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ABSTRACT
Contemporary vehicles are getting equipped with an increasing
number of Electronic Control Units (ECUs) and wireless connec-
tivities. Although these have enhanced vehicle safety and effi-
ciency, they are accompanied with new vulnerabilities. In this pa-
per, we unveil a new important vulnerability applicable to several
in-vehicle networks including Control Area Network (CAN), the
de facto standard in-vehicle network protocol. Specifically, we
propose a new type of Denial-of-Service (DoS), called the bus-
off attack, which exploits the error-handling scheme of in-vehicle
networks to disconnect or shut down good/uncompromised ECUs.
This is an important attack that must be thwarted, since the attack,
once an ECU is compromised, is easy to be mounted on safety-
critical ECUs while its prevention is very difficult. In addition to
the discovery of this new vulnerability, we analyze its feasibility
using actual in-vehicle network traffic, and demonstrate the attack
on a CAN bus prototype as well as on two real vehicles. Based on
our analysis and experimental results, we also propose and evaluate
a mechanism to detect and prevent the bus-off attack.

1. INTRODUCTION
New security breaches in vehicles are emerging due to software-

driven Electronic Control Units (ECUs) and wireless connectivi-
ties of modern vehicles. These trends have introduced more remote
surfaces/endpoints that an adversary can exploit and, in the worst
case, control the vehicle remotely. Researchers have demonstrated
how vulnerabilities in remote endpoints can be exploited to com-
promise an ECU, access the in-vehicle network, and then control
vehicle maneuvers [5, 10, 12]. In 2015, researchers were able to
compromise and remotely kill a Jeep Cherokee running on a high-
way [13], which triggered a recall of 1.4 million vehicles. Such a
reality of vehicle cyber attacks has made vehicle security one of the
most critical issues to be addressed.

To detect and prevent vehicle cyber attacks, various types of se-
curity solutions, such as Message Authentication Code (MAC) and
Intrusion Detection Systems (IDSs) for in-vehicle networks — akin
to those in the Internet security — have been proposed [8, 14, 17,
21]. These solutions provide a certain level of security, but there
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still remain critical, uncovered vulnerabilities specific to the auto-
motive domain.

We propose a new type of Denial-of-Service (DoS) attack called
the bus-off attack which, ironically, exploits the error-handling
scheme of in-vehicle networks. That is, their fault-confinement
mechanism — which has been considered as one of their major
advantages in providing fault-tolerance and robustness — is used
as an attack vector. The attacker periodically injects attack mes-
sages to the in-vehicle network, deceives an uncompromised ECU
into thinking it is defective, and eventually forces itself or even
the whole network to shut down. In addition to its severe conse-
quences, the following unique characteristics of the proposed bus-
off attack differentiate itself from previously known attacks and
make it a critical threat which must be countered.

1. The bus-off attack is easy to mount since the attacker is not
required to reverse-engineer messages (i.e., figure out the
meaning/purpose of messages) or their checksum algorithms
for launching it. Thus, the attacker can easily mount the at-
tack on various vehicles regardless of their manufacturer or
model. This is in sharp contrast to previously demonstrated
attacks, which required painstaking reverse-engineering pro-
cedures in order to take control of a vehicle [10, 12, 13].

2. As the symptoms of the bus-off attack resemble those of sys-
tem errors such as improper termination [4], bit flip [22], and
bit drop [15], it deceives state-of-the-art IDSs to think the
network is erroneous, while it is actually under attack.

3. Although MACs for in-vehicle network messages may
thwart most of the previously known attacks, they cannot
prevent the proposed bus-off attack since it nullifies their
functionalities. That is, not only contemporary insecure
in-vehicle networks but also prospective security-enhanced
ones will still be vulnerable to the bus-off attack.

4. Since the attack relies solely on low-level safety features of
in-vehicle networks, it is independent of actual implementa-
tion subtleties of different ECUs.

Among the various in-vehicle network protocols, we focus on the
vulnerability of the Control Area Network (CAN) protocol, which
is the de facto standard for in-vehicle networks. The feasibility of
the bus-off attack is, however, not limited to CAN but applicable
to other in-vehicle network protocols, which are discussed further
in Section 8. In this paper, we will primarily focus on what an
adversary can do with a compromised ECU, rather than how the
ECU was compromised in the first place, which has been covered
well elsewhere [5, 7, 10, 12, 13].

This paper makes the following main contributions:
• Discovery of a new Denial-of-Service threat — bus-off at-

tack — on in-vehicle networks which exploits their error-
handling mechanism as an attack vector;



• Analysis and characterization of real CAN bus traffic, and
the proof of the practicability of the bus-off attack;

• Implementation and demonstration of the bus-off attack on a
CAN bus prototype and on two real vehicles; and

• Development and evaluation of a countermeasure that can
detect and prevent the bus-off attack.

The rest of the paper is organized as follows. Section 2 provides
the required background on CAN, and Section 3 details the pro-
posed bus-off attack. Section 4 discusses the feasibility of the at-
tack and Section 5 evaluates the attack on a CAN bus prototype and
real vehicles. Section 6 discusses the limitations of state-of-the-art
solutions in preventing the bus-off attack, and Section 7 details a
new defense mechanism against it. Section 8 discusses further the
severity of the bus-off attack as well as its applicability to other
in-vehicle networks. Finally, we conclude the paper in Section 9.

2. PRIMER ON CAN
For completeness, we first review the main features of CAN re-

lated to the proposed attack.

2.1 CAN Frames
CAN interconnects ECUs/nodes through a message broadcast

bus. Each node broadcasts periodic (and occasionally sporadic)
data frames on the CAN bus to provide retrieved data. The trans-
mitted data is received by one or more nodes on the bus and then
utilized for maintaining data consistency and for vehicle control
decisions.

Frame format. Each CAN frame is basically a sequence of
dominant (0) and recessive (1) bits, and belongs to one of four dif-
ferent types: data frame which is used for sending retrieved data;
remote frame for requesting transmission of a specified message;
error frame used to indicate detected errors via error flags; and
overload frame to inject delay between frames. Fig. 1 shows the
base format of a CAN data frame. A data frame can carry up to
8 bytes of data, the length of which is specified in the 4-bit Data
Length Code (DLC). For most passenger cars, a 1-byte checksum
of each message is contained in the last byte of its data field [13].
Although the checksum is not part of the CAN specification, car
manufacturers implement it using their own algorithms to provide
an additional layer of protection to the CAN Cyclic Redundancy
Check (CRC). Consecutive transmissions of CAN frames are sep-
arated by a 3-bit Inter-frame Space (IFS).

Message ID. Instead of containing the transmitter/receiver ad-
dress, a CAN frame contains a unique ID, which represents its pri-
ority and meaning. For example, a frame containing wheel speed
values might have ID=0x01 and frame containing battery temper-
ature values might have ID=0x20. Only one ECU is assigned to
transmit a given ID at a time, and the ID values are defined to be
distinct from each other by the manufacturer. The base frame for-
mat has an 11-bit ID, whereas an extended format has a 29-bit ID.
Since the use of base format is much more prevalent, we focus on
the base format in this paper. Note, however, that the attack model
proposed in this paper is not dependent on the type of format.

2.2 Arbitration
Once the CAN bus is detected idle, a node with data to trans-

mit, starts its frame transmission (Tx) by issuing a Start-of-Frame
(SOF). SOF provides hard synchronization between ECUs to make
bitwise transmission and reception feasible. At that time, one or
more other nodes may also have buffered data to transmit, and may
thus concurrently access the bus. In such a case, the CAN protocol
resolves the access contention via arbitration.
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Figure 1: Format of a CAN data frame.
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Figure 2: Example of CAN arbitration phase.

