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Abstract: With the advance of indoor localization tech-
nology, indoor location-based services (ILBS) are gain-
ing popularity. They, however, accompany privacy con-
cerns. ILBS providers track the users’ mobility to learn
more about their behavior, and then provide them with
improved and personalized services. Our survey of 200
individuals highlighted their concerns about this track-
ing for potential leakage of their personal/private traits,
but also showed their willingness to accept reduced
tracking for improved service. In this paper, we propose
PR-LBS (Privacy vs. Reward for Location-Based Ser-
vice), a system that addresses these seemingly conflict-
ing requirements by balancing the users’ privacy con-
cerns and the benefits of sharing location information
in indoor location tracking environments. PR-LBS re-
lies on a novel location-privacy criterion to quantify the
privacy risks pertaining to sharing indoor location in-
formation. It also employs a repeated play model to en-
sure that the received service is proportionate to the
privacy risk. We implement and evaluate PR-LBS ex-
tensively with various real-world user mobility traces.
Results show that PR-LBS has low overhead, protects
the users’ privacy, and makes a good tradeoff between
the quality of service for the users and the utility of
shared location data for service providers.
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1 Introduction
Localization technologies [1], tailored for indoor spaces
such as retail stores, malls, airports, museums, and hos-
pitals, are gaining popularity. An indoor service provider
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(SP) (e.g., retail store owner) utilizes the customers’ in-
door location information to study their behaviors and
infer their preferences and interests. In the best case,
this should be a win-win for both customers and SPs;
the SPs collect location data and deliver better service
to the customers which leads to enhanced customer sat-
isfaction and eventually increased revenues.

Unfortunately, indoor localization has not been re-
alized to its full potential. Customer resistance is forcing
SPs to either sideline the technology (e.g., Nordstrom
ceased customer tracking after public outrage [2]) or rely
solely on anonymous data collection [3]. Analyzing cus-
tomers’ location data anonymously prevents the service
provider from offering them personalized services that
would result in revenue-generation/increase .

To gain a better understanding of the users’ per-
spectives towards indoor localization, we surveyed 200
shoppers in two major retailers: Walmart and Nord-
strom. The survey shows that customers have both pri-
vacy and utility concerns.

A. Privacy Concerns: Users cited privacy con-
cerns for not accepting this technology (consistent with
other surveys [4]). An SP, tracking users’ mobility, has
the potential to infer personality traits and/or habits
that could be private to them. For example, a retailer
can infer from the frequently-visited aisles the shopper’s
gender (men’s vs. women’s clothing), ethnicity (eth-
nic food aisles), socioeconomic status (expensive vs. in-
expensive clothing and accessories), health condition
(pharmacy aisles), sensitive interests (sporting goods,
adult magazines and films), religious beliefs (clothing,
specific food aisles), etc.

Unlike the outdoor case, the indoor SP is directly
involved in the user’s localization through the deployed
infrastructure such as Wi-Fi and Bluetooth. Unless the
users turn off their devices, the SP does not provide
an opt-out mechanism by which users can exert control
over how much of their mobility is being tracked. Ac-
cording to our survey, users are not comfortable with
the SP storing their mobility information even when it
is processed anonymously.

B. Utility Concerns: Users expressed interest in
receiving rewards for sharing some of their mobility in-
formation. This is referred to in the literature as a fair
transaction [5]; a user shares some data proportionately
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with the received rewards. In the indoor case, the users
might find it challenging to engage in a fair transaction
with the SP. First, it is hard for them to associate their
mobility with a privacy cost in the typically public in-
door space (in the outdoor case there is some notion
of a private location such as home). Second, although
the location information might help the user indirectly,
through improving store layout, product placement, or
waiting time in checkout lines, but these are not person-
alized and tangible services that would make users feel
satisfied for revealing their mobility.

In this paper, we first pose a question: can the seem-
ingly conflicting requirements of the users and SPs be
effectively resolved? To answer this question, we pro-
pose PR-LBS (Privacy vs. Reward in Location Based
Service); a novel framework that addresses the user’s
privacy concerns and enables them to receive the right
reward from their location sharing on one side. On the
other side, it provides the indoor SPs with enough in-
formation to perform aggregate and more personalized
analysis of the customers.

PR-LBS puts the users in control, allowing them
to specify a privacy setting that translates into a prov-
able privacy guarantee. PR-LBS packs in an online pri-
vate location release mechanism that achieves differ-
ential privacy guarantees in indoor environments. Ad-
ditionally, PR-LBS enables the users to set high-level
policies that provide their utility definition as a function
of the privacy “cost” of sharing location and “benefit"
received from the SP. To estimate the cost of sharing
the user’s indoor mobility, we introduce a new privacy
criterion, which is based on information disclosure.

PR-LBS improves on the current approaches of
take-it or leave-it; it ensures a fair transaction of the
user’s location information with the SP by abstracting
the interactions between the user and the SP as a re-
peated play model [6]. PR-LBS employs the strategic
experts algorithm [7] to choose, at run-time, the action
(hide, reveal, or anonymize location) sequence that max-
imizes the user’s utility.

PR-LBS is a generic framework that supports var-
ious practical deployment scenarios. A user can sim-
ply download and install it to the device, which we
call device mode, if localization is device-based, such
as iBeacons [8]. Also, a localization provider can em-
ploy PR-LBS as a broker between the user and the SP,
which we call infrastructure mode, in case localization is
infrastructure-based such as CUPID [1]. PR-LBS could
act as a privacy guarantee/seal in this case [9], which
will make users more comfortable to share their loca-
tion. In this paper, we design and evaluate PR-LBS in

both modes and present a full real-life implementation
on Android for the device mode.

PR-LBS has a low energy footprint when running
on the user’s device and is easy to use as our user study
(100 respondents) shows. Our survey also indicates that
users are more comfortable with location tracking tech-
nology with PR-LBS being deployed. Further, our eval-
uations of PR-LBS in 8 different scenarios show that
PR-LBS strikes a balance between the user and the SP.
It controls the release of location information to pro-
tect the users’ privacy, rewards them with commensu-
rate service, and maintains data utility for the SP.

The paper is organized as follows. Section 2 reviews
the related work. Section 3 presents our survey. Sec-
tions 4 and 5 present our system and privacy models,
respectively. Section 6 details the design of PR-LBS .
Section 7 describes our implementation and evaluation
of PR-LBS. Section 8 lists some limitations of PR-LBS.
Finally, Section 9 concludes the paper.

2 Related Work
There have been numerous efforts to mitigate the pri-
vacy risks in indoor environments. Retailers provide cus-
tomers with opt-out options and claim to analyze their
data in aggregate [3]. Our survey showed that users are
likely to opt-out if provided with the option. Also, ag-
gregate processing does little to protect the users’ pri-
vacy. The SP still stores mobility data that is tagged
with a MAC address (or a hashed form thereof). The
hashed MAC can link the user to his traces [10] and can
be reverse-mapped to the original MAC [11]. Alterna-
tively, PR-LBS provides provable privacy guarantees by
limiting the additional knowledge the SP attains from
observing the user’s mobility.

Other approaches rely on complete prevention of lo-
calization [12–15]. PR-LBS capitalizes on these mecha-
nisms by acting as a control knob to opportunistically
decide when to activate/deactivate them. PR-LBS ex-
ercises fine-grained location control to protect users’ pri-
vacy while allowing them to interact with the SP. Re-
cently, there have been mobile apps (such as that by
Placed and Shopkick) that allow the users to receive re-
wards for location check-ins. PR-LBS automates this
process; it acts on the user’s behalf to decide when it
is beneficial to share location or not. The user only
specifies a privacy setting and high-level policy while
PR-LBS takes care of deciding the privacy cost, service
level, and sharing/hiding/anonymizing the location.
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Researchers have proposed mechanisms to appraise
private data before sharing it so that the user is properly
rewarded (e.g., the architectures of Riederer et al. [16]
and Ghosh and Roth [17]). These mechanisms typically
require cooperation from both users and SPs. PR-LBS
does not change the communication between the user
and the SP and targets the case of a non-cooperative
SP. Finally, Shokri [18] proposes a theoretical framework
that optimizes user-side obfuscation to maintain both
differential and distortion privacy with the impact on
utility not being greater than the case of optimizing
for a single privacy criterion. PR-LBS takes a different
approach; it provides concrete mechanisms that achieve
differential privacy. Moreover, it maximizes the user’s
rewards by adapting actions to the SP’s services. PR-
LBS is also a practical system that users can run in
real-world environments.

3 Survey
We designed two surveys to study individuals’ behav-
ior and privacy preferences when shopping in Walmart
(104 respondents) and Nordstrom (100 respondents) us-
ing Amazon Mechanical Turk. We compensated each
participant with $3 and the average time for survey
completion was 24 minutes. To protect the privacy of
the participants, we did not collect any personal infor-
mation and processed the data in aggregate. We also
introduced a set of questions to weed out inconsistent
responses.

