
Masquerade of Mobile Applications: Introducing

Unlinkability in a Practical Way

Huan Feng and Kang G. Shin

Department of Electrical Engineering and Computer Science

The University of Michigan – Ann Arbor

{huanfeng, kgshin}@umich.edu

Abstract—Smartphone apps are becoming a popular vehicle
to collect users’ personal interests, demographics and other
private information. Due to lack of regulation, a curious party
can covertly link and aggregate sensitive information from
independent sources (sessions or apps) over time to conduct
unwanted user profiling, targeted advertising or surveillance.
Such unregulated aggregation is rooted at the non-existence of
unlinkability in the mobile ecosystem. On one hand, the mobile
ecosystem is over-populated with various persistent identifiers
and fueled by the abundance of user information; on the
other hand, users only expect app usages that are functionally-
dependent to be linkable. To bridge this gap, we propose a
practical solution, called Mask, that allows users to negotiate
to what extent his behavior can be linked and aggregated.
Specifically, Mask introduces a set of private execution modes
which enable different levels of unlinkability. Mask is a user-
level solution and does not require any change in the existing
ecosystem, thus allowing for easy deployment. We present the
technical details and challenges of our user-level implementation
and evaluate its runtime performance as well as applicability.

I. INTRODUCTION

During the past decade, we have been moving swiftly

towards a mobile-centered world and smartphones have be-

come the very hub of mobile user information and activities.

Compared to traditional desktop/laptops, it is continuously

connected to the Internet, always carried by the owner and

rarely shared among different users. Moreover, a smartphone

is equipped with various powerful sensors, becoming able to

peek into the physical environment surrounding the users. All

of these make smartphones an ideal vehicle for user tracking

and profiling.

There have already been numerous studies on how to stop

a malicious party (an app or third party within the app) from

accessing the information it shouldn’t access [1–5]. Orthog-

onal to these studies, we address an emerging privacy threat

imposed by a curious party who covertly links and aggregates

a user’s behavioral information collected from independent

sources — across sessions and apps — without his consent

or knowledge. In the current smartphone ecosystem, curious

parties can be:

• Mobile apps. For example, a user follows political news

and religious articles using the same news app like CNN

or NYTimes. By aggregating both the user’s political and

religious interests, the app can deliver him personalized

news content, such as “The END Of Anti-Gay Religious

Rhetoric in Politics.” However, if the user is sensitive

about what he reads, he may not want this type of

unsolicited correlation across his interests in different

subjects.

• Advertising agencies. For example, a user downloads two

ad-powered apps and exposes his sexuality to the first one

and his location to the second. However, since these apps

include the same ad library, the advertising agency can

associate both the sexuality and the location with him

and send him targeted dating advertisements. The user,

on the other hand, does not approve this type of covert

aggregation.

• Network sniffers. As recently publicized in the news

media, government agencies such as US NSA and GCHQ

often conduct public surveillance by sniffing network

traffic and aggregating personal information leaked by

smartphone apps and ad libraries. A recent study [6]

shows that a similar sniffer is able to attribute up to 50%

of the mobile traffic to the ‘sniffed’ users, on top of which

detailed personal interests, such as political views and

sexual orientations, can be extracted.

The severity and prevalence of this threat are rooted at the

nonexistence of unlinkability in the smartphone ecosystem. By

exploiting various levels of consistency provided by device

identifiers, software cookies, IPs, local and external storages,

an adversary can easily correlate app usages of the same user

and aggregate supposed-to-be ‘isolated islands of information’

into a comprehensive user profile, irrespective of the user’s

choice and (dis)approval.

However, from the user’s perspective, only app usages that

are functionally-dependent should be linkable. For example,

for GTalk, app usages under the same login should be linkable

to provide a consistent messaging service. For Angry Birds,

usage of the same app should be linkable to allow the user to

resume from where he stopped. In contrast, for most query-

like apps, such as Bing and Wikipedia, which neither enforce

an explicit login nor require consistent long-term ‘memories’,

app usages should be globally unlinkable by default.

