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pressed-sparse-row (CSR) graph supporting fast delta
integration while preserving compactness and neighbor
access speed during graph computation, and (if) a ver-
sion delta cache that stores the deltas in an easy-to-inte-
grate and compact format. Conceptually, the hybrid-CSR
graph represents the common subgraph shared among
multiple versions in the CSR format. As a result, the
subgraph is compactly stored in memory and yields high
neighbor access speed—both known advantages of the
CSR format. Differences among versions are absorbed
by a hierarchical vector-of-vectors (VoV) representation
and placed in the delta cache, leading to high version-
switching speed thanks to its ability to overcome CSR’s
lack of extensibility.

We have implemented Version Traveler inside Pow-
erGraph [11] by augmenting its graph representation
layer with VT’s hybrid-CSR graph and version delta
cache. Our evaluation with realistic graphs shows that
VT significantly outperforms PowerGraph in multi-ver-
sion processing: VT runs 23x faster with a mere 15%
memory overhead. VT also outperforms designs pro-
posed in state-of-the-art multi-version processing sys-
tems, such as log delta, bitmap delta, and multi-version-
array, achieving up to 90% improvement when jointly
considering processing time and resource consumption.

The contributions of this paper include:

e the formulation of the arbitrary local version
switching problem in the context of multi-version
graph processing,

e a method for arbitrary local version switching with
a holistic view, considering neighbor access speed,
version switching speed, and compactness,

o the design of Version Traveler, a graph processing
system balancing the above three requirements with
two novel components, and

e the demonstration of VT’s superior performance
compared to state-of-the-art graph processing sys-
tems via extensive evaluation.

2 Multi-Version Graph Processing

In this section, we first discuss the characteristics of
multi-version graph processing workloads, followed by
a discussion on its workflow. We then summarize related
work, analyze the design space for efficient multi-version
graph processing systems, and discuss challenges.

2.1 Workload Characteristics

In multi-version graph processing, version switching
commonly demonstrates randomness and locality. Ver-
sion switching is arbitrary, in that the next version may
precede or succeed the current version in the graph evo-

lution.! Such a switching sequence may be dynamic, un-
able to be predetermined by the graph processing sys-
tem. Version switching is local, in that the next ver-
sion commonly resides within the vicinity—in terms of
similarity—of the current one in the graph evolution.

We exemplify the demand for arbitrary local version
switching with three examples. First, suppose we need
to identify the cause of the varying distance between two
users in a social network [26]. For simplicity, assume
that the distances in versions i and k are different and
that the distance changes only once along the evolution
from versions i to k. If, after processing version j = #
a binary-search-style exploration algorithm finds that the
distance in that version remains the same as that in ver-
sion k but differs from that in version i, then the algo-
rithm would invoke another iteration of shortest distance
computation for version m = 'JFT/ The switching from
versions j to m is arbitrary for the supporting graph pro-
cessing system. In terms of locality, although the search
may oscillate between versions with high dissimilarity
at the beginning, the version locality increases exponen-
tially with the progress of the execution.

Second, in interactive big data analytics, an analyst
may rerun an algorithm on a graph version, after digest-
ing the results of the previous execution. Which version
should be processed next depends on the analyst’s un-
derstanding of the existing results, as well as his/her do-
main knowledge and intuition. This leads to arbitrary
version switching from the perspective of the graph pro-
cessing system. As for locality, such analysis commonly
follows a refinement procedure, where significant efforts
are required to zoom in and conduct in-depth analysis on
a cluster of versions within the vicinity of each other.

Third, in a collaborative data analytics environment,
both datasets and computing power are shared among
users [5]. Individual tasks—each targeting a graph
version—can be combined by the processing system,
leading to multi-version graph processing. Since the next
request may be enqueued during the processing of the
current version and may target a version preceding or
succeeding the current version in the graph evolution,
version switching is arbitrary. Regarding locality, in-
dependently-submitted tasks may target similar versions.
Such is the case, for example, where various algorithms
are employed to capture and understand trending events
in an evolving social network.

2.2 Workflow

A typical multi-version graph processing workflow is di-
vided into multiple iterations. In each iteration, an ar-
bitrary local graph version is processed. Systems de-

"More broadly, in a non-linear graph evolution scenario [5], the next
version may reside in a different branch than the current version.
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Figure 1: Version switching workflow, (a) with and
(b) without the use of deltas

signed for individual graph processing tasks are unable
to recognize or take advantage of the evolution relation
among versions. Treating each version as a standalone
graph, such systems first fully load the version from per-
sistent storage into memory and then execute a user-de-
fined graph algorithm over it (cf. Figure 1a).

When versions of a working set share a sub-
stantial common subgraph, working with deltas—
representations of the differences between graph
versions—can be more efficient. Figure 1b shows the
multi-version processing workflow with deltas. After the
first version is loaded and processed, switching to a sub-
sequent version can be achieved by integrating the cur-
rent version in memory with deltas relating the current
and the next versions. In general, deltas are much smaller
than full graphs [26,31]. As a result, they can be cached
in memory, further improving the efficiency of version
switching.

2.3 Related Work on Graph/Delta Designs

We focus the discussion of related work on in-mem-
ory graph and delta representations, because they deter-
mine the efficiency of the switching loop (cf. Figure 1b).2
For graphs, we specifically focus on representations re-
lated to neighbors of vertices, because they differentiate
graphs from regular table-form datasets.

