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Abstract—Significant research has been devoted to reduce the energy consumption of mobile devices, but how to increase their
energy supply has received far less attention. Moreover, reducing the energy consumption alone does not always extend the device
operation time due to a unique battery property — the capacity it delivers hinges critically upon how it is discharged. In this paper,
we propose B-MODS, a novel design of battery-aware mobile data service on mobile devices. B-MODS constructs battery-friendly
discharge patterns utilizing the recovery effect so as to increase the capacity delivered from batteries while meeting data service
requirements. We implement B-MODS as an application layer library on the Android platform. Our experiments with diverse mobile
devices under various application scenarios have shown that B-MODS increases the capacity delivery from the battery by up to 49.5%,
with which an increase in the user-perceived data service utilities of up to 28.6% is observed.
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1 INTRODUCTION

Mobile devices, such as smartphones and tablets, are
increasingly used for our daily lives and businesses.
However, their limited operation time has been a major
impediment to their usability [1]. As hardware compo-
nents (e.g., displays or processors) that demand more
power and more components (e.g., radios and sensors)
are integrated in mobile devices, the rapidly increasing
power demand has become an acute problem. Unfor-
tunately, the battery technology — a common power
source for mobile devices — has been advancing much
slower than the increase of power demand [2]. To close
this gap, efforts have been made to reduce the energy
consumption of mobile devices at different layers of
abstraction, including hardware [3], [4], operating sys-
tem [5], [6], applications [7], [8], and human interac-
tions [9], [10].

However, less energy consumption of mobile devices
may not effectively extend their operation time without
carefully considering the electrochemical battery charac-
teristics [11], [12]. This is because the capacity the bat-
teries deliver depends on how they are discharged [13]-
[16], and the difference could be as much as 3x [17].

The recent, wide adoption of smartphones has shifted
their major functionalities from making/receiving real-
time calls to diverse data services [18], such as cloud
synchronization and video streaming, all with relatively
soft timing requirements [7], [8]. This allows us to ex-
plore different battery discharge patterns to enhance
their capacity delivery and thus to improve the data
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service, especially in view of the fact that the communi-
cation modules are the dominating energy consumers
besides the screens [8], [19]-[21], e.g., contributing to
18.5% and 22.3% of the overall power consumption of
mobile devices, respectively [1].

In this paper, we propose a novel Battery-aware MObile
Data Service (B-MODS) on mobile devices that improves
the capacity delivery from batteries, thus extending the
device operation time and more importantly, improving
user-perceived data services such as downloadable file
and streaming duration. B-MODS is inspired by two
observations on batteries. First, the power-off voltage
of the device — ie., a dynamic set of voltages at
which the mobile device powers itself off — is normally
much higher than the cut-off voltage! of its battery. This
voltage mismatch causes the battery to be deficiently
discharged and the device to power off without utilizing
the full battery capacity. Second, the battery recovery ef-
fect [17], [22]-[24] can be exploited to mitigate the voltage
mismatch by drawing more capacity from the battery
within the device operating voltage range. The recovery
effect describes the phenomenon that the battery voltage
can recover to a certain degree if the discharge current
of the battery is reduced or interrupted, and is known
to enhance the total capacity delivery from batteries.
Beyond this conventional wisdom, we have made a new
observation that the recovery effect can be exploited
to shift the capacity delivery from (especially aged)
batteries towards high voltage ranges within which the
device operates, and it also reduces the energy loss on
the resistance of batteries.

There are two key challenges in exploiting the re-
covery effect. First, the recovery effect depends heavily
on dynamically changing battery conditions (e.g., SoC,
resistance, and temperature) [25], making its modeling

1. The voltage commonly defines the state of empty batteries.
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Fig. 1: Energy vs power density [35].

either inaccurate or complex [26], [27]. Thus, it is non-
trivial to identify the proper discharge patterns so as
to exploit the recovery effect. Second, the utilization of
recovery effect has to be transparent to mobile users so
as not to degrade user experiences, because data services
could be affected and/or interrupted under different
battery discharge patterns. This becomes more challeng-
ing as we observe that the battery voltage requires tens
of seconds or even minutes to fully recover, although
a large part of it can be recovered in milliseconds as
reported in the literature. B-MODS addresses these chal-
lenges by identifying the desired discharge pattern to
exploit the recovery effect online, and scheduling the
data-service tasks with the joint consideration of battery
and workload requirements.

This paper makes the following contributions.

o We identify the fundamental discrepancy between
energy supply and consumption, and a potential
mitigation thereof (Sec. 3).

o We report new findings on the recovery effect via
extensive measurements (Sec. 4).

o We propose B-MODS and implement it as an ap-
plication library on the Android platform (Sec. 5).

o We evaluate B-MODS on diverse mobile devices
under various application scenarios (Sec. 6).

The paper is organized as follows. Sec. 2 reviews the
related literature. The motivation of this paper is dis-
cussed in Sec. 3. The basic idea of B-MODS is validated
in Sec. 4 and its design is introduced in Sec. 5. B-MODS
is evaluated in Sec. 6, and Sec. 7 sheds more insights.
The paper concludes in Sec. 8.

2 RELATED WORK

Observing the limited operation time of mobile devices,
extensive research has been done to identify their crit-
ical energy-consumption sources. The energy consump-
tion of different hardware modules has been investi-
gated [19], [28], [29], and those for different applications
and services (and even bugs) of the devices have also
been explored [20], [30]-[32]. Based on these identified
critical energy-consumption sources, approaches have
been proposed to reduce the device energy consumption
at different layers, including hardware [3], [4], operating
system [5], [6], [22], application layer [7], [8], and human
interactions [9], [10], [33], [34].

Lithium-ion batteries are now the fastest growing and
most promising battery chemistry thanks to their high
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Fig. 2: Continuous vs. intermittent downloading: less con-
sumption does not always lead to longer operation.

energy density. Fig. 1 compares various types of batteries
in their energy and power densities, showing significant
advantages of Lithium-ion batteries [35]. The unique
properties of Lithium-ion batteries, however, have been
studies far less in the energy management of mobile
devices. For example, the battery voltage can increase
to a certain degree if the discharge current of the bat-
tery is interrupted or reduced, commonly known as
the recovery effect [17], [22]-[24]. These unique battery
properties make their capacity delivery highly reliant on
how they are discharged [13], [14]. An analysis of the
discrepancy between the battery energy provision and
the smartphone energy consumption is given in [11].