During transmission, each node sends its frame one bit at a time
and monitors the actual output on the CAN bus. In the arbitra-
tion phase, since frame IDs are unique and the CAN bus logically
behaves as a wired-AND gate (e.g., 0 & 1 = 0), some contending
nodes would see a dominant (0) bit even though it has transmit-
ted a recessive (1) bit. In such a case, they lose arbitration, with-
draw from bus contention, and switch to receiver mode. In the
end, only one arbitration-winner node is allowed to continuously
access the bus for data transmission. This process enables higher-
priority frames (i.e., lower IDs) to be transmitted before lower-
priority ones. Once the arbitration winner has completed trans-
mission of its frame ending with an End-of-Frame (EOF), after a
3-bit time of IFS, the bus becomes free again for access, i.e., idle.
At that time, nodes that have buffered data or had previously lost
arbitration, start another round of arbitration for access. For com-
pleteness, we illustrate in Fig. 2 how arbitration is done in CAN.

2.3 Error Handling
Error handling is built in the CAN protocol and is important for

its fault-tolerance. It aims to detect errors in CAN frames and en-
ables ECUs to take appropriate actions, such as discarding a frame,
retransmitting a frame, and raising error flags. The CAN protocol
defines no less than 5 different ways of detecting errors [3].

• Bit Error: Every transmitter compares its transmitted bit with
the output bit on the CAN bus. If the two are different, a bit
error has occurred, except during arbitration.

• Stuff Error: After every five consecutive bits of the same po-
larity, an opposite polarity bit is stuffed for maintaining soft
synchronization. Violation of this incurs a stuff error.

• CRC Error: If the calculated CRC is different from the re-
ceived CRC, a CRC error is raised.

• Form Error: If the fixed-form bit fields (e.g., CRC delimiter,
ACK delimiter, EOF, IFS) contain at least one illegal bit, a
form error has incurred.

• ACK Error: When a node transmits a message, any node that
has received it issues a dominant bit in the ACK slot. If none
replies, an ACK error is raised.

Error counters. For any detected errors, the perceived node
transmits an error frame on the bus and increases one of the two
error counters it maintains: Transmit Error Counter (TEC) and Re-
ceive Error Counter (REC). There are several rules governing the
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increase/decrease of these counters, but in essence, a node that de-
tects an error during transmission increases TEC by 8, whereas if
perceived during reception, REC is increased by 1 [3]. Moreover,
for any error-free transmission and reception, TEC and REC are
decreased by 1, respectively.

Fault confinement. To confine serious errors disrupting bus
communications, each ECU’s error mode is managed as in Fig. 3.
All ECUs start in an Error-active mode and switch between differ-
ent modes depending on their TEC and REC values. When TEC
or REC exceeds 127 due to consecutive errors, the node becomes
Error-passive, and only returns to its initial state when both go be-
low 128. When TEC exceeds the limit of 255, the corresponding
ECU — which must have triggered many transmit errors — enters
the Bus-off mode. Upon entering this mode, to protect the CAN
bus from continuously being distracted, the error-causing ECU is
forced to shut down and not participate in sending/receiving data
on the CAN bus at all. It can be restored back to its original error-
active mode, either automatically or manually. However, since bus-
off is usually an indication of serious network errors and may not
be fixed by mere automatic re-initialization of the CAN controller,
a user-intervened recovery or even a controlled shut-down of the
entire system is recommended [18].

Bus-off recovery. The reasons for such different options are 1)
the bus-off recovery mechanism depends on the software stack be-
ing used, i.e., how the system is designed by the manufacturer, and
2) ECUs have different ASILs (Automotive Safety Integrity Lev-
els). Since the bus-off is a serious problem, in most cases, vehi-
cle systems are designed to first enter a “limp home” mode (when
it occurs) with all their parameters set to pre-set values, and thus
run with reduced functionality (e.g., limited engine RPM). In this
mode, warning lamps are lit up on the dashboard to alert the driver,
and the vehicle runs only for some time before it is properly ser-
viced by an OEM-authorized service center. Depending on the
severity of the underlying issue, i.e., which ECU was shut down,
a vehicle in the limp home mode will later be totally disabled.

Error flags. When an error is detected, the perceived node in-
dicates to others on the bus via an error flag, which comes in two
forms: active and passive. For any perceived errors, nodes that are
in error-active mode issue an active error flag which consists of 6
dominant bits. So, the transmitted frame causes other nodes to vi-
olate the bit-stuffing rule, transmit their own error frame caused by
the stuff error, and terminate any on-going transmissions or recep-
tions.

For nodes that are in error-passive mode, they operate in the same
way as error-active ones, except that they issue a passive error flag
which consists of 6 recessive bits and have an 11 (not 3) bit-time
of IFS if they were the transmitter of the previous message [3]. An
error-passive node tries to signal its passive error flag until it actu-
ally observes 6 recessive bits on the bus, i.e., an indication of the

error flag being properly sent. Since recessive bits are overwrit-
ten on the CAN bus by dominant bits, the thus-issued passive error
flags may persist until the end of a frame.

3. ATTACK MODEL
We first discuss the adversary model under consideration, and

then uncover a new vulnerability of in-vehicle networks.

3.1 Adversary Model
We consider an adversary whose objective is to shut down un-

compromised (healthy) in-vehicle ECUs with a minimal number of
message injections. Such an objective precludes other types of at-
tacks (e.g., flooding) which, albeit their greater impact, require a
large number of message injections and are thus easier to be de-
tected. In Section 8, we will discuss more on such attacks, high-
lighting the severity of the bus-off attack. As in previously dis-
cussed attacks [5, 10, 12, 13], we assume that the adversary can
physically/remotely compromise an in-vehicle ECU through nu-
merous attack surfaces and means, and thus gain its control. In
contrast, we do not require the adversary under consideration to
reverse-engineer messages or checksums in order to achieve its
goal of shutting down an ECU. Since the messages and the im-
plemented checksum algorithms are different for different vehicle
manufacturers and models, such reverse-engineering can be very
painstaking, when the adversary wants to mount attacks on differ-
ent vehicles.

Once an ECU is compromised, we consider the adversary to be
capable of performing at least the following malicious actions. The
adversary can inject any message with forged ID, DLC, and data
on the bus as they are managed at user level. Also, since CAN is a
broadcast bus, the adversary can sniff messages on CAN. Restric-
tions of message filters are detailed in Section 4.2. These are the
basic capabilities of an adversary who has the control of a compro-
mised ECU. Practicability of such an adversary model has already
been proved and demonstrated in [5, 10, 12].

3.2 Bus-off Attack
We now introduce the bus-off attack which exploits the follow-

ing feature of CAN: CAN’s error handling automatically isolates
defective or “misbehaving” ECUs — whose TEC>255 — into bus-
off mode. Specifically, by iteratively injecting attack messages, the
adversary coerces the TEC of an uncompromised/healthy victim
ECU to continuously increase — deceiving it to think it is defec-
tive — and in the end, triggers the CAN fault confinement to force
the victim or even the entire network to shut down.

Increasing the victim’s TEC. Suppose message M is periodi-
cally sent by some victim ECU V. Then, an adversary A can suc-
ceed in a bus-off attack by injecting an attack message, which sat-
isfies the following conditions.
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Figure 5: Two phases of bus-off attack.

C1. ID – Same ID as message M;
C2. Timing – Transmitted at the same time as M; and
C3. Contents – Having at least one bit position in which it is

dominant (0), whereas it is recessive (1) in M. All preceding
bits should be the same as M.

