EMP?
system. We first discuss the real-world traces used for en-
tropy map generation and EMP? performance analysis. Then,
we evaluate the performance of EMP? and its resource con-
sumption. Our prototype is implemented in Java. The eval-
uation is conducted on a Dell workstation with Intel Core2
Quad CPU 3.0 GHz and 8 GB RAM.

4.1 Real-world Traces

The real-world traces we use in the evaluation are obtained
from the LiveLab project [22] of Rice University. The data
available to us consists of 11 users’ location logs for one
month, from which we retrieve 249 traces on a 10kmx10km
map centered at Rice University, with the corresponding
query areas completely contained in the map to avoid the
border effect on the evaluation results. The entropy maps
are generated as discussed in Section 3.4.2, with the finest-
resolution set to 40mx40m.

4.2 Performance Evaluation

In this section, we first present the metrics that we use for
performance evaluation, then compare the overall perfor-
mance of EMP? with several alternative approaches, demon-
strating that EMP? can achieve the best protection effect
without unduly decreasing the quality of LBS.

4.2.1 Metrics

Two metrics are used to evaluate the effectiveness of EMPZ.
The first metric is the protection success ratio, that is, the
probability that the entropy of a cloaking box exceeds the
target entropy threshold. Two types of success ratio are em-
ployed in our evaluation. On one hand, if a protection sys-

tem fails to generate a cloaking box that can satisfy the tar-
get protection level, it records one protection failure. Oth-
erwise, the protection system records a success. We call the
related success ratio the expected success ratio, as this is the
expected success ratio from the perspective of the protec-
tion system. On the other hand, after observing a complete
trace, the adversary can re-calculate the entropy of each
cloaking box using the intersection of likely-to-visit POIs of
all the observed cloaking boxes. If the adversary-calculated
entropy of a cloaking box falls below the entropy threshold,
we record it as an observed failure. Otherwise, we record
a success. This success ratio is called the observed success
ratio since it is observed from the adversary’s perspective.
The two success ratios are different due to the use of differ-
ent POI sets for entropy calculation: while the protection
system calculates entropy at the query time, the adversary
does it a posteriori, with information about all the cloaking
boxes along a trace available to him.

The second metric is the size of cloaking box. Intuitively, the
larger the cloaking box, the more irrelevant information the
user receives from the LBS server, thus degrading users’ ex-
perience unless an additional local filter is used. Using large
boxes also unnecessarily drains the phone battery. Thus, a
protection system is considered advantageous over another
if the former could use smaller cloaking boxes to achieve
protection similar to the latter.

4.2.2  Performance Comparison

In order to demonstrate the effectiveness of EMP?, we com-
pare it with several alternative protection mechanisms. We
first study the effect of applying no protection at all. That is,
we reveal the accurate location (i.e., the best-resolution grid,
40mx40m) associated with each query to the LBS server.
This approach is used as a baseline approach which rep-
resents the intrinsic protection provided by the road paths
and is referred to as “no protection” henceforth. The sec-
ond approach is to fix the cloaking box size to a predefined
constant. In other words, we statically pixelate the map
into fixed-sized grids, and always use the grid covering the
user’s query-sending location as the location information for
the LBS server. The rationale behind this approach is that
naive information hiding (in this case hiding the least signif-
icant bits in the location data) can arguably provide some
protection to users. This approach is referred to as “naive
static” hereafter. Intuitively, the static nature of this ap-
proach makes it an overkill for locations of which the associ-
ated entropy is already very high, but becomes ineffective for
those locations surrounded by low entropy areas and needed
better protection by using larger cloaking boxes. In effect,
the “no protection” approach is a special case of the “naive
static” approach, with the resolution fixed at the finest res-
olution of the map.

While the first two approaches are static in the sense that
the size of cloaking boxes is fixed a priori, the third ap-
proach is dynamic since it could adjust the size of cloaking
box according to the user’s entropy threshold. Specifically,
it only assumes the existence of the best-resolution layer
of the entropy map and builds a QEM as the lightweight
EMP? approach (cf. Section 3.4). In addition, this approach
does not take into consideration the correlation among the
queries, and simply uses all POIs of a grid to calculate its



Table 1: POI Selection Criterion Summary

CheckRoot CheckCurrentLevel
Worst case guarantee Loose (at root node) | Tight (at current level)
Candidate POI set size | Small Large
Subset Cond. Friendly Yes No
Entropy Cond. Friendly | No Yes

entropy. We call it “isolated” in the sense that it takes an
isolated view of the to-be-protected query location instead of
using POI intersections. The fourth approach is our original
EMP?2, and the fifth is its lightweight alternative.

