
Abstract
Modern vehicles house many advanced components; sensors and 
Electronic Control Units (ECUs) — now numbering in the 100s. 
These components provide various advanced safety, comfort and 
infotainment features, but they also introduce additional attack 
vectors for malicious entities. Attackers can compromise one or more 
of these sensors and flood the vehicle’s internal network with fake 
sensor values. Falsified sensor values can confuse the driver, and 
even cause the vehicle to misbehave. Redundancy can be used to 
address compromised sensors, but adding redundant sensors will 
increase the cost per vehicle and is therefore less attractive.

To balance the need for security and cost-efficiency, we exploit the 
natural redundancy found in vehicles. Natural redundancy occurs 
when the same physical phenomenon causes symptoms in multiple 
sensors. For instance, pressing the accelerator pedal will cause the 
engine to pump faster and increase the speed of the vehicle. Engine 
RPM and vehicle speed are multiple sensors which respond in a 
related fashion to the same cause of the accelerator pedal. The 
challenge is identifying the relationship between similar but different 
sensors under normal operation and detecting anomalous be-havior 
accurately.

In this paper, we develop the tools to capture the relationship between 
sensors. Specifically, we use the pairwise correlation between key 
variables, and use cluster-analysis to identify distinct behavior of 
drivers. Moreover, we show preliminary results of using these tools 
to detect attacks within a vehicular communication bus.
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1. Introduction
A modern vehicle is a complex system with many interconnected 
Electronic Control Units (ECUs). These ECUs broadcast sensor 
measurements and control information onto a shared communication 
channel, often a Controller Area Network (CAN) bus. The vehicle 
performs various actions by aggregating sensor information from 
multiple ECUs. For example, the Intelligent Park Assist System 
(IPAS) in the Toyota Prius 2010 model activates only when the car is 
in reverse gear and traveling less than 4 mph [8]. However, attackers 
can spoof values in the CAN bus to cause the vehicle to behave 
incorrectly or maliciously. Miller and Valasek [8] demonstrate this by 
sending fake speedometer and gear position values on the CAN bus 
to trigger the IPAS and cause sporadic jumps in the steering wheel 
even when the car is moving.

Figure 1. Correlations between selected variables in a trip. Dark red is 
positively correlated and blue is negatively correlated.

Attacks such as these highlight the importance of checking the sensor 
values before acting on them. Adding redundant sensors may protect 
against such attacks but will increase the cost of manufacturing 
vehicles. In this paper, we explore an alternate solution which 
exploits the natural redundancy amongst heterogeneous sensors 
already present in vehicles.
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We begin with the observation that sensors within the vehicle are 
naturally correlated. This happens because the same physical 
phenomenon creates effects in multiple sensors. For example, turning 
the steering wheel causes an increase in the yaw-rate. We show some 
example correlations from our experiments in Fig. 1.

In this paper, we study the persistence of these correlations within a 
trip, across trips, across drivers and across vehicles. Armed with an 
understanding of these correlations, we develop tools to detect attacks 
or system faults which cause anomalous correlations between pairs of 
sensors.

Our experiments are based on the Integrated Vehicle-Based Safety 
Systems (IVBSS) dataset collected by the University of Michigan 
Transportation Research Institute [4]. IVBSS contains naturalistic 
driving behavior of 108 drivers for 16 cars between April 2009 – May 
2010.

Our evaluation shows that some pairs of variables are consistently 
correlated across trips, drivers and vehicles. However, we found large 
variation for small time windows (e.g. 100 seconds) within a trip. 
This variability is caused by contextual factors of the driver and trip. 
We use cluster analysis for quantitatively identifying contextual 
factors and measuring their impact on the variability of pairwise 
clusters.

We make the following three main contributions. 

• Analysis of pairwise correlation of vehicular sensors. Our 
analysis revealed insights into pairwise correlation which can 
be used for future research. We exploit the natural redundancy 
found in vehicular sensors. 

• Application of cluster-analysis to identify contexts of vehicular 
data. This step is crucial in reducing the intra-trip variation 
found in pairwise correlation. 

• Preliminary assessment of pairwise correlation analysis in 
malicious data injection attack detection.

