Reducing Journaling Harm on Virtualized I/O Systems

Hyokyung Bahn?
Seunghoon Yoo?

Eunji Lee!

L Chungbuk National University
YUNIST

1! ejlee,msjeong,shkim, jsyeon} @oslab.cbnu.ac.kr
4samhnoh@unist.ac.kr

Abstract

This paper analyzes the host cache effectiveness in full vir-
tualization, particularly associated with journaling of guests.
We observe that the journal access of guests degrades cache
performance largely due to the write-once access pattern
and the frequent sync operations. To remedy this problem,
we design and implement a novel caching policy, called
PDC (Pollution Defensive Caching), that detects the jour-
nal accesses and prevents them from entering the host cache.
The proposed PDC is implemented in QEMU-KVM 2.1 on
Linux 4.14 and provides 3-32% performance improvement
for various file and I/O benchmarks.

Categories and Subject Descriptors D.4.2 [Operating Sys-
tems]: Storage Management

General Terms Design, Measurement, Performance

Keywords Virtualization, Caching, Journaling, File system

1. Introduction

Virtualization is widely used in various modern computer
systems ranging from personal computing devices to cloud
servers [14} (16} 18420, 221 241 26| 27]). Virtualization sepa-
rates a software platform from hardware conditions, thereby
providing flexibility, scalability and energy savings. How-
ever, these benefits are accompanied by inefficiencies as-
sociated with its additional software layers on top of exist-
ing system software. To mitigate such inefficiency, para-
virtualization such as Xen is being actively explored in
server systems, which runs customized guests operating
systems with a light-weight hypervisor, without host op-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

SYSTOR ’16, June 6-8, 2016, Haifa, Israel.

Copyright © 2016 ACM xxx-x-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

Minseong Jeong!
Sam H. Noh*

2Ewha University
5The University of Michigan

Sunghwan Kim! Jesung Yeon'

Kang G. Shin®

3Seoul National University

2bahn@ewha.ac.kr
® kgshin@umich.edu

3shyoo@oslab.snu.ac.kr

erating systems [13]. However, according to recent IDC
reports, more than 80% of cloud server systems rely on full-
virtualization hypervisors such as Vmware, Hyper-V, and
QEMU-KVM [11]].

This paper analyzes and alleviates inefficiencies of the
I/O mechanism in full virtualization, particularly coupled
with journaling. Figure 1 shows the storage architecture of
a fully virtualized system. Both the guests and the host have
their own file systems and buffer caches. Although guests
can configure to bypass a host cache at boot time, generally
guests, by default, select to use host caching for the sake
of its buffering and merging effects [12| [28]. In particular,
if many virtual machines, whose lifetime is difficult to esti-
mate, coexist, then managing a large shared buffer cache on
the host side can be much more effective than allocating a
large cache space for each individual guest a priori [28].

However, as storage devices increasingly become faster,
whether the current /O mechanism of full virtualization
is most effective is in question. The cost for placing data
into a host cache relatively increases in high-speed storage,
while, in contrast, the benefit from the cache is decreased.
As a straightforward approach to this issue, we can consider
bypassing a host cache in fast storage.

Figure 2 shows the I/O performance when going through
the host cache in comparison with the guest accessing SSD
storage directly (experimental setup is described in Section

[Guest A }[Guest B][Guest C]

J_ system call J_ J_
4 N\ = N\ -4 N\
I’ A’s buffer | I’ B’s buffer ! I’ C’s buffer |
{ cache i | cache } |} cache 1
i [[I
Main Block 70
memory Hypervisor
! Host’s buffer cache) ! ystem,_call
Y s N
< i | il »
block /O~ A%
Secondary A’sfile B’s file C’s file
storage system system system
L J
Guest's disk image files

Figure 1: File system structure of a fully virtualized system

1.2

0.8 |

0.6 |

iops (norm)

04

0.2

oltp mobibench

Figure 2: Performance comparison of using host cache (WB)
and bypassing it (NONE) in SSD.

3). As the figure shows, using the host cache delivers 2.7x
and 1.7x better performance in HDD and SSD, respectively,
proving the host cache provides considerable benefits even
in fast storage. However, the performance improvement de-
creases due to the caching overhead relative to the overhead
for storage device access. Thus, more judicious use of the
host cache in high-speed storage is warranted.