In this paper, we have explored the possibility of
utilizing the battery recovery effect to extend the op-
eration time of mobile devices. Although the recovery
effect is known to help deliver more capacity during
the discharge process, to the best of our knowledge,
this is the first attempt to utilize its effect of shifting
the distribution of the delivered capacities, significantly
extending the device operation time. A few existing
designs on mobile device energy management tackled
the battery recovery effect. For example, the pulsed bat-
tery discharge for communication devices was proposed
in [17], [23] based on a Markov model. However, besides
the insufficient empirical model validation, there is no
known joint consideration for the battery and application
requirements.

B-MODS is orthogonal to existing battery-agnostic
data service designs, with which can be integrated for
further improvements. For example, B-MODS benefits
from the communication framework Bartendr [8] by us-
ing the signal strength, besides the data rate, as another
metric in the data service triggered state transitions.
For 3G/LTE-based data services that show clear tail
effect, B-MODS can be integrated with existing solutions
on shortening the tail (e.g., TailEnder [29]), to jointly
optimize energy efficiency and battery performance.
The battery triggered transitions of B-MODS can be
incorporated into the network interface assignment of
ATOM to map user traffic across WiFi (i.e., low-discharge
state) and LTE (i.e., high-discharge state) [36], and can
also be incorporated into the RRC states in cellular
networks [37].

3 BACKGROUND

Here we empirically show the necessity of battery-aware
mobile data service, the theme of this paper.
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Fig. 3: Power architecture in a mobile device.

3.1 Motivation

The device operation time is a key consideration for
mobile users. We now show that less energy consumption
of devices may not always lead to a longer operation time
— a counter-intuitive and surprising finding — due to
the unique electrochemical characteristics of the batteries
powering the devices.

To illustrate this finding, we use a fully charged Acro S
phone to repeatedly download a file via our university
WiFi until it powers off. Next, we stop the download-
ing process for 5s after every 10s of downloading, i.e.,
downloading intermittently.? The battery voltage traces
during these two downloading processes are plotted in
Fig. 2(a) and their statistics are summarized in Fig. 2(b).
As expected, the intermittent downloading lasts longer
than continuous downloading because of inserted rest
durations. What is surprising, however, is that more
files are downloaded with the intermittent downloading,
albeit the frequent disconnections/reconnections that
slow down its overall downloading rate. By integrat-
ing the discharge currents over time, we calculate the
consumed battery capacities in milliamp hours (mAh)
during the downloading processes.®> This way, about
50.3mAh more capacity is found to be consumed by
the intermittent downloading. Similar measurements are
taken on a Desire C phone, and similar observations
are made — the intermittent downloading consumes
99.1mAh more capacity and downloads =~ 5% more files
than the continuous case. These measurements show that
the continuous downloading draws (and consumes) less
capacity from the battery, leading to a shorter device op-
eration and less user-perceived utility, e.g., downloaded
files.

3.2 Why More Capacity Can Be Drawn?

Next, we explore the reasons for the counter-intuitive
observations in Sec. 3.1, showing the need of a novel
battery-aware design for mobile devices. Specifically, this
design is motivated by the following observations.

e Mismatched Voltage Ranges: Fig. 3 illustrates the
basic principle of how the battery — described by an
ideal voltage source V; and an internal resistance R; con-
nected in series [21] — powers a mobile device. The volt-
age regulator on the device motherboard accepts power

2. These durations are only to show the finding.

3. The current information of Acro S can be found at a system
file sys/class/power_supply/ab8500_fg/current_now. Instead of the
unit of energy Joule (J), mAh is a unit of charge commonly used for
batteries.

Fig. 4: Regulator on Nexus S.

Fig. 5: NEWARE Battery Tester.

input from the battery and supply power to various
device modules, such as screen, GPS, and WiFi. Its main
purpose is to regulate the voltage to the required levels
of these modules and isolate circuitry from the transient
voltage changes of the battery. Fig. 4 highlighted the reg-
ulator on the motherboard of a Nexus S phone. However,
the voltage regulator requires a minimum level of the
input voltage V;/ from the battery. Note that by Ohm’s
law, V/ =V}, — I, - R, where I, is the discharge current
of the battery. Taking the simple but widely-used linear
voltage regulator as an example, its input voltage has
to be at least Viyopous higher than the required output
voltage, where Vy,opout is called the dropout voltage (e.g.,
350mV for the TPS76733 regulator by TI). For simplicity,
assuming the same required voltage Vgevice for individ-

ual components, ie., Vi = Vo = -+ = Vievice in Fig. 3,
the device operates when
‘/b/ € [Vdevice + Vdropout7 ‘/full]v (1)

where Vi is the voltage upon fully charge.

On the other hand, most off-the-shelf batteries have
a built-in safety switch to prevent their over-discharge
(as illustrated in Fig. 3), which not only degrades their
cycle life, but may also lead to overheating and unsafety.
The switch is opened, thus preventing further discharge
when the battery voltage decreases to the cut-off level
Veutor- In other words, the battery can be discharged
when

VE;/ € [chutoﬂra vaull]~ (2)
This cut-off voltage is set by the battery manufacturer
and built in the protection circuit, potentially creating
a mismatch between the device operating voltage range
(Eq. (1)) and the voltage range within which the batteries
can be discharged (Eq. (2)).

We collected the voltage traces of 6 mobile devices
to show the mismatched voltage ranges, whose battery
information is summarized in Table 1. These devices
are first fully charged and then kept with their screens
on (and off) until powering themselves off. The thus-
collected device power-off voltages are also listed in Ta-
ble 1, showing a power-off voltage of 3.1-3.5V. Note that
the power-off voltage depends on the device operating
conditions — higher if the devices are in active usage
(e.g., with screen on) than in idle state (e.g., with screen
off). Next, we investigate the voltage range within which
the batteries can be discharged. We use the NEWARE
Battery Tester (as shown in Fig. 5) to control and monitor
the discharge of initially fully charged batteries. Fig. 6
shows the discharge of the Nexus S battery (the same
Nexus S as in Table. 1) with a current of 500mA. The
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TABLE 1: Batteries of adopted devices and their power off voltages (V).