The participants are diverse; they are uniformly dis-
tributed among genders, 42% are between 15 and 29
years old, while 43% fall between 30 and 44 years of
age, half with a university/college degree, 29% with a
high school degree, and 75% visit a brick-and-mortar
shop at least once a week (97% at least once a month).

In the first section of the survey, we presented the
respondents with the disclaimer (Fig. 1) that Nordstrom
displayed to the shoppers in 2013. We then asked them,
after reading the disclaimer, whether they would hypo-
thetically consent to either Nordstrom or Walmart gath-
ering Wi-Fi information assisting in their localization.
This was the first mentioning of indoor localization-
related terminology in the survey; we used the same
language of a retailer to avoid any bias.

Interestingly, the participants responded with a
preference to prevent the store from gathering informa-
tion assisting in their localization (70%), 18% indicated
that they would consent to the store gathering parts

We are always looking for ways to improve our 
customers’ experience. We gather 
publiclybroadcasted information your smartphone or 
other WiFienabled device sends out when it is 
attempting to connect to a WiFi network in and around 
this store. This provides us with anonymous, 
aggregate reports that give us a better sense of 
customer foot traffic. We do not gather such things as 
your name, email address, phone number, your 
device's browsing activity or text, email or voice 
messages. 

Fig. 1. The disclaimer presented at the start of the survey.

of their Wi-Fi information. Only 10% of the partici-
pants consented to full gathering of Wi-Fi information
broadcasted by their devices. We then posed the same
question differently by indicating that the disclaimer ef-
fectively asks for the user’s consent for indoor location
tracking. The response distribution shifted a bit; 61%
chose to prevent location tracking entirely, 24% chose
to allow the store to gather part of their mobility, while
the rest (15%) consented to full location tracking.

In the rest of this paper, we refer to the first set
of individuals (rejecting tracking) as privacy-oriented,
the second set (consenting to only part of tracking)
as neutral, while we refer to the third set of individ-
uals as service-oriented. These categories are akin to
Westin’s [19] categorization of privacy orientations of
individuals as fundamentalists (privacy-oriented), prag-
matists (neutral), and unconcerned (service-oriented).

Privacy-oriented Participants: These participants
cited a set of privacy-related reasons as to why they re-
ject location tracking. The most recurring reason was
that they do not trust the store with mobility data
(49%), the second being they do not feel comfortable
with their mobility information being gathered (43%),
and the third was that the store provides nothing in
return for gathered mobility data (41%).

We also asked these respondents about their per-
ception of the difference between smartphone-based and
other tracking technologies such as monitoring purchase
history (through credit card or rewards program) and
using CCTV cameras. Regarding purchase history, only
10% indicated that purchase history reveals the same in-
formation as their mobility. The rest of the participants
indicated that they do not want the store to know what
items they are interested in but did not end up buying
or that they use cash for their purchases. We observed a
similar trend with CCTV cameras; only 20% of the par-
ticipants indicated that cameras and location tracking
reveal the same information while the others felt that it
is harder to track them using CCTV cameras.

Neutral Participants: The second set of participants
cited similar reasons as to why they want some part of
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their mobility to be hidden. As for which parts of their
mobility they want to be hidden, they responded with
those areas that they deem private (65%), areas of the
store that include items they browse but do not buy
(44%), and areas where they receive nothing in return
from the service provider (25%).

Service-oriented Participants: Individuals belonging
to this set of survey respondents do not feel threat-
ened by the store owner tracking their mobility. When
asked whether they would change this perspective if the
store owner would treat them differently based on mo-
bility data, 30% indicated that would choose to pre-
vent tracking, 37% still consented to full tracking, and
the rest (33%) answered by not being sure. The par-
ticipants’ perspective further shifted when we indicated
that the store owner might share their mobility with a
third-party entity (an advertisement agency for exam-
ple). 50% indicated that they do not consent to location
tracking anymore and only 26% responded that they
have no problem with their location being tracked.

In the second part of the survey, we asked partici-
pants to trace their path, on a map of the store, the last
time they went shopping at either Walmart or Nord-
strom if they remember it well. We then asked them
to indicate the parts of the path they would hide from
either store. Interestingly, even privacy-oriented respon-
dents did not choose to hide all zones of their paths. In
the last part of the survey, we asked participants to in-
put their satisfaction level in different situations. More
than 40% of the privacy-oriented users indicated that
they would be satisfied if they were to share some of
their mobility and receive very good service in return.

4 System Model
PR-LBS addresses the case of a user’s location tracking
exclusively in constrained public (including indoor)
spaces, such as retail stores, malls, museums, theme
parks, etc., where a localization system is installed.
We consider the following main entities involved in the
ecosystem:
– User: the individual moving around in the space of

interest while carrying a mobile device.
– Service Provider (SP): the entity owning the

space in which the user moves. It manages a set of
application servers that analyze the user’s location
and push service in the form of coupons, directions,
deals, promos, etc.

(a) Infrastructure mode (b) Device mode

Fig. 2. PR-LBS deployment options

– Localization Provider (LP): an entity con-
tracted by the SP to localize the users. It relies on
the deployed Wi-Fi access points or Bluetooth bea-
cons to track users via the devices they carry. The
LP can reside either on the device side or on the
infrastructure side.

The SP deploys a mobile app (e.g., Shopkick) that acts
as its communication channel with the user. The SP
uses a consistent identifier such as the MAC address to
map the location updates to the user running the app.
The SP then pushes the tailored location-based content
to the user through the app.

Logically, PR-LBS runs between the LP and the
SP. It is a trusted module that controls the release of
the location information to the SP in a privacy-aware
manner. It is very important to note that the SP only
views that mobility of the user that has been released
by PR-LBS. PR-LBS runs in device or infrastructure
mode:

Infrastructure mode (Fig. 2a): fits infrastructure-
based localization where the LP has to install and run
PR-LBS as the device can not control location shar-
ing. This, however, could only happen if the SP has
enough incentives to do so. Given users’ privacy con-
cerns, the SP has an incentive to deploy a solution that
mitigates these concerns. For example, European com-
panies have to apply for a privacy certification before
collecting users’ data (including indoor location) [9].

Device mode (Fig. 2b): fits device-based localiza-
tion that computes the location on the device and then
shares it with the SP. The user installs and runs PR-
LBS that controls location release from the device.
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Fig. 3. The high-level operations of PR-LBS.

4.1 High-Level Description

Fig. 3 shows the high-level operations that PR-LBS per-
forms when deployed in infrastructure mode. In device-
mode deployment, PR-LBS performs the same opera-
tions while running on the device.

In the view of PR-LBS, the area of interest is par-
titioned into a set of zones: Z = {zk}. The zones are
semantic sub-areas within the area of interest which the
SPs are typically interested in mapping the user’s loca-
tion to. For example, a zone could refer to an aisle in a
supermarket, a department in a store, or an entertain-
ment station in a theme park.

As the user moves from a zone zi to another zone zj ,
PR-LBS decides whether to release, hide, or anonymize
zi from the SP (Section 6.1). This action will result in a
potential privacy cost to the user, leak(zi), as estimated
by the privacy analyzer as described in Section 5.3.
While spending time at zi and then moving to zj , the
SP will be pushing a service to the user’s device. When
the user visits zj , the QoS analyzer (Section 6.3) esti-
mates the value of the service, servi, the user received
as a result of hiding, releasing, or anonymizing zi to the
SP.

A transaction between the user and the SP takes
place during the time period spanning the user reach-
ing zi and just before arriving at zj . The utility es-
timator (Section 6.2) module of PR-LBS computes
the utility (user-defined) the user gained after incur-
ring a cost=leak(zi) and receiving a benefit= servi.
The exchange module employs a set of privacy preserv-
ing mechanisms (Section 5.2) as “experts" that dictate
the action to perform. This module utilizes the history
of the user–SP transactions to decide the best expert
(maximizing users’ utility) to follow when reaching zj .

Finally, PR-LBS has a collector module that runs
on the device and collects the privacy preferences of the
user. While PR-LBS is running, the collector module
gathers information to assist the QoS analyzer in com-
puting the service that the user receives.

5 Privacy Model
From the users’ perspective, any entity collecting their
location has the potential of posing privacy threats. We
make a natural choice to trust the user’s device as no
solution is feasible without such a trust. We also choose
to trust the LP only if it deploys PR-LBS, as it will in-
dicate a willingness to provide privacy protection to the
user. Thus, we assume that the privacy threats originate
from the SP’s analysis of the collected location data and
the resulting treatment of the user.