As a means to this end, we analyze the inefficiency of
the current I/O mechanism associated with journaling in fast
storage. Journaling is a technique used to ensure data con-
sistency in popular file systems such as Ext4 and ReiserFS
[2 [7]]. Journaling writes updates first to a separate storage
area called the journal area, and then later reflects them to
the permanent file location, thereby providing data consis-
tency. However, journaling generates harmful I/O traffic for
cache performance. First, the journal data is not accessed
again unless the system crashes, and second, the journal area
acts as a log, generating completely sequential writes in a
large loop. This behavior incurs the eviction of valuable data
from the cache, leading to serious cache pollution. Third,
in journaling file systems, the fsync operation comes right
after writing updates into the journal for durability. This fea-
ture nullifies the buffering effect of the host cache, partic-
ularly more so for smaller writes, which comprise the ma-
jority of journal traffic. Without the buffering effect, a write
takes longer when passing through the host cache due to the
additional memory copy and the hosts I/O stack overhead.

Based on this observation, we propose a judicious caching
policy called PDC (Pollution Defensive Caching) that pre-
vents detrimental journal data from overwhelming the host
cache. Specifically, PDC, which is implemented in a hyper-
visor, filters out journal data from host cache, while allowing
other I/O requests to go through the host cache. The strength
of PDC is that it guesses the journal accesses only with logi-
cal block addresses (LBA), by detecting a stream of sequen-
tial writes from I/O accesses. That is, as the LBA is given
to a hypervisor in the current architecture, PDC requires no
modification to guests, making it easily deployable.

The proposed PDC is implemented in QEMU-KVM 2.1
in Linux Kernel 4.14, and we measure the performance of
PDC with Filebench, Linkbench, Sysbench, Mobibench, and
DbBench with LevelDB. Our measurement results show that
PDC improves performance by 3-32%.

Table 1: Experimental Setup

CPU Intel Core i5-3470 3.2GHz, Quad-Core

Main memory DDR3 Samsung 16GB

Guest Resource | Single core / 4GB Memory

Storage Sandisk 240GB SSD x 2
oS Ubuntu 14.04
Hypervisor QEMU-KVM 2.1

2. Related Work

As virtualization increases the depth and the complexity of
I/O paths, considerable research has been performed on the
efficient management of I/O stacks in virtualized systems.
Russel presented a set of virtualized device drivers, called
Virtio, which allows explicit cooperation of guests device
drivers and the hypervisor, thereby eliminating the overhead
of emulating physical devices at the hypervisor [26]]. Xens
para-virtualized driver [13]] and VMwares guest tools [10]
also improve I/O performance in virtualized systems by pro-
viding new /O device drivers. HarEl et al. present that the
mode switch invoked when sending guests I/O requests to
the host incurs considerable overhead to I/O performance
[21]]. They propose a polling mechanism that allows guests
to send I/O requests to the host via shared memory with-
out mode switch, thereby improving I/O performance. Xu et
al. accelerate 1/O processing for virtual machines by revis-
ing IRQ handling mechanisms in multi-core systems [29].
They reduce the IRQ processing latency by processing all
I/O requests in a designated core with a very small time
slice. Hardware-supported virtualization technologies have
also been studied. The Intel VT-d technology allows guests
to directly interact with the device assigned by the host,
thereby eliminating the virtualization overhead [23]]. Le et
al. observe that nested interactions of guest and host file sys-
tems significantly degrade I/O performance. Based on this
observation, they provide suggestions on configuring nested
file systems [24]]. Chen et al. reveal that a copy-on-write vir-
tual disk incurs serious sync amplification due to the internal
metadata updates for block organization and propose sev-
eral optimization techniques to mitigate the problem [17].
Liu et al. analyze that the guest passing through the vir-
tual machines device driver to access a physical device de-
grades I/O performance and propose to have guests directly
access the device to circumvent this problem [25] Boucher
et al. present that I/O performance is highly affected by the
combination of guest and hosts I/O schedulers in duplicated
storage architectures, and explore the efficient I/O scheduler
combinations for virtualized systems [15]].