[ [[ Note 8.0 | Note 2 [ Nexus S | Galaxy S5 [ Galaxy S6 Edge | Xperia Z |

Battery Capacity (mAh) 4,600 3,100 1,500 2,800 2,600 2,330
Battery Type Li-ion Li-ion Li-ion Li-ion Li-ion Li-ion
Battery Removable No Yes Yes Yes No No
[ Power off Voltage (Screen Off) [ 3364 [ 3305 [ 3343 | 3358 ] 3.131 [ 3156 |
| Power off Voltage (Screen On) [[ 3498 | 3411 [ 3418 | 3423 | 3.323 [ 3203 |

battery can be discharged within voltage range 2.8-4.2V,
indicating a cut-off voltage of 2.8V (agreeing with [12]).
Discharge measurements on a Note 2 battery reveals a
cut-off voltage of 2.5V (Fig. 8).

Comparison between Table. 1 and Fig. 6 reveals that
due to the voltage requirements of various on-board
chips of mobile devices, their power-off voltage is higher
than the cut-off voltage of batteries. More importantly,
since the voltage range between the battery cut-off level
and device power-off level (e.g., 2.8-3.4V for Nexus S
and 2.5-3.3V for Note 2) cannot be effectively utilized
by mobile devices, the corresponding capacity cannot be
used to power the devices either. For example, Fig. 6 in-
dicates about 148.7mAh capacity is not effectively drawn
from the battery to power the device (assuming a power-
off voltage of 3.343V), accounting for 10.2% of the total
battery capacity, and can support a 500mA discharge
process for 17.8 minutes. In summary, the mobile devices
operate within a much narrower voltage range than the
battery can actually supply, and hence only part of the
battery capacity can be used.

o Battery Recovery Effect: Our second observation is
that the battery recovery effect can be exploited to miti-
gate the above-mentioned voltage mismatch by drawing
more capacity from the battery within the device oper-
ating voltage range.

When batteries are rested for a short period of time
after discharging, their voltage recovers to a certain
degree, which is called the recovery effect [14], [17]. To
show the recovery effect, we use the battery tester to
discharge a Nexus S battery for 6 minutes and then let it
rest for about 20 minutes, as shown in Fig. 7. The battery
voltage drops from 4.036V to 3.995V during discharge,
and then recovers to 4.030V during the subsequent rest,
ie., 7230-3-995 — 85.4% of the battery voltage is restored.
Fig. 8 shows the voltage traces when intermittently
discharging (30s rest after every 10s discharge) a fully
charged Note 2 battery until its cut-off voltage is reached.
Note the recovery effect does not require the absolute
rest of batteries (i.e., a discharge current of 0OmA), and
can be observed as long as the discharge currents change
from a relatively higher to lower levels as commonly
seen in mobile device operations. We will elaborate this
more in Sec. 4.

In general, the recovery effect can be reasoned about
with two facts. The first is the voltage drop due to
the battery internal resistance (R in Fig. 3), commonly
referred to as the polarization potential [38]. The second
is the re-balancing process of active materials during
the rest period. The voltage recovered due to these two

facts is highlighted in Fig. 7. The details of the recovery
effect are not within the scope of this paper and are
referred to [14]. The recovery effect keeps the battery
voltage higher for a longer time and thus increases the
capacity drawn within the operating voltage range of
mobile devices, as we will validate in Sec. 4.

Conjecture: Combining the above two observations,
the counter-intuitive phenomenon shown in Sec. 3.1 may
be reasoned about as follows. In the case of intermittent
downloading, a bursty discharge pattern of the battery
is created, allowing the battery to recover. As a result,
the battery can maintain higher voltages for a longer
period. This, in turn, mitigates the voltage mismatch by
enhancing battery capacity delivery within the device
operating range, thus eventually extending the device
operation and improving the data service.

4 VALIDATION OF RECOVERY EFFECT

We have empirically investigated the impact of recovery
effect on the capacity delivery of batteries, validating the
above conjecture and shedding light on how to use it to
improve the data service.

Before presenting our measurement methodology and
the corresponding results, we first introduce a simplified
notation to capture the battery discharge profiles. For
any given discharge profile of batteries, we can approxi-
mate it with a piece-wise constant discharge profile with
controllable accuracy [22], as illustrated in Fig. 9. This
way, the discharge profile can be described by a sequence
of tuples <¢;,d;> (i = 1,2,---), where ¢; is the discharge
current during the i-th phase of the discharge profile,
and d; is its corresponding duration.

In our measurements, batteries are discharged with
a periodic profile of {< cp,d), >,< c,d; >},* where h
and [ denote the high discharge current (and duration)
and low discharge current (and duration), respectively.
Fig. 10 illustrates an example of this periodic discharge
profile. The discharge currents and their durations are
respectively measured in milliamp (mA) and second (s)
in the rest of the paper, unless otherwise specified.

4.1 Efficacy of Utilizing Recovery Effect

We have taken measurements with different batteries
— a Nexus S battery in use since 2010 and two Note
2 batteries in use since 2012 and 2015, respectively —
to verify whether the recovery effect indeed enhances
their capacity delivery. We discharge these initially fully

4. The periodic discharge profile is only to facilitate the measure-
ments and is not required in B-MODS.
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Fig. 10: The periodic discharge profile in our measurements.

charged (by the battery tester with the same charge pro-
file) batteries according to the following two discharge
profiles.® First, the batteries are discharged according to
a continuous discharge profile — {< 500,00 >} for the
Nexus S battery and {<1,000, co>} for the two Note
2 batteries. Second, the batteries are discharged with a
bursty discharge profile — {<500, 10>, <0, 1>} for Nexus
S and {<1,000, 10>, <0,1>} for Note 2. We make three
important observations on recovery effect from these
measurements.

e Shifted Distribution of Delivered Capacity: Dis-
cretizing the voltage range into a set of intervals of
0.1V each, Fig. 11 shows the delivered capacity in each
interval (i.e., the distribution of delivered capacity with
regard to voltages) obtained with these batteries. Note
that the voltage ranges of 3.8-4.2V in Figs. 11(a) and
11(b) and 4.0-4.2V in Fig. 11(c) are missing from these
results because of the voltage drop on the internal re-
sistance of batteries. The bursty discharge increases the
total capacity drawn from the battery, e.g., for Note 2
battery (2012), about 4% more capacity are delivered
with bursty discharge when compared to the continuous
discharge, agreeing with the conventional wisdom that
recovery effect enhances the capacity delivery of batter-
ies [17].

5. Again, these settings are only to show the finding.

10 Time (min) 20 30

Fig. 7: The voltage recovery process.
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Fig. 8: Discharge a Note 2 battery.