To bridge this gap, we propose Mask, the first user-level

solution that allows the user to negotiate to what extent his

behavior can be linked and aggregated. A user-level solution is

essential because the entire mobile ecosystem is fueled by the

abundance of user information and any solution that requires

cooperation/modification of the OS/ecosystem is unrealistic.

Specifically, Mask introduces a set of private execution modes



that allow the users to maintain multiple isolated profiles for

each app. Each app profile can be temporary, being recycled

after each session, or enduring, persists across multiple ses-

sions. Upon invocation of each app, a user can apply one of

the following modes to the current app session (from the start

to termination of the app), according to his usage scenario. If

he wants to:

• Use this app while logged in, choose the identifiable

mode. All app usages under the same login are now

linkable and the app delivers uncompromised personal

services while disallowing aggregation across unrelated

apps.

• Keep states or use the states saved before, apply the

pseudonymous mode. In this mode, a user can maintain

multiple profiles and only app usages in the same profile

are linkable.

• Execute this app without leaving any trace, apply the

anonymous mode. Each session is treated as independent

and app usages are confined within the current session.

All user behaviors originate from the mobile apps, ei-

ther directly or indirectly. By enabling the aforementioned

private execution modes which isolate app usages at this

very source, Mask provides a client-side solution without

requiring any change to the existing ecosystem. We have

implemented Mask on Android at user level, without requiring

any modifications on the Android framework. This is achieved

by enforcing a lightweight user-level sandbox that creates an

isolated runtime environment with stripped account informa-

tion, anonymized device IDs & software cookies, and isolated

persistent storage. Our solution is able to bring privacy benefits

to more than 70% of the apps and incurs negligible overhead

in the app’s runtime performance. Our user study on 27 users

find that more than 60% of them find it useful to maintain

multiple isolated profiles for mobile apps and 11 of them are

willing to use this feature on a daily basis.

The rest of this paper is organized as follows. The next

section introduces the background of unregulated aggregation

of mobile app usages and lists the practical challenges encoun-

tered. Section 3 presents a high-level design of Mask, while

Section 4 describes our user-level implementation on Android

as well as some evaluation results. Section 5 covers the related

work, and finally Section 6 concludes the paper.

II. BACKGROUND & CHALLENGES

A. Unregulated Aggregation

In current mobile ecosystems, an interested/curious party

can covertly link and aggregate app usages of the same user

over time, without his consent or knowledge, which we call

unregulated aggregation of app usages. Here, we describe

three major adversaries — mobile apps, A&A agencies, and

network sniffers — and show how they aggregate app usages

in practice.

1) Smartphone Applications: Smartphone apps aggregate

users’ app usages mainly for personalization. By tracking app

usages over time and feeding them to domain-specific min-

ing/learning algorithms, smartphone apps can deliver contents

tailored to each user. Even if a user doesn’t give an explicit

consent (by logging in), apps can still identify and aggregate

usages of the same user. In fact, if only for the purpose of

user tracking, mobile apps have options far easier and simpler

than enforcing login. Specifically, a smartphone app can use

device IDs or system IDs, such as IMEI and Android ID, as a

consistent user identity to aggregate his app usages remotely

on the server, or exploit the consistent & persistent storage on

the device and achieve the same goal locally.

2) Advertising & Analytics Agencies: To enable targeted

advertising, A&A agencies are also interested in aggregat-

ing personal interests and demographics disclosed in app

usages. Specifically, app developers include clients of these

ad agencies—ad libraries—into their apps and proactively

feed sensitive information requested by these libraries [7].

Moreover, since an ad library shares the same permission with

its host app, it can also access and collect private information

on its own. To identify and aggregate information of the same

user, third-party libraries embed user identifiers into the traffic

they send to the back-end servers. Such a user identifier can be

the hash value of a device/system ID or a local cookie. These

A&A agencies can be more dangerous than smartphone apps

as they can aggregate usage behaviors across multiple apps

carrying the same library.