The SP is an honest-but-curious entity that pas-
sively profiles the user through location information.
These SPs will not collude with the LP (infrastructure-
based case) if they choose to deploy PR-LBS. While
the privacy threats are evident for an infrastructure-
based LP, device-based localization might be perceived
as less threatening. Proximity beacons can not track the
user’s mobility, but smartphone apps scanning for bea-
cons pose tracking threats. We found that several shop-
ping apps, including Shopkick, scan for nearby beacons
and upload them along with consistent identifiers al-
lowing them to track the user’s mobility. In this paper,
we only consider the threats to the user’s privacy from
location tracking that originate from the user’s smart-
phone. An SP might utilize other channels to localize a
user, e.g., CCTV cameras, which the user and PR-LBS,
unfortunately, can not control. We also view security
challenges as orthogonal to this work.

Intuitively, any privacy loss that the user suffers
from the SP accessing his/her location takes place
through processing and analyzing this collected mobil-
ity information. Privacy loss is then a function of the
information disclosed from observing the user’s mobil-
ity. In what follows, we define the mobility model, the
privacy mechanisms of PR-LBS, and the cost function
which enables the location–service exchange of PR-LBS
as will be evident later.

5.1 Mobility Model

Topology: PR-LBS views the topology of the area as
an unweighted and undirected graph G = (Z,E), where
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Table 1. The symbols table.

Symbol Meaning
Z set of zones in the area of interest
N number of sessions
p path traversed in a session
l[p] length of traversed path in a session
n[p] number of observations of path p

P (p) = n[p]/N probability of traversing a path p

pl a single path p of length l

Pl the set of paths of length l (all paths pl)
dG(zi, zj) distance between two zones: zi and zj

tG(zi, zj) shortest time to travel between two zones

Z, the set of zones represents the nodes and E is the
set of edges of the graph representing the transitions
between neighboring zones. Each edge, e, is associated
with the time, t(e), the user takes to travel along it.
In a typical public space, all zones are reachable from
the entrance, making the graph connected. We can then
define a path as the sequence of visited zones (of inter-
est to the user) in the graph as: pl = 〈zk〉zk∈Z,zk 6=zk+1

,
where l is the path length (number of zones) and zk is
the kth zone of the path. To count a zone as part of the
path, the user must visit the zone and stay there for at
least 30 seconds, not just passing through.

We define two functions in the graph G: the distance
between two zones in the graph dG(zi, zj) is the length
(number of edges) of the shortest path between zi and
zj ; and the time between two zones tG(zi, zj) as the
shortest time it takes the user to travel between two
zones (taken as the shortest path when the weights in
the graph are considered as t(e) instead of 1).

PR-LBS only releases the path defined above (pl)
or a variant thereof. Therefore, it hides the intra-zone
as well as low-level mobility and only releases signifi-
cant changes in the user’s location (when visiting a new
zone). As such, consecutive zones in the path need not
be geographical neighbors; the path, as we define it, is
not equivalent to the actually traversed path, but rather
a part of it. For example, the user might have traveled
along the zones A-B-C-D, but only spent time at A and
C. PR-LBS releases the path (or a variant of) A-C.

Sessions: The user’s mobility is broken down into
sessions. In each session, the user enters the area, tra-
verses a path, and then leaves; i.e., a session maps to one
traversed path. We focus on the path as it embodies all
the information about the user’s mobility including the
zones of interest, their priority and importance to the
user, and other tracking information. The path starts
at the beginning of a session and ends at the end of the
session; subpaths do not count as independent paths.

Therefore, each session will be associated with one path
p of length l[p].

We model the user’s mobility as the probability dis-
tribution of a set of paths s/he traverses. PR-LBS pop-
ulates this mobility model empirically based on the SP’s
observations (zones that PR-LBS revealed to the SP).
After N sessions, the SP observes the user traversing a
path p for n[p] times. Each path in the mobility model
is a distinct event; the probability of the user travers-
ing each path (as observed by the SP), P (p), is simply
the count of the path divided by the number, N , of the
user’s sessions, P (p) = n[p]

N .
The set of paths of equal lengths (Pl = {p|l[p] = l})

forms a probability distribution: ∀p ∈ Pl, P (p) = n[p]
N .

The probability of each path is the probability of the
user following a path of the same length in a session.
As some sessions will not have a path of length l, the
probability distribution will include the event of the user
not following a path of such length denoted by P (〈φl〉) =
1−

∑
p∈Pl

P (p).

5.2 Private Location Release Mechanisms

PR-LBS protects the privacy of the user’s mobility by
anonymizing the traversed paths at runtime. PR-LBS
has to guarantee an entire path’s privacy while sequen-
tially releasing zones along the said path, i.e., before it
knows what the path is going to be. This is very different
from most of the existing approaches that consider of-
fline private publishing of mobility traces including the
works by Rastogi and Nath [20], Abul et al. [21], Terrovi-
tis and Mamoulis [22], and Chen et al. [23]. Moreover,
adding noise, drawn from a distribution [24, 25], on the
user’s visited location does not apply in the indoor case.
In most cases, the user’s location is defined in terms of
a zone, such as a UUID of an iBeacon, rather than a ge-
ographical location (< x, y >) so that noise drawn from
some planar Laplacian distribution can not be added to
a UUID value of an iBeacon.

The main privacy protection of PR-LBS comes
from anonymizing the user’s path, i.e., releasing a path,
pathobs, instead of the actual traversed path. In particu-
lar, PR-LBS aims to provide (ε, dm) differential privacy
[18, 26–29] such that:

P (pathobs|path) ≤ eεP (pathobs|path′), (1)

where d(path, path′) ≤ dm and P (pathobs|pathtr) is the
probability of observing pathobs given the user traversed
pathtr.

The criterion of Eq. (1) states that the privacy pre-
serving mechanism releases a path, pathobs, (observed
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by the SP), such that the probability of this path be-
ing the result of applying the privacy mechanism on the
actually traversed path is indistinguishable (to an ex-
ponential factor) from that of applying the same mech-
anism on another path at most a distance dm from the
actual path. In other words, the SP, after observing
pathobs, can not identify the user’s actual path. The
user’s actual path is indistinguishable among the set of
paths within a distance dm from the user’s actual path
– we refer to this set as pathdm

.
The main challenge here is that PR-LBS can not

treat the user’s path as a series of zones devoid of any
geographical significance. Blindly attempting to satisfy
Eq.(1) will help the SP narrow down the search space by
eliminating some implausible paths from pathdm

, given
the released path. For example, a user enters a tunnel
that can only be traversed in one direction: A-B-C-D. If
PR-LBS releases any path of length 4, then the SP will
directly infer the user’s original path as A-B-C-D (the
only plausible path in pathdm

regardless of the value of
dm in this case).

This challenge arises from the fact that for a certain
path pa ∈ pathdm

, P (pa|pathobs) = 0 (implausible given
the observation) so that by Bayes’ rule P (pathobs|pa) =
0, which violates the promised differential privacy guar-
antees. PR-LBS ensures that for ∀pa ∈ pathdm

, the
probability P (pa|pathobs) > 0 so that the SP can not re-
duce the size of the search space after observing pathobs.
PR-LBS’s privacy preserving mechanism need not en-
sure the observed path to be plausible per-se, but any
path in pathdm

must plausibly be the actual path, given
the released pathobs.

Recalling that a path is a sequence of zones associ-
ated with time, a plausible path is one which the time
separating each two consecutive zones allows for a per-
son to travel between them. While the SP has access to
the area’s map, PR-LBS relies on previously recorded
user mobility to populate the graph G describing the
layout. Each time PR-LBS observes a new transition,
it adds the newly observed edge to the graph along
with the travel time. Eventually, PR-LBS populates the
graph and uses it to compute the travel time between
any two zones in the graph.

5.2.1 Differential Privacy (D.P.) Mechanism

PR-LBS chooses to release the user’s visited zone with
a probability q0 and chooses a zone at a distance of i
with a probability qi = αi.q0 such that

∑
i α

i.qo = 1
and i < dm, where dm is the indistinguishability thresh-

old. We define the distance between two equal-length
paths (d(path, path′)) as the edit distance with a non-
negative weight. The only operation we consider in the
edit distance is substitution so that the weight/cost of
each substitution is the distance (dG(z1, z2)) between
the two substituted zones. For example, the distance
between two paths A−B−C−D and A−E−C−F is:
0 (cost of sub A with A) + dG(B,E) (cost of sub B with
E) + 0 (cost of sub C with C)+ dG(D,F )(cost of sub D
with F). Since the weight between two zones is symmet-
ric (dG(z1, z2) = dG(z2, z1)), the distance between two
paths satisfies the axioms of a metric.

