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Abstract— In this paper we investigate the capacity of random
wireless networks in which transmitters are equipped with multi-
antennas. A quantized version of channel direction information
(CDI) is also available, provided by the associated single antenna
receivers. We adopt tools of stochastic geometry and random
vector quantization to incorporate the impacts of interference and
quantization errors, respectively. We first study the capacity of
Aloha, and channel quality information (CQI)-based scheduling,
whereby the transmissions decision in each transceiver pair de-
pends on the strength of the CQI against a prescribed threshold.
We then propose a new scheduling scheme, namely modified
CQI (MCQI), by which the quantization error is effectively
incorporated in the scheduling. Further we obtain the capacity of
MCQI-based scheduling. Simulation results confirm our analysis
and show that the proposed MCQI-based scheduling improves
the capacity compared to the CQI-based scheduling and Aloha.
It is also seen that the performance boost is more significant
where the feedback capacity is low and the network is dense.
In comparison with the case of high feedback capacity, the
network capacity is not reduced by low feedback capacity in the
MCQI-based scheduling. This is of practical importance since the
network designer can save the feedback resources by employing
MCQI-based scheduling without compromising the capacity and
increasing the receivers’ complexity.

I. INTRODUCTION

Infrastructure-less composition of wireless ad hoc com-
munications is practically attractive and has been broadly
used in developing technologies, such as device-to-device
(D2D) communications [1]. Its lack of centralized coordi-
nation however limits the amount of unavoidable signaling
overhead. The signaling is required to effectively implement
communication protocols, control topology, and manage the
interference. It is therefore vital to study the impact of limited
signaling overheads on the performance of random networks.
In particular for scenarios such as dense networks, essential
for the development of Internet of Things, the signalling is
required for interference cancellation thus its corresponding
overhead is often considered as a limiting factor. In this paper,
we investigate the performance of limited-feedback multi-
antenna ad hoc dense networks.

A MIMO random ad hoc network for very large antenna
arrays with no channel state information at the transmitter
(CSIT) is considered in [2] where the asymptotic behavior of
ergodic rate is investigated . Receivers are however assumed
to be capable of completely canceling the impact of a number

of strong interferers. Similar approach is considered in other
works, see, [3–5]. Nevertheless, such systems suffer from ex-
tremely high receiver complexity in addition to overwhelming
signaling overheads, making them unfit for the dense networks.

Careful quantization of the required information such as
channel direction information (CDI) reduces the signalling
overhead. In such cases the receiver often feeds its associated
transmitter with quantized CDI of the attending channel via
the designated feedback channel. The transmitter is then con-
structing suitable beamforming vectors to reduce the impact of
interference inline with the quantized CDI [6]. The importance
of quantized beamforming in random networks is investigated
in [7, 8], where significant outage probability improvement is
observed comparing to the cases with no CSIT. In [9] net
spectral efficiency is introduced as a new metric which sheds
light on the design of the feedback capacity in quantized
multiple antenna communications. To preserve a required
capacity performance, their analysis shows that the optimum
feedback capacity is a logarithmic function of the network
density.

In such systems, the transmission scheduling is equally
important. The current literature mainly focuses on the Aloha
scheme, see, e.g, [3–5, 7–11] which allows random transmis-
sion decision at each individual transceiver pair. Although
practically appealing, Aloha technique is unable to incorporate
the receiver knowledge of the wireless channel status in the
scheduling decision. Therefore, it simply ignores the oppor-
tunity to exploit this knowledge to improve the system per-
formance. On that account it is of utmost practical interest to
investigate the performance of distributed scheduling schemes
in limited-feedback MIMO systems. In this paper, we extend
the above analysis by focusing on the impacts of scheduling on
the capacity of the quantized beamforming. This, to the best
of our knowledge, has not been yet inspected in the related
literature.

We study the capacity of channel quality information (CQI)
based scheduling and a modified CQI-based scheduling. In
the former the CQI of the channel is measured and compared
against a threshold, which its value is obtained in our analysis,
for deciding upon transmission. In the modified CQI-based
scheduling, the knowledge of the receiver about the quantiza-
tion error of the CDI, which is a function of the angle between



accurate and quantized CDIs, is exploited to modify the CQI
for scheduling purpose. In our analysis, we adopt tools from
stochastic geometry [12].