As a result, we exclude other active research direc-
tions, such as programming paradigms [11, 14, 15, 20,
23, 24, 30, 32], out-of-core processing [19, 27], load
balancing [16], failure recovery [28], streaming [10],
dataflow-based processing [9,12], and performance eval-
uation [21]. We also exclude work within the broad
scope of multi-version processing but not dedicated to
in-memory graph/delta design in the context of arbi-
trary local version switching. Examples are stream-
ing processing [10, 19],% parallel multi-version process-

2Both graphs and deltas may have different representations in mem-
ory and on disk. We focus on in-memory representations, due to their
significance in the warm loop of the version switching workflow.

3Streaming processing is a special case of multi-version graph pro-

ing [13], multi-version algorithm design framework [26],
and multi-version dataset management [5, 6]. 4

We study related work by asking three questions:

e Does it provide high computation performance? In
particular, does it support fast access of the neigh-
bors of a vertex?’

e Does it support fast version switching?

e Does it store graphs and deltas compactly?

Graph. We study two common graph representa-
tions: compressed sparse row (CSR), adopted in Pow-
erGraph [11] and GraphX [12], and a vector-of-vectors
(VoV) design, adopted in Giraph [1].

In CSR (cf. Figures 2b and 2c), all neighbors are
packed in an array. A pointer array maintains the address
of the first neighbor of each vertex. The set of neighbors
for vertex i is thus marked by the values of vertices i and
i+ 1 in the pointer array. This representation enables fast
access to a vertex’s neighbors. Version switching is slow,
however. This is because modifying a vertex’s neighbor
affects pointers and neighbors of all vertices following
the one being modified.

As for VoV (cf. Figures 2d and 2e), the first-level vec-
tor functions as the pointer array in CSR, locating the
neighbors of a vertex according to the vertex id. Each
second-level vector represents the neighbors of a vertex.
This format also supports fast neighbor access. In ad-
dition, the neighbors of a vertex can be modified with-
out affecting other vertices, thus enabling fast version
switching. Its shortcoming is the memory overhead due
to maintaining auxiliary information, such as the start
and end positions of each vertex’s neighbors.®

Delta. Previous work has used a compact log-format
structure to represent deltas in streaming processing [10].
A log delta consists of an array of log entries, each spec-
ifying an edge via its source and destination vertex ids
(and an optional edge id) and whether the edge should
be added or removed (i.e., an opcode). Log deltas are

cessing, where version switching is always forward and versions are
only processed once. They are insufficient for the general multi-version
scenario, where switching is arbitrary and a cached version is repeat-
edly accessed by multiple algorithms.

4Such work investigates the tradeoff between storage space and
recreation speed of a dataset version, focusing on organizing versions
on disk instead of in-memory data structure optimization.

SIn this paper, we equate computation performance with neighbor
access efficiency for two reasons. First, computation related to graph
algorithms affects all systems in the same way and is out of scope.
Second, in the computation stage, a system supports neighbor access
and vertex/edge data access. Assuming the storage of data in sequence
containers and their identical impact on all systems, computation per-
formance is determined only by neighbor access efficiency.

%Such overhead is non-trivial. For example, a 24-byte per-vector
overhead (cf. Figure 2d, “start,” “end of contents,” and “end of storage”
pointers each consume 8 bytes) amounts to a 40% overhead for repre-
senting the entire out-neighbor array for the Amazon08 dataset [7, 8],
assuming 4-byte vertex/edge ids.
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Figure 2: Graph representations: (a) illustrates two versions of a graph. A circle represents a vertex (vertex id
inside) and an arrow represents an edge (edge id omitted). The first version consists of solid-arrow edges. The
second version has one more edge (illustrated by a dashed arrow). (b) and (c) demonstrate the CSR representa-
tion of the out-edges of the two versions. (d) and (e) demonstrate the vector of vectors format. For clarity, each
element in the neighbor array in (b)—(e) shows only the destination vertex id and omits the edge id.

compact and have no negative impact on the neighbor
access efficiency during graph processing. This is be-
cause log deltas are conceptually applicable to all graph
representations as-is. During graph-delta integration, log
deltas are fully absorbed in the graph version. The cost of
graph-delta integration is high, however, because all log
entries in deltas relating the current and the next versions
need to be applied during version switching.
Alternatively, a system could co-design graph and
delta representations to minimize the integration cost.
For example, affected neighbor vectors of a VoV graph
may be copied and updated in a delta, reducing version
switching to simple and fast vector pointer updates but
losing compactness. LLAMA [22] partially mitigates the
compactness loss by separating modified neighbors re-
lated to a version into a dedicated consecutive area in the
neighbor array, avoiding copying unmodified neighbors.
CSR’s pointer array is transformed to a two-level transla-
tion table. The first level consists of per-version indirec-
tion tables, each bookkeeping a set of second-level pages
associated with a version. A second-level page contains
a series of vertex records—equivalent to a fragment of
CSR’s pointer array—with each record indicating the
start of a vertex’s neighbors.” LLAMA’s version switch-
ing incurs nearly zero time cost: conceptually, only an
indirection table pointer needs to be updated. Its use
of page-level copy-on-write for the second-level pages
holding vertex records, nevertheless, requires the copy
of an entire page even if only one vertex in the page has
a modified neighborhood, hindering its compactness.
GraphPool [17] maintains the union of edges across all
versions in the graph. Its deltas are per-version bitmaps
over the graph’s edge array, where a bitmap’s n-th bit in-
dicates the existence of the corresponding edge in that
version. Version switching is simple: a bitmap pointer is
adjusted to point to the next version. In the computation

"Neighbors belonging to the same vertex but stored in separate
areas—each containing per-version modifications—are concatenated
via continuation records such that only one start position needs to be
maintained for a vertex’s neighbors per version.

stage, however, this approach requires bitmap checking
for determining whether an edge exists in the current ver-
sion, incurring neighbor access penalty.