For the purpose of evaluation, we assume that users send
queries on a regular basis. We have tuned the distance be-
tween two consecutive queries ranging from 40m to 240m,
and find that it has little impact on the performance of
EMP?2. Moreover, considering the modest number of traces
we have, we set vpinia to 0. In other words, a POI is con-
sidered likely to be visited from a location unless the con-
ditional probability of visiting this POI from the location is
0. In reality, on an entropy map generated with a sufficient
number of traces, the above conditional probability should
be almost always greater than 0, and it is reasonable for
the protection system and the adversary to set vpinia to a
positive value.

Figure 4a shows the protection effect of the five protection
approaches. For all entropy thresholds, the two EMP? ap-
proaches achieve the best observed success ratios. Their
performance is much better compared to the first two static
approaches, and also better than the “isolated” dynamic
approach—the strongest competitor to EMP2—by 2.52% for
the least demanding protection target (i.e., entropy=1) and
by 10.12% in the most demanding case (i.e., entropy=>5).

One clear trend from Figure 4a is that, for relatively low
entropy thresholds like 1 and 2, all of the five approaches
achieve a high success ratio. But, for more demanding en-
tropy thresholds like 4 and 5, the success ratios of all ap-
proaches decrease. This is expected because the higher the
protection requirement is, the harder it is for the protection
system to meet that requirement. Another observation is
that the decrease of success ratio becomes significant when
the entropy threshold rises from 4 to 5. From a detailed
analysis of the entropy of each trace (calculated as the aver-
age entropy of all the best-resolution grids along the trace),
we found that the entropy value of over 70% of the traces lies
between 4 and 5, which explains the above observation: the
protection task becomes more challenging when the trace
entropy is not high enough as compared to the protection
threshold.

Another observation is that for all of the five entropy thresh-
olds, the performances of the two EMP? approaches are very
similar. Detailed comparisons show that the absolute dif-
ference between the observed success ratios of the two ap-
proaches varies from 0.003% to 1.28%, from which we con-
clude that the lightweight approach is a good approximation
of the original EMP?, preserving the protection quality while
eliminating the considerable storage overhead.

In all cases, EMP? family preserves the minimum difference
between the expected and observed success ratios. Figure 4b
shows the relative difference between the two ratios (i.e., the
ratio of the absolute difference between the two to the ex-
pected success ratio). Clearly, EMP? family outperforms the
other three approaches in the sense that it has the most ac-
curate estimation of the adversary-observed entropy values
and can thus provide the appropriate level of protection.

Figure 4b also shows that the differences of the first three
approaches are strictly increasing with the entropy thresh-
old. The EMP? family’s expected success ratios are, on the
other hand, always good estimates of the adversary-observed
values in all cases. This phenomenon can be explained as
follows. When the entropy threshold is low, the protec-
tion target can be relatively easily achieved from the pro-
tection systems’ aspect and the entropy of the generated
cloaking boxes is usually higher than the target. Thus, the
entropy value observed by an adversary may well remain
above the protection target even after eliminating the POIs
not in the POI intersection along the trace. Consequently,
the observed success ratio is largely preserved. Nevertheless,
for a demanding protection target, the entropy value of the
generated cloaking boxes is usually slightly higher than the
protection target, and eliminating POIs may easily make it
fall below the threshold, thus decreasing the observed suc-
cess ratio. This phenomenon also justifies our use of the
intersection of POIs in the design of EMP2.

As for the size of cloaking box, Figure 4c shows the average
size of cloaking boxes in different entropy protection thresh-
olds. We can see that the “no protection” approach provides
the best cloaking box size, which is straightforward since
there is no protection whatsoever. The “naive static” ap-
proach also has good cloaking box size simply, because it is
statically configured to be 100mx100m. The obvious draw-
back of this approach is its inflexibility, as is indicated at
the beginning of this subsection. For the remaining three ap-
proaches, the “isolated” approach always comes with smaller
boxes than EMP? and lightweight EMP2. On average, the
size of cloaking boxes of EMP? family is 1.7 times larger
than that of “isolated” approach. This is a reasonable cost
EMP? pays for better protection.