More importantly, comparison between the capacity
distributions obtained with continuous and bursty dis-
charge profiles reveals that the bursty discharge shifts
the distribution of delivered capacity towards higher
voltages — the bars for the bursty discharge profile are
shifted to the right as observed in Fig. 11. Again, taking
the Note 2 battery (2012) as an example, about 1,232mAh
capacity is delivered with voltage > 3.4V (assuming a
power-off voltage of 3.4V) with the bursty discharge
profile, while only 823.9mAh capacity is delivered within
the same voltage range when discharge continuously,
indicating an increasing ratio of 49.5%. That is, by uti-
lizing the recovery effect, more capacity can be drawn
from batteries within the device operating voltage range,
thus mitigating the voltage mismatch and extending the
device operation time.

e Pronounced with Aged Batteries: Comparing
Figs. 11(a), 11(b), and 11(c), we find the effect of bursty
discharge on shifting the delivered capacity distribution
is more pronounced with aged batteries — the Nexus S
battery has been in use for ~ 5 years and its shifting-
effect is more pronounced than the two Note 2 batteries.
(However, note that the bursty discharge draws 14.9%
more capacity than the continuous discharge within the
voltage range > 3.4V even for the new Note 2 battery
(Fig. 11(c)).) This is due to two reasons. First, the battery
internal resistance increases as battery ages, leading to a
larger polarization potential when the battery is rested.
Second, aged batteries have more insufficiently activated
material, leading to a more significant re-balancing pro-
cess of active species. The stronger shifting-effect of aged
batteries indicates that the mobile devices they power
benefit more from exploiting the recovery effect for
enhanced capacity delivery. This observation reinforces
the necessity of a battery-aware design for users because
(i) devices powered by aged batteries suffer more from
the reduced operation time, and (ii) the replacement
cycles of mobile devices are getting longer [39] and
more devices are equipped with irreplaceable batteries,
indicating more devices with aged batteries are in use.

e Reduced Energy Loss on Internal Resistance: Be-
sides shifting the delivered capacity distribution, the
recovery effect also helps reduce the energy loss on
the internal resistance of batteries. The bursty discharge
profile, during which the discharge current changes
frequently, allows us to measure the internal resistance
of batteries via R = AV/AI, where AV is the voltage
changes when the discharge current changes by AI [38].
Fig. 12 shows the thus-measured internal resistance of a
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Nexus S battery and a Note 2 battery, where an increase
of resistance can be observed with lower voltages, agree-
ing with the observations reported in [40]. Therefore,
by keeping the voltage higher for a longer time, the
recovery effect also keeps the battery resistance low and
thus reduces its heating and internal energy loss.

More experiment results on the efficacy of utilizing
recovery effect are provided in Appendix A due to space
limit.

4.2 Factors Affecting Recovery Effect

We have shown that exploiting the recovery effect via
the bursty discharge of batteries indeed increases their
capacity delivery in the operating voltage range of
mobile devices.® Next, we investigate how the bursty
discharge profiles affect the recovery effect. Specifically,
we empirically study the impact of the high- and low-
discharge durations on the recovery effect.

e High-Discharge Duration: We discharge the Note 2
battery (2015) with five profiles of various dps, as shown
in Fig. 13. The bursty discharge increases its capacity
delivery by exploiting the recovery effect, especially
within the device operating voltage ranges. However,
comparing the four bursty discharge processes, we find
that an extremely long high-discharge duration is not
desirable — the continuous discharge is actually the case
of dp — oo.

e Low-Discharge Duration: Next we discharge the
battery with five profiles of different d;s (Fig. 14). Again,
the bursty discharge profiles draw more capacity from
the battery within the device operating voltage range
when compared to the continuous discharge. However,
comparison among these bursty discharge processes re-
veals that (i) extending the low-discharge duration to the
order of tens of seconds further pronounces the recovery
effect on top of the milliseconds rest time as reported

6. The bursty discharge also reduces the overall discharge intensity
of the battery, slowing down its capacity fading [12].

in the literature [17], [23] (e.g., 9.4% more capacity is
delivered within voltage range > 3.4V with d; = 60s
than that with d; = 0.1s), which can also be inferred from
Fig. 7 as the recovery process takes minutes to converge;
7 (ii) an extremely large d; has a diminishing effect
in further strengthening the recovery effect, e.g., when
comparing the cases with d;s of 60s and 120s. These are
of practical importance as we will see in Sec. 5.2.

Similar measurements (and observations) as in Figs. 13
and 14 with different batteries and discharge profiles are
provided in Appendix A due to space limit.

e Current Gap: We discharge the battery with dif-
ferent current gaps to verify their impact on the re-
covery effect. Fig. 31 plots the capacity delivery during
four discharge processes with different current gaps.
First, the recovery effect occurs, and thus more ca-
pacity can be delivered, so long as the current tran-
sits from a higher to lower levels, not requiring the
absolute rest of battery. Furthermore, a larger current
gap, and thus a burstier discharge pattern, further im-
proves the capacity delivery, e.g., Fig. 31 shows 15%
more capacity is delivered when discharging the battery
with the profile of {<1000, 30>, <0,30>} than that with
{<1000, 30>, <700,30>}, assuming again a power-off
voltage of 3.4V as indicated in Table 1.

4.3 Validation Summary

Although the recovery effect has been known for years,
we gained new insights based on the above measure-
ments, including (i) exploiting the recovery effect shifts
the capacity delivery of batteries towards higher voltage;
(ii) the recovery effect helps reduce the energy loss on the
internal resistance of the battery; (iii) the recovery effect
is strengthened for aged batteries; and (iv) the battery
voltage needs tens of seconds of low-discharge duration
to fully recover.

Two conclusions can be drawn from the above obser-
vations. First, exploiting the recovery effect to extend
(especially aged battery powered) device operation time
is feasible. Second, we need to identify proper bursty
discharge profiles to fully utilize the recovery effect.
This is difficult because the recovery effect depends on
dynamically changing battery parameters (such as SoC
and resistance [22], [24], [25]) and real-time discharge
currents, while at the same time we need to ensure the

7. However, it is true that a large part of the voltage can be recovered
in a short time, as shown in Fig. 7 and also in [17], [24].
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Fig. 16: Discharge current of mobile device is inherently bursty.

user experience does not degrade. In the next section,
we introduce B-MODS that exploits recovery effect to
improve the data services on mobile devices.

5 BATTERY-AWARE MOBILE DATA SERVICE

As battery voltage needs tens of seconds or even minutes
to fully recover, the inherent variance in the power draw
of mobile devices (as illustrated in Fig. 16), normally
in milliseconds [12], [17], is not enough for voltage
recovery. However, the data service on mobile devices
allows to take a full advantage of recovery effect with
its relatively soft real-time requirements.