To describe the general attack model, for now we assume that the
adversary can transmit a message that satisfies C1–C3. Details of
how and why C1–C3 can be met will be discussed in Section 4.
As shown in Fig. 4, when the bus becomes idle, not only the vic-
tim transmits message M but also the adversary transmits an attack
message satisfying C1–C3. So, not one but two transmitters —
A and V sending messages with identical IDs — win arbitration,
and thus concurrently send their bit values of control, data, etc., on
the bus. The two nodes’ bitwise transmissions are synchronized in
virtue of hard and soft synchronizations. Since the attack message
meets C3, V sees an opposite polarity on the bus to the one it trans-
mitted (this happens after an arbitration). As a result, the victim
V experiences a bit error forced by A, thus increasing its TEC by
8. By repeating this bus-off attack on the victim’s messages, the
adversary can make the victim’s TEC to continuously increase, and
force the victim to enter bus-off mode and disconnect from the bus.
Although the victim is error-free in transmitting messages other
than the targeted one, since TEC increases by 8 upon detection of
each error but decreases only by 1 for each error-free transmission,
an iterative bus-off attack rapidly increases the victim’s TEC. The
entire process of an iterative bus-off attack consists of the following
two phases.

Phase 1 – Victim in error-active. Both adversary and victim
nodes start in their default mode, error-active. After observing mes-
sages on the CAN bus, the adversary targets one of them for a bus-
off attack. We refer to such a message as the target message and its

transmitter as the victim. As mentioned earlier, the adversary then
injects its attack message at the same time as the target message to
increase the victim’s TEC. Thus, as shown in Fig. 5(a), the victim
experiences bit error, transmits an active error flag, and increases
its TEC by 8. Since an active error flag consists of 6 consecutive
dominant bits (i.e., 000000), either a stuff or bit error is triggered at
the adversary node, and its TEC also increases by 8. After the er-
ror delimiter and IFS, the CAN controllers of the adversary and the
victim automatically retransmit the Tx-failed messages again at the
same time. So, the exact same bit error recurs until they both enter
error-passive mode. What is significant about the attack in Phase 1
is that the adversary can coerce the victim to become error-passive
with just one message injection.

Phase 1 to 2. After 16 (re)transmissions, as shown in Fig. 5(b),
both the adversary and the victim become error-passive when their
TEC=128. Again, for the retransmitted message, bit error occurs at
the victim node. However, since the victim is now in error-passive
mode, it attempts to deliver a passive error flag which consists of 6
recessive bits. At that time, since the adversary transmits its frame,
the attempt to deliver the error flag will persist until the adversary’s
EOF. In contrast to Phase 1, the adversary node experiences no er-
ror and thus succeeds in transmitting its frame, whereas the victim
will succeed later during its retransmission. In total, due to a bit
error (+8) and a successful retransmission (−1), the victim’s TEC
changes 128 → 136 → 135, whereas the adversary’s changes
128 → 127. Accordingly, the adversary returns to error-active,
while the victim remains error-passive. Up to this point, all but the
first change in TEC are achieved via automatic retransmissions by
the CAN controller, i.e., the controller does it all for the attacker!

Phase 2 – Victim in error-passive. Fig. 5(c) illustrates Phase 2
of the bus-off attack in which only the victim is error-passive. Once
the scheduled interval of the target message has elapsed, the victim
again transmits that message, and thus at the same time, the adver-
sary re-injects its attack message. Since the victim is still in error-
passive mode, as it was the case when transitioning from Phase 1
to 2, the adversary can decrease its TEC further by 1. On the other
hand, the victim’s TEC is again increased by 7 (= +8 − 1), thus
keeping the victim in error-passive mode. In Phase 2, the adversary
iterates this process for every periodically transmitted target mes-
sage until the victim is eventually forced to bus off, i.e., TEC>255.
This implies that the periodicities of the attack and the target mes-
sages are the same. As a result, the victim ECU becomes discon-
nected, and in the worst case, the entire network shuts down [18].

Although CAN messages’ ID values do not contain information
on their actual transmitters, their values and intervals together im-
ply the messages’ priority and safety-criticality. That is, if the at-
tacker targets a message sent with high priority (i.e., a low ID value)
and small message intervals, then the attacker would most likely
disconnect a safety-critical ECU that sends important messages re-
lated to, for example, vehicle acceleration or braking.

Alternative bus-off attacks. The adversary may attempt to it-
erate this process for not only every periodic transmission but also
every retransmission (as in Phase 1). However, as shown in Fig.
5(c), since error-passive nodes, which were the transmitter of the
previous message, have a longer IFS than error-active nodes, the
adversary cannot synchronize its injection timing with the victim’s
retransmission, thus failing to mount the attack.

Yang [23] reported that an uncovered fatal error can sometimes
occur due to a misspecification of CAN; if a new frame is trans-
mitted on the bus during the error delimiter subsequent to a passive
error flag issued by an error-passive node, a form error incurs to
that node, thus increasing its TEC. If the adversary were to exploit
such an inherent specification error in CAN to mount a bus-off at-
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tack, it may be simpler to coerce the victim to bus off. However, the
occurrence of that fatal error depends on what type of new frame is
transmitted at that time as well as how high the bus load is. Note
that it would be very difficult for an adversary to control such fac-
tors. That is, it is too restrictive for the attacker to achieve the bus-
off attack in that way. By contrast, we propose and discuss a more
general method for mounting the bus-off attack, i.e., succeeding the
attack under any bus condition.

4. FEASIBILITY OF BUS-OFF ATTACK
To mount the bus-off attack, the adversary has to inject an at-

tack message that satisfies conditions on ID, timing, and contents.
We now discuss how and why each condition can be met, in the
ascending order of difficulty.

4.1 Different Contents
To trigger a bit error at the victim and increase its TEC, the at-

tack message must first satisfy C3: having at least one bit position
in which its signal is dominant (0), whereas the victim’s is recessive
(1), and all preceding bits are identical. Since the bus-off attack also
requires the attack and target messages to have the same ID (i.e., C1
– identical arbitration fields), the mismatch in C3 must occur in ei-
ther the control or the data field. Note that this is infeasible in other
fields such as CRC and ACK, because they are determined by the
CAN controller, not by the user/adversary. Since CAN messages
normally have DLC set to at least 1 and non-zero data values, one
simple but most definite way for the adversary to cause a mismatch
is to set the attack message’s DLC or data values to all 0s. Also,
given that DLC for each CAN ID is usually constant over time,
the attacker can learn the value and set its attack message’s DLC
accordingly. This way, the adversary can satisfy C3.

4.2 Same ID
The next difficult task is to meet C1, which requires the attack

message to have the same ID as the target. That is, the adversary
must know in advance the ID used by the target message. The
fact that favors the adversary is that CAN is a broadcast bus sys-
tem. However, each ECU cannot acquire the IDs of all received
messages except those passed through its message filter. We dis-
tinguish a received message from an accepted message, depending
on whether it passed through the filter and then arrived at a user-
level application. Since an adversary can read contents only from
accepted messages, meeting C1 depends on how the filter is set at
the compromised ECU.

Empty message filter. Some ECUs in vehicles have almost, if
not completely, empty message filters so that they can receive, ac-
cept, and process almost all messages on the bus, thus making it
trivial to satisfy C1. A typical example of these ECUs is the telem-
atic unit, which has to operate in that way to provide a broad range
of features, e.g., remote diagnostics, anti-theft. Another interest-

ing aspect of this ECU is that, from a security viewpoint, it is re-
garded as one of the most vulnerable ECUs due to its wide range
of external/remote attack surfaces. Note that several researchers
have already shown the practicability of compromising the telem-
atic unit [5, 7, 10, 12]. So, this implies that an adversary can com-
promise some empty filter ECUs more easily than those with non-
empty filters, thus satisfying C1.