4.3 Resource Consumption

The resource consumption remains a key issue related to
the practicality of smartphone-based approaches due to the
limited available resources on smartphones. In our case, we
measure the CPU usage, the main memory consumption,
and also the storage requirement of our EMP? approach, and
compare it with the “isolated” dynamic protection approach.
The CPU and memory usage are measured three times.

Figures 4d and 4e compare the startup time and per-query
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case. The isolated approach and lightweight EMP? have
a similar startup time, with lightweight EMP? incurring a
0.24% overhead on average. With a 1.9GHz processor com-
monly equipped on a modern smartphone, the CPU cycles
roughly translate to a startup time of 7 seconds. We con-
sider it tolerable since (1) this is an one-time overhead on an
unoptimized prototype, and (2) users can simply start the
protection system a little ahead of time so that the startup
time can be hidden by the usage of other applications and
will not affect the query-protection time. As for the original
EMP?, it incurs a 1436.4% overhead, taking significantly
longer time to start up due to the need of searching and
loading server-generated nodes into the QEM. In terms of
the per-query protection time, Figure 4e shows that light-
weight EMP? needs 3.99 x 10° cycles (i.e., 210 microseconds
on a 1.9GHz processor) to protect one query, incurring a
28.67% overhead compared to the isolated approach. The
additional cost of EMP? is due mainly to the fact that it
needs to conduct an intersection operation (i.e., selecting a
subset of POIs from a grid according to the candidate POI
set) before each entropy calculation.

As for main memory consumption, Figure 4f demonstrates
that the isolated approach and EMP? have very similar
memory footprints. The average per-trace memory con-
sumption is between 134MB and 142MB for the three ap-
proaches.

The major storage space consumption related to the smart-
phone-side privacy protection systems is caused by the en-
tropy maps. In the case of the isolated approach and light-
weight EMP?, they both need the finest-resolution layer of
the entropy map covering the 10km x 10km area, which takes
15MB storage space. This is a reasonable storage require-
ment for modern smartphones. As for the original heavy-
weight EMP?, it needs to store all the multi-layer maps on
the smartphone, the accumulated size of which is 745MB.

Based on the above comparisons, we conclude that the orig-
inal EMP? approach, though accurate, incurs significant
overhead in both startup time and storage space. The light-
weight EMP? achieves a similar protection effect with re-
duced overhead, thus becoming effective and practical.

5. RELATED WORK

Trusted-Anonymization-Server-Based Approaches. Most

existing studies on the privacy protection issue of LBS as-
sume the existence of a trusted server residing between the
smartphone users and the potentially malicious LBS servers
for achieving location privacy protection. K-anonymity is
one widely used metric, requiring the location region re-
vealed to LBS servers to contain at least k users so that
the query sender is indistinguishable from the remaining
k — 1 users [4,8,10,18]. Beresford and Stajano [1] intro-
duced the concept of mix zones. Since no users update their
location information to LBSs in a mix zone and they are
assigned new pseudonyms when they leave the zone, mix
zones weaken the adversary’s ability to relate the outgoing
users’ pseudonyms with their incoming ones. In addition,
the expected distance error has also been used to quantify
the accuracy at which an adversary can estimate a user’s lo-
cation and to guide the path confusion procedure for privacy
protection [13]. CacheCloak [17] achieved privacy protection

without loss of location accuracy from the LBS’ perspective
by caching LBS responses along the predicted paths and us-
ing the cached information to reply to users’ queries. Xu and
Cai proposed a feeling-based location privacy model, used
entropy to measure the popularity of a region, and took a
quadtree-style approach for the prevention of an adversary
from relating LBS queries to specific users [26].

The major difference between the above approaches and
EMP? is that EMP? does not rely on a trusted anonymiza-
tion server, thus reducing the TCB and the cost related to
the protection system. In addition, the privacy metric used
in EMP? is different from those approaches. We believe that
the location entropy calculated as the uncertainty about the
user’s intended destinations properly quantifies the uncer-
tainty level of a location.