2.4 Design Dimensions and Challenges

Summarizing lessons learned from related work, we
point out that the design of graph and delta must bal-
ance between three dimensions: extensibility, compact-
ness, and neighbor access efficiency.

Extensibility. Efficient version switching requires that a
delta be easily integrated with a graph. From a data struc-
ture perspective, it requires that the neighbors of a vertex
be easily extended to reflect the evolution from one ver-
sion to another. This, in turn, requires that either the data
structure representing the neighbors of a vertex support
efficient modification (i.e., insertion and removal) or the
collection of the neighbors of a version be easily replaced
by that of another version.

Compactness. Compact graph and delta representa-
tions enable caching a large number of versions, lead-
ing to low delta cache miss rate and high version switch-
ing efficiency. Moreover, real-world large graphs com-
monly have millions of vertices and millions or billions
of edges, making the compactness of the neighborhood
data structure a primary requirement.

Access Efficiency. A common and crucial operation dur-
ing computation is to access a complete collection of
neighbors for a vertex. Fast neighbor access requires lim-
iting the number of lookups in the integrated graph/delta
data structure. Ideally, only one lookup is sufficient for
locating the first neighbor of a vertex. The remaining
neighbors can then be accessed sequentially.

The main design challenge is to carefully balance the
requirements from the above three dimensions and co-
design graph and delta representations such that they are
extensible, compact, and efficient in neighbor access.
Achieving the balance is difficult, as witnessed by exist-
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Figure 3: Hybrid graph representation

ing designs, because those requirements commonly lead
to contradicting design choices.

3 Version Traveler

We introduce Version Traveler (VT), a graph processing
system that features a graph/delta co-design achieving
compactness, extensibility, and access efficiency. Resid-
ing in the core of VT are two innovative components—
a hybrid graph and a hybrid delta cache—bringing to-
gether fast neighbor access and compactness of CSR and
high extensibility of VoV.

3.1 Hybrid Graph

VT’s hybrid graph augments CSR in a way that achieves
extensibility while remaining compact and efficient in
neighbor access (cf. Figure 3). It avoids costly in-place
modification to CSR’s neighbor array by storing vertices
with a modified neighborhood in a version delta cache.

CSR’s neighbor array is created during the loading of
the first version—also referred to as the root version—
and then remains constant. Each subsequent version is
loaded into the delta cache, in the form of a series of ver-
tex delta entries. Each entry contains information related
to the updated neighbors of a vertex, as well as meta-
data to support neighbor access and version switching
(cf. Figure 3). VT reserves a delta indicator bit in each
entry of CSR’s pointer array to indicate the placement
of a vertex’s neighbors for the current version: in CSR’s
neighbor array or in the vertex delta cache.

Neighbor Access. In a conventional CSR, neighbors of
vertex vid are bounded by the pointers of vertices vid and
vid + 1. For VT’s hybrid CSR, neighbor access may be
directed to either CSR’s neighbor array or the neighbors
field of a delta entry, depending on whether the neigh-
bors are stored (cf. access_neighbors in Algorithm 1).
Each delta entry maintains the end position of the pre-
ceding vertex’s neighbors in CSR’s neighbor array (in
the prev_csr_end field), such that the end position of vid
can be determined regardless of whether neighbors of

Algorithm 1 Neighbor Access and Delta Application

1: procedure ACCESS_NEIGHBORS(vid)

2 if csr_ptrs[vid].in_delta = true then

3 return cache[csr_ptrs[vid]].nbrs

4 else if csr_ptrs[vid + 1].in_delta = false then

5: return csr_nbrs[csr_ptrs[vid], csr_ptrs[vid + 1]]

6 else return csr_nbrs[csr_ptrs[vid],

7 cache[csr_ptrs[vid + 1]].prev_csr_end]

8: procedure DELTA_APPLICATION(S;;,0pcode)

9: for ¢ in &;; do
10: if opcode = apply then > apply &;;
11: csr_ptrs[e.src_vid] < offset(e)
12: csr_ptrs[e.src_vid].in_delta <— true
13: else csr_ptrs[e.src_vid] < e.revert_value > revert J;;

vid + 1 are stored in CSR’s neighbor array or the delta
cache (cf. lines 4-7).

Delta Application and Reversion. VT performs
version switching by applying or reverting deltas
(cf. delta_application in Algorithm 1). When ap-
plying 9;; to switch from versions i to j, VT iterates
over entries belonging to §;; in the delta cache and, for
each entry, updates the corresponding entry (according to
the src_vid field) in the CSR pointer array with the delta
entry’s offset in the delta array and sets the delta indi-
cator bit. Reverting &;; consists of restoring the revert
value field—which contains the saved value for version
i’s CSR pointer entry—to the corresponding entry in the
CSR pointer array for each entry in §;;.