Through analysis we obtained the achievable capacity of a
typical transceiver in Aloha, CQI- and MCQI-based schedul-
ing techniques. The analytical results are then utilized to evalu-
ate the scheduling parameters in each case. We further examine
the accuracy of our analysis using simulations. and compare
the capacity of these three schemes. Simulation results indicate
that MCQI-based scheduling outperforms both CQI-based and
Aloha. A high capacity improvement is observed for the cases
where the network is dense and feedback capacity is small.
This is an important result as it enables the network designer
to conserve the feedback resources without degrading the
capacity performance and imposing extra receiver complexity.

II. SYSTEM MODEL

We consider an ad hoc communication paradigm in which
transmitters are modeled via a Poisson Point Process (PPP)
set Φ = {Xi, i ∈ N} ⊆ R2, where Xi represents the
location of transmitter i. Each transmitter Xi has its associated
receiver which is assumed to be located r meters apart. The
transmitter nodes are equipped with N transmit antennas while
the receivers are single antenna (MISO scenario). The vector
channel between each transceiver pair i is denoted by hi
where its elements are i.i.d. random variables (r.v.) drawn
from complex normal random distribution with zero mean
and unit variance. We assume block fading model in which
at the start of each time slot the vector fading undergoes a
new realization independently and stays fixed during the time
slot. Furthermore, we assume hi is independent of hj ∀i 6= j.

In this paper, we are interested in examining the perfor-
mance of scenarios that channel state information (CSI) hi
— comprising channel direction information (CDI) h̃i =
hi/‖hi‖ and channel quality information (CQI) ‖hi‖2 — is
available at the receiver, which is required to be conveyed back
to the transmitter through designated limited feedback. As a
result, assuming the capacity of feedback channel is B bits,
each receiver i quantizes CSI h̃i into ĥi by applying pre-
constructed quantization code-book WB , which is available
at both transmitter and receiver. The index of the quantized
version is eventually sended back to the transmitter. Similar
to the previous works, see, e.g., [13]), here we assume that
the quantization code-books are constructed by the random
vector quantization (RVQ) technique. The feedback channel
is also timely and accurate. Further, receiver i has assumed
to have access to perfect CSI at the receiver (CSIR). Upon
receiving the index, transmitter i extracts ĥi and constructs
the beamforming vector, f̂ i = ĥi

‖ĥi‖
.

We consider the typical transceiver pair with transmitter lo-
cated at the origin. According to Slivnyak’s Theorem [12][14]
it is sufficient to evaluate the performance of the network from
the perspective of this typical transceiver with the receiver
located at the origin. The experienced Signal-to-Interference

ratio (SIR) with CDI quantization is then

SIR0 =
r−α‖h0‖2 cos2(θ0)∑

i∈Φ/X0

‖Xi‖−α|f̂
†
igi|2

. (1)

In (1), α > 2 is the path-loss exponent and ‖Xi‖−α is the path-
loss attenuation between the transmitter Xi and the origin.
Without loss of generality we assume that the network is
interference-limited thus we ignore the additive white Gaus-
sian noise (AWGN). Finally, θi is the phase difference between
true and quantized versions of CDI h̃i. Let F̄sin2(θi)(z) be the
Complementary Cumulative Distribution Function (CCDF) of
quantization error, Zi = sin2(θi). For the case of RVQ

F̄Zi(z) =
(
1− zN−1

)2B
, 0 ≤ z ≤ 1, (2)

where Zis are i.i.d.
Here our main objective is to evaluate the achievable

capacity of the typical communication link defined as

R̄ = E log(1 + SIR0). (3)

In (3) expectation operator E acts on all random parameters
including the position of transmitters, fading, and quantized
beamforming vectors.

To evaluate (3) we need to specify the corresponding
scheduling method. In this paper we chiefly focus on the
following scheduling schemes: (i) Aloha scheduling whereby
in each time slot each transmitter Xi randomly turns on with
probability p; (ii) CQI-based scheduling which depends on the
strength of the channel quality indicator (CQI) at the receiver
i; and (iii) Modified CQI-based scheduling which is similar to
CQI where the quantization error is taken into account in the
the scheduling decision made in each transmitter.