So, this mechanism achieves differential privacy
such that (proof in Appendix A):

q0 ≤
1∑
αi

s.t. α ≥ |Z|dm

eε/m
, i < dm, (2)

where |Z|dm
is the number of zones within a distance

dm of the user’s visited zones.
When the user moves from a zone zal to zal+1 (with

a travel time ta), s/he would have traversed a path pa

of length l + 1 so far. The D.P. mechanism releases a
zone z′ instead of zal+1 according to probability dis-
tribution described above. At the same time, PR-LBS
keeps track of pathdm

, the set of paths of equal length
of pa and of a distance less than dm from pa. For each
path pr (comprised of zones zri) in pathdm

, PR-LBS
estimates the travel time of the transition from zrl to
zrl+1 as tr = tG(zrl, zrl+1). If there is at least one path
of pathdm

where tr >> ta, then PR-LBS hides zal+1
completely (and does not release any anonymized zone).
Therefore, PR-LBS avoids releasing a path to the SP
that violates the indistinguishability criterion. At the
end of Section 7, we will show that PR-LBS can effec-
tively distort the distribution of the zone visit time for
privacy-oriented users. This prevents the SP from uti-
lizing timing information to infer more probable paths
from the set pathdm

.
The value of dm controls the trade-off between pri-

vacy and utility. A lower value of dm will allow the pri-
vacy criterion to be more relaxed (a higher value of q)
so that the observed path will be closer to the actual
path, thus becoming indistinguishable among a smaller
set of paths.

Learning: While PR-LBS is populating the graph,
it can not apply the above mechanism as it will not have
a full view of the area’s topology (a list of zones without
transitions). In such a case, it applies a variant of the
D.P. mechanism. In this variant, PR-LBS releases the
user’s visited zone, zv, with a probability q or any other
zone z ∈ Z \ zv with a probability 1 − q. We define
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the distance, d(path, path′), between two paths path and
path′ as the edit distance with weight 1 (=the number
of different zones between two paths). This mechanism
achieves (ε, dm) differential privacy (proof in Appendix
A), where

q ≤ eε/dm

|Z| − 1 + eε/dm
. (3)

This mechanism is not very efficient in terms of
the privacy–utility tradeoff; it treats all the other zones
as being equidistant to the current zone. Once the full
topology of the graph is known, PR-LBS applies the full
D.P. mechanism which exhibits a finer-grained privacy–
utility tradeoff by providing indistinguishability over
topologically close paths.

5.2.2 Anonymity Set (A.S.) Mechanism

In some scenarios, PR-LBS runs on a device with no
capability of feeding the SP app with a fake zone in-
stead of the user’s visited zone; it can control whether
to release or hide the currently visited zone. Therefore,
PR-LBS can not apply the D.P. mechanism described
above.

Instead, PR-LBS resorts to the A.S. mechanism
that releases the user’s visited zone with a probability q
and hides it with a probability 1−q. This mechanism can
not provide differential privacy guarantees since there
will always be a path such that the observation prob-
ability will be 0. For example, if PR-LBS releases the
path pobs =< a, b >, then the probability of observing
this path given the user traversed < c, a, d > is 0. The
expression of Eq. (1) can not be satisfied. Therefore, we
focus on another privacy indicator which is the size of
the anonymity set. The anonymity set is defined as the
set of paths from which the released path could have
possibly resulted, i.e., ∀p|P (pathobs|p) > 0. In appendix
A, we derive the expected size of the anonymity set for
a traversed path of length m as:

E(S) =
m∑
k=0

k∑
r=0

(
k

r

)2
qr(1− q)k−r (|Z| − r)!

(|Z| − k)! (4)

As evident from the expression of Eq. (4), the value
of q controls the uncertainty at the SP side. For instance,
when q = 0, the value of E(S) assumes the maximum
value since the adversary will not observe any of the
user’s mobility. The mobility inside a zone and between
two released zones (zi and zj in this case) is always hid-
den. During this gap, the user could have spent time at

zi or in one or more zones in between (on path pl). The
SP can not definitely decide whether the user actually
visited a zone in between (on path pl) or spent the entire
time between at zi.

5.2.3 Path Diversity

Both D.P. and A.S. mechanisms rely on hiding the user’s
visited path within an anonymity set of other paths.
The size of this set provides the privacy guarantees to
the user and is mainly controlled by the number of zones
in the area and the possible transitions between these
zones as recorded by previous user mobility. It is very
important to note here that while mobility can be re-
stricted in an indoor case, our definition of a zone visit
relaxes this restriction. In particular, in an indoor space,
the graph depicting the area’s topology is connected so
that every zone is reachable from any other zone.

Since consecutive zones in a path are not geograph-
ically adjacent, the number of zones reachable from the
currently visited zone is not restricted to neighboring
zones, but by their feasible transitions. PR-LBS copes
with the issue of limited feasible transitions, which takes
place at the bootstrapping stage, by maintaining the
size of the anonymity set for both mechanisms. When
the size of the anonymity set is small, PR-LBS hides the
currently visited zone.

5.3 Information Disclosure

In what follows, we analyze the (privacy) cost incurred
from PR-LBS’s release of a path to the SP (even if
it is anonymized). Any observation (a zone visit) will
necessarily change the probability distribution spanning
the mobility model. The amount of change introduced
to the mobility model is what we attempt to quantify.
Even when PR-LBS releases an anonymized path, this
path will still carry information of the actual mobility.

We first quantify the information disclosure (alter-
natively leak) for the entire user’s path after observing
a new zone visit and then state our information leak
model for the specific zone visit.

5.3.1 Per-path Criterion

To quantify the information leak for observing a path,
we follow the lead of Miklau and Suciu [30] by consid-
ering a metric of positive information disclosure. We
focus on the improvement of the probability of the
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user traversing a certain path as being indicative of the
amount of information released:

lk(s, v) = sup
s

P (S = s|v)− P (S = s)
P (S = s) . (5)

In Eq. (5), P (S = s) is the prior probability dis-
tribution of a secret s that the adversary attempts to
identify, v is the observation, and P (S = s|v) is the
probability distribution of S after observing v.

In our setting, the secret that the adversary wants to
unravel is the user’s probability distribution of the paths
traversed. When PR-LBS is about to release a new zone
zl to the SP, after releasing a path pl−1, it estimates
the information leak of the total observed path being
pl = 〈pl−1, zl〉. The information disclosure considers the
improvement of the SP’s observation probability of the
user traversing a path as being indicative of the amount
of information released. If the observation of a path does
not improve the adversary’s knowledge, it leaks little/no
information about the user to the SP (the SP already
expects the user to traverse such a path), and vice versa.

If the user has visited the area N times (number of
sessions), out of which s/he traversed the path pl for
n[pl] times, then the per-path information leak is (see
the derivation in Appendix A):

lk(pl, z) = 1− a
a(N + 1) , a = n[pl]

N
. (6)

5.3.2 Per-zone Criterion

We can rewrite the leak function of Eq. (6) to to rep-
resent the information leak in bits as: leak(pl, z) =
log2 (lk(pl, z) + 1) = log2

(
N(n[pl]+1)
n[pl](N+1)

)
.

It is worth noting that leak(pl, z) represents the im-
provement of the observer’s knowledge of traversing a
path, pl, directly after the observation of z. Having vis-
ited N sessions, of which a path pl has been traversed
n[pl] times, the probability of visiting path pl is origi-
nally P (pl) = n[pl]/N . For the (N + 1)th session, if pl is
traversed, it will be the only path (of the user’s mobility
model) experiencing a positive information disclosure
as P (pl|z) will be (n[pl] + 1)/(N + 1), which represents
P (S = s|v) of Eq. (5). It is straightforward to show that
for N > n[pl] (which is always the case since N is the
total number of sessions), n[pl]+1

N+1 > n[pl]
N so that the in-

formation disclosure will always be positive. Therefore,
applying the logarithm to compute leak(pl, z) is always
feasible.

For N > 0, n[pl] > 0 and n[pl] ≤ N , the value
of leak(pvn, z) varies between 0 (minimum leak) and 1

(maximum leak). In the initial case where no mobility
has been observed about the user (N = 0 or n[pl] = 0),
we associate leak(pl, z) with the maximum value of 1.
We define the information leak per observed zone as the
difference between the leaks resulting from the paths pl
and pl−1:

leak(z) = leak(pl, z)− leak(pl−1, z)

= log2

(
n[pl−1](n[pl] + 1)
n[pl](n[pl−1] + 1)

)
. (7)

A closer look at Eq. (7) reveals that the leak per
zone is the leak defined by the conditional probability
distribution P (zl|pl−1) which is n[pl]

n[pl−1] . Since PR-LBS
considers the user mobility one zone at a time, by the
time the user reached zl, the entire path pl−1 must have
been observed by the SP. Hence, leak(zl) focuses on the
additional leak incurred from releasing zl given that the
SP has already observed the user’s path pl−1. Appendix
B provides an example of how PR-LBS computes the
privacy cost of a traversed path.

