
Information Processing Letters 116 (2016) 508–512
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Generalizing fixed-priority scheduling for better schedulability 

in mixed-criticality systems

Yao Chen a,∗, Kang G. Shin b, Huagang Xiong a

a School of Electronic and Information Engineering, Beihang University, Beijing, 100191, China
b Real-Time Computing Laboratory, EECS, The University of Michigan, Ann Arbor, MI 48109, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 August 2015
Received in revised form 15 February 2016
Accepted 15 February 2016
Available online 27 February 2016
Communicated by Nathan Fisher

Keywords:
Real-time systems
Mixed-criticality
Fixed-priority scheduling
Schedulability analysis
Priority assignment algorithm

The design of mixed-criticality systems is often subject to mandatory certification and 
has been drawing considerable attention over the past few years. This letter studies 
fixed-priority scheduling of mixed-criticality systems on a uniprocessor platform but in 
a more general way, using different priority orderings in different execution phases and 
considering them collectively. Then a sufficient response-time analysis is developed and a 
new priority assignment scheme is proposed. This generalized approach has potential in 
better schedulability performance for mixed-criticality systems.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

There has been an increasing trend of integrating mul-
tiple functionalities of different criticality levels upon a 
shared hardware platform to address the growing de-
mand for computing power cost-efficiently in safety-
critical real-time systems. When certifying such mixed-
criticality (MC) systems, the certification authorities and 
manufacturers mandate different assumptions about the 
worst-case system behavior, depending on the critical-
ity of concerned functionalities. To simultaneously guar-
antee temporal correctness at all different levels of as-
surance, scheduling issues arising from these multiple 
certification requirements have been studied extensively 
[1–4].

As a preferred approach in industry due to its flexi-
bility and ease of predictability, fixed-priority (FP) pre-
emptive scheduling was firstly introduced into the MC 

* Corresponding author.
E-mail addresses: chenyao.kevin@gmail.com (Y. Chen), 

kgshin@umich.edu (K.G. Shin), hgxiong@buaa.edu.cn (H. Xiong).
http://dx.doi.org/10.1016/j.ipl.2016.02.009
0020-0190/© 2016 Elsevier B.V. All rights reserved.
scenario in Vestal’s seminal work [1]. Schedulability anal-
ysis based on response-time is presented there and then 
improved by Baruah [2]. The Adaptive Mixed Critical-
ity (AMC) scheme in [2] has been shown to be one 
of the most effective MC scheduling approaches and 
forms the basis of further related studies [5–7]. Note the 
above studies share a common assumption that enforces 
the same task priority ordering throughout the system’s 
life.

As in general multi-mode systems [8], enabling change 
of priorities in the event of a mode-change has been stud-
ied in MC systems [3,9]. However, one characteristic of 
these schemes is that they do not distinguish the phase of 
mode transition from the steady new mode. Besides, the 
Priority May Change (PMC) approach [9] deals with behav-
iors of different criticality levels individually, ignoring the 
dependency. In this letter, the execution model is further 
relaxed that priorities can be re-assigned not only in the 
event of mode change but also when the mode transition 
ends. Based on this, we investigate FP scheduling of MC 
systems by considering different execution phases collec-
tively.

http://dx.doi.org/10.1016/j.ipl.2016.02.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:chenyao.kevin@gmail.com
mailto:kgshin@umich.edu
mailto:hgxiong@buaa.edu.cn
http://dx.doi.org/10.1016/j.ipl.2016.02.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2016.02.009&domain=pdf


Y. Chen et al. / Information Processing Letters 116 (2016) 508–512 509
2. System model

Task model: An MC sporadic task τi is characterized by 
a four-tuple τi = (Ti, Di, ξi, �Ci), where Ti denotes its pe-
riod, Di the relative deadline, ξi the criticality level, and 
�Ci a vector of worst case execution time (WCET) estima-
tions. In this letter constrained deadline is assumed and 
our attention will be restricted to dual-criticality systems, 
but the main principle can be scaled to an increased num-
ber of criticality levels with further efforts. Formally, for 
task τi , we assume ξi ∈ {LC, HC} and �Ci = {C L

i , C H
i } with 

C L
i ≤ C H

i , where C L
i (C H

i ) denotes low-criticality (LC) (high-
criticality (HC)) WCET.