3) Network Sniffers: Unlike the aforementioned parties, a

network sniffer cannot collect information directly from the

user’s device on its own and can only extract information from

raw network traffic. Moreover, from the sniffer’s perspective,

the network traffic can be really messy: some are directly

marked with the actual device ID, some are tagged with hashed

ones, some only embed app-specific ID (such as a craigslist

user ID) while some others are encrypted and completely

useless. However, as MOSAIC [6] shows, by exploiting the

relative consistency of IP, it can associate different IDs that

represent the same user. This way, even the traffic marked

with different and seemingly unrelated user IDs can be aggre-

gated. As publicized recently, a similar technique is used by

government agencies (e.g., US NSA and GCHQ) for public

surveillance.

In summary, these parties have an increasing scope of

information collection and aggregation, and decreasing con-

trol on the client side (mobile device). Besides, they’re not

independent parties, but operate more like subordinates of an

integrated adversary. Fig. 1 illustrates the information flow

among these parties.

B. Practical Challenges

The following practical challenges need to be addressed

when developing a solution.

1) Intermingled Interests of Different Parties: Free apps

dominate mobile app stores with 91% of the overall down-

loads [8], and app developers include ad libraries to monetize

these free apps. Therefore, smartphone apps share the same

financial interest with A&A agencies, and should thus not be

trusted. In fact, smartphone apps may deliberately collude with

A&A agencies and feed them user demographics, such as age
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Fig. 1. How usages in different app sessions (circles in the figure)
are collected, aggregated and propagated by smartphone apps, A&A
agencies and network sniffers.

and gender, which ad libraries wouldn’t be able to know on

their own. On the other hand, OS vendors, whose popularity

highly depends on the activeness of app developers, are reluc-

tant to add privacy-enhancing features that may undermine the

app developers’ financial interests. Therefore, any defense that

requires extensive OS-level modifications/cooperations will be

impractical and not deployable.

2) Overpopulated User Identifiers: Unlike the web case

where users are usually identified and tracked using cookies,

smartphone apps have much more choices. Exploiting the con-

sistency provided by numerous device and system IDs (some

of which do not even require a permission to access), they can

track app users both consistently and persistently. Moreover,

since apps have arbitrary control over their persistent storage,

they can perform local aggregation of users’ information which

doesn’t even require any type of ID.

3) Trade-off between Functionality & Privacy: Enhance-

ment of privacy often implies sacrifice of functionality. Simi-

larly, opt-out unregulated aggregation, while providing a better

privacy guarantee, also impairs personalized user experience.

This trade-off, instead of being context-invariant, is subject to

an app’s nature as well as the user’s preference. Thus, one

must make a useful and adjustable trade-off between privacy

and functionality.

These fundamental issues greatly reduce the set of tools

and techniques a practical solution can use, rendering most

existing proposals ineffective in practical settings (see Section

5 for the state-of-art).

III. MASK: A CLIENT-SIDE DESIGN

A. Basic Design Idea

The basic idea behind Mask’s design is to allow only those

app usages that are functionally dependent on each other to

be linkable while keeping others unlinkable by default. This

is achieved by introducing a set of private execution modes

through which app users can provide explicit consent, on

whether and within which scope the app usages in current

session can be aggregated. The private execution modes are

introduced based on our observation of how apps are actually

used. Specifically, we first classify app-usage scenarios accord-

ing to the levels of linkability required by app functionality

and then introduce different private execution modes according

to these app usage patterns.

B. App Usage Patterns

In Mask, the basic unit of a user’s app usage is session,

which represents a series of continuous active interactions

between the user and an app to achieve a specific func-

tion. On Android, this typically corresponds to the activities

between the invocations of function calls onCreate and

onDestroy. The duration of a session is relatively short.

Therefore, personal information in a single session can be very

limited, and hence, different parties are devoted to linking and

aggregating different sessions of the same user.

Mask classifies app usage patterns depending on whether

and to what extent app usages in different sessions should

be linkable. The three app usage patterns introduced below—

stateless, durative and exclusive—characterize app’s increas-

ing need on the level of consistency in its runtime environment.