Non-empty message filter. Although the message filter of a
compromised ECU is preset to accept messages with only a few
different IDs, it does not restrict the adversary in attacking them.
Furthermore, by directly modifying the message filter, the adver-
sary can also mount the attack on messages that would usually
have been filtered out. The two most common CAN controllers —
Microchip MCP2515 and NXP SJA1000 — both allow modifica-
tion and disabling of message filters through software commands,
when the ECU is in configuration mode [1, 2]. For ECUs with the
Microchip MCP2515 CAN controller, the configuration mode can
be entered not only upon power-up or reset but also via user in-
structions through the Serial Peripheral Interface (SPI). Through
the SPI, it is also possible for the user to read/write the CAN con-
troller registers, including the filter register [1]. Thus, such user-
level features for configuring the CAN controller allow attackers to
easily enter configuration mode via software commands, and mod-
ify/disable the message filters, thus satisfying C1.

4.3 Tx Synchronization
Even though the adversary knows the ID and contents to use for

his attack message, he should also know exactly when to send it.
Unless the adversary is capable of sending the attack message at
the same time as the target message, not only once but iteratively,
he would fail to cause a bit error, or increase the victim’s TEC.

Difficulties in synchronizing the Tx timing. C2 requires the
transmission of the attack and the target messages to be synchro-
nized with less than a bit resolution. If the attack timing is wrong by
even one bit, there won’t be two arbitration winners and the attack
would thus fail. For synchronizing the timing of its transmission,
the adversary may utilize the fact that CAN messages are usually
sent at fixed intervals. For example, once the adversary learns that
the target message is sent every T ms, it can attempt to transmit its
attack message when T ms has elapsed since the target’s last trans-
mission. However, such an approach would be inaccurate due to
jitters. Since jitters make the actual message periodicities deviate
from their preset values [9], albeit leveraging message periodicity
to fulfill C2, the attacker would have difficulties in synchronizing
the transmission of its attack message with the target’s.

Preceded ID. In order to overcome these difficulties, the adver-
sary can exploit another fact of CAN: nodes, which have either lost
arbitration or had new messages buffered while the bus was busy,
attempt to transmit their messages as soon as the bus becomes idle.

We define a preceded ID of M as the ID of the message that has



completed its transmission right before the start of M’s. Consider
an example where node A transmits messages with ID=M1, M2,
and node B transmits a message with ID=M3 which has the lowest
priority among them. As shown in Fig. 6, if these messages are
arriving and being queued at the depicted times, M1 and M2 would
be the preceded IDs of M2 and M3, respectively, with only a 3-bit
IFS separating the corresponding message pairs. In other words,
the transmissions of M2 and M3 are forced to be buffered until
their preceded ID messages have been transmitted on the bus. Since
message priorities and periodicities do not change, such a feature
implies that one particular CAN message may always be followed
by another specific message, i.e., there is a unique preceded ID
for that specified one. As an example, if the periodicities of their
transmissions are either same or integer multiples (e.g., 5ms for
M1, M2, and 10ms for M3), then M2 would always be the preceded
ID of M3, i.e., be the unique preceded ID. Hence, regardless of
jitter, the exact timing of message transmissions becomes rather
predictable and even determinative: 3 bit-time after the preceded
ID’s completion.

Bus-off attack by exploiting preceded IDs. In the above exam-
ple, to attack M3, the adversary can monitor the CAN bus, learn its
preceded ID of M2 or even M2’s preceded ID of M1, and buffer
an attack message with ID=M3 when receiving one of them. Then,
its CAN controller would always transmit the attack message af-
ter M2’s transmission (i.e., concurrently with the target message),
and the adversary will thus succeed in the bus-off attack. Likewise,
the adversary can target M2 by buffering its attack message with
ID=M2, as soon as it receives its preceded ID of M1. If the pre-
ceded ID is unique, then the bus-off attack can be iterated for its
every reception and thus consecutively increase the victim’s TEC.

Even though the target message does not have such a preceded
ID, an adversary can fabricate it in order to synchronize the tim-
ing and thus succeed in mounting the attack. Consider an example
shown in Fig. 7 where a victim node periodically transmits mes-
sage V, which has no preceded IDs. In such a case, just before the
transmission of V, the adversary can inject some message P and
an attack message A, sequentially. Hence, V’s transmission gets
delayed until the completion of P, i.e., the adversary fabricates P
as the preceded ID of V, and thus the attack message is synchro-
nized with its target. Our evaluation results will later demonstrate
the efficiency of bus-off attacks based on the above approaches.

4.4 Preceded IDs in Actual CAN Traffic
The key point in meeting C2 and succeeding in the bus-off at-

tack is leveraging the preceded IDs of the target message. Depend-
ing on the configuration and scheduling of messages, some target
messages may (or may not) have a preceded ID. We first consider
the case in which the adversary is targeting messages with genuine
(unfabricated) preceded IDs. Hence, it is essential to verify their
existence in actual CAN traffic as well as usefulness in satisfying
C2. That is, the following questions should be answered:

• Existence – Are there such preceded IDs in real in-vehicle
network traffic?
• Uniqueness – If yes, how many distinct preceded IDs are

there for a specified message?
• Pattern – If more than one, are there any patterns in the pre-

ceded IDs which can be utilized?

We answer these questions via an analysis of actual CAN traffic
data. We use CAN data that was recorded from a 2010 Toyota
Camry by Ruth et al. [20]. During a 30-minute drive, the data was
logged by a Gryphon S3 and Hercules software [20]. According to
the logged data, there were 42 distinct messages transmitted on the
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Figure 9: Timing of preceded ID message injection.

CAN bus: 39 of them sent periodically at intervals ranging from
10ms to 5 secs, and 3 of them sent sporadically.

Existence and uniqueness. Of these, we first identify the ones
of interest to us: messages that are always sent right after another’s
completion, i.e., have preceded IDs (e.g., M2 or M3 in Fig. 6). Of
the 39 periodic messages seen on the bus, we were able to find 8
of such type. Fig. 8 shows the number of distinct preceded IDs of
the ones labeled in the x-axis. For example, message 0xB2 had a
unique preceded ID 0xB0, i.e., 0xB2 always followed 0xB0, where
both were sent every 10ms. On the other hand, message 0x3B7
had 11 different kinds of those IDs. The result showing that 10%
of the periodic messages have a unique preceded ID answers the
question of their existence as well as uniqueness in actual CAN
traffic, and thus implies that the bus-off attack exploiting genuine
preceded IDs is indeed feasible in actual vehicles. Since in-vehicle
messages have fixed priorities, are sent periodically, and some have
to be sent consecutively by an ECU (e.g., two messages containing
front and rear wheel speed values), we believe preceded IDs are
prevalent in all other types of passenger cars as well.

Patterns in preceded IDs. Another interesting aspect of the
CAN bus traffic, which caught our attention was that there were
notable patterns in the preceded IDs. As shown in Fig. 8, message
0x223 with periodicity 30ms had 3 distinct preceded IDs, meaning
that observing those IDs may not help determine the transmission
timing of 0x223. However, we were able to extract an interest-
ing pattern in their transmission: the 6n-th transmission of 0x20
was the unique preceded ID of the 2n-th transmission of 0x223,
where n is an integer. That is, even though a unique preceded ID
was not observable for every transmission, it was for every n-fold
transmission, i.e., there exists a pattern in preceded IDs. Therefore,
by observing the CAN bus traffic, acquiring knowledge of genuine
preceded IDs, and thus meeting not only C1, C3 but also C2, the
adversary can succeed in mounting bus-off attack.

4.5 Fabrication of Preceded IDs
Even though the targeted messages do not have a preceded ID, as

shown in Fig. 7, the adversary can fabricate it to meet C2. There-
fore, we will henceforth refer preceded ID messages to ones which
are fabricated by the adversary. The injection timing, quantity, and
the contents of the preceded ID message are important for the ad-
versary to mount a bus-off attack with preceded IDs.