3. Journal Traffic Analysis

The host cache provides overall performance gains, but the
guests I/0 requests include a substantial number of accesses
that decrease cache performance, in particular journal traf-
fic. To estimate the effect of journaling on cache perfor-
mance, we measure the ratio of journal accesses to the total

Ratio (norm)

oltp mobibench leve

Figure 3: The ratio of journal accesses in total I/O requests

25000 3500

20000 | X 3000

__ 2500

3 2000
P

10000 E 1500

= 1000

500

1.006x
1x
1.18x

15000

Time (us)

5000

Direct 1/0 Write to cache + Direct 1/0 Write to cache +
fsync fsync

(a) HDD (b) SSD

Figure 4: Latency w/ and w.o/ the host cache

I/0O traffic. Our experimental platform is described in Table
1. We evaluate performance using five benchmarks: Varmail
in Filebench, Linkbench, Oltp in Sysbench, Mobibench, and
DbBench with LevelDB. Varmail and OLTP generate the
mail-server and the financial workloads, respectively [319].
Linkbench is a database benchmark based on the Facebook
Social Graph [35]. Mobibench issues a series of transac-
tions consisting of insert, update, and delete operations using
sqlite3 [6]]. DbBench measures the performance of a key-
value store application using LevelDB for various operations
[1,4]. The guest file system is set to Ext4 in ordered mode
that performs metadata journaling, as it is currently the most
common configuration in various systems.

Figure 3 shows the ratio of journal accesses in terms of
traffic, footprint, and the number of fsync operations, rel-
ative to the entire I/O for each workload. The journal ac-
cess accounts for 19% on average and up to 47% of the total
I/O traffic. The effect of journaling becomes more significant
in terms of the footprint. As the journal area is accessed in
a completely sequential pattern, the footprint of journal ac-
cesses account for 45.2% on average and up to 84.8% of the
total footprint. This result implies that the effect of forcing
out important data from the cache by journaling is significant
under the current caching policy.

Furthermore, the 86% of entire £sync operations are as-
sociated with the journal on average, as journaling issues
fsync operations right after logging updates on every com-
mit. In contrast to buffered I/O, the writes immediately ac-
companied with the fsync operation incurs additional over-
head when they go through the host cache. This overhead
becomes more pronounced as the underlying storage device
becomes faster. Figure 4 estimates this overhead by measur-
ing the I/O time issuing a 4KB write request followed by an
immediate £sync operation. The synchronous write when
using host cache takes only 1.006x longer in HDD, while
it costs 1.18x longer with an SSD, compared to using Di-

3e+07 —T T T T T T 2.5235e+07 —T—T—T—T—T—T—T
2.528e+07
2.5225e+07 |
2.522e+07 |-
2.5215e+07

2.521e+07
252056407 |-
X
252e+07 [f o sallm]
2.5195e+07 ——— 1 11|

0 10 20 30 40 50 60 70 80
Logical time

2.56+07 [X< xommommemDcm:m—
2e+07 |
1.5e+07
1e+07 |-

5e+06 -

LBA(Logical Block Address)
LBA(Logical Block Address)

0 10 20 30 40 50 60 70 80
Logical time

(a) With explicit knowledge

3e+07 — T T T T 2.5285e+07 T
2.523e+07 -
2.5225e+07 |
2.522e+07 -
2.5215e+07 |

2.521e+07 -

2.5205e+07 | !—
2.52e407 sesou: el

251950407 L1111 1

0 10 20 30 40 50 60 70 80
Logical time

2.5¢+07 -
2e+07 |
1.5e+07 [
1e+07 -

5e+06 |

LBA(Logical Block Address)
LBA(Logical Block Address)

Py S
0 10 20 30 40 50 60 70 80
Logical time

(b) Prediction by heuristics
Figure 5: Accuracy of journal accesses prediction

rect I/O. Thus, the cost for going through an additional host
cache layer is non-trivial, calling for the need to optimize the
I/O stack even further for fast storage.

4. Pollution Defensive Caching

Based on the above observation, we popose a new caching
policy, called PDC (Pollution Defensive Caching),that pro-
tects the host cache from the harmful effect induced by guest
journaling. The key challenges to the implementation of
PDC are (1) how to distinguish the journal accesses from the
accesses generated by the hypervisors running unmodified
guest operating systems,(2) how to change the host cache
usage mode dynamically to filter out journal data from the
cache.