Example. We use a 3-version graph in Figure 3 to illus-
trate neighbor access and version switching. The hybrid
CSR in Figure 3 represents the state of version 2. The
three out-neighbors of vertex 1 can be accessed from its
delta entry (8)2). For vertex 0, neighbor access requires
obtaining the start position from its CSR pointer, due to
its cleared delta indicator bit, and the end position from
prev_csr_end of vertex 1’s delta entry. The difference be-
tween the two is 0 (0 — 0 = 0), indicating that vertex 0
has no out-neighbors. In order to switch from versions
2 back to 1, VT reverts O, which has only one entry
related to vertex 1. Its revert value field, of which the
delta indicator bit is set and the offset is 0, is restored
to vertex 1’s CSR pointer entry. After reversion, vertex
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I’s CSR pointer entry will point to the first entry in the
delta array, which corresponds to vertex 1’s delta entry
for version 1.

3.2 Hybrid Delta

For simplicity, in Section 3.1, we assume that a delta en-
try maintains the entire neighbors of a vertex (cf. Fig-
ure 3). This is memory-inefficient for vertices with a
large number of neighbors and small amount of per-
version modifications, due to numerous redundant copies
of neighbors. To improve compactness, we propose two
complementary solutions: Sharing and Chaining. Shar-
ing preserves access efficiency and trades extensibility
for compactness. Chaining preserves extensibility and
trades access efficiency for compactness.

3.2.1 Sharing

Concept. Sharing reduces the memory footprint by
merging a vertex’s delta entries spanning multiple ver-
sions into one shared entry. Figure 4 shows an example
with four versions of a vertex, each adding one neighbor
to its base. When they share a delta entry, there exists
only one neighbor vector, containing the neighbors of the
vertex related to the current version being processed. The
challenge is to compactly specify how the shared vector
is modified during version switching. VT maintains this
information in addition and removal delta logs.

Delta Representation. In the Sharing mode, VT does
not create delta cache entries with copies of modified
neighbor arrays. Instead, it creates log entries: speci-
fying the neighbors it would have added to or removed
from the neighbor array in an addition or removal log.
Each entry in the addition log array (cf. Figure 5) con-
tains the source and target vids of the added edge, as
well as the edge id. Logs associated with the same vertex
(the source vid in the out-neighbor case) are continuously
stored. A next vid field indicates the start position of the

version3 [ ISY_1] I
. CSR
version 2 e -
pointer
version 1 [ B

version 0 |:|

non-chaining chaining leap-over chaining

Figure 6: Illustration of the concept of Chaining
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logs associated with a subsequent vertex. The format of
a removal log entry—gray fields apart—is similar. Its
offset field refers to the offset within the neighbor array
where the removal should take place.

Neighbor Access. Sharing has no effect on neighbor ac-
cess. When multiple versions of a vertex share a neigh-
bor vector, the CSR pointer header points to the same
delta entry containing the vector for all versions.

Delta Application/Reversion. In the Sharing mode,
version switching resorts to log-based delta applica-
tion/reversion, similar to streaming processing [10, 19].
During delta application, for an neighbor addition, the
neighbor is simply appended to the end of the neighbor
vector. For a removal, VT removes the neighbor at the
offset according to the offset value in the removal log en-
try. Delta reversion follows the inverse procedures.

3.2.2 Chaining

Concept. Chaining refers to the representation of a ver-
tex’s neighbors with a chain of vectors, each containing a
subset of neighbors and capturing the difference between
the version associated with it and its base version. In Fig-
ure 6, with each version chained onto its base, only one
neighbor needs to be maintained per version. Redundant
copies are eliminated, improving compactness. Exten-
sibility remains the same: to switch from versions 1 to
2, for example, we need to adjust only the CSR pointer
to version 2’s delta entry, regardless of whether that en-
try’s neighbor vector is chained onto another. Access ef-
ficiency decreases in Chaining, because of the need to
switch among multiple neighbor vectors. Chaining im-
poses two new challenges to delta design: chaining be-
yond the base, called Leap-Over Chaining, and removal
from ancestors, called indirect removal.

Delta Representation. Leap-Over Chaining intends to
accelerate neighbor access. In Figure 6, with each ver-



sion chained onto its base, the neighbor access for later
versions leads to considerable performance hit, limit-
ing Chaining to a small set of adjacent versions in the
graph evolution relation. Leap-Over Chaining enables
the chaining of a delta entry on an indirect ancestor ver-
sion. For instance, version 3 in Figure 6 can be chained
onto version 0.

To support Chaining, in particular Leap-Over Chain-
ing, we introduce a chaining field to the delta entry for-
mat (cf. Figure 3). When Chaining is disabled,? the entry
is a standalone entry with a complete copy of neighbors.
When Chaining is in use, VT saves a pointer to the en-
try upon which the current one is based along the chain
to the latter’s chaining field. Similar to CSR pointers, a
chaining pointer uses its most significant bit to indicate
whether the offset is for CSR or for the delta array.

To support indirect removal, a neighbor vector is di-
vided into two sections: a new-neighbor section and a
removal section (cf. Figure 7). An element in the new-
neighbor section represents a new neighbor added to the
vertex in the current version. An element in the removal
section corresponds to a removed element, with layer in-
dicating the neighbor vector in the chain where the re-
moval should take place and offset the position of the
to-be-removed neighbor within the vector. To improve
compactness, we overload the first element in the new-
neighbor section: it is marked with a special flag if the
removal section exists, in which case the second element
contains a pointer to the removal section;’ otherwise it
contains the first added neighbor.

Effect on Removal Log. Since Chaining introduces the
separation of new-neighbor and removal sections, Shar-
ing’s removal log format needs to be adjusted (cf. gray
fields in Figure 5). Specifically, a type field is added to
differentiate the two sections. A {layer, offset} pair in
a removal section is stored similarly to a {vid, eid} pair
in a new-neighbor section. During delta application, if
a removal takes place in the current vertex’s new-neigh-
bor section, then the corresponding {vid, eid} pair is re-
moved. Otherwise, the {layer, offset} pair is inserted to
the current vertex’s removal section. The inverse proce-
dure achieves delta reversion.