1) Stateless Pattern: the user’s activity in one session does

not depend strongly on the states of, and information from

other sessions. By ‘not strongly’, we mean the the app is able

to deliver its main functionality without any information from

previous sessions, possibly at the expense of reducing optional

personalized features. A wide spectrum of apps fit this pattern,

including query-like apps such as Wikipedia and Yelp, apps

from most news media such as NYTimes and CNN, and simple

games such as Doodle Jumps and Flappy Bird.

2) Durative Pattern: the user requires persistent states

and long-term ‘memories’ of an app to perform his current

activities, but does not need to reveal his real-world identity.

This pattern fits note-keeping apps, music player, books &

magazines, complex games with a storyline or levels that need

to be unlocked (such as Angry Birds), and etc.

3) Exclusive Pattern: the user must execute the app with an

explicit identity, such as a user ID or account, and is willing

to take the accompanied privacy risk. It covers most of social

apps, such as Facebook and Twitter, as well as communication

apps including WhatsApp, Yahoo Messenger, etc. If an app

fits this pattern, the corresponding usages can and should be

linkable across all the sessions that share the same account.

Note that the different users might apply different patterns

when using the same app. This is subject to the preference of

each specific user.

C. Aligning Usage Pattern with Privacy

Let’s first discuss the default scenario in a contemporary

mobile OS, using Android as an example. An app can track a

user via device IDs such as IMEI or MAC address, which typ-

ically require permission, or via system IDs such as SERIAL

number and android ID, which do not require any permission

at all. If an app or an ad library wants, it can always export

a cookie to its local storage, or more persistently, to external

storage. These persistent anchors in the app’s runtime allow



TABLE I
THE GAP OF LINKABILITY: EXPECTATION VS. REALITY

Scenario
Linkable

Across Sessions Across Apps

stateless single single
durative some - all single
exclusive all single - some

default (reality) all all

an adversary to link and aggregate usage across all apps and

sessions. However, from the user’s perspective, this linkability

is far too strong for most app functionalities.

For apps executed statelessly, linkability is not needed

even in the weakest form since each session is inherently

independent. For apps executed duratively, linkability is only

needed across (some, not necessarily all) sessions of the same

app—for example, a user may wish to maintain two separate

instances for the same gaming app. Even for apps executed

exclusively there are additional privacy issues. When a user

executes an app with login, its app usages should only be

linkable within the app, or at most across apps using the

same login — instead of across all sessions and apps. Table I

summarizes this gap between expectation and reality.

D. Private Execution Modes

Having understood the user’s requirement on linkability, we

present an intuitive way for the user to give explicit consent.

Specifically, Mask introduces a set of private execution modes.

Whenever a user starts an app, he can choose which mode to

apply on the current session, implicitly specifying whether and

within which scope his app usages can be aggregated.

Mask provides three types of private execution modes—

identifiable, pseudonymous and anonymous—which are

mapped to the three usage patterns we defined earlier and

provide increasing levels of unlinkability of the user’s app

usages. An ordinary user can make this decision by following

a few simple rules, without any domain-specific knowledge.

Specifically, when an app starts execution and the user wants

to:

• Use this app while logged in, he should choose the

identifiable mode. Assuming all app usages under the

same login are linkable, Mask allows an app to deliver

uncompromised personal services while disallowing ag-

gregation across unrelated apps.

• Keep states or use the states saved before, he should

apply the pseudonymous mode. In this mode, a user can

maintain multiple context-based profiles and only app

usages in the same profile are linkable.

• Execute this app without leaving any trace, he should

apply the anonymous mode. Each session is treated as

independent and app usages are confined within the

current session.

Fig. 2 presents an overview of Mask’s design. Note that our

design is not restricted to any specific mobile OS or platform
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Fig. 2. Mask provides different private execution modes for each
usage pattern we classified and only app sessions that are functionally
dependent on each other are linkable.

since its rationality is rooted in the general notions of app us-

age patterns. Different choices of Mask’s implementation only

reflect emphasis on different aspects, such as performance,

robustness or practicality.