III. PERFORMANCE ANALYSIS

A. Aloha

Each node i decides to transmit with probability p ∈
[0, 1] (activity factor). The following proposition provides the
capacity of Aloha technique.

Proposition 1: For a given activity factor, p, and feedback
capacity, B bits, the achievable capacity of each node is

RA =

∞∫
0

p
(

1− EZ (1 + wr−α(1− Z)))
−N
)

wepλwα̌C(α)
dw, (4)

where C(α) = πΓ(1− α̌)Γ(1 + α̌), and Z is the quantization
error.

Proof: Let Z0 = sin2(θ0) be the quantization error associ-
ated with transceiver pair 0. Using the results in [9, 15],

RA = pE
∞∫

0

e−w

w

1− e
−w r−α‖ho‖2 cos2(θo)∑

i∈Φt

‖Xi‖−α|f̂
†
i
gi|2

 dw

= p

∞∫
0

1

w
Ee
−w

∑
i∈Φt

‖Xi‖−αGi (
1− Ee−wr

−αH0(1−Z0)
)
dw, (5)



where H0 = ‖ho‖2 is a Chi-squared r.v. with 2N degrees-of-
freedom (DoF) and is independent of Z0. In (5) Φt is the set of
active transmitters and is a PPP with density of pλ. To obtain
(5) we simply apply a change of variable and independencies
of the involved random variables in the SIR (1). In (1), random
variable Gi = |f̂

†
igi|2 is exponentially distributed (see, [5])

because each receiver i independently quantizes the associated
CDI and the beamforming vector f̂ i is merely constructed
based on the quantized CDI ĥi. Using the above facts, and
following the results of [14] we can show that for a given w

Ee
−w

∑
i∈Φt

‖Xi‖−αGi
= e−pλC(α)wα̌ . (6)

H0 is a Chi-squared r.v. with DoF of 2N and independent of
Z0, therefore

Ee−wr
−αH0(1−Z0) = EZ

(
1 + wr−α(1− Z))

)−N
. (7)

Substituting (8) and (7) into (5) completes the proof. �
For the particular case of RVQ (see (2)), using straight

forward derivations, we can show that for specific value w
expression (7) is

(7) =
N − 1

2−B

2B−1∑
l=0

l(N−1)+N−2∑
n=0

n∑
m=0

(
2B − 1

l

)(
n

m

)

×

(
l(N − 1) +N − 2

n

)
(−1)l+n((1 + w

rα
)m−N+1 − 1)

( w
rα

)n+1(m−N + 1)
. (8)

Substituting (8) into (4), the capacity is

RA = p
N − 1

2−B

2B−1∑
l=1

l(N−1)+N−2∑
n=0

n∑
m=0

(
2B − 1

l

)(
n

m

)
(
l(N−1)+N−2

n

)
(−1)l+n+1

r−(n+1)α(m−N + 1)

∞∫
0

((1 + w
rα

)m−N+1 − 1)

wnα+1epλC(α)wα̌
dw. (9)

Using Jensen’s inequality the following upper-bound is ob-
tained on the capacity:

RuA = p log (1 + ESIRo)

= p log

1 + r−αE[H0]E[1− Z0]E 1∑
i∈Φ

Pi‖Xi‖−αGi



= p log

1 +Nr−α(1− δ̃)
∞∫

0

Ee
−t

∑
i∈Φt

Pi‖Xi‖−αGi
dt


= p log

1 + r−αN(1− δ̃)
∞∫

0

e−pλt
α̌C(α)dt


= p log

(
1 + p−

α
2 Ĉ(α)

)
, (10)

where due to RVQ assumption, δ̃ = 2BΓ(2B , N
N−1 ), and

Ĉ(α)
∆
=
N(1− δ̃)Γ(α2 + 1)

rα(λC(α))
α
2

. (11)

Using (10) we are then able to find the optimal activity
factor, p, which results in the maximum upper-bound capacity
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Fig. 1. Achievable capacity of CQI-based scheduling vs. p for α = 4 and
N = 5.