Let us consider the first challenge. In general, the journal
area is created on a part of storage device at the time of its
formatting, but the location is hard to figure out by LBA,
as it is not fixed and varies with the storage size and other
factors. One way to resolve this issue is modifying the guest
operating system to explicitly mark journal accesses to the
hypervisor. However, it is unfavorable in fully virtualized
systems that enable guests run unmodified. To overcome
this, PDC uses a heuristics that guesses journal accesses by
detecting the writes with a large sequential loop, without any
modification of guests. Specifically, PDC maintains a series
of access flows with first and last LBAs in a hash table, and
monitors if the upcoming request is in a consecutive address
range. If there is a range where consecutive writes forms a
large loop, PDC regards the range as journal area.

Figure 5 shows how accurately our heuristics works in
guessing journal data in Varmail workload. The left side
plots LBA accesses for the whole file systems, and the right
side shows the enlarged view of journal accesses. We mark
the journal accesses in red and others in grey. As shown in
the figure, our heuristics works well and provides the same
result as using the explicit knowledge, except for the mon-
itoring in the beginning. This algorithm is designed for a

Table 2: Action for posix_fadvise flags.
Flag Action

POSIX_FADV_NORMAL Read-ahead data on-demand
POSIX_FADV_SEQUENTIAL | Increase read-ahead window
POSIX_FADV_RANDOM Read-ahead in a chunk size
POSIX_FADV_NOREUSE Not implemented

POSIX_FADV_WILLNEED Read-ahead requested pages

POSIX_FADV_DONTNEED Invalidate data on cache

guest using internal journaling, which maintains a journal
area in the same device with the file system, and the predic-
tion becomes easier if a guest uses external journaling. The
external journaling refers to maintaining the journal area in a
separate device. In such a case, all we need is to guess which
file refers to the journal device, as the journal area is man-
aged in a separate file. We monitor the I/O requests on each
file during a certain time and regard the write-only file as a
journal device as the journal area is not read. By using both
of these mechanisms, PDC manages to identify journal data
irrespective of which journaling the guest uses.

Now, let us move on to the next challenge; the imple-
mentation of admission control for journal data. To meet
this challenge, the hypervisor should adjust the host cache
usage mode dynamically, although it is not supported in cur-
rent hypervisors. We overcome this challenge by means of
the posix_fadvise system call. It is a system call that en-
ables user applications to provide explicit hints to the op-
erating system about future data access patterns so that the
system can take appropriate actions. Table 2 summarizes the
set of flags supported in the posix_fadvise system call and
the corresponding system actions for each flag. We use the
POSIX_FADV_NOREUSE flag to implement the host cache
bypassing policy. It designates that the data block is accessed
only once and will not be referenced again. Since the current
Linux 4.14 takes no action for this flag, we implement an
action module on the host operating system such that Direct
I/0 is commenced when this flag set. I/O is reverted back to
the buffered I/O when the POSIX_FADV_NORMAL flag is
used. Thus, we make a posix_fadvise system call with the
POSIX_FADV_NOREUSE flag before sending the journal
I/O requests and make a posix_fadvise system call with
the POSIX_FADV_NORMAL flag on completion of the I/O
request.

Another important issue with PDC is to maintain data
consistency between host cache and storage. When the up-
dates are directly written to storage, the obsolete data can be
left in the host cache, creating a data inconsistency hazard.
Thus, we invalidate obsolete data in the host cache by means
of POSIX_FADV_DONTNEED flag after writing the recent
data to storage.

5. Performance Evaluation

To assess the effectiveness of PDC, we measure its perfor-
mance in comparison with the original policy (WB) that uses

1.4
12 |

0.8
0.6

iops (norm)

0.4
0.2

1.4

12|

08 |
06 [
0.4

Latency (norm)

02

[
N & @ O N
& N N Y)
N %\,?A g Q§\fb fz&
N

(b) Key-value store benchmark(LevelDB)

&

Figure 6: Performances of WB and PDC in a single guest

a host cache in write-back mode, in SSD. The proposed
PDC is implemented in QEMU-KVM 2.1 and Linux 4.14.
We use the same experimental setup as described in Section
3. We measure the performance for each scenario 10 times
and report their average. The performance improvement by
PDC comes from two factors. The first is the elimination of
the host cache synchronization cost for writes immediately
followed by sync, and the other is the prevention of never-
reaccess data from the host cache. To investigate the effec-
tiveness of these individual factors, we perform experiments
in two different configurations, that is, single and multiple
guest machines.