Neighbor Access. Given a vertex, VT first locates its
entry via the CSR pointer header. If the neighbors are
stored in a delta array entry whose Chaining mode is
turned on, then VT iteratively accesses neighbors stored
in entries along the chain, skipping neighbors that no
longer exist in the current version using the removal sec-
tions. Otherwise, it follows the common neighbor access
procedure, as described in Section 3.1.

Delta Application/Reversion. Except for Chaining’s ef-

8That is, setting all bits in chaining to one.
9The first two elements are also referred to as removal preamble.

fect on removal logs, both delta application and reversion
follow the description in Section 3.1.

3.2.3 Relationship between Chaining and Sharing

Chaining and Sharing are similar in that they both aim at
reducing memory consumption by storing only the dif-
ference among versions. Sharing is a good choice when
the size of neighbors is large and the delta size is small. A
large neighborhood leads to a considerable gain in com-
pactness over a full-neighbor-copy approach, whereas a
small delta entails a moderate cost for log-based version
switching. Chaining is useful when both the sizes of
neighbors and delta are large. Similar to Sharing, a large
neighbor size leads to a substantial gain in compactness
for Chaining. A large delta entails Chaining’s superiority
to Sharing, due to the avoidance of the latter’s costly log-
based version switching procedure.

Another way to compare the two is when the con-
catenation of neighbors occurs. Chaining performs the
concatenation in a chain at the computation stage. Shar-
ing performs the concatenation at the version switching
stage. Due to the different delta formats used in Chain-
ing and Sharing, the concatenation in Chaining is lighter-
weight than that in Sharing. As for the number of con-
catenation performed for a vertex, the concatenation in
Chaining needs to take place when a vertex’s neighbors
are accessed. The cost of concatenation in Chaining is
thus magnified if a vertex is iteratively processed by an
algorithm. The concatenation in Sharing is, in contrast,
guaranteed to be once per vertex per version switching.

VT supports Sharing and Chaining as operation
modes, complementing the default full-neighbor-copy
mode (referred as Full mode). It enables them when the
estimated cost of version switching and the potential im-
pact on the computation stage are justified by the amount
of memory saving. The current VT implementation sup-
ports flexible threshold-based policies: when creating a
new delta for a vertex, VT feeds the number of neigh-
bors in its base version and the current delta size related
to that vertex to a configurable policy arbitrator function,
which determines the activation of Sharing or Chaining.

3.3 Implementation

We implement VT by integrating it with Power-
Graph [11], replacing the latter’s graph representation
with VT’s hybrid CSR graph and delta/log arrays. VT
operates seamlessly with PowerGraph’s computation en-
gine layer, thanks to its full support of the same com-
putation-stage graph abstraction viewed from an engine.
This also demonstrates VT’s broad applicability to exist-
ing graph processing systems.
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Figure 8: Microbenchmark results (top row for additions and bottom row for removals)

4 Evaluation

We first demonstrate the three-way tradeoff among ex-
tensibility, compactness, and access efficiency, showing
the relative advantage of Full, Chaining, and Sharing.
We then compare the performance of VT against Pow-
erGraph and several multi-version reference designs.

4.1 Microbenchmark

Design. The goal of microbenchmarking is to evaluate
the relative effectiveness of Full, Sharing, and Chaining
in balancing the three-way tradeoff. Since the overall
tradeoff on a graph is the accumulative effect of the same
tradeoff on each vertex, we conduct microbenchmarking
from a vertex’s perspective. Trends in the microbench-
mark results are applicable to varying graph sizes, given
the accumulative nature of the per-vertex tradeoff.

We construct a graph with 1000 identical high-degree
stars. For each star, only the center vertex has a non-
empty set of out-neighbors—default to 1000. Each cen-
ter vertex thus provides the opportunity for an in-depth
study of the per-vertex tradeoff. To evaluate it in a multi-
version scenario, we create two versions: a source ver-
sion and a target version. The target version differs from
the source by randomly adding or removing out-neigh-
bors of center vertices.

Two key factors related to a delta are its size and the
ratio of additions to removals. Prior work shows that the
difference between consecutive versions is commonly
within 1% of the graph size [26]. For each star, given
the default 1000 edges in the base version, we vary the
delta size from 1 to 100, corresponding to 0.1% to 10%
of the size of the star. The total vertices and edges in the
graph thus vary between 0.9 to 1.1 million. We also fix
the operation types in a delta: a delta consists of either
edge additions or edge removals.

We evaluate extensibility by measuring the version
switching time from the source version to the target ver-

sion, neighbor access efficiency by measuring the time
for iterating through all the out-neighbors of center ver-
tices in the target version, and compactness by measuring
the memory used for maintaining the graph connectivity
information of both versions. All measurements are con-
ducted on a host with 8 3GHz vCPUs and 60GB memory.

Version Switching. Figures 8a and 8b compare the ver-
sion switching performance. The performance of Full
and Chaining is comparable and remains constant, re-
gardless of the edge modification types in deltas or the
delta size, because both approaches require adjusting
only CSR pointer values for center vertices. The cost
of Sharing linearly grows with the delta size, due to the
need to parse a log array whose size is proportional to
the delta size. Comparing edge additions with removals,
the cost of the former is significantly lower than the lat-
ter. This is because, additions translate to appending
neighbor records to the end of the neighbor vector and
removals involve data movement within the vector.