(10). Straightforward mathematics derivations reveal that this
activity factor is obtained by solving the following equation

p
α
2

1− e
−
α
2
p
1−α

2 Ĉ(α)

1+Ĉ(α)p
α
2

 = Ĉ(α). (12)

In Fig. 1 we present a plot of the capacity (9) for several
values of B and λ vs. p. The values obtained from (12) are
indicated in Fig. 1 by small squares. As it is seen, solutions
of (12) are adequately accurate for providing estimation of the
best activity factor. Fig. 1 also shows that the capacity is very
sensitive to the density of the transmitters and for small λ,
activity factor 1 is optimal. It is also seen that for this case
reducing B decreases the capacity and the amount of decrease
is higher for larger activity factors. For large values of λ, the
available feedback capacity, B, has a smaller impact on the
achievable capacity as very high interference overwhelms the
achievable capacity.

B. CQI-Based Scheduling

Aloha scheme is simple however it overlooks the receivers
on the intended channel state. If this knowledge is exploited, it
could be considered as a base for scheduling. Here, we utilize
CQI of the channel, ‖hi‖2, to decide upon the transmission
status. Similar approach is considered in [11] for outage
probability evaluation in single-antenna ad hoc communication
systems.

By introducing a threshold, γth, we propose the following
CQI-based scheduling. Let Pi be the transmission decision at
transmitter node Xi, thus

Pi = 1
(
r−α‖hi‖2 ≥ γth

)
. (13)

The following proposition provides the achievable capacity of
CQI-based scheduling.

Proposition 2: In the CQI-based scheduling with parameter
γth and feedback capacity B bits, the achievable capacity is

RC =

∞∫
0

(
pC − EZ γu(N,γthr

α+wγth(1−Z))
(1+wr−α(1−Z))N

)
wepCλwα̌C(α)

dw, (14)



where γu(N, x) =
∞∫
x

tN−1e−t

Γ(N) dt, and pC is the probability that

the typical transceiver decides to transmit:

pC = F̄‖h‖2(γthr
α) = e−γthr

α
N−1∑
n=0

(γthr
α)n

n!
, (15)

Proof: Following the same lines of argument as in the proof
of Proposition 1, we see that

RC = pC

∞∫
0

(
1− E

[
e−wr

−α‖ho‖2(1−Z0)
∣∣‖ho‖2 ≥ γthrα] )

wepCλwα̌C(α)
dw,

(16)
where pC is given in (15). We then note that E[X] =∫
t>0

P{X > t}dt, thus

E
[
e−wr

−α‖ho‖2(1−Z0)
∣∣‖ho‖2 ≥ γthrα]

=

∫
0<t≤1

P
{
e−wr

−α‖ho‖2(1−Z0)
∣∣‖ho‖2 ≥ γthrα} dt

=
1

pC
EZ0

∫
0<t≤e−γthw(1−Z0)

P
{
γthr

α ≤ ‖ho‖2 ≤
rα log 1

t

w(1− Z0)

}
dt

= EZ0

w(1− Z0)

pC

∞∫
γth

P
{
γthr

α ≤ ‖ho‖2 ≤ rαv
}
e−vw(1−Z0)dv

= EZ0

w(1− Z0)

Γ(N)pC

∞∫
γth

rαv∫
γthr

α

e−hhN−1e−vw(1−Z0)dhdv

=
1

pC
EZ0

∞∫
γthr

α

e−wr
−αh(1−Z0)f‖h‖2(h)dh

=
1

pC
EZ0

∞∫
γthr

α+wγth(1−Z0)

f‖h‖2(h)dh

(1 + wr−α(1− Z0))N

=
1

pC
EZ0

γu (N, γthr
α + wγth(1− Z0))

(1 + wr−α(1− Z0))N
. (17)

Substituting this in (16) completes the proof. �
To estimate the best threshold γth, we use an approximation

of the achievable capacity in (14). Applying Jensen’s inequal-
ity to (14) following by some straightforward mathematical
manipulations an upper-bound on the achievable capacity is
obtained as the following:

RuC = pC log

(
1 +

γu(N + 1, γthr
α)

p
α
2 +1

C

Ĉ(α)