Figure 6 shows the performance of PDC compared to the
original caching in SSD when running a single guest. As
this configuration provides a large host cache space com-
pared to the working set of a single virtual machine, it pri-
marily presents the benefit from reducing the synchroniza-
tion cost of journaling. As Figure 6(a) shows, PDC improves
performance by 8-32% over the original caching in file I/O
and database benchmarks. Specifically, Varmail achieves the
most significant improvement, 32%, as it makes a consid-
erable number of metadata updates and synchronization re-
quests. This performance gain, however, seems excessively
large compared to the result in Section 3. In our preliminary
analysis, a pair of write and fsync operations become faster
only by 18% when bypassing the host cache. Thus, the per-
formance improvement in Varmail should be less than 18%
because it generates real workloads including other advan-
tageous requests for the host cache. This significant perfor-
mance improvement turns out to be attributed to the paral-
lelism with multi-threads. We observe that the overall I/O
performance increases to some extent proportionally to the
number of threads. For example, Varmail improves perfor-
mance by 5% with a single thread. Similarly, Linkbench
and OLTP achieves 8.5% and 8% gains with 10 and 32

WwB—

1.2
E
5]
5 08
» 0.6
S o4l
- 02 F

0 i A .
varmai linkbenc oltp mobibencl
(a) File I/0 and database benchmarks

1.4
= 12 4
E
o ! b
(=
~ 08 4
>
O 06 4
c
O 04 F 4
©
—1 02 4

S

Q
P &

S © @
IS &
N "&\aﬁ © &
& & 8
S g

(b) Key-value store benchmark(LevelDB)
Figure 7: Performances of WB and PDC with multiple VMs

threads, respectively, while both workloads gain a marginal
performance benefit with a single thread. Mobibench im-
proves performance by 14% with PDC. Figure 6(b) com-
pares the performances of WB and PDC for the LevelDB
key-value store application. We show the LevelDB result
separately from other benchmarks, as it presents the perfor-
mance for each operation, not summarizing the overall per-
formance as a single value. As the figure shows, reads and/or
buffered writes achieve no remarkable performance bene-
fit from PDC, while operations accompanied by sync yield
considerable performance enhancement. The fillsync and
compact operations improves the performance by 33% and
18%, respectively. In particular, the reduction of compact
operation latency deserves more attention. The compact op-
eration is periodically invoked and copies valid data in a
higher-level file (managed in a fast storage) to the lower-
level file (managed in a slow storage). During this process,
as a large number of I/Os are issued and thus it takes six
orders-of-magnitude longer time (nearly Is) than other op-
erations (under Sus), the compact operation is reported as
a primary factor for performance degradation [8]. Accord-
ingly, the 18% reduction of compaction latency results in
200ms reduction in time, contributing to the overall perfor-
mance significantly.

Figure 7 compares the performances of PDC and origi-
nal write-back caching policies running four guests concur-
rently. This result would also reflect the effects of preventing
cache pollution by PDC as the host cache space becomes rel-
atively smaller. For an accurate analysis, we also measure
the host cache hit ratio under original and PDC policies,
using trace-driven simulation. We capture the I/O requests
from guests in a hypervisor, and simulate the host cache un-
der the LRU replacement policy. The result shown in Figure
8 demonstrates, however, that there is no significant differ-
ence in the hit ratio between two policies, despite the high
ratio of journal data in footprint (shown in Section 3). That

Hit ratio (%)
Hit ratio (%)

N L L . L
256M 512M 1G 2G 468G 16G 82G
Host Cache Size

(b) linkbench

o L L L L
256M 512M 1G 2G 4G 8G 16G 32G
Host Cache Size

(a) varmail

Hit ratio (%)
Hit ratio (%)