Injection timing. To succeed in the bus-off attack via fabri-
cation of preceded IDs, it is essential for the adversary to inject
that fabricated message right before the target message. In other
words, the adversary is required to estimate when the target mes-
sage would be transmitted on the bus. Although most in-vehicle
messages have fixed periodicity, randomness incurred from jitters
makes such estimation rather difficult. As shown in Fig. 9, con-
sider a target message V with periodicity of T , which is expected
to be transmitted at times torig , torig +T , and thereafter. Note that
T is a predefined and constant value for periodic messages. How-
ever, due to the jitters of Jn and Jn+1 — caused by variations in
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the transmitter node’s clock drift, task scheduling, execution time,
etc. [9] — the victim’s messages are transmitted on the bus at times
tvicn and tvicn+1, where n is the sequence index. From the adversary’s
perspective, due to an incurred delay of D from transmission and
reception, it receives message V at times tadvn and tadvn+1. Note that
D includes delays for message transmission, propagation, and pro-
cessing. Since the number of bits in a certain message is almost a
constant and the bit timing of CAN already takes into account of
the signal propagation on the bus, without loss of generality, we
assume D to be constant for a given message V [3, 16].

Thus, the only remaining randomness in the timing of message
transmission is jitter (e.g., Jn). Jitter is known to follow a Gaus-
sian distribution due to randomness in thermal noise, which also
follows a Gaussian, and the Central Limit Theorem, i.e., compos-
ite effects of many uncorrelated noise sources approach a Gaussian
distribution [9]. So, we can consider Jn and Jn+1 as outcomes of
a Gaussian random variable J ∼ N(0, σ2

v). Thus, the times when
the adversary receives V can be expressed as:

tadvn = tvicn + D = torig + Jn + D

tadvn+1 = tvicn+1 + D = torig + T + Jn+1 + D,
(1)

where Jn < 0 and Jn+1 > 0 in Fig. 9. Then

tvicn+1 = tadvn + T −D + Jn+1 − Jn = tadvn + T −D + J∗, (2)

where J∗ ∼ N(0, 2σ2
v) since its outcomes are Jn+1 − Jn. Note

that in Eq. (2), J∗ is the only random variable whereas others are
either constant or measurable by the adversary. Such an equation
shows that the adversary can indeed obtain an approximate estima-
tion of when the victim would transmit its message, i.e., the target
message, at the next sequence. As shown in Fig. 7, for the fabri-
cation of preceded IDs to be effective, the adversary has to 1) start
transmission of its preceded ID message(s) before the target and
2,3) hold the CAN bus, i.e., make the bus busy, until it becomes
sure that the attack and target messages would synchronize. That
is, the adversary must meet the following three conditions:

1) tf ab < min(tvicn+1) = tadvn + T − D + min(J∗)

2) tf ab + H > max(tvicn+1) = tadvn + T − D + max(J∗)

3) H = κF > max(J∗)−min(J∗),

(3)

where tfab denotes when the adversary starts to inject its fabricated
preceded ID message(s). Moreover, H denotes the duration of the
adversary holding the bus, which is equivalent to κ preceded ID
messages each sent for a duration of F. Since J∗ is a bounded
Gaussian random variable, the boundaries can be approximated as
|max(J∗)| = |min(J∗)| ' I

√
2σv , where σv is measurable, and

I an attack parameter. Since J∗ is Gaussian, setting I = 3 would
provide a 99.73% confidence and I = 4 a 99.99% confidence. In
total, to fully exploit the fabricated preceded IDs, the adversary has
to start injecting them prior to tadvn + T − D − I

√
2σv . Note that

the adversary should not lower tf ab beyond max(tvicn+1)−H, which
can be set once H is determined.

Number of messages. Once satisfying 1) in Eq. (3), the ad-
versary has to satisfy 3) — occupy the bus at least for the dura-
tion of max(J∗) − min(J∗) = 2

√
2Iσv , which can be met via

κ (≥ 1) injections of preceded ID messages. Since the adversary’s
objective is to mount the bus-off attack with a minimal number of

Figure 11: CAN bus prototype.

injections, κ should be kept to minimum by maximizing F. To
maximize F, i.e., the duration of its preceded ID message occupy-
ing the bus, the adversary can exploit the bit-stuffing rule of CAN:
after every 5 consecutive bits of the same polarity (e.g., 00000),
an opposite polarity bit is stuffed. By fabricating its preceded ID
message with DLC=8 and the data field as shown in Fig. 10, the
adversary can maximize the number of stuffed bits and thus F to
at least F∗ = (8L+ 44 + b8L/4c) /Sbus = 124/Sbus, where
44 denotes the number of bits exterior to the data field, L the
DLC=8, and Sbus the bus speed. Note that at least 2L bits are
added to the fabricated message according to the CAN’s bit-stuffing
rule. Hence, if we consider a CAN bus with Sbus = 500Kbps,
using a single injected preceded ID message, the adversary can
take control of the bus for at least 0.248ms. Such analyses sug-
gest that for targeting a message with a jitter deviation of σv ,
the adequate number of preceded ID messages can be expressed
as κ =

⌈
max(J∗)−min(J∗)

F∗

⌉
=

⌈
2
√
2IσvSbus
124

⌉
. For example, if

σv = 0.025ms and Sbus = 500Kbps, the adversary is only re-
quired to inject κ = d0.8554e = 1 preceded ID message with
I = 3, i.e., 99.73% confidence. To ensure the effectiveness of the
fabricated preceded IDs with a near-perfect confidence, the adver-
sary can set I = 4 and thus inject κ = d1.1405e = 2 messages at
time tf ab. Our evaluation will later show that one injection of fab-
ricated ID messages (κ = 1) can be sufficient for a bus-off attack.

Contents of the preceded ID message. Other than the control
and data fields, the adversary also has to carefully decide which
ID to use for fabricating the preceded ID messages. If only one
preceded ID message is to be used for the attack, the adversary can
exploit the next seemingly free ID. To be as elusive as possible, the
ID value can be changed for each attempt of attack and be chosen
from those least frequently sent on the bus. If two preceded ID
messages are to be used, the adversary can similarly inject the first
one with any free ID but should inject the second one with an ID
having higher priority (smaller value) than the target.

5. EVALUATION
We now evaluate the feasibility of the proposed bus-off attack on

a CAN bus prototype and two real vehicles. For in-depth analyses
of the bus-off attack, we first evaluate the attack on the CAN bus
prototype, and then extend the evaluation to real vehicles.

5.1 Bus-off Attack
As shown in Fig. 11, we configured a CAN prototype in which

all 3 nodes were connected to each other via a 2-wire bus. Each
node consists of an Arduino UNO board and a SeeedStudio CAN
bus shield, which is composed of a Microchip MCP2515 CAN con-
troller with SPI interface, MCP2551 CAN transceiver, and a 120Ω
terminal resistor to provide CAN bus communication capabilities.