This information leak is especially crucial for the
case of the A.S. mechanism which will release raw lo-
cation data. We rely on the information disclosure as
a cost metric to cap the additional knowledge leaked
about the user to the service provider.

Finally, the information leak as defined in Eq. 6 of-
fers a nice property. If the value of N is large enough
then the information leak from observing path pl can
be approximated by 1

n[pl] . This implies that the first
observations of a path will have higher leaks compared
to future observations. On the other hand, when the
value of N is low, there is always going to be a leak
of information, as the probabilities of following paths
will be changing more abruptly. For a fixed N , a lower
probability P (pl) of traversing a path will always lead to
a higher information leak. Individuals tend to perceive
behaviors with low probability as being more private be-
cause they indicate unexpected (thus conspicuous) be-
haviors [31, 32].

6 PR-LBS
In what follows, we describe PR-LBS, its different com-
ponents, and their interactions.

6.1 The Location-Service Exchange

We model the interactions between the user and the
SP as a repeated play model [6] composed of the user
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Table 2. The experts utilized by PR-LBS.

Expert Advice
First Hides location all time
Second Release location according to privacy mechanism
Third Release location all time

(player) and the SP (opponent). The user, with PR-
LBS acting on his/her behalf, chooses one of three ac-
tions: hiding, releasing, or anonymizing the location. In
return, the SP pushes a service with varying value.

We rely on the SEA algorithm [7] to decide on which
action to take at each phase (when visiting a new zone).
In this model, the player has access to a set of experts
each offering an advice for the action to take at each in-
teraction. The algorithm is akin to reinforcement learn-
ing and is based on a combination of exploration and ex-
ploitation. The exploration phase will enable the player
to learn the opponent’s response to the different actions,
while the exploitation phase enables the player to fol-
low the expert’s advice who has accumulated the highest
average utility.

SEA has some nice properties that make it suit-
able for our context. First, it assumes a non-oblivious
opponent whose actions might (or might not) depend
on the player’s actions (as in our case) as opposed to
minimum regret algorithms [6]. SEA, also, avoids being
short-sighted in its objective and instead focuses on the
asymptotic behavior of the player. Finally, it can achieve
a stricter bound if the opponent is assumed flexible. A
flexible opponent is one who forgets the player’s actions
after a while. Analytics and advertisement servers con-
stitute a relevant example, their user recommendations
are usually based on recently observed behavior.

The user–SP interaction takes place when PR-LBS
detects the user has visited a new zone. PR-LBS has a
set of three experts with each recommending an action
to follow as defined in Table 2.

The mechanism invoked by the second expert of the
exchange module will depend on the capabilities avail-
able to PR-LBS. If PR-LBS can change the zone re-
ported to the SP’s app, then it can rely on the D.P.
mechanism (while running in device-based mode on a
rooted device or in infrastructure-based mode). Other-
wise, the second expert uses the A.S. mechanism when
PR-LBS can only enable/disable location release (while
running in device-based mode on an unrooted device).

The player can designate an interaction as either
an exploration or exploitation stage according to a bi-
ased probability distribution. Specifically, PR-LBS des-
ignates the ith interaction as an exploration stage with a

probability 1/i and as an exploitation stage with prob-
ability equal to 1 − 1/i. In the exploration stage, the
player chooses one expert at random. This ensures that
every expert is sampled infinitely many times. In the
exploitation stage, the player simply chooses to follow
the advice of the expert with the highest accumulated
average utility. At the earlier interactions, where the
value of i is small, PR-LBS chooses exploration with
a higher probability as to learn the utilities of the dif-
ferent experts. With more interactions, the behavior of
PR-LBS stabilizes and it chooses exploitation with a
higher probability as it would have accumulated enough
average utility for each expert.

After PR-LBS chooses an expert, it follows its ad-
vice for the coming interaction between the user and SP.
Every interaction involves deciding on an action (based
on the expert’s advice), computing the privacy cost of
the performed action, estimating the service value of
the whole interaction, and computing the utility result-
ing from the interaction (a function of the cost and re-
ward). After the interaction ends, PR-LBS updates the
average utility for the chosen expert. PR-LBS, then,
chooses another expert for the next interaction.

6.2 Utility Estimator

Deriving a utility estimate from the privacy and QoS
estimates is not straightforward; it is like comparing ap-
ples to oranges. Besides, the utility function is subjec-
tive as it depends on the user’s perception. A privacy-
oriented user will suffer lower utility if more location
samples are released, while a service-oriented user will
suffer lower utility if s/he does not receive services.

In PR-LBS, the user defines a privacy profile which
indicates his/her tradeoff between the cost of releasing
location and the benefit from the received service. The
utility estimator module converts this “high-level" pro-
file to a utility function that maps the privacy cost and
service quality pair to a value between 0 (no utility) and
1 (full utility). Table 3 shows an example of the privacy
profile of a privacy-oriented user (from our survey). In
the survey, we asked respondents to fill in their privacy
profile through a table similar to Table 3. Each entry
specifies the respondent’s satisfaction (0 – not satisfied,
1 – somehow satisfied, and 2 – fully satisfied) value for
each of the privacy and service combination. It is clear
how this respondent favors curbing location sharing.

Given a privacy profile (one that looks like Table 3),
the utility estimator module converts it to a numerical
function. The resulting function takes two inputs: pri-
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Table 3. The privacy profile of a privacy-oriented user.

No Service Some Service Full Service
No Privacy 0 0 1
Some Privacy 0 0 1
Full Privacy 1 1 2
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Fig. 4. Utility estimator illustration.

vacy cost (leak(zi)) and estimated service quality values
(servi); it returns an output which is the utility value
such that utility = f(leak(zi), servi). As the concepts
of the privacy profiles (privacy, QoS, utility) are defined
in qualitative (or humanistic) terms, a fuzzy inference
system (FIS) [33] is thus suitable to derive the utility
function out of these values.

We rely on a Mamdani-type fuzzy inference system;
such a system has two main components: rules (defining
relationship between inputs and outputs) and member-
ship functions. In our context, the rules are defined as
per the privacy profile (similar to Table 3). For exam-
ple, the top left entry of the table defines this rule: No
Privacy AND No Service =⇒ Not satisfied.

The membership function defines the value’s rele-
vance to the property it is claiming over a domain. For
example, instead of defining a hard threshold between
what is a low threat path and a high threat one, one
can define softer thresholds, as evident from Fig. 4a. A
path definitely poses a low threat (full privacy) when
leak(p) = 0, as the value of 0 has a membership of 1
in the low function. The membership value decreases
gradually as the privacy value increases until it hits
20%. Similar membership functions can be defined for
medium, high threat. A similar logic applies for the ser-
vice and utility values.

The second step in the fuzzy inference system is
mapping the inputs to the output; this is achieved
through the fuzzy operators, which results in a fuzzy
utility value. The final stage is the conversion of a fuzzy
utility value to a crisp output to determine the actual

utility to feed the SEA algorithm through the defuzzifi-
cation step. Ultimately, the FIS will result in a continu-
ous and smooth 2D function mapping both the privacy
and service values to a utility value. Fig. 4b shows the
final utility function for the privacy profile of Table 3.
The utility takes its maximum value at maximum pri-
vacy and reward levels. The utility, smoothly, decreases
as the privacy level or reward decrease.

6.3 QoS Analyzer

Measuring the quality of service the user received from
interactions with the SP’s app is essential to the opera-
tion of PR-LBS. Market research literature has a wealth
of studies that analyze the user’s retail app usage and its
effect on user satisfaction and purchases [34–42]. This
literature leads to the following conclusions regarding
retail apps:
1. Retail apps rely heavily on push notifications to

communicate retail services to users, which we con-
firmed from our analysis of multiple retail apps. In
2014, more than 80% of the notifications pushed by
the retail apps were consumed by users [39, 43].

2. Continued app usage and interaction inside the
store (during shopping) directly relates with user’s
satisfaction during the shopping experience [34–38].

3. Higher retail app usage rate (on-screen time) during
shopping is correlated with more brick-and-mortar
store visits, longer shopping visits, and increased
purchase rates [40–42].

Consistent with market research literature, we utilize
user interaction with the SP’s app as an indicator of
the user’s satisfaction with the services provided by the
app. An interaction with a typical retail app takes place
in three stages: (1) the app pushes a service to the user
through a notification, (2) the user consumes the noti-
fication (by checking and reading it), and (3) the user
opens and interacts with the SP’s app. To measure user
interaction with the SP’s app, PR-LBS observes if the
user consumed a push notification from the app and
measures the time s/he interacted with the app.

PR-LBS monitors the level of user–app interactions
through the collector module to compute the QoS met-
ric: servi. It observes the time the user spent interacting
with the SP’s app, denoted by timeforeground, that was
preceded by a consumed push notification from the SP’s
app. Particularly, if the user consumed a push notifica-
tion by opening the SP’s app, then PR-LBS measures
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Fig. 5. The distribution of QoS metric for the LiveLab (left) and
PhoneLab (right) datasets.

the fraction of time the user spent actively interacting
with the app as:

servi =
timeforeground
timezi−zj

, (8)

where timezi−zj denotes the time spent in the last
zone(zi), before moving to the new zone(zj).