)
. (18)

where Ĉ(α) is defined in (11).
Let ṗC = rαf‖h‖2(γthr

α) be the derivative of pC in (15)
with respect to γth. By taking derivative of (10) with respect
to γth, and setting the resultant to zero, it is then possible to
obtain an approximate of the best threshold value that results in
the maximum achievable capacity. Doing so, an approximate
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Fig. 2. Achievable capacity of the CQI-based scheduling vs. γth for α = 4
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of the optimal threshold value is obtained by solving the
following equation for γth:

log

(
1 +

γu(N + 1, γthr
α)

p
α
2 +1

C

Ĉ(α)

)

= Ĉ(α)
(α2 + 1)γu(N + 1, γthr

α) +NpCγthr
α

p
α
2 +1

C + γu(N + 1, γthrα)Ĉ(α)
. (19)

In Fig. 2 the achievable capacity performance in (14) is given
vs. γth for several values of density and feedback capacity. The
obtained estimation of γth according to equation (19) is also
given in Fig. 2 which is seen to be accurate enough to predict
the best threshold value yielding the maximum capacity.

It is also seen in Fig. 2 that by increasing the density, the
capacity is substantially reduced. However, even if density
is very small, using a γth larger than the best prescribed
value, the capacity might become even smaller that the case
with a high density. Fig. 2 also indicates that the achievable
capacity is more sensitive to the feedback capacity in low
density networks, i.e., smaller values of λ, comparing to the
high density scenarios.

C. MCQI-Based Scheduling

In CQI-based scheduling, the CQI of the channel, hi, is
utilized for scheduling. However, in reality the strength of
the received signal, as it is also seen in (1) depends on
the quantization error through 1 − sin2(θi). In this section
we introduce a new scheduling scheme, called modified-CQI
(MCQI) scheduling which incorporates the quantization error
in the scheduling. Let Pi be the transmission decision at the
node i, where

Pi = 1
(
‖hi‖2(1− sin2(θi)) ≥ γthrα

)
. (20)

It is important to note that at the start of each time slot the
modified CQI is measurable at each receiver. Quantizing CDI,
h̃i, into a quantized index l, receiver i can then calculate
quantization error by calculating the square of absolute value
of the inner product of h̃i and conjugate of l-th code-word,
see, e.g., [13]. The achieved capacity of MCQI is given in
Proposition 3.



Proposition 3: In MCQI-based scheduling with parameter
γth and feedback capacity B bits, the achievable capacity is

RM =

∞∫
0

(
pM − EZ

γu
(
N,

γthr
α

1−Z +wγth

)
(1+wr−α(1−Z))N

)
wepMλwα̌C(α)

dw, (21)

where pM is the probability that the typical transceiver decides
to transmit:

pM =

N−1∑
n=0

(γthr
α)n

n!
EZ

 e− γthrα1−Z

(1− Z)n

 . (22)

Proof: Starting from the results in [15] we write

RM = pM

∞∫
0

(
1− E

[
e−

w
rα
‖ho‖2(1−Z0)

∣∣‖ho‖2 ≥ γthr
α

(1−Z0)

] )
wepMλw

α̌C(α)
dw,

(23)
where pM is given in (22). Further,

E
[
e−

w
rα
‖ho‖2(1−Z0)

∣∣‖ho‖2(1− Z0) ≥ γthrα
]

=
1

pM
EZ0

e−γthw∫
0

P
{
γthr

α ≤ ‖ho‖2(1− Z0) ≤
rα log 1

t

w

}
dt

=
w

pM
EZ0

∞∫
γth

P
{
γthr

α ≤ ‖ho‖2(1− Z0) ≤ rαv
}
e−vwdv

=
w

pM
EZ0

∞∫
γth

rαv∫
γthr

α

f‖h‖2(1−Z0)(v)e−vwdhdv

=
1

pM

∞∫
γthr

α

e−wr
−αvf‖h‖2(1−Z0)(v)dv

=
1

pM

∞∫
γthr

α

e−wr
−αvEZ0

1

1− Z0
f‖h‖2

(
v

1− Z0

)
dv

=
1

pM
EZ0

1

(1− Z)N

∞∫
γthr

α

e
−(wr−α+ 1

1−Z0
)v v

N−1

Γ(N)
dv

=
1

pM
EZ0

γu
(
N, γthr

α

1−Z0
+ wγth

)
(1 + wr−α(1− Z0))N

. (24)

Substituting (24) into (23) completes the proof. �
For RVQ, as the previous sections we apply Jensen’s

inequality followed by straightforward mathematical manip-
ulations to reach the following upper-bound

RuM = pM log

(
1 +

EZ [(1− Z)2γu(N + 1, γthr
α

1−Z )]

(1− δ̃)p
α
2 +1

M

Ĉ(α)

)
.