Evaluation setup. The CAN bus prototype was set up to oper-
ate at 500Kbps as in typical in-vehicle CAN buses. Three inter-
connected nodes were each programmed to replicate the scenario
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Figure 12: TECs during a bus-off attack.
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Figure 16: Changes in TECs when the
preceded ID is fabricated.

shown in Fig. 6, which is also commonly seen in actual CAN bus
traffic: every 10ms, node A was programmed to send two consecu-
tive messages with ID=0x07 and 0x09, and B to send one message
with a lower priority of ID=0x11. Node B buffered its message
when a message with ID=0x07 was received. Note that 0x07 and
0x09 become the genuine preceded IDs of 0x09 and 0x11, respec-
tively. We will later extend this evaluation of the bus-off attack to
the case without assuming the availability of genuine preceded IDs.
Last, but not least, the third node was programmed as an attacker
which learns any preceded IDs on the bus and repetitively launches
the bus-off attack. In our evaluation, message 0x11 from B was
set as the attacker’s target message. Hence, the attack message was
set up to have the same ID=0x11 but with a different DLC (=0).
Since the targeted message had a period of 10ms, the bus-off attack
was repeated at the same time interval. For every message trans-
mission/reception, the Transmit Error Count (TEC) of each node
was read from its CAN controller register. The entire procedure of
an iterative bus-off attack was re-initiated once a node entered the
bus-off mode, and was examined 1,000 times.

Changes in TEC during a bus-off attack. Fig. 12 shows how
the TECs of the victim and the adversary change during an itera-
tive bus-off attack. All 1,000 examinations showed near identical
changes as shown in Fig. 12. In the initial stage of the attack, there
was a steep rise in the TEC of both nodes. This is because in Phase
1, with just one attack message, bit errors incurred for not only
the initial transmission but also all subsequent retransmissions as
depicted in Fig. 5(a). Once the victim became error-passive, i.e.,
TEC>127, the attack entered its second phase. Here, with success-
ful message transmissions, the adversary was able to recover back
to, and remain as error-active. On the other hand, the victim expe-
rienced iterative bit errors during its transmissions, and eventually
entered the bus-off mode when its TEC exceeded 255.

Properties of attack Phase 2. Fig. 13 shows a magnified plot of

the changes in the victim’s TEC during the attack. In Phase 1, TEC
monotonically increased due to the errors in all (re)transmissions.
On the other hand, once the attack entered Phase 2, the difference
in error mode lets the victim succeed in its transmission only after
experiencing a bit error. Thus, whenever an attack message was
injected into the bus by the attacker, the victim’s TEC was first in-
creased by 8 and then immediately decreased by 1. The net TEC
increase of 7 each time eventually forced the victim to be discon-
nected from the bus. These results confirm the properties of Phase
2 discussed in Section 3.2.

5.2 Attack Under Different Bus Conditions
The bit-rate of the CAN bus can vary from 125Kbps to 1Mbps,

depending on its purpose, and its bus load can also vary with time.
Thus, in order to examine the practicability of a bus-off attack un-
der different bus conditions, we conducted the same experiment in
Section 5.1 1,000 times, while varying the speed and load of the
bus. Each time we measured the average delays of the bus-off at-
tack that forces a victim to enter error-passive and bus-off modes,
as they represent the following metrics: (1) the required number
of attack messages, and (2) the probability of the attack’s success.
If there was at least one attempt in which the attack failed, then
the maximum deviation in delays would be at least the inter-attack
interval.

Different bus speeds. Fig. 14 shows box plots of the average
delays of the bus-off attack in coercing the victim to become error-
passive and bus-off. The bus speed was varied from 250Kbps to its
maximum of 1Mbps. As shown in Fig. 14 (top), for all bus speeds,
it took much less than 10ms for the adversary to coerce the victim to
become error-passive. Since the attack message was injected every
10ms, this implies that only a single injection of the attack mes-
sage was required. Also, observing that the maximum deviation
was less than 10ms, all attempted bus-off attacks succeeded, irre-
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Figure 17: Bus-off attack experiments on (a) Honda Accord 2013 and (b) Hyundai Sonata 2016.
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Figure 18: Transmit error counts of ECUs in the two real vehicles are increased via bus-off attack.

spective of the bus speed. The attacker was able to make the victim
enter error-passive mode faster with the increase of bus speed, be-
cause a higher bus speed enabled frame (re)transmissions to com-
plete more quickly. Fig. 14 (bottom) shows the total delay of the
victim eventually becoming bus-off at different bus speeds. For all
settings, the maximum deviation was less than 10ms, again imply-
ing a 100% success probability of the attack.

Different bus loads. Not only the speed but also the load of
the bus was varied in evaluating the attack. To generate different
bus loads, the node that was neither the adversary nor the victim
injected 100∼500 messages per second. Their IDs were randomly
chosen among the set of unused ID values, and their DLCs were set
randomly between 1 and 8. Fig. 15 shows the average total delay of
coercing the victim node to eventually bus off under the given bus
loads. As the bus load increases, the overall delay is shown to rise,
because some of the randomly injected messages won arbitration
over the target and attack messages and thus delayed their trans-
mission. Note, however, that since they both had the same IDs,
they both won/lost the arbitration. Therefore, in all 1000 examina-
tions with different bus loads, all trials of bus-off attack succeeded
regardless of the bus load.

5.3 Periodicity vs. Preceded ID
To mount a bus-off attack, the attack message has to satisfy con-

ditions C1–C3. Of these, C2 is the most difficult to meet, but can
be satisfied by exploiting either of the following three scenarios:
• Periodicity – measure the Tx interval of the target message

and exploit it for synchronizing the transmission timing.
• Genuine ID – assuming genuine preceded IDs are available,

exploit them for the bus-off attack.
• Fabricated ID – fabricating and thus exploiting the preceded

ID of a target message.
We evaluated all of these in order to verify their accuracies and
efficiencies. For the first scenario, the adversary and the victim
were programmed to send messages every 10ms with the same ID
but different DLC values. The first transmissions from both nodes
were initiated by a reference message sent by the non-victim node.
For the second scenario of exploiting genuine preceded IDs, the
nodes were programmed equivalently as discussed in Section 5.1.

Finally, for the third scenario, we programmed the adversary to
fabricate one preceded ID message per attack as shown in Fig 7.
For each attack scenario, we examined 50,000 bus-off attack trials.

When periodicity was exploited to synchronize the Tx timing for
a bus-off attack, due to jitters, only 58 out of 50,000 trials (0.12%)
were able to trigger a bit error at the victim, thus eventually not
triggering a bus-off. On the other hand, when genuine preceded IDs
were assumed to be present and thus were exploited, all 50,000 tri-
als succeeded in increasing the victim’s TEC. Even without assum-
ing that there is a genuine preceded ID for the target message, the
adversary increased the victim’s TEC 45,127 times (out of 50,000
trials) by fabricating it, i.e., a 0.9025 success probability. Note that
in achieving such a high probability, one fabricated preceded ID
was sufficient since the jitter deviation σv = 0.023ms. Although
some attempts failed, due to the high success rate and the nature
of change in TEC (i.e., +8 in TEC in case of error and −1 in the
absence of error), iterative bus-off attacks eventually forced the vic-
tim to bus off as shown in Fig. 16. One can see that the change in
TEC is slightly different from the one in Fig. 12 due to some failed
attempts. These results show that a preceded ID — regardless of
whether genuine or fabricated — is a good indicator for determin-
ing the exact timing of a specific message, and is indeed useful for
mounting a bus-off attack.

5.4 Bus-off Attack on Real Vehicles
To evaluate the feasibility of bus-off attack further, we also con-

ducted experiments on two real vehicles, 2013 Honda Accord and
2016 Hyundai Sonata shown in Figs. 17(a) and 17(b). During our
experiments, the vehicles were immobilized for safety in an iso-
lated and controlled environment. As shown in Fig. 17, through the
On-Board Diagnostic (OBD-II) port, we were able to connect our
CAN bus prototype to their in-vehicle CAN buses, both of which
run at 500Kbps. Thus, the 3 prototype nodes were able to read
all 40 distinct broadcast messages from the Honda Accord’s CAN
bus and 58 distinct messages from the Hyundai Sonata’s CAN bus.
Moreover, the nodes were capable of injecting and delivering arbi-
trary messages to the in-vehicle ECUs.