5.1

Data-oriented services have become the dominant ap-
plications on mobile devices [18], [36]. Unlike tradi-
tional real-time services on mobile phones such as mak-
ing/receiving calls, data service usually has softer real-
time requirements [29], i.e., there is a certain slack in
completing these data-service tasks.

On the other hand, a bursty discharge pattern needs
to be formed to utilize the recovery effect. For mobile
devices, this means some of their modules (or services)
must be operated intermittently. However, the interrup-
tion of any device module or service means its tempo-
rary unavailability, which in turn delays the completion
of the corresponding task. To guarantee the timely task
completion and thus prevent any degradation in user
experience, there must be a certain feasible time cushion
for the task to be completed. The data service has such a
time cushion because of its soft real-time requirements.

The soft real-time requirements of data service are also
the reason for the lack of, or insufficient coverage of the
topic of B-MODS in the literature, although the recovery
effect itself is known for years — even though mobile
devices (especially phones) have been in use for over
20 years, their traditional functions (i.e., make/receive
calls) clearly do not possess the soft real-time property
to leverage the recovery effect.

Data Service Property

Fig. 14: Impact of low-discharge duration Fig. 15: Impact of current gap on recovery

effect.
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5.2 Apply Recovery Effect to Data Service

Here we discuss how to apply the recovery effect to
improve the mobile data service without jeopardizing
user experience — how high and low discharge currents
are formed and how long they should last.

5.2.1 Identify High and Low Discharge Currents

As mentioned earlier, we can alternatively turn on and
off certain modules/services of the device to create high
and low discharge currents. For example, in a WiFi-based
downloading scenario, we can create the two currents
by continuously switching between performing and not
performing the downloading task. Specifically, the high
and low discharge currents can be captured by

Ch = Cbg + Con and ¢; = cpg + Coft,

where ¢, and cog are the required current draw of the
WiFi module when performing and not preforming the
downloading task, respectively, and ¢y is the sum of the
required current by other modules. Note c},, may not be
constant over time.

After creating high and low discharge currents, we
need to determine how the corresponding service tran-
sits between on and off states, i.e., determining the high
and low discharge durations. This must be tackled based
on the requirements of both the battery (to fully exploit
the recovery effect) and the data service (to ensure no
degradation in user experience).

5.2.2 Battery-Triggered Transitions

We first investigate the transitions between high and low
discharge states from the perspective of batteries. Intu-
itively, a battery discharged with high current should be
allowed to rest (i.e., switch to the low-discharge state) if
it can restore a significant voltage level, and the battery
being discharged with low current should transit to the
high-discharge state if/when its voltage recovery has
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Fig. 18: Recovered voltage ratios during discharge.

been completed. In B-MODS, we determine the battery-
triggered transitions in real time. This is because the
recovery effect not only depends on real-time battery
parameters, but also varies with batteries (as will be
revealed in Sec. 6.2) or even with the same battery at
different cycles (e.g., the battery resistance increases as
ages [38]), preventing a unified offline solution. Fig. 17
presents the controller architecture of the battery trig-
gered transitions, details of which are given below.

e High-to-Low Transitions: We use the voltage drop
0 during the high-discharge period as the transition
trigger — the high-to-low transition is triggered once
the voltage has dropped 6 in the high-discharge period.
To observe the impact of ¢ on the recovered voltage,
Fig 18 plots the recovered voltage ratios (similar to Fig. 7)
when discharging a battery with profiles of different
dn, where the z-axis is the voltage at which the recov-
ery period starts. Two observations are made: (i) the
recovered voltage ratio changes during discharge even
with a given dj,, which again indicates the proper high-
discharge duration should be identified in real time; (ii)
a shorter high-discharge period, and thus a smaller 6,
leads to a larger recovered ratio. However, too small a 0
causes frequent state transitions, increasing the switch-
ing overhead (e.g., our measurements show that the
WiFi-based HTTP connection takes at least 0.1-0.3s to
be stable and could be longer) and reducing the energy-
efficiency due to the tail effect [29], [41]. Combining these
observations, we find that making ¢ as large as possible
while guaranteeing a high enough voltage recovery ratio
is desired for the high-to-low transitions.

We borrow the slow-start algorithm in TCP congestion
control to identify the proper 6 online. Specifically, we
initially use a small § and examine how much of the
dropped voltage can be recovered. If the recovered volt-
age ratio is large enough, e.g., > 85%, we increase 6 to 26
until the recovered voltage ratio is less than 85%. Then,
we use a binary search to find the largest § guaranteeing
an 85% recovery ratio.

e Low-to-High Transitions: Fig. 14 shows an over-
long rest time of the battery has diminishing effect on
further increasing the delivered capacity. To shed more
light on the voltage recovery process, the recovered
voltage of the Nexus S battery after being discharged
with 500mA current are plotted in Fig. 19. The voltage
recovery process can be captured by a piece-wise linear
model consisting of a set of line segments. Specifically,
we define turning points as the points in the voltage
recovery curve with a considerable slope change, which
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Fig. 21: The voltage recovery process of the Nexus S battery
after its receiving WiFi module entering the idle state.

are used to determine the start and end points of each
line segment. By denoting {vi,vs,vs, -} as the se-
quence of recovered voltages at the turning points of the
segments and {t1,ts,%3,---} as the corresponding time
instances, we can capture the voltage recovery process
as

v(m):ﬁlx—kw (ti §x<ti+1)7 3)

where §; is the slope coefficient defining each segment
and quantifies the voltage recovery speed. Fig. 19 also
shows the sequence of 3 corresponding to the same
voltage recovery trace, which visually conforms to an
exponential decay process — the sequence of § follows
Bi = a - e”? for certain a and b.

To verify this hypothesis, we empirically collect 107
voltage recovery traces with various discharge currents
and durations, and then we apply exponential fit to their
corresponding 3 sequences with 95% confidence level.
The goodness of the exponential fit (in both root-mean-
square error (RMSE) and adjusted-R?) is summarized in
Fig. 20. As a close-to-0 RMSE and a close-to-1 adjusted-
R? indicate good fitting accuracy, the goodness-of-fit
clustered in the right-bottom corner of the figure, as
observed in Fig. 20, validates the hypothesis on the
exponential decay process.