(25)
Let ṗM be the derivative of pM with respect to γth:

ṗM = rαEZ
[

1

1− Z
f‖h‖2

(
γthr

α

1− Z

)]
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Thus, the best threshold value can be estimated by solving the
following equation for γth

log

(
1 +

EZ [(1− Z)2γu(N + 1, γthr
α

1−Z )]

(1− δ̃)p
α
2

+1

M

Ĉ(α)

)

=
(α

2
+ 1)EZ [(1− Z)2γu(N + 1, γthr

α

1−Z )] +NpMγthr
α

1−δ̃
Ĉ(α)

p
α
2

+1

M + γu(N + 1, γthrα)
. (26)

Fig. 3 presents the achieved capacity as in (21) vs. γth for
several values of density and feedback capacity. We also show
the obtained estimate of γth in Fig. 3 obtained according to
equation (26). As it is seen the estimated values of γth are
accurate enough to predict the best threshold value resulting
in the maximum achievable capacity.

Note that compared to Fig. 2, here we observe that the
capacity is much more sensitive to the value of B for different
values of γth and density. Moreover, as the case of CQI-based
scheduling, here we observe that selecting other values for the
threshold rather than the optimal obtained may result in a very
low achievable capacity.

IV. SIMULATION RESULTS

In this section we investigate the accuracy of the analytical
results in this paper through simulations. Simulations are
conducted using Monte Carlo method. We also set α = 4,
r = 30 meters, and N = 4.

In Fig. 4 and Fig. 5 we show the accuracy of the analysis
for the cases of B = 4 bits and B = 8 bits, respectively.
Here we set parameter γth = 10−6 (CQI- and MCQI-based
scheduling), and activity factor p = 0.6 (Aloha). These
illustrations confirms the accuracy of the analysis presented
in this paper.

The accuracy of the obtained upper-bounds on the achiev-
able capacity are confirmed in Figs. 1, 2, and 3. We therefore,
in the following use the results provided on the selection of
best activity factor based on Eq. (12) in the case of Aloha
system, γth from (19) in the case of QCI-based scheduling, and
finally γth from (26) in the case of MQCI-based scheduling
to compare the performance of these systems with each other.
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Fig. 4. Achieved capacity versus density, λ for B = 4 bits, γth = 10−6

(CQI- and MCQI-based scheduling), and p = 0.6 (Aloha).
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Fig. 5. Achievable capacity versus density λ, for B = 8 bits, γth = 10−6

(CQI- and MCQI-based scheduling), and p = 0.6 (Aloha).

The results are reported in Fig. 6. As it is seen, the capacity un-
der all of these schemes is logarithmically reduced by increas-
ing λ. More importantly, MCQI-based scheduling outperforms
both Aloha and CQI-based scheduling. The performance boost
is higher in the case of a small feedback capacity (B = 4),
while for the cases where the feedback capacity is high (B =
8) the resultant performance boost is not substantial. It is also
indicated that for B = 4, Aloha outperforms the CQI-based
scheduling. Finally, Fig. 6 reveals that MCQI-based scheduling
demonstrates robustness against low feedback capacity, which
is an important practical characteristic.
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Fig. 6. The achievable capacity in Aloha, CQI- and MCQI-based scheduling
vs. density for the case that the scheduling parameters are are optimized.

V. CONCLUSION

We investigated the capacity of several important scheduling
schemes in limited-feedback MISO ad hoc networks. We
mainly focused on Aloha, (CQI)-based scheduling, and MCQI-
based scheduling. Stochastic geometry means adopted to de-
rive the corresponding capacity of each scheme. Simulations
proved the accuracy of our analysis. We furthermore observed
that MCQI-based scheduling improved the capacity compared
to CQI-based scheduling and Aloha.
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