Increasing the TEC of a real in-vehicle ECU. We first experi-
mentally show that an attacker can synchronize its Tx timing with
a real ECU, increase its TEC, and thus succeed in launching a bus-
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Figure 19: Iterative bus-off attack in a
Honda Accord and a Hyundai Sonata.
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Figure 21: Efficiency of the proposed
countermeasure.

off attack. For the evaluation on the Honda Accord, one prototype
node was programmed as the attacker mounting a bus-off attack
on one of its ECUs, which sent message 0x295 every 40ms. The
attacker node made 15 attempts of the bus-off attack on that ECU
by fabricating the preceded ID of 0x295. For the evaluation on the
Hyundai Sonata, the node was programmed to mount the attack
on an ECU which sent message 0x164 every 10ms. Similarly, 15
attempts of the bus-off attack via fabrication of preceded ID were
made.

Due to restrictions in accessing the error counters of real in-
vehicle ECUs, we validate the attack on real ECUs by exploiting
the fact that in Phase 1 of the bus-off attack, the attacker’s and
the victim’s TECs increase equivalently and both eventually exceed
127 within a very short period. So, Fig. 18 shows (i) how the at-
tacker’s TEC changed during Phase 1 of 15 bus-off attack attempts
under both settings, and (ii) how the TEC of the in-vehicle victim
ECU changed. In contrast, during Phase 2, the attacker’s TEC does
not reflect the victim’s TEC. Since the results from only Phase 1 are
valid, once the attacker’s TEC exceeds 127, the node is reset to ini-
tialize its error counters. For the real ECU’s TEC to be re-initialized
so as to iterate Phase 1, the adversary mounted the attack every 5
secs, thus allowing the real ECU to decrease its TEC back to 0 as a
result of its error-free transmissions during this period.

One can see from Fig. 18(a) that in 13 out of 15 attempts, the
attacker’s and hence the Honda Accord ECU’s (victim’s) TEC rose
steeply, thus making both ECUs enter error-passive mode. As the
attack was mounted via one fabricated preceded ID, 2 out of 15 at-
tempts failed. The steep rises of TEC were again due to automatic
retransmissions by the attacker node’s and the in-vehicle ECU’s
CAN controllers. Similarly, Fig. 18(b) shows that, except for one
attempt, the Hyundai Sonata ECU’s TEC always increased when
the bus-off attack was mounted. Although we could only show the
result from Phase 1, it implies that the attacker can synchronize the
Tx timing with a real ECU, and iterate such a process to continu-
ously increase its TEC, eventually forcing it to disconnect from the
in-vehicle network. Moreover, it shows that the attack can succeed
regardless of the vehicle model/year, and corroborates an important
fact of the bus-off attack: there is no need to reverse-engineer mes-
sages or checksums for mounting the bus-off attack, thus making it
easier for the adversary to launch the bus-off attack.

Forcing an in-vehicle ECU to bus off. To further demonstrate
the feasibility of the bus-off attack on real vehicles, we also evalu-
ated a scenario in which one of the CAN prototype nodes was made
to be the victim. The period of the target message sent by the vic-
tim was set to 50ms. Since the three CAN prototype nodes were
capable of exchanging messages with real ECUs in both vehicles,
they were successfully added to their in-vehicle CAN networks,
and hence operate/act as if they were real ECUs. As a result, an at-

tack on one of them would be equivalent to an attack on a real ECU.
Unlike the prototype setting, however, their bus loads were signifi-
cantly higher — due to traffic generated by real in-vehicle ECUs —
during the attack, i.e., the attack was evaluated in highly complex
CAN bus traffic. Fig. 19 shows the changes in TECs of the vic-
tim node being attacked on the 2013 Honda Accord and the 2016
Hyundai Sonata. Under both settings, through iterative bus-off at-
tacks, the victim became error-passive within 2.4ms and eventually
entered bus-off mode. Compared to the prototype setting, since the
target message was set to have a larger interval and the bus loads
were much higher, the overall delays of the victim entering error-
passive and bus-off were larger.

These results on the two real vehicles confirm that the bus-off
attack is indeed a severe, real problem.

6. RELATED WORK
As a countermeasure against attacks on in-vehicle networks,

message authentication and intrusion detection systems (IDSs)
have been the two main lines of defense.

Providing message authentication for CAN is difficult due to the
limited space available for appending a Message Authentication
Code (MAC) in its data field. Moreover, the requirement of real-
time communication and processing makes the provision of authen-
tication a non-trivial problem. Several schemes have been proposed
to overcome these difficulties. The authors of [21] proposed to trun-
cate MAC across multiple frames. Similarly, the authors of [17]
proposed to use multiple CRC fields for including a 64-bit MAC.
To achieve such authentications, the entire message has to be re-
ceived by the transceiver and delivered to the upper layer. However,
for the proposed bus-off attack, the adversary causes a bit error at
the victim during message reception. Thus, even though a MAC is
appended to the message, its functionalities will be nullified. Sim-
ilarly, the functionalities of message checksums are also nullified.

Other than authentication methods, IDSs have also been pro-
posed as countermeasures. The essence of state-of-the-art IDSs
is to monitor the periodicity and contents of messages, and ver-
ify whether there are any significant changes to them. The au-
thors of [14] proposed a method of measuring the entropy of an
in-vehicle network and used the result as a specification of the be-
havior for an IDS. Similarly, a method of modeling the distribution
of message intervals was proposed in [12] to define a norm behav-
ior. Not only message frequency but also obvious misuse of mes-
sage IDs (e.g., ID=0x00) were monitored in [8]. Although such
IDSs are capable of detecting attacks to some extent, they over-
looked the fact that message periodicity can change even in a nor-
mal or uncompromised environment. For example, if an error had
occurred due to hardware/software fault, then that message would



automatically be retransmitted by the CAN controller, thus chang-
ing its transmission interval [19]. As a result, since an abnormal
periodicity may be due to a system error as well as an attack, it
is unreasonable to directly map such a symptom to an attack. For
example, 16 consecutive error frames can occur due to not only a
bus-off attack but also improper CAN termination [4]. This implies
that for the proposed bus-off attack, the IDS may not tell if the error
was due to an attack or a system error.

7. COUNTERMEASURES
The proposed bus-off attack is an important vulnerability, espe-

cially in view of its capability of nullifying MACs and checksums,
and also deceiving IDSs to think there is a system error although
the network is actually under attack. We propose a new defense
mechanism which leverages the following features of the bus-off
attack for its prevention.
In Phase 1, due to CAN’s automatic retransmission,

F1. at least two consecutive errors occur during the transmission
of frames. Thus, we watch for consecutive error frames with
an active error flag.

In Phase 2, due to the difference in error modes,
F2. at the time when the (error-passive) victim’s TEC increases,

a message with the same ID will be successfully transmitted
by some ECU on the bus.

F1 indicates a bus-off attack. We first simulated the probability
of F1 under an uncompromised condition. We leveraged the same
error model in [19] where bit error occurrences follow a Bernoulli
distribution. In our simulation, for a given DLC and Bit Error Rate
(BER), we randomly generated 100,000 different CAN messages
and measured how many of them satisfy F1. The simulation result,
plotted in Fig. 20, shows that even under an unusually high BER
of 10−3 (usually 10−5 ∼ 10−7 [19]), the maximum probability of
F1 was only 0.11%. So, under a normal condition, the probability
of F1 occurring 16 times in a bursty manner can be considered 0,
whereas it was 1.0 during a bus-off attack. Considering this large
discrepancy, we can consider F1 to indicate a bus-off attack. How-
ever, since F1 can also occur due to severe system errors such as im-
proper bus termination [4], bit flip [22], and bit drop/insertion [15],
F1 alone cannot be a definitive evidence of a bus-off attack.