[
256M 512M 1G 2G 4G 8G 16G 326
Host Cache Size

o
256M 512 1G 2G 4G 8G 16G 326
Host Cache Size

(c) oltp (d) Mobibench

Hit ratio (%)

[
256M 512M 1G G 166 32G

26 4G 8
Host Cache Size

(e) LevelDB

Figure 8: Cache hit ratio of PDC and WB

is because journaling does not generate a huge number of
sequential writes at once, but it writes small updates period-
ically that are consecutive to previous accesses. Thus, it has
little effect of evicting likely-to-be accessed data from the
host cache faster than original caching policy. As a result, we
observe no significant further enhancement when increas-
ing the number of guests as shown in Figure 7. In this case,
Varmail, Linkbench, and OLTP workloads show slightly less
performance enhancements, while LevelDB and Mobibench
offer better or almost identical performance enhancement as
a single guest execution. The slight decrease in performance
enhancement of PDC might come from that the performance
bottlenecks are caused by various components, such as re-
source contention and scheduling latency, when the system
gets busier. LevelDB makes performance improvements in
most write operations by 2-21% with multiple guests, while
it makes performance improvements only in £illsync and
compact operations in a single guest. When multiple guests
are running together, as the operation executions are inter-
leaved, the reduction of time-consuming operation latency,
such as compact, might lead to overall write performance
improvement eventually.

6. Conclusion

This paper analyzed the effect of guests journaling on the
host cache performance in fully virtualized systems. We un-
covered the host cache deteriorates I/O performance when
coupled with write-once and synchronous journal data, and
proposed a pollution-defensive caching to remedy this prob-
lem. Our measurement study showed that the proposed
caching policy improves the I/O performance of the vir-
tualized system by 3-32%.

References
[1] DBbench. URL https://github.com/memsql/dbbench,

[2] Ext4 wiki. URL https://ext4.wiki.kernel.org/
index.php/Main_Page.

[3] Filebench. URL http://www.solarisinternals.com/
wiki/index.php/FileBench.

[4] Leveldb benchmarks. URL https://leveldb.
googlecode.com/svn/trunk/doc/benchmark.html|

[5] Linkbench. URL https://github.com/facebook/

linkbench.

[6] Mobibench. URL hhttps://github.com/ESOS-Lab/
Mobibench.

[7] Reiserfs. URL https://en.wikipedia.org/wiki/
ReiserFS|

[8] Rocksdb. URL https://github.com/facebook/
rocksdb/wiki/RocksDB-Basics!

[9] Sysbench. URL https://launchpad.net/sysbench,

[10] Vmware tools for linux guests. URL http:
//www.vmware . com/sup-port/ws5/doc/ws_newguest_
tools_linux.htmll

[11] Vmworld 2013 : Is vmware the
and sons of the cloud? URL
www . techweekeurope. co.uk/work-space/
vmworld-vmware-cloud-mumford-and-sons-12950.

[12] Virtualbox. URL http://www.virtualbox.org.

mumford
http://

[13] Xen source - progressive paravirtulization. URL http://
xen.org/files/summit_3/xen-pv-drivers.pdf,

[14] M. Ben-Yehuda, M. Factor, E. Rom, A. Traeger, E. Borovik,
and A. B. Yassour. Adding advanced stor-age controller func-
tionality via low-overhead vir-tualization. In Proceedings of
the 10th USENIX Conference on File and Storage Technol-
ogies (FAST), 2012.

[15] D. Boutcher and A. Chandra. Does virtualization make disk
scheduling passe? ACM SIGOPS Op-erating Systems Review,
44(1):20-24, 2010.

[16] G. Casale, S. Kraft, and D. Krishnamurthy. A model of
storage i/o performance interference in virtualized systems. In
Proceedings of the Interna-tional Workshop on Data Center
Performance (DCPerf), 2011.

[17] Q. Chen, L. Liang, Y. Xia, and H. Chen. Mitigating sync
amplification for copy-on-write virtual disk. In Proceedings
of the 14th USENIX Conference on File and Storage Technol-
ogies (FAST), 2016.

[18] J. N. Christoffer Dall. Kvm/arm: The design and implemen-
tation of the linux arm hypervisor. In Proceedings of the
19th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
2014.