To further assess whether servi is a good indicator
of user satisfaction with retail apps, we analyzed retail
app usage data from two datasets: the LiveLab dataset
of Rice University [44] and our dataset of participants
whom we recruited from PhoneLab [45]. The Livelab
dataset contains the app usage data, along with other
data, for 34 iPhone users over a 12–18 month period.
Our dataset has app usage data for 95 Android users
over 4 months. We identified retail apps from their app
category in either Google Play or iTunes. For every re-
tail app and user combination, we calculated servi as
the app total usage time (in seconds) normalized by the
installation time (in days). We then associated every
app session with its average rating on the app store. We
categorized apps into two categories, in terms of rating:
low (rating ≤ 2.5) and high (rating ≥ 4).

Fig. 5 plots the distribution of the servi for each
of the two categories (low and high) for both datasets.
There is a large discrepancy between the high and low
distributions suggesting that highly rated apps tend to
enjoy higher usage rates. For the apps with a low rat-
ing, 80% of the apps are used at most 0.1 sec/day, while
80% of the highly used apps have more usage rate than
that. The discrepancies of values between both datasets
relates to the duration of each dataset (Livelab is much
longer than PhoneLab). It is clear that servi correlates
with the average user rating of the app at the app store
(iTunes/Google Play) – app user rating acts as an indi-
cator of user satisfaction of its service [46].

The proposed reward metric offers several advan-
tages in terms of practicality and usability. First, it
limits interactions with the user. Existing methods that
rely on surveys to measure user satisfaction do not ap-

ply in our context. PR-LBS needs to measure user feed-
back at a “micro-scale" as the user is moving from one
zone to the other, not after the visit is completed. It
is impractical to continuously ask the user for feedback
about the received service as s/he moves from one zone
to the other. Second, the reward metric is app-agnostic;
it does not require specific knowledge of the semantics
of the service provider’s app. Otherwise, PR-LBS has
to tailor its estimation methodology of the service re-
wards to every service provider app, which is impracti-
cal. Finally, servi is practical to measure as it can be
extracted from user-level information on the user’s de-
vice. It requires neither intercepting network traffic nor
instrumenting the user’s mobile operating system.

7 Implementation and Evaluation
We now present the implementation of PR-LBS in de-
vice mode and the evaluation of its effectiveness.

7.1 Implementation

We implement the device mode of PR-LBS as a stan-
dalone Android (4.4) app, which is compatible with
beacon-based localization. Fig. 6 shows the architecture
of the PR-LBS app. PR-LBS runs as a background ser-
vice that detects if the user is visiting a place where lo-
calization is deployed. When the user starts the visit,
PR-LBS prompts him/her to set the privacy prefer-
ences and executes the logic of Fig. 6. The privacy pref-
erences include setting the privacy level and the pri-
vacy profile of Fig 8. The privacy level (privlvl) is a
slider between no privacy privlvl = 0 and full privacy
(privlvl = 1) that sets the parameters of the privacy
mechanisms as such:
D.P. Mechanism: if the maximum distance (length
of shortest path) between any to zones in the area is
d, then dm = privlvl.m.d. When its learning variant is
running, then dm is set as: dm = privlvl.m, where m is
the average path length.
A.S Mechanism: the probability controlling the re-
lease of location is simply set as q = 1− privlvl.

BLE Scanner: PR-LBS utilizes Android’s Blue-
tooth Low Energy (BLE) APIs to scan regularly for
BLE beacons. During the scan duration, PR-LBS re-
ceives advertisements from multiple beacons. It decides
on the beacon with the lowest power attenuation as the
closest to the user. It extracts the identifying fields from
the beacon advertisement to maps a zone id. If the new
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Fig. 6. The architecture of PR-LBS in device mode.

zone is different from the last detected zone, the scanner
alerts the QoS and Privacy analyzers. PR-LBS uses the
scanned zones to populate the topology graph.

Collector: This module records app execution
events and keeps track of the time the user spent for
interacting with the service provider’s app. As An-
droid does not provide a public API for this purpose,
the collector module frequently polls (once a second)
the running tasks to find which apps the user is cur-
rently running in the foreground. It also runs an an
Accessibility Service to intercept the SP app’s noti-
fications and the resulting user actions. Whenever a new
zone is detected, the collector passes this information to
the QoS analyzer that calculates the QoS metric.

Actuator: The actuator is responsible for perform-
ing the action decided by the exchange module. The
action could be hide, release, or anonymize the visited
zone. While running on an unrooted device and with the
absence of any other support, the only actions available
are to release or hide the currently visited zone (A.S.
mechanism). In such case, PR-LBS uses the Android’s
Bluetooth Admin permission to globally control Blue-
tooth scanning on the device. This will prevent the ser-
vice provider’s app (and potentially other apps) from
tracking the users. On the other hand, when running
on a rooted device, PR-LBS will be able to apply the
anonymize action. We instrument the Bluetooth scan-
ning function in Android’s framework to so that PR-
LBS changes the Bluetooth Low Energy scan results
that the SP’s app will receive. We are currently ex-
ploring using the user’s smartwatch to advertise dummy
beacons to anonymize the currently visited zone which
will not require rooting the user’s smartphone.

7.2 App-Based Evaluation

We evaluate the energy overhead of PR-LBS when it
runs on Samsung Galaxy S5 (Android 4.4.4). We de-
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Fig. 7. The energy consumption by PR-LBS.

Fig. 8. The UI to input the privacy profile in PR-LBS.

ployed a set of iBeacons in a lab environment with one
iBeacon (closest to the device) continuously changing
its identifiers, making PR-LBS believe a new zone was
detected upon each BLE scan. Each new zone event
triggers PR-LBS to execute its components (Fig. 6).
Hence, the frequency of detecting new zones along with
the scanning interval (frequency) and duration (length
of the scan) determine PR-LBS’s energy consumption.
We report on the battery energy consumption (which
includes the full operation of PR-LBS with all of its
components) in Fig. 7 when PR-LBS runs under two
scanning intervals: 5s and 30s. For each scanning in-
terval, we vary the scan duration to study its effect as
shown in Fig. 7. We also compare the battery loss with
the base case, with PR-LBS turned off. We run all the
experiments for 10 minutes with the screen fully lit while
turning off background apps, Wi-Fi, and data connec-
tions. It is clear from Fig. 7 that PR-LBS incurs limited
energy overhead since PR-LBS is a lightweight app that
incurs little processing overhead.

We also test the usability of the privacy profile in-
put interface (Fig. 8). We deployed PR-LBS on Google
Play and asked 100 participants (recruited over Ama-
zon Mechanical Turk) to test the app and answer a set
of questions. We paid each participant $1 and the av-
erage time for tasks completion was 7 minutes. When
the participant completed interaction with the app, it
displayed a special code to input in the survey to ensure
completion of the required task. 93% of the participants
considered that the interface is easy to use and 85% of
them indicated that it is clear.
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Table 4. The eight datasets used for the evaluation.

Dataset Location Duration
(days)

#
zones

#
users

HOPE 2008 [47] Hotel 3 21 1273
HOPE 2010 [48] Hotel 3 26 1119
State Fair [49] Fair 5 32 19
Orlando [49] Theme park 61 44 41
NCSU [49] Campus 80 49 35
KAIST [49] Campus 78 44 92
Walmart Retailer - 29 93
Nordstrom Retailer - 34 76

7.3 Trace-Based Evaluation

Datasets: We utilize 6 datasets from the CRAWDAD
data repository to evaluate PR-LBS. These datasets
represent the mobility of individuals in public con-
strained spaces that PR-LBS operates in. We also uti-
lize two other datasets that belong to respondents from
our survey. In both surveys (Walmart and Nordstrom),
we displayed a map of the store with labeled zones. We
asked each participant to trace the path s/he traversed
during the last visit. Table 4 shows a list of the datasets.

To evaluate PR-LBS, we transform each dataset
into a stream of location samples. PR-LBS processes ev-
ery location sample regardless of whether it came from
the real world or a location trace, which indicates that
our evaluation is representative of PR-LBS’s operation
in the real world. We further partitioned every stream
into sessions or paths. The last two datasets, Walmart
and Nordstrom, had one path per user and no time in-
formation associated with the location trace.

Scenarios: We simulated four classes of SPs that
reward the user for sharing location information differ-
ently, while not rewarding for hiding location. In our
model, the SP will offer the user a service with a reward
value (servi) between 0 and 1. This abstracts both the
SP and the QoS analyzer module. The SP classes are:
1. None: No reward for the user.
2. Low: Low reward (below 0.3) for sharing.
3. Med: Medium reward (≥ 0.3 and ≤0.8) for sharing.
4. High: High reward (higher than 0.8) for sharing.