IV. IMPLEMENTATION & EVALUATION

The principle that drives every decision in our implementa-

tion is deployability without any unrealistic dependencies or

assumptions on other parties, such as platform-level support or

collaboration with A&A agencies. This is important because

(1) the privacy threat under consideration is prevalent and

needs to be dealt with urgently and users should be given a

choice to opt out right away; and (2) as we discussed earlier,

there exist intermingled benefits among different parties in the

current mobile app ecosystem and counting on any of them

may degrade the practicality of a solution. Guided by this

principle, we developed a client-side prototype of Mask on

Android (4.1.1) at the user level. Next, we provide the tech-

nical details and challenges of our user-level implementation.

A. User-Level Sandbox

To enable the aforementioned private execution modes, we

need to provide an isolated runtime environment. Since practi-

cality is priority in our implementation and users are less likely

to use a custom ROM or root their device solely for privacy

protection, we need a user-level sandbox implementation.

As proposed by the system communities [9], the dynamic

linking process can be exploited to support program cus-

tomization. Any dynamically linked executable keeps a map-

ping between external function symbols and the corresponding

memory addresses, known as the global offset table (GOT). By

rewriting entries in the GOT, access to any external function

symbols can be redirected to a user-specified function. This

makes it possible to intercept library calls in user-level and

deliver security and privacy features [10].

We adopt this user-level technique to achieve two goals: in-

tercepting inter-process communications (IPCs) between sys-

tem services and apps to strip personal and device identifying
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information that enable aggregation at the server side; and

provide an isolated per-sandbox storage to break local (on-

device) aggregation.

1) IPC (Intent) Interception: IPC is the only supported

mechanism in Android that allows an app to interact with

other processes and exchange information. Any explicit com-

munication, using Intents, or implicit ones, such as getting

information from system services using high-level APIs, are

supported by this IPC mechanism. To strip personal and device

identifying information an app could get, we need to be able

to intercept, understand and modify any IPCs between this app

and other parties. This brings some technical challenges and

requires a good understanding of how IPC works in Android.

In Android, the design of IPC, Binder, is conceptually

a lightweight RPC mechanism which allows one process

to invoke routines in another process. It consists of two

components: the shared library libbinder.so in user space

and the Binder driver in kernel space. They communicate

with each other according to the Binder protocol via the

bionic libc call ioctl. All high-level objects such as Intents are

packed into a container object (Parcel) and then sent through

the binder protocol as a byte array. By intercepting the ioctl

function call in libbinder.so, we can exercise arbitrary

user-level control. Specifically, we overwrite the GOT in

libbinder.so and redirect ioctl to a wrapper function. This

wrapper allows us to intercept both incoming and outgoing

communications, both are indispensable to achieve our goal.

Intercepting outgoing traffic lets us know what request this

app sends while intercepting the incoming traffic allows us to

change the results returned. Fig. 3 summarizes this process.

On top of this interception mechanism, we can impose

control over any intra- or inter-app communications as well

as the app’s interactions with system components. Here, we

focus on the latter because in Android, identifying information

is centrally managed by system services. Table II summarizes

the list of identifiers Mask anonymizes. It contains the most

commonly-used IDs but may not be a complete list of all

potential identifying information. However, the associated

technical underpinning is general enough to cover other iden-

tifiers, if necessary. We also exclude quasi-identifiers, such as

IP or location, because compared to the the explicit identifiers

addressed in Mask, they are far less consistent and reliable [6,
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Fig. 4. How to achieve persistent storage redirection/isolation.

TABLE II
LIST OF COMMONLY-USED IDENTIFIERS MASK ANONYMIZES

ID System Service Permission

IMEI/MEID iphonesubinfo READ PHONE STATE

SUBSCRIBER ID iphonesubinfo READ PHONE STATE

PHONE NUMBER iphonesubinfo READ PHONE STATE

MAC ADDR wifi ACCESS WIFI STATE

ACCOUNTS accounts GET ACCOUNTS

ANDROID ID settings NONE

SERIAL settings* NONE

11], especially in the mobile context. Moreover, there are

already independent lines of research on these subjects, such

as IP anonymization and location anonymity.