Certification requirements: Consider a system � =
{τi |1 ≤ i ≤ n} consisting of a set of independent MC tasks. 
During different runs the system could show different be-
haviors generally and its mandated temporal correctness 
differs depending on the concerned criticality level. For 
such MC system to be certified correct, the following tim-
ing requirements should be guaranteed:

• No job of any task τi can execute for more than C ξi
i , 

otherwise the system is exhibiting erroneous behavior.
• As long as no job executes for more than C L

i , the sys-
tem is regarded as exhibiting LC behavior, and all jobs 
should meet their deadlines.

• If some HC job executes for C L
i without completion, 

the system begins to exhibit HC behavior and from 
this instant of criticality change only HC jobs are re-
quired to meet their deadlines.

The HC jobs that are active (released but not yet com-
pleted) upon occurrence of the criticality change are re-
ferred as carry-over jobs [4]. Recall that LC jobs are not 
required to complete by their deadlines for HC system 
behaviors, which is an implication of the certification re-
quirements. This strictness was then relaxed by Santy [10]
which allowed LC tasks to execute after the criticality 
change and the system to change back to LC mode. And 
more related schemes can be found in a recent survey [11].

Scheduling strategy: As a special case of multi-mode 
systems [8], dual-criticality systems could go through three 
distinct phases: steady LC mode, mode transition period 
and steady HC mode. The mode transition period rep-
resents the time interval between the criticality mode 
change and the instant when all carry-over jobs have com-
pleted their execution. To favor accommodating the change 
of system load upon occurrence of the criticality change, in 
this letter we prefer to use different priority orderings in 
different phases and introduce a new strategy for task dis-
patching, called Generalized Fixed-Priority (GFP). Specially, 
each task τi has three unique-priority parameters:

• P L
i : priority for jobs executed in the steady LC mode;

• P T
i : priority for the carry-over job when the system 

exhibits HC behavior;
• P H

i : priority for jobs released after the criticality 
change.

Starting from 1, assume the larger value represents the 
higher priority. Initially, the system starts in the steady LC
mode and the scheduler selects the highest priority job 
for execution according to the ordering of P L

i . When the 
criticality change occurs, the system switches to the mode 
transition period, LC jobs are discarded and HC jobs are 
scheduled according to the ordering of P T

i and P H
i , which 

may interleave with each other for different tasks, for ex-
ample P T

i > P T
j > P H

j > P H
i . Finally in the steady HC mode, 

the scheduler selects the highest priority job according to 
the ordering of P H

i .
Note that P T

i is exclusive for the carry-over job, strad-
dling the criticality change. The advantage is to mitigate 
the problem that some carry-over job may execute late in 
the steady LC mode and thus has to complete its remain-
ing HC execution in a very short scheduling window after 
the criticality change. Since each job must have completed 
execution before the next release under the assumption of 
constrained deadline, we have P T

i > P H
i for HC tasks. As 

for LC tasks, since they are prevented from executing af-
ter the criticality change, their priorities P T

i and P H
i are 

useless and ignored here.

3. Response time analysis

In this section a sufficient schedulability test is derived 
based on the same analysis framework as in [2,6], where 
response times in three distinct scenarios are studied.

3.1. Jobs finished in the steady LC mode

MC tasks behave exactly the same as traditional (non-
MC) ones in the steady LC mode. Thus, the standard RTA 
method can be applied to derive τi ’s response time R L

i :

R L
i ← C L

i +
∑

∀τk∈hpL(i)
�R L

i /Tk	C L
k (1)

where hpL(i) = {τk ∈ �|P L
k > P L

i } denotes the set of tasks 
with higher priority than that of τi in the steady LC mode.