We consider the three privacy profiles defined in Sec-
tion 3: service-oriented, neutral, and privacy-oriented,
which we constructed based on our survey results. Each
respondent filled a table exactly like Table 3 where each
response corresponds to the privacy profile of the re-
spondent. To generate the three privacy profiles, we
average the profiles of each (as defined in Section 3)
respondent (in the three profiles) and then round the
values to the nearest integer.
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Fig. 9. User satisfaction distribution with high service.

We execute PR-LBS for each user in each dataset
for each scenario (service class and privacy profile com-
bination). At the end of each run, PR-LBS would have
released some of the user’s mobility. Our evaluation is
based on comparing, for each user and in each scenario,
the released paths with their original counterparts.

PR-LBS Feasibility: In Section 5.2.3, we indi-
cate that even in a constrained indoor area, the number
of feasible transitions (not necessarily from geographi-
cally neighboring nodes) is what matters for PR-LBS’s
operation. For the eight mobility datasets of Table 4,
the number of geographical transitions is indeed limited
by the area’s topography. Nevertheless, the size of the
set of feasible transitions (measured from user mobil-
ity) is near perfect for all the datasets. In particular,
the “NCSU" dataset has 1912 feasible transitions out of
2352 possible ones, “State Fair" has 992 out of 992, “Or-
lando" has 1724 out of 1892, “KAIST" has 1892 out of
1892, “Walmart" has 812 out of 812, “Nordstrom" has
1122 out of 1122, “Hope 2008" has 420 out of 420 and
“HOPE 2010" has 650 out of 650. The number of possi-
ble transitions in an area is simply |Z|.(|Z| − 1), where
|Z| is the total number of zones.

Since PR-LBS considers only the visited zones as
composing a path, it is able to overcome constraints in
an area’s topology. It exploits the larger set of feasible
transitions to provide a larger anonymity set for both
the D.P. and A.S. mechanisms. PR-LBS need not hide
zones because of infeasible transitions, which maintains
utility for the user and service providers.

User satisfaction: To study whether PR-LBS
matches user expectations, we execute PR-LBS over
each path of both Walmart and Nordstrom datasets
with the different SP models (low, medium, and high).
At the end of each run, we capture the path that
PR-LBS releases and we compute the privacy metric
(leak(path)) according to Section 5. We also compute
the average service value received per zone. We end up,
for each user, with the service value that the user re-
ceived and privacy loss experienced.
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Fig. 10. norm_length for a privacy-oriented profile.

We follow the same procedure as Section 6.2 to build
a utility function for each user in both the Walmart
and Nordstrom datasets from the table containing their
privacy profile. Recall that these profiles are nothing
else than a mapping between a privacy – service pair
to a utility metric (reflecting satisfaction). We then use
the privacy and service values of each path as inputs
to each user’s profile to estimate his/her satisfaction.
We round the output to the nearest integer reflecting
three satisfaction levels: “not satisfied at all", “somehow
satisfied", and “fully satisfied".

Fig. 9 shows the user satisfaction distribution for
each privacy profile and for the high service level. The
percentage of unsatisfied users is close to 0 in all the sit-
uations. Also, service-oriented users (and neutral users
to a lesser degree) tend to be more satisfied than other
users because they accommodate more location sharing.
Although not shown due to space limitation, service lev-
els correlate with user satisfaction for all three profiles;
the higher the service is the more satisfied the users are.

Privacy Protection: We study PR-LBS’s effect
on protecting users’ privacy through norm_length: the
number of zones that PR-LBS released and the user
actually visited divided by the total length of the origi-
nal path. This metric indicates how much of the user’s
actual mobility information has been released.

Fig. 10 shows the distribution of norm_length for
users with a privacy-oriented profile for the “NCSU" and
“Nordstrom" datasets (other datasets show similar re-
sults, but are omitted due to space limitation). It is ev-
ident that PR-LBS curbs location sharing for privacy-
oriented users with 60% of the paths hidden completely
regardless of the service level and even when p = 1. PR-
LBS shares some non-private location data (according
to the cost metric) as part of its exploration stage.

Fig. 11 shows the distribution of norm_length for
service-oriented users in the “HOPE 2008" and “Or-
lando" datasets. The amount of sharing is higher than
that for privacy-aware users and roughly corresponds
to the SP’s service level. There is one caveat: sharing is
mobility-dependent. PR-LBS hides more of the user’s
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Fig. 11. norm_length for a a service-oriented profile.
Table 5. The utility metrics description.

Metric Description
first Portion of paths with correctly identified start zones.
last Portion of paths with correctly identified end zones.

dwellarea Portion of zones with accurate estimate of
percentage time spent over all the users.

transitions Portion of correctly identified zone transitions.

retention Portion of zones with accurate estimate of retention
(number of customers in a zone at a one time).

dwelltime
The portion of the zones in the area with accurate
estimate of the dwell time. The dwell time of a zone
is the average time spent at the zone.

location for the HOPE 2010 dataset than the State
Fair dataset. In the State Fair dataset, the environment
is more constrained. Individuals exhibited less diverse
paths and the portion of paths leaking information ac-
cording to the metric of Section 5 were negligible. The
mobility in “HOPE 2010" dataset is diverse with most
of the paths exhibiting a high privacy threat. In such a
case, even if the rewards provided by the SP are high,
PR-LBS reduces sharing to protect the user’s privacy.

Service Provider Perspective: Currently, SPs
focus solely on aggregate analysis in an effort to comfort
users. PR-LBS improves on the status-quo by enabling
SPs with the capability to perform personalized analy-
sis. In what follows, we evaluate the SP’s utility using
seven metrics [50, 51] as defined in Table 5. The closer
these metrics are to 1.0, the higher is the utility that
the SP enjoys. To model the SP’s service level, we re-
lied on the service value estimates of Fig. 5 from our
Phonelab dataset, instead of using the synthetic values.
We normalized the service values to fall between 0 and
1. Fig. 12 shows the metrics for each dataset and user
privacy profile for these realistic service values.

First, the performance of PR-LBS is consistent
among the different datasets which shows it can adapt to
different environments and settings. Second, PR-LBS
ensures a decent utility level even a significant portion
of the users’ mobility is not shared. Fig. 11 (left) shows
that PR-LBS hides a significant portion of users’ paths
to protect their privacy for HOPE 2010 dataset (the re-
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Fig. 12. Utility metrics for realistic service levels. Some metrics in Walmart and Nordstrom datasets are not available.

sults are similar to HOPE 2008). Still, the utility met-
rics are fairly accurate as they represent an aggregate of
users’ mobility. Third, as shown in Figs 14 and 13 (in
Appendix C for space considerations), PR-LBS adapts
sharing to the service level; when the server is more
rewarding, PR-LBS will react by sharing more of the
user’s mobility, and vice versa. PR-LBS can incentivize
the SP to reward the user with better service as it re-
flects with improved utility. The SP’s utility decreases
when it provides lower service to the users.

Finally, PR-LBS effectively protects the privacy of
the privacy-oriented users by releasing fewer data about
them. More importantly, the SP’s accuracy in deciding
the user’s dwell time is always less than 10%. This indi-
cates that the SP can not use the dwell time distribution
for these users to identify possibly hidden zones from the
timing information in the observed path.

8 Limitations
Lack of User Feedback: To achieve a usable and prac-
tical user experience, we made a conscious decision not
to require user feedback regarding privacy decisions and
rewards estimation. While PR-LBS attempts to esti-
mate the privacy cost objectively and provide privacy
guarantees, it does not capture the user’s stance towards
hiding or revealing every visited zone. Similarly, the re-
ward metric of Section 6.3 might not be very accurate
in describing the user’s satisfaction with the provided
service. In the future, we will investigate mechanisms to
incorporate user feedback, in a usable manner, to im-
prove the privacy and service estimations.

Evaluation Methodology: Our evaluation
methodology suffers an inherent limitation. It assumes
that user’s privacy preferences are stationary, while
they are prone to change if the user is presented with

information about the SP’s access to his/her location.
Although our survey (see Section 3) results indicate the
respondents’ privacy preferences did not change before
and after we informed them about retailers accessing
their location, we believe this part warrants additional
investigation in the future.