2) Persistent Storage Isolation: Isolating persistent storage

for each sandbox is necessary because it prevents local aggre-

gation of the user’s app usages, and also break the consistency

of software cookies. Android provides the following options

for persistent storage: Shared Preferences, Internal Storage,

External Storage and SQLite Databases.

All of these storage options are built upon file system prim-

itives provided by Bionic Libc, such as open, stat, mkdir,

chmod, etc. By intercepting these primitives and modifying

the corresponding input parameters, we can exercise arbitrary

control over the app’s interactions with the file system. Specif-

ically, we create shadow directories which resemble the initial

states of the app for each sandbox upon its creation, and then

redirect all upcoming file system operations from the app-

specific directories to the corresponding shadow directories.

Figure. 4 illustrates this process.

B. Sandbox Manager

So far, we have introduced how a user-level sandbox is

implemented to provide an isolated runtime environment.

Next, we describe how these sandboxes are created, executed

and destroyed to deliver the private execution modes in Mask.

1) Sandbox Management: The lifecycle of each sandbox is

centrally controlled by a sandbox manager. The sandbox man-

ager maintains a meta file for each sandbox, which contains



sandbox-specific parameters: paths to the designated shadow

directories, anonymized values of the persistent identifiers.

When a sandbox is created, the manager generates a sandbox-

specific meta file and allocates it shadow directories both

in the local storage and the SD card. Then, any resources

required for the initial states of this app will be copied into

the shadow directories. The sandbox is then ready to start.

When a sandbox is executed, the manager will initialize the

runtime with information stored in the sandbox’s meta file

and activate the library-call interception mechanism. When a

sandbox is destroyed, the sandbox manager first clears the

local storage designated for the sandbox and then deletes the

corresponding meta file.

Whenever an app is executed in anonymous mode, a new

sandbox is created and applied; the sandbox will be imme-

diately destroyed after the current session terminates. Note

that, in Android, the termination of a session (onDestroy)

is automatically controlled/optimized by the system. The user

can force the current session to terminate by removing the app

from the recent apps list. If an app is executed in pseudony-

mous mode, the user can choose to reuse an existing sandbox

or create a new sandbox; a sandbox will only be destroyed

when a user explicitly specifies it. If an app is executed in

identifiable mode, a designated sandbox gets initialized; the

user always runs the same sandbox.

2) Multi-process Support: For an app with only one pro-

cess, its execution in a sandbox is simple; but for apps with

multiple processes, it can be complicated. Since what we

implemented is a per-process sandbox and Android allows an

app to host multiple processes, an app will crash if different

processes are executed with inconsistent runtime environment.

Therefore, we equip our sandbox with multi-process support.

Each time an app process starts, the sandbox manager will

first tell whether a sandbox is already created for this app (by

maintaining a lock file in this app’s local storage). If so, the

new process will join the existing sandbox and share the same

runtime environment.

3) UI Design: The logic of sandbox manager is hidden

behind an intuitive UI. Mask’s UI is displayed right before

the launcher activity of an app starts, and is executed as

an independent process isolated from all other components

of the app. It offers a nice and intuitive way for end-users

to manage profiles without revealing too much details. As

shown in Fig. 5, Mask provides three execution modes—

identifiable, pseudonymous and anonymous. For identifiable

and anonymous modes, the user can simply click-and-use;

for pseudonymous mode, Mask allows the user to maintain

multiple profiles on the same device.

C. APK Rewriter

So far, we described how to build a user-level sandbox in

Android that provides unlinkable runtime environments. Next,

we describe how to merge our sandbox component seamlessly

into an app, using the APK rewriter we developed.