3.2. Carry-over job

Consider the carry-over job J p
i in Fig. 1, released be-

fore the criticality change with span s ∈ [0, R L
i ]. For conve-

nience of presentation, define task subset hpxyz
T (i) as

{τk ∈ �\τi| f (P L
k , P L

i ) = x, f (P T
k , P T

i ) = y,

f (P H
k , P T

i ) = z}
where x, y, z are binary variables, f (u, v) is a binary func-
tion returning 1 if u ≥ v , otherwise 0. Depending on the 
priority orderings, there are five possible situations for 
τk to interferer with J p

i within the busy period [t0, f
p
i ]: 

τk ∈ hpxyz
T (i) with xyz ∈ � = {111, 110, 100, 011, 010}. Spe-

cially, x = 1 means τk has higher priority than τi in the 
steady LC mode and similar interpretation applies to y and 
z. Note that hp000

T (i) cannot interfere with τi and combina-
tions {001, 101} are ruled out due to constraint P T

k > P H
k .

3.2.1. Interference calculation
For each situation xyz ∈ �, two kinds of interference 

of the higher priority task τk ∈ hpxyz
(i) are calculated: 
T



510 Y. Chen et al. / Information Processing Letters 116 (2016) 508–512
Fig. 1. The carry-over job.

Ixyz
k,i (s, t), an upper bound of the total interference within 

the entire busy period [t0, f
p
i ]; Isxyz

k,i (s, t), a lower bound of 
the interference within the front subinterval [t0, r

p
i + s] out 

of the total interference Ixyz
k,i (s, t). Due to space limitations, 

we just show some intuition for their computation here 
and present detailed discussions in the supplementary file 
[13].

1) τk ∈ hp111
T (i) : τk always has higher priority than J p

i
and a sufficient value of its total interference has been de-
rived in [2]. We reproduce it here with few modification:

I111
k,i (s, t) = min (�t/Tk	, �(t − s + Xk)/Tk	)(C H

k − C L
k )

+ �t/Tk	C L
k (2)

where Xk (R L
k ≤ Xk ≤ ζk) denotes a tighter relative dead-

line for HC task in the steady LC mode, with ζk = Dk −
(C H

k − C L
k ).

Disregarding the execution that the carry-over job may 
have finished in the LC mode, a safe lower bound for the 
interference within [t0, r

p
i + s] can be derived.

Is111
k,i (s, t) = max {0, �t/Tk	 − �(t − s + Xk)/Tk	} C L

k (3)

2) τk ∈ hp110
T (i) : Jobs released within [t0, r

p
i + s] can in-

terfere with J p
i and the maximum number of such releases 

is �s/Tk� + 1. Among these, the carry-over job always has 
higher priority than J p

i and can execute up to C H
k while 

each of the others can execute up to C L
k before the critical-

ity change. Thus τk ’s total interference is bounded by

I110
k,i (s, t) = �s/Tk�C L

k + C H
k (4)

Given the carry-over job may start execution after the 
criticality change, we have

Is110
k,i (s, t) = �s/Tk�C L

k (5)

3) τk ∈ hp100
T (i) : τk can only preempt J p

i within [t0,

r p
i + s], where its interference is equivalent to the exe-

cution of traditional task with parameters (Tk, Dk, C L
k ).