In B-MODS, we estimate 3; based on the sampled
voltages with linear regression and predict 8;4; with ex-
ponential fit. As an example, Fig. 21(a) plots the voltage
recovery process of a Nexus S battery after a receiving
WiFi module enters the idle state. In general, the voltage
recovery process converges as the idle process continues,
agreeing with Fig. 19 where the discharge current is
explicitly controlled. However, two differences can be
observed. First, the recovered voltage is smaller and the
time for the recovery process to converge is shorter when
compared with Fig. 19, due to the existence of back-
ground current. Second, the voltage recovery process in
Fig. 21(a) is not as smooth as that in Fig. 19 because the
background current is not constant in practice, leading
to a less smooth trace of . To reliably identify the
convergence of the recovery process, we use the moving
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average filter to smooth the sequence of 3 before apply-
ing the exponential fit, and high level of goodness-of-fit
can still be obtained (e.g., the adjusted-R? is 0.8512 for
the recovery process shown in Fig. 21(b)). The recovery
process is concluded if the accuracy of the exponential fit
is high (e.g., adjusted-R? > 0.8) and the predicted $3;41
is small (e.g., < 10mV per second).

5.2.3 Data Service Triggered Transitions

Next, let us consider how the transitions between high
and low discharge states should be determined accord-
ing to the data service requirements. The time to com-
plete the data service may vary with time due to the
dynamic link quality, leading to diverse slack times.
These dynamics in data service can be captured by the
variable rate execution model [42], and we determine the
data-service triggered transitions based on whether the
available slack time is sufficient or not.

For the high-to-low transition, we determine whether
the slack is sufficient based on the service rates (e.g.,
downloading rates for a downloading task) during the
previous high-discharge period.® Specifically, let T and
t be the deadline of the task and the current time
(e.g., the user will arrive home in one hour and she
wants the system updates to be completed by that time),
and T can be either specified by the user or estimated
based on historic usage information [43]. We compute
the distribution of the service rate during the previous
high-discharge period, and adopt its p-percentile r,(t)
to determine whether the slack is sufficient: the slack is
deemed to be sufficient iff

rp(t) - (' =) = B = f(t), 4

where B is the total data volume associated with the
task, and f(t) € [0, B] is the completed data volume until
time ¢. This condition can be interpreted as even if the
service rate would be slow throughout the remaining
time (i.e., as slow as r,(t)), the data service task can still
be completed within its time cushion.

Similarly, we say the slack is insufficient iff the g¢-
percentile, r,(t), of the service rate during the previous
high-discharge period satisfies

rq(t) - (T'—t) < B = f(t), ©)

indicating that even the service rate would keep high
throughout the remaining time (i.e., as high as r4(t)), the
data service task cannot be completed within the time
cushion if the service is not resumed immediately.

5.2.4 Joint Transition Design

Fig. 22 summarizes the transitions between high and
low discharge states. Note that the high-to-low transition

8. With the battery-awareness as the theme of the work, we use
the service rate — the most direct factor determines whether the data
service tasks can be completed in time — to simplify the design. More
in-depth approaches involving detailed communication factors exist
in the literature, e.g., Bartendr [8] and ATOM [36], with which can be
potentially integrated for further improvement.

A.1: sufficient slack B.1: voltage dropped 8

A.2: insufficient slack B.2: high fitting accuracy and 3 is small

high-discharge low-discharge

Fig. 22: Transition diagram of B-MODS.
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Fig. 23: Battery-aware data service library architecture.

occurs if both A.1 and B.1 are met, while either of A.2 or
B.2 triggers the low-to-high transition. This way, the con-
dition B.1 imposes a constraint on the shortest duration
for each high-discharge period, and the condition B.2
limits the longest duration the lower discharge period
can last. As a result, B-MODS exploits the recovery effect
to extend device operation whenever possible, otherwise
it seamlessly reverts back to continuously provide the
data service to ensure user-experience.

5.3

We implement B-MODS as an application layer library
on the Android platform, which accepts data-service (i.e.,
downloading or streaming) requests/tasks from other
applications and schedules them accordingly. In the li-
brary, the battery voltage is sampled and made accessible
via a system file located at different places for heteroge-
neous mobile devices. Specifically, for Nexus S, it is lo-
cated at /sys/class/power_supply/battery/voltage_now, while
for Acro S, Xperia Z and Desire C, it is at /sys/devices/i2c-
3/3-0055/power_supply/bq27520/voltage_now. Also, the in-
terruptible data service is realized by disconnecting (re-
connecting) an HTTP connection during low (high) dis-
charge periods. Use of an HTTP connection implies a
TCP-based implementation and provides reliable deliv-
ery of octets stream. This is adopted by most data-service
applications, such as video streaming, cloud storage, and
file transmission [36]. The library can be found at [44],
whose overall architecture is shown in Fig. 23, consisting
of the manager, the battery-aware scheduler, and the
executor.

e Manager, running in the background, monitors the
AIDL interface to accept and handles the data service
tasks from other applications. When a task is received,
the manager first stores the task information (e.g., file
size and the time cushion to complete the task) to avoid
task duplication, and then it passes the task to the
battery-aware scheduler and launches the executor to

Implementation
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perform the task. The manager automatically starts boot
once by registering a broadcast receiver to listen to the
boot complete event.

o Battery-aware scheduler, which can be further decom-
posed into battery monitor and schedule unit, is responsible
for deciding the status of executor (i.e., working or rest-
ing) based on the continuously sampled battery voltages
and the task information. The battery monitor captures
real-time battery voltages via a system file containing the
voltage information, and passes them to the schedule
unit. Based on these sampled voltages, the schedule
unit determines whether the executor should be in the
working or resting states.

e Executor, consisting of a downloader and an up-
loader, actually performs the data service. It supports the
interruptible data service to allow the battery to rest and
recover — disconnects the HTTP connection during the
low-discharge period and reconnects for the next high-
discharge period. The downloader writes the response
to a file specified by the downloading task, and the
uploader reads the local file and writes it into a network
stream specified by the uploading task.

6 EXPERIMENTAL EVALUATION
6.1

We evaluate B-MODS under different application sce-
narios with various mobile devices. We use the following
default settings unless otherwise specified. We sample
the battery voltage at 10Hz. A recovered voltage ratio
of at least 85% is adopted when identifying 6 for the
battery-triggered high-to-low transitions. Linear regres-
sion is used to estimate § based on the previous 5 sam-
ples. The recovery process is concluded to be completed
if the adjusted-R? of the exponential fit is larger than
0.8 and the predicted recovery speed is slower than
10mV per second. p = 20 and ¢ = 80 percentiles of the
downloading-rate distribution are used to estimate if the
slack is sufficient. Besides B-MODS, we also implement
a battery-agnostic data service for comparison, under
which the devices perform the tasks continuously with
best effort.