Specifically, we use apktool to decompile an Android

application package file (APK) into human-readable smali

Fig. 5. The UI design of Mask.

codes, include our sandbox component and then recompile

the files back into an executable APK. This is difficult because

each APK is an integral structure, and including our sandbox

component is not as easy as copying all the files — we have

to make sure each component serves its designed functionality

at the right place, and this can be challenging especially when

we need to consider the integration of UI. This brings the

following technical challenges:

1) Sandbox Initialization: The APK rewriter needs to make

sure that the sandbox component will be initialized before

any component of the original application executes. This is

achieved by exploiting an application base class which is

provided by Android to maintain global application states.

The nice property of this base class is that it is the first user-

controlled component that gets initialized for any process of

the app. Our APK rewriter will go through the app’s existing

codes and checks whether the application base class already

exists. If exists, we modify the existing application base and

make it a subclass of the application base defined by us;

otherwise, we directly insert our application base. The sandbox

initialization logic is programmed into the static code section

of this application base class and is guaranteed to be the first

to execute.

2) UI Integration: All UI elements integrated in an app

are referenced with a universal unique id, indexed under res/-

values/ids.xml and res/values/public.xml. To integrate new UI

elements into an existing app, our APK rewriter automatically

tracks and assigns the empty slots within the existing ids.

Moreover, the APK rewriter needs to ensure control will be

returned to the app after our UI cuts in line. It works by going

through the manifest file, identifying the app launcher activity

and statically writing an initialization logic for the launcher

activity into the onDestroy functions in our UI activity.

Finally, the APK rewriter also parses the manifest file to

get the list of processes this app hosts. This information will

be hard-coded into the smali codes of the sandbox manager

to enable Mask’s support for multiple processes.



TABLE III
UI & SANDBOX MANAGEMENT OVERHEAD

Category Response Time

Load UI 169.2 ms
Create Sandbox 68.7 ms
Run Sandbox 382.2 ms

Destroy Sandbox 26.8 ms

TABLE IV
MOBILE APP RUNTIME OVERHEAD

Category Bench Unit Overhead (%)

File

Seq Read MB/s < 1%
Seq Write MB/s 1.3%
Rand Read MB/s < 1%
Rand Write MB/s < 1%

Create TPS 2.1%
Delete TPS 4.7%

Database
Insert TPS 2.3%

Update TPS 9.0%
Delete TPS 3.4%

IPC
Filter TPS < 1%

Reformat TPS 37.8%

TPS: Transactions Per Second

D. Performance Overhead

Mask incurs two types of performance overhead: on sand-

box management when a sandbox is created, destroyed or

executed; and during application runtime, after an app starts

execution in a sandbox of the user’s choice.

The overheads on sandbox management are measured by

instrumenting a testing app with Mask and timers. Then

we perform selected sandbox management tasks and log the

output of these timers. As the results in Table III show,

the most time-consuming actions in sandbox management are

loading UI and running a sandbox, each taking a few hun-

dred milliseconds. However, since these actions happen only

once during a session, the cumulative overhead on sandbox

management is still minor—far less than one second.

The overhead on apps’ runtime originates from Mask’s

user-level sandbox component when it intercepts inter-process

communications (IPCs) and file system operations. To measure

the overhead incurred by redirecting file system operations, we

choose a benchmark app, AndroBench [12], which is designed

for measuring storage performance on Android devices. Be-

sides the test benches included in AndroBench, we added two

more tests to measure the performance of creating and deleting

files. Each test bench is executed 10 times with Mask enabled

and disabled. To evaluate the overhead caused by intercepting

IPCs, we use a synthesized benchmark which contains two test

benches, measuring the overheads incurred by IPCs filtering

and reformatting, respectively. IPC filtering differentiates the

IPCs we are interested in, such as getting device ID, from

those we are not, such as getting location updates, while

IPC reformatting reconstructs a low-level binary sequence into

high-level objects and modifies the corresponding persistent

identifiers. The IPC filtering incurs overhead to any IPC

between an app and other parties, while the IPC reformatting

overhead is incurred only for those IPCs that return personal
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Fig. 6. Breakdown of apps according to their usage patterns on a
per-category basis

or device identifying information to the app.