I100
k,i (s, t) = �s/Tk�C L

k + min (C L
k , s − �s/Tk�Tk) and

Is100
k,i (s, t) = I100

k,i (s, t) (6)

4) τk ∈ hp011
T (i) : τk can only interfere with J p

i after the 
criticality change within subinterval [r p

i + s, r p
i + t]. Fig. 2

shows an execution pattern of τk , where its first job is re-
leased (Xk − C L

k ) before the criticality change and starts 
execution after the criticality change while all other jobs 
followed are released and executed as early as possible. 
One can verify that any leftward or rightward shift of the 
interval [r p + s, r p + t] within the pattern of Fig. 2 does 
i i
Fig. 2. Worst case pattern for task τk ∈ hp011
T (i).

not increase the amount of τk ’s execution. Therefore, Fig. 2
depicts the worst-case scenario for τk to maximize its ex-
ecution. Denote w = t − s + Xk − C L

k and then we have:

I011
k,i (s, t) = �w/Tk�C H

k + min (C H
k , w − �w/Tk�Tk) and

Is011
k,i (s, t) = 0 (7)

5) τk ∈ hp010
T (i) : Only the carry-over job of τk can be ex-

ecuted within the concerned busy period and this happens 
after the criticality change.

I010
k,i (s, t) = C H

k and Is010
k,i (s, t) = 0 (8)

3.2.2. The response time test
Once the interference of higher-priority tasks is derived, 

the response time RT
i (s) for some given s can be formally 

constructed:

RT
i (s)

← C H
i + min (s,

∑
∀τk∈hpT (i)

Isxyz
k,i (s, RT

i (s)))

+
∑

∀τk∈hpT (i)
(Ixyz

k,i (s, RT
i (s))

− Isxyz
k,i (s, RT

i (s))) (9)

where hpT (i) = ⋃
∀xyz∈� hpxyz

T (i) denotes tasks having 
higher priority than τi during at least one of the three 
phases. The min function is introduced into the stan-
dard RTA framework to reduce pessimism of the analysis, 
which bounds the total interference within the subinterval 
[t0, r

p
i + s] by the subinterval length s.

By solving Eq. (9) for every possible s and taking the 
maximum obtained, we have:

RT
i = max0≤s≤RL

i
RT

i (s) (10)

3.3. Jobs released after the criticality change

Consider the scenario in Fig. 3, where J p
i is released 

immediately after the criticality change. Note J p
i can 

be preempted by carry-over jobs, which may get pre-
empted by other tasks in the steady LC mode. Let P̂ L

i =
min{P L

k |∀τk ∈ �\τi, P T
k > P H

i }. To address both direct and 
indirect interferences, we extend the beginning of the busy 
period from r p

i to an earlier time instant t0, such that 
at any instant t ∈ [t0, r

p
i ) the processor is busy executing 

tasks with priority higher or equal to P̂ L
i . Define task sub-

set hpxyz
H (i) as

{τk ∈ �\τi| f (P L
k , P̂ L

i ) = x,

f (P T
k , P H

i ) = y, f (P H
k , P H

i ) = z}



Y. Chen et al. / Information Processing Letters 116 (2016) 508–512 511
Fig. 3. The job released after criticality change.

According to the definition of P̂ L
i , the task with di-

rect interference must belong to either hp111
H (i) or hp110

H (i), 
while the task with indirect interference must have higher 
priority in the LC mode than some carry-over job with 
direct interference and belongs to hp100

H (i). In summary, 
three possible situations exist for tasks to execute within 
the extended busy period and denote hpH (i) =⋃

∀xyz∈� hpxyz
H (i) with � = {111, 110, 100}. It’s worth not-

ing the interference terms Ixyz
k,i (s, t) and Isxyz

k,i (s, t) derived 
in Section 3.2 also apply here, except that P̂ L

i is used in-
stead of P L

i . Thus, R H
i (s) can be obtained by

R H
i (s) + s

← C H
i + min (s,

∑
∀τk∈hpH (i)

Isxyz
k,i (s, R H

i (s) + s))

+
∑

∀τk∈hpH (i)
(Ixyz

k,i (s, R H
i (s) + s)

− Isxyz
k,i (s, R H

i (s) + s)) (11)

From the above assumption of busy period extension, 
we can achieve a bound for all possible values of s that 
need to be checked, denoted as �i , by employing the stan-
dard RTA method to hpH (i) in the LC mode with initial 
iterative value 

∑
∀τk∈hpH (i) C L

k :

�i ←
∑

∀τk∈hpH (i)
��k/Tk	C L

k (12)

Then R H
i can be obtained by taking the maximum value 

R H
i (s) for all possible s.