Observing the wide availability of WiFi to which
the devices are connected for ~70% of the time [1],
we evaluate B-MODS under 3 WiFi-based application
scenarios: (i) background downloading, (ii) downloading
with (emulated) human interactions, and (iii) online
streaming with commercial APPs.

Evaluation Settings and Scenarios

6.2 Background Downloading

We first evaluate B-MODS under the scenario of WiFi-
based background downloading, in which the screen
is kept off throughout the downloading process. This
background downloading scenario not only allows us to
better observe the advantages of B-MODS because of
smaller and relatively stable background currents, but is
also common in the daily usage of mobile devices, as

10
TABLE 2: Voltage drop (mV) and duration (s).
[ [[ Initial V' [ End V [ Duration |
[ B-MODS (Nexus S) || 40875 | 39325 | 2669 |
| Continuous (Nexus S) || 40975 [ 39375 | 2043 |
[ B-MODS (Acro S) || 4,164 | 4100 | 6354 |
| Continuous (Acro S) || 4098 [ 4033 | 5248 |
4200 -
= = LI —B—
S 83700 - i
§ § | U
p 32005 1 2 3 7 5
Time (s) x 10" Time (s) x10*
(a) Nexus S (b) Acro S

Fig. 24: Voltage traces of the two downloading processes.

most users keep their phones in the connected standby
mode for a large fraction of time [7], accounting for
>40% of the total energy drain [1]. A Nexus S and an
Acro S phone are used in this set of experiments.

e B-MODS vs. Continuous Downloading: With a
downloading task of file size 1GB and a time cushion T’
of 1 hour, we record the B-MODS-based and continuous
downloading processes, as summarized in Table 2. B-
MODS takes longer to complete the task than the contin-
uous downloading, but still within the 1 hour cushion.
More importantly, the accumulated voltage drop after
completing the task with B-MODS is 5mV and 3mV
less for Nexus S and Acro S respectively, as a result of
exploiting the recovery effect.

e Downloading Until Power-Off: While the previous
results show smaller voltage drops with B-MODS, we
still need to quantify how much the device can actually
benefit from B-MODS — what does the 5mV gain mean
for users? To this end, we examine the scenario where
the to-be-downloaded file is sufficiently large such that
the task cannot be completed with a single charge of the
phones and the time cushion is large enough to complete
the downloading. This way, the downloading processes
continue until the phones power off, allowing us to
quantify the effect of B-MODS on improving the data
services. Similar method was used in [29] and widely
adopted in mobile device specifications, e.g., a talk time
of 18+ hours for Galaxy S6 Edge [45] and 8 hour LTE
time for Nexus 5X [46].

The voltage traces during the two downloading pro-
cesses are plotted in Figs. 24. The first observation is that
B-MODS significantly extends the downloading pro-
cess, which is not surprising because the low-discharge
state reduces the overall load intensity. Furthermore, the
voltage drop of the continuous downloading processes
is sharp when the voltage is low (e.g., below 3.6V),
while by utilizing the recovery effect, this voltage drop

@
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Fig. 25: Effective download time and downloaded file.
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Fig. 26: Distributions of the receiving and idle periods.

becomes much slower with B-MODS. The intermittent
downloading also helps address the storage deficiencies
in mobile devices [47].

To check whether this extended downloading process
indeed improves the data service, Fig. 25 shows the
statistics of the two downloading processes, in terms of
the accumulated receiving periods of the WiFi module
and the downloaded file size. By utilizing the recovery
effect, not only the downloading process is extended,
but more importantly, the effective downloading time
increases as well. For example, the effective download-
ing time of Nexus S is extended by 2,074s, or 16.2%
compared to the continuous downloading. The extended
effective downloading time and the corresponding ratio
for Acro S are 6,361s and 28.6%, respectively. Similar
observations can be made on the downloaded file —
B-MODS downloads 15.3% (with Nexus S) and 12.3%
(with Acro S) more data as compared to the continuous
downloading. The improvement in downloaded file is
smaller than that in effective downloading time due
to the HTTP reconnections, slowing down its overall
downloading rate. These improvements are significant
especially in view of the fact that the battery density has
only been doubled over the past 15 years [2].

e Receiving and Idle Periods Distributions: To shed
more light on the B-MODS-based downloading, Fig. 26
plots the distributions of the receiving and idle time
period durations obtained from Nexus S and Acro S.
The two devices show significant differences in the
periods distributions. For example, the average receiving
and idle periods for Nexus S are about 204.3s and
730.7s, respectively, yielding a receiving-to-idle-ratio of
~ 0.28. On the other hand, the average receiving and
idle periods for Acro S are 461.6s and 260.3s, and the
ratio between them is ~1.77. These results indicate that
different mobile devices (and batteries) favor different
discharge patterns to exploit the recovery effect, e.g., the
Nexus S battery needs more time to recover than the
Acro S battery according to the results shown in Fig. 26.
This, in turn, calls for the online determination of the
transitions between high- and low-discharge states — as
is done in B-MODS — instead of attempting to identify
a single discharge pattern for all devices offline.

6.3 Downloading with Human Interactions

To verify if B-MODS benefits the downloading process
in more general scenarios, we introduce a control pa-
rameter ¢ € [0, 1] in the second set of our experiments,
reflecting the probability for the screen to stay on dur-
ing downloading. Specifically, dividing time into unit
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Xperia Z

intervals of 1 minute, the screen of the phone stays on
during each time unit with probability ¢. This way, we
emulate the randomized human interactions during the
downloading processes, and the thus-obtained results
help us see how B-MODS performs in the presence of
other battery-agnostic device operations. A Nexus S and
an Xperia Z are used for this set of experiments.

The accumulated effective downloading time with var-
ious ¢ are summarized in Fig. 27 (averaged over 5 runs).
B-MODS achieves longer effective downloading time in
all the cases we studied, but the advantage of B-MODS
diminishes as ¢ gets larger. Taking Nexus S as an exam-
ple, when compared to the continuous downloading, B-
MODS makes 10.3%, 5.2%, and 2.5% improvements with
¢ = 0.1, 0.5, and 0.9, respectively. This can be reasoned
about as follows: as the background current increases
because of a larger probability for the screen to stay on,
the current gap formed by adjusting the WiFi operation
accounts for a decreasing portion of the overall discharge
current of the phone, thus degrading the recovery effect.
We will elaborate more on this in Sec. 6.5.