Access. Figures 8c and 8d compare the neighbor access
speed. Full and Sharing perform equally well for both
additions and removals. Since the cost of neighbor ac-
cess is proportional to the neighborhood size, it linearly
increases and decreases with the size of delta in the cases
of addition and removal, respectively. Chaining leads to
the worst performance in both cases, due to its cost of
indirection. The cost is moderate in the case of edge
additions, because there is one and only one indirection
during neighbor access—that is, the switching from the
newly added neighbors to the existing ones—regardless
of the delta size. The cost of indirection becomes signif-
icant for edge removals, because each removal separates
a previously continuous neighbor range into two, intro-
ducing one more indirection during neighbor access. The
cost thus linearly grows with the delta size.

Memory. Figures 8e and 8f show the memory footprint.
In both addition and removal cases, Chaining and Shar-
ing lead to significant memory savings comparing with



Table 1: Graphs, algorithms, and reference designs

dataset V(M) E (M) description

Amazon08 0.7 5.2 similarity among books

Dblpl1 1.0 6.7 scientific collaboration

Wikil3 42 1014 English Wikipedia

Livejournal 54  79.0 friendship in LiveJournal social network
Twitter 41.7 1468.4 Twitter follower graph

Facebook 0.1 1.6 friendship in regional Facebook network
GitHub 1.0 5.7 collaboration in software development

algorithm description

nop access neighbor and return

bipart max matching in a bipartite graph
cc identify connected components
PageRank  compute rank of each vertex

SSsp single-source shortest path

tc triangle count

ref. design description

csr use CSR graph and log delta
log use VoV graph and log delta
bitmap maintain union of neighbors in all versions in VoV

graph and use bitmap delta

m-array use multi-version-array graph/delta

Full. Intuitively, the cost of Full linearly grows with the
delta size in the addition case and linearly decreases in
the removal case. Our measurements, however, show
mostly constant memory footprints in both cases, due
to (1) the capacity doubling effect and (2) no capacity
reduction upon removal in the vector implementation in
our testbed (glibc 2.15). For Chaining and Sharing, the
memory footprint grows with the size of delta, regardless
of the type of edge modifications. This is because, for
both additions and removals, Chaining needs to maintain
the modifications either in the neighbor vector (for addi-
tions) or in the removal section (for removals). Similarly,
Sharing maintains the modifications in the log arrays.

4.2 Macrobenchmark

Reference Designs. We compare VT with Power-
Graph [11]—a high-performance system targeting in-
dividual graph processing—and four reference multi-
version processing system designs (cf. Table 1) re-
flecting different combinations of graph and delta for-
mats. Specifically, we evaluate CSR+log, VoV+log,
VoV+bitmap, and multi-version-array. They mirror de-
sign choices made in PowerGraph, Giraph [1], Graph-
Pool [17], and LLAMA [22], and are abbreviated to csr,
log, bitmap, and m-array, respectively.

Workloads. Table 1 summarizes the datasets and al-
gorithms. The Facebook [31] and GitHub graphs are

collected as dynamically evolving graphs. The remain-
ing five graphs are collected as static graphs [7, 8], for
which deltas need to be created. Since deltas among con-
secutive versions are commonly within 1% of the graph
size [26], we vary the delta size from 0.01% to 1%. We
select 6 = 0.1% as a middle ground and show most of the
evaluation results with this configuration. The total num-
ber of cached versions n varies broadly from 1 to 100.
Unless otherwise specified, we use uniform add-only
deltas: each delta consists of edge additions uniformly
distributed over a graph. Graphs evolve linearly: version
i is created by iteratively applying &; 41,/ =0...i—1
to the root version (i.e., version 0). Version switching is
local, in that all versions are within the range of nd from
the root version. Version switching is arbitrary. That is,
the next version j is selected independently to the current
version i, may precede or succeed i, and do not need to
be consecutive to i.

Since machines with large memory and many cores
become popular and affordable [25,29], VT’s evaluation
focuses on single-host setting. The elimination of inter-
host communication cost in graph processing stage fur-
ther highlights the effect of neighbor access efficiency.
All measurements except those related to the Twitter
graph [18] are performed on a host with 8 3GHz vCPUs
and 60GB memory. Twitter-related workloads run on a
host with 32 2.5GHz vCPUs and 244GB memory.

Metrics. The requirements on extensibility, compact-
ness, and access efficiency naturally lead to the use of
time and memory consumption as two basic metrics. In
addition, inspired by the resource-as-a-service model in
the economics of cloud computing [4], we introduce a
penalty function as a third metric: p = (t; +1.)* x mP.
The penalty p is a function of the version switching time
ts, the computation time f., and memory consumption 1.
o and  are weights associated with time and memory
resource. If the per-time-unit monetary cost is deter-
mined only by memory consumption, then assigning 1
to both parameters equates the penalty with the per-task
monetary cost. We use o = 1 and 8 = 1 in our evalu-
ation. When appropriate, we report penalty score p in

the form of utility improvement: the improvement of VT
Pref —Pvt

over a reference system ref is calculated as ot
re,

Delta Preparation. For each system/workload setting,
deltas corresponding to versions accessed in that work-
load are populated in memory, according to the delta
design employed by that system, before the start of the
workload. For VT, we employ a threshold-based policy
(cf. Section 3.2.3), determining the delta format accord-
ing to the number of neighbors in its source version and
switching from Full to Sharing to Chaining as the num-
ber increases. We sample the threshold space for Full-
Sharing and Sharing-Chaining transitions and report the
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Figure 9: Comparison of VT and PowerGraph

lowest penalty score.