[19] A. Gulati, C. Kumar, and I. Ahmad. Storage workload char-
acterization and consolidation in virtualized environments. In
Proceedings of 2nd Interna-tional Workshop on Virtualization
Performance, 2009.

[20] S. Hajnoczi. An updated overview of the gemu storage stack.
LinuxCon Japan, 2011.

[21] N. Har’El, A. Gordon, A. Landau, M. B. Yehuda, A. Traeger,
and R. Ladelsky. Efficient and scalable paravirtual i/o system.
In Proceedings of the USENIX Annual Technical Conference
(ATC), 2013.

[22] D. Hildebrand, A. Povzner, R. Tewari, and V. Tarasov. Re-
visiting the storage stack in virtualized nas environments. In
Proceedings of the Workshop on I/0O Virtualization (WIOV),
2011.

[23] R. Hiremane. Intel virtualization technology for directed i/o
(intel vt-d). Technology@ Intel Magazine, 4(10), 2007.

[24] D. Le, H. Huang, and H. Wang. Understanding performance
implications of nested file systems in a virtualized environ-
ment. In Proceedings of the 10th USENIX Conference on File
and Storage Technol-ogies (FAST), 2012.

[25] J. Liu, W. Huang, B. Abali, and D. K. Panda. High perfor-
mance vimm-bypass i/o in virtual machines. In Proceedings of
the USENIX Annual Technical Conference (ATC), 2006.

[26] R. Russell. virtio: towards a de-facto standard for virtual i/o
devices. ACM SIGOPS Operating Systems Review, 42(5):95—
103, 2008.

[27] V. Tarasov, D. Hildebrand, G. Kuenning, and E. Za-dok. Vir-
tual machine workloads: The case for new nas benchmarks.
In Proceedings of the 11th USENIX Conference on File and
Storage Technol-ogies (FAST), 2013.

[28] K. Wolf. A block layer overview. KVM Forum, 2012. URL
http://www.linux-kvm.org/page/KVM_Forum_2012,

[29] C. Xu, S. Gamage, H. Lu, R. R. Kompella, and D. Xu. vturbo:
Accelerating virtual machine i/o processing using designated
turbo-sliced core. In Proceedings of the USENIX Annual
Technical Conference (ATC), 2013.

https://github.com/memsql/dbbench
https://ext4.wiki.kernel.org/index.php/Main_Page
https://ext4.wiki.kernel.org/index.php/Main_Page
http://www.solarisinternals.com/wiki/ index.php/FileBench
http://www.solarisinternals.com/wiki/ index.php/FileBench
https://leveldb.googlecode.com/svn/trunk/doc/benchmark.html
https://leveldb.googlecode.com/svn/trunk/doc/benchmark.html
https://github.com/facebook/linkbench
https://github.com/facebook/linkbench
https://github.com/ESOS-Lab/Mobibench
https://github.com/ESOS-Lab/Mobibench
https://en.wikipedia.org/wiki/ReiserFS
https://en.wikipedia.org/wiki/ReiserFS
https://github.com/facebook/rocksdb/wiki/Rocks DB-Basics
https://github.com/facebook/rocksdb/wiki/Rocks DB-Basics
https://launchpad.net/sysbench
http://www.vmware.com/sup-port/ws5/doc/ws_newguest_tools_linux.html
http://www.vmware.com/sup-port/ws5/doc/ws_newguest_tools_linux.html
http://www.vmware.com/sup-port/ws5/doc/ws_newguest_tools_linux.html
http://www.techweekeurope.co.uk/work-space/vmworld-vmware-cloud-mumford-and-sons-12950
http://www.techweekeurope.co.uk/work-space/vmworld-vmware-cloud-mumford-and-sons-12950
http://www.techweekeurope.co.uk/work-space/vmworld-vmware-cloud-mumford-and-sons-12950
http://www.virtualbox.org
http://xen.org/files/summit_3/xen-pv-drivers.pdf
http://xen.org/files/summit_3/xen-pv-drivers.pdf
http://www.linux-kvm.org/page/KVM_ Forum_2012

	Introduction
	Related Work
	Journal Traffic Analysis
	Pollution Defensive Caching
	Performance Evaluation
	Conclusion