This paper is organized as follows. We review related work and 
motivate our approach in Sec. 2. Sec. 3 describes the IVBSS dataset 
and introduces our core analytic approach — the correlation matrix. 
In Sec. 4, we explore the macroscopic persistence of pairwise 
correlations across trips, drivers and vehicles, while in Sec. 5, we 
investigate the microscopic variability of pairwise correlations within 
a trip. In Sec. 6, we use our understanding of pairwise correlation to 
develop an intrusion or fault detection method. Finally, we discuss 
limitations and future work in Sec. 7 and conclude the paper in Sec. 
8.

2. Related Work
Vehicle infrastructure has recently been under the scrutiny of security 
researchers. Koscher et al.[6] demonstrated a wide range of vehicular 
attacks that are enabled once the attacker gains access to the internal 
CAN bus. Some of the reported attacks may have significant 
safety-critical effects such as disabling the brakes or killing the 
engine. In a follow-up to this work, Checkoway et al.[1] 
demonstrated that such attacks were possible even without direct 

physical access to the victim’s vehicle. Such vehicular attacks were 
reproduced by other researchers [5, 8] leading to an increase in mass 
public attention for vehicular security.

There are many proposed solutions to detect and defend against these 
attacks. Among these, proposals which compare and validate 
cross-sensory data are the most relevant to our approach. Cho et 
al.[2] detect anomalies in the brake sub-system by modeling vehicle 
dynamics. They use the tire friction and current road condition to 
model the expected braking behavior. In contrast to their work, our 
solution is more general and does not require carefully tuned models 
for each sub-system. Our system finds correlations between sensors 
in a data-driven fashion.

Liu et al.[7] detect anomalies in cyber-physical systems using a 
spatiotemporal pattern network and a restricted Boltzman machine. 
They demonstrate how their technique can detect anomalies in smart 
home monitoring environments. In contrast with this domain, 
vehicular sensors naturally express large variations, many of which 
may be falsely considered as anomalous. Our approach reduces the 
large variation by identifying the current context of the data. By 
considering contextual variables, our solution is likely to yield a more 
accurate attack detection rate in diverse situations.

Table 1. IVBSS data sources used in our experiments.

Pajic et al.[9] develop an attack-resilient state estimator which 
functions in the presence of sensor noise. They demonstrate this on 
an automatic cruise-control for a ground vehicle. Their system 
requires a model of how components interact. In a vehicular context, 
this is hard to devise due to many factors outside of our control. Our 
approach attempts to automatically derive the relationships between 
variables in the vehicle without any prior vehicular model.

3. Analysis Overview
Here we describe the IVBSS dataset used in all our experiments and 
describe pairwise correlation of sensors — the main technique used 
in our analysis.
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3.1. IVBSS Dataset
The Integrated Vehicle-based Safety System (IVBSS) dataset [4] was 
collected between April 2009 and May 2010 by the University of 
Michigan Transportation Research Institute (UMTRI) to evaluate the 
impact of collision avoidance systems in driver behavior. The 
researchers recruited 108 drivers in Michigan and distributed 16 
Honda Accords (2006 and 2007 models) amongst them for 6 weeks at 
a time. During this time, they collected diverse sensor data from 
within the vehicle and from the collision avoidance systems. The data 
was collected at various data rates and resampled and normalized to 
10Hz. A selection of some of the variables is shown in Table 1. In 
total, the IVBSS dataset contains over 213,000 miles of driving.

3.2. Pairwise Correlation
At the heart of our analysis is pairwise correlation of variables. We 
study pairwise correlation in the short-time scale — within trips — 
and the larger time scale — across trips, drivers, and vehicles. 
Normal behavior causes related change within the vehicle. For 
instance, pressing the accelerator pedal will result in an increase in 
the speed of the car, cause acceleration in the forward direction, an 
increase in the engine RPM, and a gear shift for automatic systems. 
However, in the presence of a fault or an attack, these relationships 
will no longer hold. If an attacker spoofs the speed of the vehicle, that 
will no longer correlate with the accelerator pedal behavior, and 
therefore can be identified as anomalous.

We performed pairwise correlation between all variables from Table 
1. The variables are divided into two classes — sensors within the 
vehicle which are broadcast on the CAN bus, and sensors from an 
external IMU/GPS system. Correlating both internal and external 
sensors gives us additional redundancy and robustness of the system. 
In order to successfully fool the system, the attacker has to 
compromise both internal and external systems, thus increasing the 
difficulty for a successful attack.