6.4 Online Streaming with Commercial APPs

Last but not the least, we evaluate the battery-aware de-
sign for online streaming with three off-the-shelf APPs:
Youtube [48], Repeat on Youtube [49], and LiveNow!tv [50].0
These well-encapsulated APPs pose new experimental
challenges as we (i) have no access to the size of buffered
data and (ii) have no control on whether the download-
ing requests should be sent to the WiFi module, making
the data service library not applicable. Therefore, instead
of scheduling the downloading requests, we build WiFi-
Switch, an application that directly turns on/off the WiFi
module, to emulate a B-MODS-based streaming process.
Specifically, WiFi-Switch consecutively turns on/off the
WiFi module according to two user-customized on and
off durations <x,y> — turning on the WiFi module for
xs before tuning it off for ys, and then repeat. After

9. We use Youtube to stream a 10-hour video Nyan Cat [51]. For Repeat
on Youtube, a video One Man Les Miserables [52] is played repeatedly
until the phone powers itself off. LiveNow!tv is used to stream an on-
demand audio Comedy Bang Bang.
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testing various settings of <z,y | « € {100,200},y €
{5,10,20}>, we observe the setting of <100,5> is able
to show the advantages of the battery-aware design
while ensuring a smooth streaming process in our ex-
perimental environment. A video recording part of such
a streaming process can be found at [53].

Fig. 28 summarizes the streaming durations. The
battery-aware streaming significantly extends the
streaming processes when compared to the continuous
case, and even the accumulated duration with an
on-WiFi module (e.g., ~ 9,518.2 x i = 9,065.0s for
Nexus S) is longer than that with continuous streaming.
Similar observations can be made from the results
collected with the other two APPs and also those
collected with Xperia Z. Table 3 summarizes the WiFi
states distribution during a battery-aware streaming
process with Nexus S. Enabling WiFi model is found to
take longer than disabling it, as reported in [29].

6.5 Cross-Application Comparison

The above experiments over three application scenar-
ios show that exploring battery-awareness in the data
service not only extends the device operation, but also
improves user-perceived utilities, such as file download-
ing and streaming duration. However, comparing the
improvement ratios across the three scenarios, we find
the background downloading benefits most from the
battery-awareness (e.g., 15.3% more downloaded files
with Nexus S), while the improvement ratio of down-
loading with emulated human interactions is limited, es-
pecially with a high screen-on probability. To investigate
a potential reason for this, Fig. 29 plots the current distri-
bution of the Xperia Z phone when operating under the
downloading with human interaction with ¢ = 1. Not
surprisingly, two peaks are observed, corresponding to
the cases when performing (i.e., the right peak) and not
performing (i.e., the left peak) the downloading tasks.
A similar two-peak pattern of the current distribution is
observed under the other two application scenarios, as
shown in Fig. 30. An interesting finding is the advan-
tage of battery-awareness decreases as the ratio between
the right and left peak currents get smaller, implying
a burstier discharge pattern may further improve the
capacity delivery from battery, which we will empirically
verify in the next section.
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7 BATT.-AWARENESS BEYOND DATA SERVICE

We have shown B-MODS to improve data services,
but also noticed its limited advantage when the ratio
between the two peak currents is small. So, we next
explore the reasons for this phenomenon and suggest its
mitigation — extending battery-awareness to multiple
device modules to form burstier discharge patterns.

71

We discharge two batteries with different current gaps to
verify whether the burstier discharge indeed pronounces
the recovery effect. Fig. 31 plots the capacity delivery
during these discharge processes. First, the recovery
effect occurs, and thus more capacity can be delivered, so
long as the current transits from a higher to lower levels,
not requiring the absolute rest of battery. Furthermore,
as expected, a larger current gap, and thus a burstier
discharge pattern, does further improve the capacity
delivery, e.g., Fig. 31(b) shows 11.6% more capacity is
delivered with the profile of {< 500,30 >,< 0,30 >}
than that with {< 500,30 >,< 300,30 >}, assuming
again a power-off voltage of 3.4V.

This observation implies a degraded recovery effect
when the formed current gap is small, e.g.,, when in-
termittently download via 3G/LTE which shows a clear
tail-effect. However, this also indicates the battery-aware
energy management can be improved further by ex-
tending battery-awareness to other device modules and
jointly scheduling them to create larger current gaps —
e.g., via voltage scaling (up to 641mA current gap can
be formed by adjusting the GPU frequency for Galaxy
S4 [1]) and adaptive display (as we will show next).
This, in turn, allows for a thorough evaluation of battery-
aware energy management with real-life device usage
beyond mobile data service.

Burstier Discharge Does Help

7.2 Example: Battery-Aware Display

We explore the battery-aware display as a preliminary
study of applying battery-awareness to other device
modules. Specifically, we built an application that grad-
ually adjusts screen brightness between 10% to 100%
of its maximum level, with a step of 10% that changes
every 2s. We ran the application on an Xperia Z until
it powers off. We recorded the process and compared
it with the case when the screen displays with the
maximal brightness, as shown in Fig. 32. The device
operation is significantly extended with this adjustment
of brightness, i.e., not only by reducing the brightness
level but also by receiving 2, 723.5—-2,506.8 = 216.7mAh
more capacity from the battery, showing the feasibility
of applying battery-awareness to adaptive screen dis-
play. The challenge, again, is to make the brightness
adjustment transparent to users. Exemplary approaches
include adjusting screen brightness during the scrolling
operations [9] or based on user-screen distance [33] and
dimming display areas of less interest to users [34].
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8 CONCLUSIONS [14] T. L. Martin, “Balancing batteries, power, and performance: Sys-

Observing the mismatch between the consumed energy

on

mobile devices and the supplied energy from bat- [15]

teries, we have shown the necessity of battery-aware
energy management for mobile devices. Focusing on 14
the prevalent data-oriented services seen on mobile de-
vices, we have proposed a novel design of B-MODS

for

enhancing the capacity delivery of the batteries by [17]

utilizing the battery recovery effect and improving user- [1g]
perceived data service utilities. We have evaluated B-
MODS with heterogeneous mobile devices under dif-
ferent application scenarios. The results have shown B- g
MODS to improve data service by up to 28.6%.
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