R H
i = max0≤s≤�i R H

i (s) (13)

Moreover, if J p
i is released ϕ after the criticality change 

but still during the mode transition period, its response 
time will reduce by ϕ since the busy period length R H

i (s) +
s remains unchanged for fixed s. And if ϕ is large enough 
such that J p

i is released in the steady HC mode, then the 
response time according to the standard RTA is exactly the 
case here but with s = 0. Therefore, we can conclude that 
Fig. 3 depicts the worst case situation for jobs released af-
ter the criticality change.

4. Priority assignment

As for the priority assignment, another dimension of FP 
scheduling, Audsley’s Optimal Priority Assignment (OPA) 
algorithm [12], which was originally designed for tradi-
tional tasks, has been adapted to MC scenarios [2,6,9]. In 
this section, we exploit the idea behind Audsley’s OPA and 
propose a new scheme called Heuristic Priority Assignment 
(HPA), with details summarized in Algorithm 1.

Initially, only one priority ordering is assumed and the 
OPA is employed to find feasible solutions (lines 2–5). If 
this fails, meaning no task can be assigned the current 
Algorithm 1 Heuristic priority assignment.
1: �U = �, �H

U = �H and Ph = 1;
2: for each priority level pl, from 1 to ‖�‖ do
3: if there exist task τi ∈ �U deemed always schedulable with the cur-

rent lowest priorities then
4: Assign P L

i = pl, �U = (�U \τi);
5: Assign P T

i = Ph + 1, P H
i = Ph, Ph = Ph + 2, �H

U = (�H
U \τi) when 

Li = HC;
6: else if there exist set of tasks 
 ⊆ �H

U , each of which is deemed 
schedulable in the steady LC mode (RL

i ≤ ζi ) when assigned the 
current lowest LC priority (P L

i = pl) then
7: Find τi ∈ 
 s.t. RL

i /ζi = min{RL
k/ζk|∀τk ∈ 
} and assign P L

i = pl, 
�U = (�U \τi);

8: else
9: return unschedulable;

10: end if
11: end for
12: for each priority level ph, from Ph to 2‖�H ‖ do
13: if there exist task τi ∈ �H

U with P H
i unassigned but deemed 

schedulable in the steady HC mode (R H
i ≤ Di ) when assigned the 

current lowest HC priority (P H
i = ph) then

14: Assign P H
i = ph;

15: else if there exist task τi ∈ �H
U with P T

i unassigned but deemed 
schedulable in the mode transition period (RT

i ≤ Di ) when assigned 
the current lowest HC priority (P T

i = ph) then
16: Assign P T

i = ph, �H
U = (�H

U \τi);
17: else
18: return unschedulable;
19: end if
20: end for
21: return schedulable;

lowest priorities in all three phases, then different priority 
orderings are assumed and the ordering of P L

i is consid-
ered first. In lines 6–7, the HPA identifies the HC task 
with the minimal ratio R L

i /ζi among all candidates deemed 
schedulable in the steady LC mode and assigns it with the 
current lowest LC priority pl. The idea behind this decision 
is that smaller LC response time relative to the deadline 
makes the task more likely to be schedulable upon occur-
rence of the criticality change. Once the complete order-
ing of P L

i is determined, the HPA continues with P T
i and 

P H
i (lines 12–20), starting with P H

i due to the constraint 
P T

i > P H
i . It returns “unschedulable” if no HC task can be 

assigned the current lowest priority level, neither for LC
(line 9) nor HC (line 18) behavior.

5. Illustrative example and evaluation

Although the above achievements are made under the 
assumption of three priority orderings, they apply as well 
if we consider the case of two priority orderings (one for 
LC behaviors and the other for HC behaviors) or set further 
constraint by enforcing merely one priority ordering like 
common assumption. For the latter, the HPA reduces to the 
OPA and only interference terms from hp100

H (i) 
⋃

hp111
H (i)

need to be addressed for schedulability analysis, which is 
the same as Baruah’s AMC-max scheme [2].