Comparison with PowerGraph. We evaluate the per-
formance of PowerGraph by running SSSP on Ama-
zon08 with ten 0.1% Js in two scenarios. First, we mea-
sure the performance of PowerGraph as-is, with a graph
version loaded from persistent storage in its entirety at
the beginning of each task. Second, we augment Power-
Graph with full-version caching, storing each version in
the working set as a full graph copy in memory.

Figure 9 shows that VT significantly outperforms
PowerGraph in both scenarios. VT’s processing speed is
on a par with that of PowerGraph with full-graph cach-
ing and is 23x faster than that of PowerGraph without
caching. This is due mainly to PowerGraph’s substantial
loading time when caching is disabled. VT’s memory
footprint is close to that of PowerGraph without caching
(incurring a 15% overhead) and is only 12% of that of
PowerGraph with full-graph caching—a 7.3x enhance-
ment. Overall, VT improves utility by 86% and 95% over
PowerGraph with and without caching, respectively.

Comparison with Multi-Version Designs. Figure 10
compares four multi-version designs with VT, executing
nop on Amazon08 with ten 0.1% Js. Csr incurs pro-
hibitive switching cost, due to CSR’s low extensibility.
It, nevertheless, yields the highest performance and has
the smallest memory footprint. Both log and bitmap con-
sume more memory than VT. Bitmap incurs a computa-
tion-stage penalty due to bitmap checking. Log’s switch-
ing cost is 7.4x that of VT.

Regarding m-array, its neighbor access time and ver-
sion switching time are significantly shorter than the
other designs. Its memory consumption, however, is
much higher than the other. It is important to note that m-
array’s superior performance is an outcome of efficient
implementation of LLAMA, not a result of the multi-ver-
sion-array design. This is because, after a version be-
comes ready for processing, all things being equal, csr
should yield the highest neighbor access performance for
the nop workload. The difference between m-array and
csr is then due to the framework-related overhead: m-
array is measured with LLAMA and csr—as well as the
other designs—is measured with PowerGraph-based im-
plementation. Had we ported m-array to PowerGraph,
its performance would be at best on a par with csr, and
thus also close to VT.

M-array’s high memory consumption is a result of the
multi-version-array design. For Amazon08 with 0.1%
Js, each version contains 5.2K new edges. Uniformly
distributed, those edges affect 5.2K vertices’ neighbor-
hood. In LLAMA, with a 16-byte vertex record!? and a
4KB page, the entire vertex record array for the root ver-
sion spans 2.7K pages, which is also the expected num-
ber of pages affected when the 5.2K vertices with modi-
fied neighborhood are uniformly distributed. This yields
a 100% memory overhead in terms of per-version vertex
record array—because the entire 2.7K pages containing
the root multi-version array need to be copied for each
version—and a 21.5% overhead when the entire graph
connectivity structure (with neighbor arrays) is consid-
ered. Such an overhead is prohibitively expensive for
large graphs. In contrast, VT has a smaller footprint
for the root version and, more importantly, incurs only
a 0.6% per-version overhead for the graph connectivity
structure in its Chaining mode.

Figure 10 confirms our expectation on the advantages
and shortcomings of existing designs. Given csr’s low
extensibility and m-array’s high memory consumption,
we focus on comparing VT with log and bitmap for the
rest of the evaluation.

Comparison with log and bitmap. Figure 11 summa-
rizes the results comparing VT with log and bitmap, each
with 10 Js of size 0.1%. VT consistently outperforms
both systems in all but one case. Except the Twitter-
SSSP workload, VT runs 2-17% faster in average per-
version processing time and achieves 17-34% memory
saving and 19—40% utility improvement.

Running SSSP over the Twitter graph, VT runs 88%
faster than log but 19% slower than bitmap. This is be-
cause, given the size of the dataset, the configuration of
the supporting hardware, and the characteristics of the
algorithm, the difference in version switching dominates
the overall processing efficiency. Log falls far behind
VT, due to the former’s need of log replaying during ver-
sion switching. VT’s delta application, although efficient
and highly parallelized, is still a heavier-weight opera-
tion compared to bitmap. Combining time and memory
consumption, the net effect is that VT outperforms log by
90% and is on a par with bitmap in utility improvement.

Varying Deltas. We compare VT with log and bitmap
by executing SSSP on Amazon08, varying the size of
delta from 0.01% to 1% and the number of deltas from
10 to 100. Fixing the delta size to 0.1% and varying the
number of deltas from 10 to 100, we observe that VT’s
utility gain remains high with respect to log and bitmap
(cf. Figure 12a). Compared to log, VT’s memory saving

10A vertex record consists of version id, offset into the neighbor ar-
ray, number of new edges for the current version, and an optional out-
degree, each occupying 4 bytes.
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Figure 11: Comparison of VT with log and bitmap across all datasets and algorithms with 10 0.1% Js

reduces with the increasing number of deltas, because the
memory consumption of the delta cache grows with the
number of deltas, gradually neutralizing the benefit of the
use of hybrid CSR. VT’s gain due to the reduction of ver-
sion switching time increases with the number of deltas,
however. Overall, with these opposite trends, VT’s utility
gain remains high. Compared to bitmap, VT’s memory
saving remains high, because of bitmap’s need to main-
tain per-version bitmaps. VT’s saving in processing time
reduces, however, because the impact of bitmap’s sav-
ing in version switching time increases with the num-
ber of deltas, compensating for bitmap’s neighbor-access
slowdown in the computation stage. The overall effect of
these opposite trends is VT’s constantly high utility gain
with respect to bitmap across a wide range of versions.