The results on application runtime overheads are summa-

rized in Table IV. The performance degradation on file system

operations is minor because the only overhead incurred is for

transforming the paths in the app’s original storage to the

paths in the sandbox’s shadow storage. This transformation is

much lighter-weighted compared to file system IOs. We also

found the IPC filtering overhead to be negligible, meaning that

Mask does not affect the performance of most ‘uninteresting’

IPC calls. By contrast, the IPC reformatting overhead is

significant (more than 37%) because parsing byte array into

high-level objects, for example java objects, is expensive.

However, since we only reformat a very small portion of all

the IPCs—only those return persistent identifiers—the overall

performance degradation is found negligible.

E. Applicability

Mask applies different private execution modes for mobile

applications with different usage patterns (exclusive, durative

or stateless). Here, we case studied the top 200 free apps

in Google Play and study how many of them can be used

with Mask. We assume a privacy-aware user who always

selects the usage pattern that delivers the highest privacy level

without compromising the major functionality of the app. We

classify the apps according to the usage patterns and further

break down the numbers into each functional category, as

shown in Fig. 6. To sum up, 29% of the apps can be used

statelessly, 43% can are used duratively and 25% have to be

used exclusively. To note, Mask is only applicable to 97%

of all the apps, excluding apps designed for system usage,

such as file explorer, anti-virus software, etc. Sandboxing these

apps fundamentally violates their functionalities and results in

unpredictable results or even crashes.

We also conducted a study on 27 mobile users who had

neither prior knowledge of the Mask project nor domain-



specific expertise. The users are recruited by posting surveys in

our university library. Our findings are summarized as follows:

• 80% of the mobile users are aware that app developers or

advertising libraries may conduct user profiling. 40% of

the mobile users consider this as a moderate or serious

privacy threat, 45% as a minor privacy threat while 15%

of them are not concerned with it at all.

• 60% of the mobile users believe maintaining multiple

isolated profiles for the same mobile app will provide

better privacy protection. Of these people, more than 70%

are willing to take actions if theyre given such an option.

V. RELATED WORK

There have been numerous studies on information access

control on smartphones [1–5]. They focus on detecting and

defending illegitimate collection of sensitive user information,

by malicious mobile apps or third parties. Orthogonal to

these studies, Mask focuses on unregulated aggregation of

sensitive user information, irrespective of how it is collected.

There also exist other efforts on the issue of information

aggregation in the mobile ecosystem [7, 13–16]. Most of them

only target a restricted scenario — advertising agencies —

and assume mobile apps are trustworthy. Different from these

works, Mask considers a more general and realistic scenario

and and breaks unregulated aggregation by both mobile apps,

advertising agencies and network sniffers. Linkdroid [16] tries

to solve a similar problem but requires extensive modifications

on the smartphone OS. Mask, instead, utilize the usage pat-

terns of apps and strikes a useful trade-off by delivering private

execution modes in the user-level.

MoRePriv [17], πBox [18] also focused on resolving the

conflict between privacy and personalization of mobile apps.

MoRePriv argued that personalization should be provided by

the OS instead of apps. Similarly in principle, πBox shifts the

responsibility of protecting privacy from the app and its users

to the platform itself. By contrast, Mask neither advocates a

new ecosystem, nor requires modification to the existing one.

It provides a practically deployable design which allows end-

users to ‘negotiate’ with the mobile app at the client side.

VI. CONCLUSION

In the current mobile app ecosystem, app usages of a user

are linkable by default. This allows an interested/curious party

to conduct unsolicited user profiling, targeted advertising or

public surveillance. In this paper, we designed and imple-

mented a practical solution called Mask, allowing users to

unlink app usages that are functionally independent of each

other. Specifically, we introduce a set of private execution

modes and give users options to specify whether and within

which scope his current app session should be linkable. We

presented the technical details and challenges of our user-

level implementation, and evaluated the performance and

applicability of Mask.
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