Consider the MC task system � = {τi |1 ≤ i ≤ 3} in Ta-
ble 1, scheduled on a uniprocessor with FP. It can be veri-
fied that none of the three tasks can be assigned the low-
est priority throughout the system’s life. In other words, 
the system is deemed as unschedulable according to the 
original OPA. However, the HPA can find feasible prior-



512 Y. Chen et al. / Information Processing Letters 116 (2016) 508–512
Table 1
Example of priority assignment.

Task ξ T D CL CH

τ1 LC 80 56 34 34
τ2 HC 66 60 22 44
τ3 HC 76 75 8 16

Task PL PT PH

τ1 2 0 0
τ2 3 3 2
τ3 1 4 1

Fig. 4. Schedulability performance comparison.

ity assignment as shown in Column 7, 8 and 9, if differ-
ent priority orderings are employed. Moreover, consider-
ing that the OPA is included in the HPA as described in 
Algorithm 1, we can come to an obvious conclusion that 
the HPA strictly dominates the OPA.

To demonstrate the effectiveness of our generalized 
strategy GFP-HPA-x (the proposed GFP scheme combined 
with the HPA algorithm, where x ∈ {1, 2, 3} denotes the 
number of priority orderings employed), an empirical 
investigation is conducted by comparing it with exist-
ing AMC-OPA (Baruah’s AMC-max scheme combined with 
Audsley’s OPA) in terms of acceptance ratio. And compar-
ative results are presented in Fig. 4, with 10 000 task sets 
generated at each utilization level. As shown, GFP-HPA-
x always outperforms AMC-OPA in schedulability and the 
improvement becomes more significant as x increases. Due 
to space limitation, we refer readers to Appendix II in the 
supplementary file [13] for full task set generation and 
more detailed discussions.
6. Conclusion

In this letter, we have proposed a generalized fixed-
priority preemptive scheduling approach for mixed-critical-
ity systems on a uniprocessor platform, allowing different 
priority orderings in different phases. We also derive a suf-
ficient schedulability analysis to provide safe guarantees on 
certification requirements and provide an effective priority 
assignment scheme based on the popular OPA algorithm. 
As demonstrated through experiments, this generalized 
approach provides more choices in priority assignment, 
making it more flexible and thus conductive to better 
schedulability performance.

References

[1] S. Vestal, Preemptive scheduling of multi-criticality systems with 
varying degrees of execution time assurance, in: IEEE 28th Real-Time 
Systems Symposium, 2007, pp. 239–243.

[2] S.K. Baruah, A. Burns, R. Davis, Response-time analysis for mixed crit-
icality systems, in: IEEE 32nd Real-Time Systems Symposium, 2011, 
pp. 33–43.

[3] S. Baruah, V. Bonifaci D’Angelo, et al., The preemptive uniprocessor 
scheduling of mixed-criticality implicit-deadline sporadic task sys-
tems, in: 24th Euromicro Conference on Real-Time Systems, 2012, 
pp. 145–154.

[4] E. Pontus, Y. Wang, Bounding and shaping the demand of mixed-
criticality sporadic tasks, in: 24th Euromicro Conference on Real-
Time Systems, 2012, pp. 135–144.

[5] T. Fleming, A. Burns, Extending mixed criticality scheduling, in: IEEE 
34nd Workshop on Mixed Criticality Systems, Real-Time Systems 
Symposium, 2013, pp. 7–12.

[6] R. Pathan, Schedulability analysis of mixed-criticality systems on 
multiprocessors, in: 24th Euromicro Conference on Real-Time Sys-
tems, 2012, pp. 309–320.