F2 is the evidence. After occurrence of F1, once an error-passive
ECU experiences a bit error again when transmitting a message
with ID=M, it can further monitor the CAN bus and check if there
was any successful transmission of another message with the same
ID=M, i.e., occurrence of F2. This can only occur when two or
more ECUs are sending the same message at the same time, which
is not allowed on CAN and thus infeasible even in a severely er-
roneous network, while it is possible under a bus-off attack. From
both F1 and F2, we can thus verify the occurrence of a bus-off
attack, i.e., the observed symptoms are not caused by a system er-
ror. Following this reasoning, we propose the following defense
mechanism: an ECU or its error counters are reset whenever F2
is observed after N consecutive error frames. We use N = 16 to
reset the victim ECU upon occurrence of both F1 and F2.

Efficiency of the proposed countermeasure. We evaluated the
bus-off attack on our CAN bus prototype with the proposed coun-
termeasure. According to the proposed defense, the nodes were
programmed to reset when F2 was observed after 16 consecutive
and bursty error frames. During an iterative bus-off attack, Fig. 21
shows how the victim’s TEC changed with and without the pro-
posed defense. By observing the presence of bursty error frames
on the CAN bus, the victim’s error mode mostly stayed as error-
active, which is in sharp contrast to the case without any counter-

measure, and also successfully transmitted its messages, efficiently
preventing the bus-off attack.

Alternative countermeasures. In our proposed countermea-
sure, we looked for consecutive error frames (i.e., F1) to prevent
the bus-off attack. We may also consider a countermeasure which
verifies if consecutive errors incur at the same bit position, instead
of frames. As this is, in fact, the strongest evidence of the bus-off
attack, we may use it as the condition of triggering an ECU reset.
It may also be considered as a new rule in CAN for not increasing
the error counters. Then, as the detection of a bus-off attack can
be made much faster with the stronger evidence, unwanted retrans-
missions, which were at least 16 in our proposed countermeasure,
can be reduced further. Note that these retransmissions may affect
other messages in meeting their hard/soft deadlines. Albeit effec-
tive, such a countermeasure accompanies numerous challenges and
limitations: 1) detecting individual bit errors would require changes
in hardware, thus incurring expensive development cost and 2) de-
tecting which bit has currently changed and comparing it with the
previously changed one would require additional memory in the
CAN transceiver chip.

The proposed bus-off attack exploits the periodic feature of in-
vehicle network messages for synchronizing its transmission time
with the victim’s. It is thus limited to only periodic messages but
it is very effective since most in-vehicle messages are periodic.
Therefore, an alternative countermeasure can be to transmit peri-
odic messages with some random factors added to their Tx times
(e.g., adding random jitters), making them somewhat aperiodic.
However, adding random factors to Tx times can create serious un-
expected problems such as priority inversion, message sequence
inversion, and deadline violation [6]. As this incurs detrimental ef-
fects on the message scheduling mechanism, we did not consider it
as a possible countermeasure against the bus-off attack.

8. DISCUSSION
Severity of the bus-off attack. Since contemporary in-vehicle

networks are not equipped with security mechanisms, an adversary
can mount not only the bus-off attack but also other types of (previ-
ously covered) attacks on in-vehicle networks. For example, the at-
tacker can simply inject arbitrary messages on the CAN bus or mo-
nopolize the network by continuously sending the highest-priority
frames. However, the following facts make the bus-off attack a
more severe problem and an attack that an adversary might favor
over other attacks. Previously demonstrated/covered attacks either
show obvious misuse of message IDs or significantly increase the
message frequency, which can easily be detected and then removed
by existing IDSs [8, 12, 14]. In contrast, the proposed bus-off at-
tack can be mounted without misusing IDs and requires only a
small increase in message frequency — up to a frequency that ren-
ders the bus-off attack feasible even during a system error (e.g., bit
drop/insertion). This may cause the existing IDSs to be confused
whether the symptom is due to an attack or a system error. More
importantly, unlike previously demonstrated attacks, the adversary
can mount a bus-off attack without any knowledge on the meanings
or purposes of messages, making their reverse-engineering unnec-
essary. Also, the attacker succeeds before the victim verifies a mes-
sage’s checksum, and hence can use an arbitrary checksum in the
attack message, i.e., no need to reverse-engineer the implemented
checksum algorithm. Even if MACs were used for in-vehicle net-
work messages, their functionalities could likewise be nullified.
Requiring far less painstaking (than reverse engineering) efforts —
especially when the adversary wants to mount attacks on various
types of vehicles — differentiates the bus-off attack from previ-



ously known vehicle attacks and can also be a strong motivation
for the adversary to prefer the bus-off attack to others.

Limitations of the bus-off attack. In order to succeed in the
bus-off attack, the attacker must synchronize its transmission tim-
ing with the victim’s. To achieve this, the proposed bus-off at-
tack leverages the CAN protocol’s buffering strategy via a gen-
uine/fabricated preceded ID message. As mentioned before, how-
ever, its exploitation is only feasible when the target message (from
the victim) is sent periodically. In other words, the attacker cannot
force a victim to bus off when he is sending messages aperiodically.
Meanwhile, since most messages in CAN are sent periodically, the
attacker can succeed in mounting the bus-off attack on most ECUs
in the in-vehicle network.

Vulnerability of other in-vehicle networks. Although most
modern vehicles are equipped with CAN, some may deploy other
protocols, such as CAN-FD, TTCAN, and FlexRay for more com-
plex operations. Note that CAN-FD is an enhanced version of
CAN, providing flexible and higher data rates as well as a larger
data field [15]. Since CAN-FD’s basic components, arbitration, and
error handling all conform to those in CAN, it is also vulnerable to
the proposed bus-off attack. What makes CAN-FD more interest-
ing is that an attacker can monitor the newly introduced Extended
Data Length (EDL) and Bit Rate Switch (BRS) fields, recognize
which messages are sent with high bit rates or large payloads —
safety-critical messages — and target them for a bus-off attack.

TTCAN is a session-layer protocol in which its message trans-
missions are based on a static schedule, time-triggered paradigm to
provide Tx determinism [11]. As a result, all ECUs transmit their
messages only at their assigned time slots and are periodically syn-
chronized through a broadcast reference message. Since the allo-
cated time slots are predefined in a schedule matrix and are stored
in each node, the attacker — having control of a vehicle running
TTCAN — is provided with the knowledge of what messages are
sent and when, thus making the bus-off attack easier.

In FlexRay, which is designed to be more reliable than CAN as
in CAN-FD, the error modes are divided into 3 different modes:
normal-active, normal-passive, and halt. Normal-active mode is
essentially equivalent to the error-active mode of CAN, whereas
normal-passive mode differs from the CAN’s error-passive mode,
as it does not allow the nodes to transmit in that mode. Accordingly,
FlexRay becomes invulnerable to the proposed bus-off attack.

9. CONCLUSION
In this paper, we discovered a new vulnerability, called the bus-

off attack, of in-vehicle networks. The attack exploits their error-
handling scheme to disconnect an uncompromised ECU and/or
even shut down the entire in-vehicle network. We analyzed its prac-
ticability and demonstrated the attack on a CAN bus prototype and
two real vehicles. Based on our analysis and experimental results,
we proposed a defense mechanism to prevent the bus-off attack.
Even though the proposed attack has not yet been seen in the wild,
it is easy to mount and also directly related to drivers/passengers’
safety, and should thus be countered with high priority. Moreover,
the facts that the proposed attack can nullify state-of-the-art solu-
tions and is easy to launch, make it even more important to design
and deploy its countermeasures. Thus, we recommend concerted
efforts from both academia and industry to account for this vulner-
ability in the design of in-vehicle networks.
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