Non-Trusted-Server-Based Approaches. CAP [20] used
a quadtree to maintain the road-density information and
conducted Hilbert curve mapping and perturbation for achiev-
ing k-anonymity. Compared with the road density, the en-
tropy map in EMP? better quantifies the location uncer-
tainty because it takes the real-world users’ mobility pat-
terns into consideration.

SMILE [16] applied k-anonymity to measure and configure
the users’ privacy level for the use of encounter-based LBSs,
protecting users’ privacy by selecting the prefix length of the
location hash value so as not to reveal encounter involve-
ments to untrusted servers. While SMILE proves successful
for users of encounter-based LBSs, EMP? targets a broader
range of users, maintaining a high uncertainty level from the
LBS providers’ perspective.

LISA [3] used m-unobservability as its location privacy met-
ric, weakening the adversary’s ability to infer users’ privacy
based on the distinguishability of POIs the users visit. While
LISA employs an extended Kalman filter to generate cloak-
ing boxes, EMP? uses QEM for the same purpose. Moreover,
EMP? ensures that all the POIs used for the entropy calcu-
lation of each cloaking box are likely-to-be-visited along the
trace, thus achieving better protection by accurately esti-
mating the uncertainty observed by an adversary.

Shokri et al. [25] formulated location privacy protection as
a Stackelberg game and, given a user’s service quality con-
straints, achieved the optimal protection mechanism against
an adversary conducting the optimal inference attack, with
a focus on LBSs requiring sporadic location updates. Our
work, in contrast, takes into consideration the correlation
among continuous location updates.

LP-Guardian [5] proposed a novel and promising protection
framework, achieving fine-grained per-app location privacy
protection by only using a user’s smartphone. We are work-
ing towards augmenting EMP? with the same fine-grained
support, specifically, by deploying per-app entropy maps.
Such enhancement, however, imposes high pressure on stor-
age and demands better compression algorithms.

Some recent approaches made use of the private information
retrieval (PIR) for achieving stronger and provable location
privacy. For example, Ghinita et al. [9] demonstrated the



practicality of applying computational PIR to the protec-
tion of LBS users’ privacy by solving the nearest neighbor
(NN) search in a theoretical setting. The advantage of this
approach is that it does not disclose any spatial information,
and thus prevents any type of location-based attack. Direct
comparison between our approach and PIR-based ones is
difficult because the privacy metric as well as the system
design is completely different. In general, EMP? protects
users’ location privacy in a more efficient and cost-effective
way, but with a weaker privacy standard.

Location Privacy Metric Analysis. Shokri et al. [24]
designed a formal framework for the analysis of location pri-
vacy protection mechanisms, pointing out that the expected
estimation error of the adversary is the appropriate metric
for location privacy protection. Nevertheless, since destina-
tion POIs are not necessarily available at the query-sending
time, estimation error may not be appropriate for privacy
protection systems. For example, a user is going from one
place to another, and he will stop by a coffee shop during
the trip. Which coffee shop the user will visit may depend
on the information from the LBS (e.g., about the coupons
or the special offers of nearby coffee shops). Such on-the-fly
destination selection could render the estimation error based
metric difficult to be applied directly inside protection sys-
tems, but has no impact on our QEM approach. However,
the unsatisfactory correlation between entropy and estima-
tion error is worthy of further investigation. We believe this
is a promising direction for novel privacy metric design.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we presented EMP?—an entropy map-based
location privacy protection system. It eliminates the need
of a trusted anonymization server for protecting LBS users’
location privacy, and generates cloaking boxes by using a
dynamically-built quadtree based on layered entropy maps.
EMP? reduces the trusted computing base and the cost of
the location privacy protection system, and achieves a high
protection success ratio even if the adversary acquires an
entire history of users’ queries from a compromised LBS
server. A thorough evaluation of a prototype implemen-
tation demonstrates EMP?’s effectiveness and practicality.

We plan to study the effect of the dynamics of entropy map
on the overall protection quality. Empirically, users’ mobil-
ity patterns vary with the time of day. For example, office
buildings are visited much more frequently during the day-
time than the nighttime. By generating detailed entropy
maps to capture these variations in the time frames, the
protection quality of EMP? may be further improved.
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