9 Conclusion
In this paper, we have designed, implemented, and eval-
uated PR-LBS, a system that balances between privacy
and rewards in an indoor environment. It creates a win–
win situation for both the users and service providers.
PR-LBS packs in two mechanisms for private location
release in indoor environments as well as a novel pri-
vacy criterion to estimate the cost of sharing location.
It subjects the user’s mobility to a location–service ex-
change that is based on the repeated play model to en-
sure the users are rewarded for sharing some aspects of
their mobility. Our evaluations show that PR-LBS is
easy to deploy, has low energy overhead, is usable, ef-
fectively remedies the user’s concerns, and does not af-
fect the SP’s utility. In future, we would like to conduct
a field study of PR-LBS’s device-based prototype. We
also want to explore options to providing APIs for the
SPs to access aggregate information privately without
releasing any raw location data.
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D.P. Mechanism Variant Privacy
Guarantees

For the mechanism to achieve (ε, dm) differential pri-
vacy, it must satisfy:

P (pathobs|path) ≤ eεP (pathobs|path′) (9)

such that d(path, path′) ≤ dm and P (pathobs|pathtr)
is the probability of observing pathobs given the user
traversed pathtr. P (pathobs|path) is given by:

P (pathobs|path) = qm−d(1− q)d 1
(|Z| − 1)d

(10)

such that d = d(pathobs|path) is the edit distance be-
tween the two paths.

Then, we have:

P (pathobs|path)
P (pathobs|path′)

≤ eε (11)

qm−d(1− q)d 1
(|Z|−1)d

qm−d′(1− q)d′ 1
(|Z|−1)d′

≤ eε (12)

(
1− q

q(|Z| − 1)

)d−d′
≤ eε (13)

When d(path, path′) ≤ dm, then d − d′ ≤ dm,
because d > 0 and d′ > 0 then d(pathobs, path) −
(pathobs, path′) < |d(pathobs, path) − (pathobs, path′)| <
d(path, path′) by using the reverse triangle inequality for
the metric spaces (the edit distance is a metric). Then
we have:(

1− q
q(|Z| − 1)

)d−d′
≤
(

1− q
q(|Z| − 1)

)dm

≤ eε (14)

Finally, this mechanism will achieve (ε, dm) differential
privacy for:

q ≤ eε/dm

|Z| − 1 + eε/dm
(15)

D.P. Mechanism Privacy Guarantees

After releasing m zones, the D.P. mechanism satisfies
the expression in Eq. (9) for any value of dm. The prob-
ability of observing a path given some other traversed
path is given by:

P (pathobs|path) =
∏

(qi/|Z|i)ni (16)

Where |Z|i represents the number of zones at a dis-
tance i from user’s zones and qi/|Z|i the probability to

choose a zone from those at a distance i from the visited
zone. ni represents the number of released zones that
are a distance i from the actual zones. For two paths at
a distance dm from each other, we need to satisfy the
following: ∏

(qi/|Z|i)ni∏
(qj/|Z|j)nj

≤ eε; i, j ≤ dm (17)

The expression of Eq. (17) will assume its maximum
value when the observed path is the user’s actual path
and path′ is a path at a distance dm. In such a case we
have (for a path of length m):

qdm
0

(αdmq0/|Z|dm
)dm
≤ eε (18)

Where |Z|dm
is the maximum number of zones at a dis-

tance of dm from any of the zones of the released path.
We can then derive an lower bound for α and upper

bound for q0 as:

α ≥ |Z|dm

eε/m
; q0 ≤

1∑
αi

A.S. Mechanism Anonymity Set

The size of the anonymity set is a random variable, S,
depends on the length of the released path. Let R be
a random variable that represents the length of the re-
leased path and k represent the possible value of the
traversed path length such that k ≤ m. Our objective
is to compute the expected size of the anonymity set
E(S).

E(S) =
m∑
k=0

k∑
r=0

E(S|R = r).P (R = r)

=
m∑
k=0

k∑
r=0

(
k

r

)(
|Z| − r
k − r

)
(k − r)!

(
k

r

)
qr(1− q)k−r

=
m∑
k=0

k∑
r=0

(
k

r

)2
qr(1− q)k−r (|Z| − r)!

(|Z| − k)!

Per-Path Information Disclosure

When the user moves to a new zone zl, PR-LBS es-
timates the information leak if the SP is to observe
that the user visited zl, with total observed path be-
ing pal = 〈pal−1, zl〉.

Let visit(z) be the event that the SP observed user
visited the zone z. P (pal|visit(zl)), then, refers to the
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probability distribution of the user visiting the current
path pal of length l after observing the visit to zone zl.
By definition, a new observation will necessarily change
P (pl) (the SP’s existing belief about the user’s mobil-
ity); the amount of change in this PDF is what we refer
to as the information leak. The amount of leaked infor-
mation can be defined as:

lk(pl, z) = sup
pl∈Pl

P (pl|visit(z))− P (pl)
P (pl)

. (19)

Since we focus on the positive information disclo-
sure, the only path that will experience a positive im-
provement in the amount of information is pal, the path
the user is currently visiting. This reduces Eq. (19) to:

lk(pal, z) = P (pal|visit(z))− P (pal)
P (pal)

. (20)

If the user has visited the area N times (number
of sessions), out of which s/he traversed the path pal
for n[pal] times, then P (pal) = n[pal]

N . When observing
a new visit, the probability will be P (pal|visit(z)) =
n[pal]+1
N+1 . The information leak will then be:

lk(pal, z) = 1− a
a(N + 1) , a = n[pal]

N
.

Appendix B
Suppose the user visits an area comprised of four zones:
“A", “B", “C", and “D". After 10 sessions, the user’s
mobility model is as follows:
1. Paths of length=4: P(A − B − C − D)= 2/10,

P(A−C −B −D)=3/10, P(A−D−B −A)=1/10,
P(B −D−C −B)=1/10, P(B −D−C −A)=1/10,
and P(φ)=2/10.

2. Paths of length=3: P(A−B−C)= 2/10, P(A−C−
B)=3/10, P(A−D−B)=1/10, P(B−D−C)=2/10,
and P(φ)=2/10.

3. Paths of length=3: P(A − B)= 2/10, P(A −
C)=3/10, P(A − D)=1/10, P(B − D)=2/10, and
P(φ)=2/10.

4. Paths of length=3: P(A)= 6/10, P(B)=2/10, and
P(φ)=2/10.

During the 11th session, the user traverses the path
B −D − C −A.
1. First visited zone is B; the path will only comprise

B at this point. At the beginning of the visit, the
SP expects the user (based on previous mobility) to

Table 6. Privacy cost of visited path.

Zone (z) Path (pl) P (pl) P (pl|z) lk(pl, z) leak(z)
B B 2/10 3/11 log2( 15

11 ) log2( 15
11 )

D B −D 2/10 3/11 log2( 15
11 ) 0

C B −D − C 2/10 3/11 log2( 15
11 ) 0

A B −D − C −A 1/10 2/11 log2( 20
11 ) log2( 4

3 )

visit either A or B. Since the user visited B, there
is an information leakage.

2. Second visited zone is D; the new path will be B −
D. This path leaks some information because there
are multiple expected paths of length 2. But the
visited zone leaks no information according to our
criterion. The only expected visited zone after B
is D. The user conformed to the SP’s expectations
and leaked no information. It is worth noting that
the information leak of the path thus far is equal to
information leak from the first visited zone, which
is B. The same applies for the third visited zone C.

3. Last visited zone is A’; the path comprises B−D−
C −A. The newly visited zone leaks some informa-
tion since there are two possibilities after traversing
B − D − C, either A or B. By visiting D, the user
offered the SP new information that resulted in a
shift of its belief about the user mobility.

Appendix C
Figs 13 and 14 show that PR-LBS adapts sharing to the
service level. When the server is more rewarding, as in
Fig. 13, PR-LBS shares more of the user’s mobility. All
the utility metrics for the neutral and service-oriented
users are close to 1. While those for the privacy oriented
users are lower so that PR-LBS protects their privacy.
On the other hand, Fig. 14 shows the utility metrics
for a low-rewarding server. It is evident that the utility
metrics drop considerably when compared to the high-
rewarding service provider.



Privacy vs. Reward in Indoor Location-Based Services 122

0

0.5

1
Walmart

 

 

Privacy
Oriented

Balanced Service
Oriented

first last dwellarea transitions retention dwelltime

0

0.5

1

Privacy
Oriented

Balanced Service
Oriented

Nordstrom

0

0.5

1

Privacy
Oriented

Balanced Service
Oriented

Hope−2008

0

0.5

1

Privacy
Oriented

Balanced Service
Oriented

Hope−2010

0

0.5

1

Privacy
Oriented

Balanced Service
Oriented

Orlando

0

0.5

1

Privacy
Oriented

Balanced Service
Oriented

Statefair

0

0.5

1

Privacy
Oriented

Balanced Service
Oriented

NCSU

0

0.5

1

Privacy
Oriented

Balanced Service
Oriented

KAIST

Fig. 13. Utility metrics for high service level. Some metrics in Walmart and Nordstrom datasets are not available.
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Fig. 14. Utility metrics for low service level. Some metrics in Walmart and Nordstrom datasets are not available.
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