Fixing the number of deltas to 10 and varying the size
of delta from 0.01% to 1%, we observe that VT’s util-
ity gain gradually reduces (cf. Figure 12b). Compared to
log, VT’s gain peaks at & = 0.01%, thanks to its efficient
graph-delta representation. VT’s gains for 6 = 0.1% and
0 = 1% are similar: larger deltas reduce VT’s advantage
in memory representation but amplify its reduction of
version switching cost. Compared to bitmap, VT’s util-
ity gain remains high for § = 0.01% and 6 = 0.1%, but
drops significantly for 6 = 1%. Note that, the maximum
distances among versions—in terms of dissimilarity—
are the same for 100 0.1% & (in Figure 12a) and 10 1%
0 (in Figure 12b). Yet, VT’s gain with respect to bitmap
is much higher in the former case. This is because VT’s
memory saving is more significant when bitmap needs to
maintain a larger number of per-version bitmaps in order
to track the neighbor-version relation.

Skewed and Add/Remove Workloads. Figure 13 com-
pares VT’s performance across three types of workloads,
all with ten 0.1% &s. The first is a uniformly distributed
add-only delta type, same as those used throughout the
evaluation. The second is a skewed add-only delta, in

which the probability of adding a new edge to a vertex
is proportional to the latter’s degree in the root version.
The third is a mixed add/remove delta type, with each
delta maintaining a removals/total operations ratio vary-
ing from 0.1% to 10%. VT consistently outperforms log
and bitmap in all the three workloads.

Effectiveness of Optimization. Figure 14 summarizes
the effectiveness of Sharing and Chaining. Reusing the
workload of SSSP-Amazon with ten 0.1% &8s, we first
enforce a fixed delta format, measuring the performance
of Full, Sharing, and Chaining individually. We then
combine Full and one of the two optimization approaches
and report the minimum achievable penalty. All results
are then normalized to those of VT. The effectiveness of
Sharing and Chaining is demonstrated by the superior-
ity (in terms of penalty) of a combined delta preparation
strategy (e.g., Full-Sharing) to both approaches when ap-
plied individually (e.g., Full and Sharing). It is also
demonstrated by VT’s superiority—with all three delta
formats combined—to the five alternatives.

Realistic Evolving Workloads. We compare VT with
log and bitmap, using two 10-version graphs generated
from the evolving Facebook friendship and GitHub col-
laboration graphs,'! respectively. Figure 15 shows their
evolution trends. Specifically, we choose 10 consecu-
tive days towards the end of the collected periods for the
two graphs'? and combine newly established friendship/
collaboration relations in each day into a delta. Friend-
ship/collaboration relations existing before that 10-day

Tn the GitHub graph, the collaboration (i.c., edge) between two
users (i.e., vertices) is established when they start to work on at least
one shared repository. The initial state of the graph is set to empty. Its
evolution spans between March 2011 and July 2015. We generate this
graph via the use of GitHub API [2] and GitHub Archive [3].

2For the Facebook graph, daily delta size reduces drastically to-
wards the end of the collected period, which might be caused by limi-
tations of the collection method. We avoid those anomalies when cre-
ating the multi-version graph for evaluation.
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period then form the root versions of the two graphs. Fig-
ure 16 shows that VT outperforms both log and bitmap
when executing SSSP over these two graphs, improving
utility by 10.38-24.83%.

4.3 Discussion: Locality Revisited

At the core of VT lies the concept of locality. The effec-
tiveness of VT depends on the high version access local-
ity in multi-version workloads. Quantifying the locality
of version access patterns, nevertheless, is difficult. In
this paper, we express locality in terms of a range né6—
defined by the number of deltas n and the size of delta
0—within which arbitrary version switching takes place.
We have shown that VT achieves superior performance
for a wide range of nd configurations (cf. Figure 12),
with respect to state of the art. Yet, VI’s performance,
as well as its relative gain with respect to other systems,
needs careful investigation for other access patterns.

For example, for workloads featuring high computa-
tion-to-version-switching ratio and forward-only switch-
ing, we expect either log or a single-version system to
perform the best. For such workloads, the significance
of the computation-stage performance outweighs that of
version switching. For example, when a large set of al-
gorithms are applied to a loaded version, any version
switching except the first one becomes a self-switching
operation, incurring almost zero cost thanks to the mem-
ory management of supporting operating systems. In ad-
dition, forward-switching nullifies the need to preserve
the graph representation of a version after it is processed.
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Thus a system optimized purely for high computation
performance is favorable.!> To efficiently handle such
workloads, VT needs to be extended to support direct
modification to the CSR, bypassing the shadowing ef-
fect of the delta cache. More importantly, the switching
between existing operating modes of VT and this new
direct modification mode, as well as other modes poten-
tially devised in future work, requires a thorough inves-
tigation of the switching policies.

5 Conclusions

In this paper, we conducted a systematic investigation
of the caching design space in multi-version graph pro-
cessing scenarios, decomposing it into three dimensions:
neighbor access efficiency, extensibility, and compact-
ness. Our solution, Version Traveler, balances require-
ments from all three dimensions, achieving fast and
memory-efficient version switching. It significantly out-
performs PowerGraph and is superior to four multi-
version reference designs.
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