[7] A. Burns, R. Davis, Adaptive mixed criticality scheduling with de-
ferred preemption, in: IEEE 35nd Real-Time Systems Symposium, 
2014, pp. 21–30.

[8] J. Real, A. Crespo, Mode change protocols for real-time systems: 
a survey and a new proposal, Real-Time Syst. 26 (2) (2004) 161–197.

[9] S. Baruah, A. Burns, R.I. Davis, An extended fixed priority scheme for 
mixed criticality systems, in: Proc. ReTiMiCS, RTCSA, 2013, pp. 18–24.

[10] F. Santy, L. George, P. Thierry, et al., Relaxing mixed-criticality 
scheduling strictness for task sets scheduled with FP, in: 24th Eu-
romicro Conference on Real-Time Systems, 2012, pp. 155–165.

[11] A. Burns, R. Davis, Mixed criticality systems-a review, Tech. Rep., Uni-
versity of York, UK, 2013.

[12] N.C. Audsley, On priority assignment in fixed priority scheduling, Inf. 
Process. Lett. 79 (1) (2001) 39–44.

[13] Y. Chen, K.G. Shin, H. Xiong, Supplement of “Generalizing fixed-
priority scheduling for better schedulability in mixed-criticality sys-
tems”, https://kabru.eecs.umich.edu/wordpress/wp-content/uploads/
supplementary_YaoChen2016.pdf.

http://refhub.elsevier.com/S0020-0190(16)30015-1/bib56657374616C32303037507265656D7074697665s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib56657374616C32303037507265656D7074697665s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib56657374616C32303037507265656D7074697665s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib42617275616832303131526573706F6E7365s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib42617275616832303131526573706F6E7365s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib42617275616832303131526573706F6E7365s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib42617275616832303132507265656D7074697665s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib42617275616832303132507265656D7074697665s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib42617275616832303132507265656D7074697665s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib42617275616832303132507265656D7074697665s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib506F6E74757332303132426F756E64696E67s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib506F6E74757332303132426F756E64696E67s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib506F6E74757332303132426F756E64696E67s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib466C656D696E6732303133457874656E64696E67s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib466C656D696E6732303133457874656E64696E67s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib466C656D696E6732303133457874656E64696E67s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib50617468616E323031325363686564756C6162696C697479s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib50617468616E323031325363686564756C6162696C697479s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib50617468616E323031325363686564756C6162696C697479s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib4275726E73323031344164617074697665s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib4275726E73323031344164617074697665s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib4275726E73323031344164617074697665s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib5265616C323030344D6F6465s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib5265616C323030344D6F6465s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib42617275616832303133416E657874656E646564s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib42617275616832303133416E657874656E646564s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib53616E74793230313252656C6178696E67s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib53616E74793230313252656C6178696E67s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib53616E74793230313252656C6178696E67s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib4275726E73323031334D69786564s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib4275726E73323031334D69786564s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib417564736C6579323030314F6E7072696F72697479s1
http://refhub.elsevier.com/S0020-0190(16)30015-1/bib417564736C6579323030314F6E7072696F72697479s1
https://kabru.eecs.umich.edu/wordpress/wp-content/uploads/supplementary_YaoChen2016.pdf
https://kabru.eecs.umich.edu/wordpress/wp-content/uploads/supplementary_YaoChen2016.pdf

	Generalizing ﬁxed-priority scheduling for better schedulability in mixed-criticality systems
	1 Introduction
	2 System model
	3 Response time analysis
	3.1 Jobs ﬁnished in the steady LC mode
	3.2 Carry-over job
	3.2.1 Interference calculation
	1) τk∈hpT111(i):
	2) τk∈hpT110(i):
	3) τk∈hpT100(i):
	4) τk∈hpT011(i):
	5) τk∈hpT010(i):

	3.2.2 The response time test

	3.3 Jobs released after the criticality change

	4 Priority assignment
	5 Illustrative example and evaluation
	6 Conclusion
	References