Based on the pairwise correlation matrix, we found unexpected and 
interesting correlations of sensors for individual trips. In many trips, 
the pitch of the vehicle is positively correlated with the acceleration 
pedal negatively correlated with the brake pedal. This captures when 
the vehicle slightly dips forward or backward when the driver 
depresses the acceleration pedal. We also found that the steering 
wheel angle is positively correlated with the yaw rate and that the 
brake is negatively correlated with many variables such as speed, 
throttle, engine speed and acceleration.

However, these correlations differ across multiple trips. To study this 
systematically, we explore which variables are consistently correlated 
for the same driver and how this changes across different drivers and 
different cars. This is presented in the next section.

4. Across-trip Consistency
The pairwise correlation of sensors often changes between trips and 
between drivers. Fig. 2 shows the correlation and average change of 
the correlation across all trips for a single driver. From all pairs of 
variables, we identified 14 pairs which have greater than 0.5 
correlation across for at least one driver. The top sensors and the 
corresponding average correlation matrix are shown in the bottom 
row of Fig. 2 and listed in Table 2.

Among the highly correlated variables, we found four pairs to be 
nearly 100% positively correlated in nearly all the trips. These four 
were speed and GPS speed, acceleration pedal and target throttle, 
throttle and target throttle, and acceleration pedal and target throttle. 
The vehicles in our dataset broadcast the target throttle and current 
throttle as separate values. Due to their high correlation, we can 
easily detect if an attacker modifies one of the variables and not the 
other.

In order to use the bounds for attack detection, we must use a model 
of the correlations that best resembles each driver. The correlations 
shown in Table 2 are for one driver. For a single driver, we calculated 
the correlation of the sensors for a each trip, and measured how much 
it changed from one trip to the next. We show the average correlation 
across trips and the average change in the top right of Fig. 2. In the 
bottom right, we show the same values for the pairs specified in 
Table. 2.

Table 2. Highly correlated pairs, their average correlation and their average 
change in correlation across trips for a single driver. Results were similar for 
other drivers and are thus omitted.

We compared this with how the average correlation varies across 
drivers and across vehicles. The results of this analysis is shown in 
Fig. 3.

Across Drivers
First, we computed the pairwise correlation across all data from a 
single driver, and compared it with other drivers. This is shown in the 
top half of the figure. We found that the first four pairs remain highly 
correlated for all drivers and the remaining pairs vary across drivers. 
For instance, between two drivers in the same vehicle, the correlation 
between vehicle speed and engine speed varies by 0.17 (out of 1 
being perfectly correlated) and the correlation between steering wheel 
angle and yaw rate varies by 0.21. We hypothesize that this is caused 
by driver-specific patterns such as how aggressively the driver turns 
the steering wheel. We plan to investigate these causes manually as 
part of future work.
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Figure 2. The right two figures show the average change of each pair sensors for one of the drivers in our database. The left two figures show the correlation matrix for 
one of the trips for that driver. The top row of figures corresponds to the entire set of pairs. We selected the pairs which correlate more often and tend to have lower 

variance in the bottom two figures. The subset shown in the bottom two figures are highlighted in yellow in the top two figures. The bounds in the bottom right figure is 
the average change of that pair’s correlation across trips for this driver. The axes labels have been removed due to lack of space, when unnecessary.

Across Vehicles
Second, we explored how these correlations vary across different 
vehicles. Each vehicle has between 7–10 drivers and there are 16 
vehicles in total. For each vehicle, we computed the correlation of all 
pairwise sensor data to get an aggregate correlation value. This 
correlation is shown for all 16 vehicles in the bottom of Fig. 3. The 
maximum difference between a pair of vehicles is 0.089 correlation 
between the brake and engine speed.

Pairwise correlation varies more across drivers and remains more 
consistent across vehicles. Understanding this difference in variability 
is part of our future work. We hypothesize that there are driver-
specific differences such as location and driving style which leads to 
changes in pairwise correlation across drivers. Furthermore, because 
vehicles were shared amongst multiple drivers over the span of the 
study, the vehicles may be exposed to these differences, and thus the 
inter-vehicular pairwise correlations tend to be similar.

The inter-driver variability has implications for anomaly or intrusion 
detection. One may create a general model of pairwise correlation for 
the vehicle and iteratively fine-tune the model for the individual 
driver.

5. Within-trip Consistency
In order to use the correlation of sensors to detect attacks, we must 
look at the correlation matrix in a small time window in the current 
trip. If the current time-window correlation differs from the expected, 
we can flag it as an attack.

In this section, we investigate the nature of within-trip correlation 
fluctuations. Fig 4a shows the example variation within a trip of a 
subset of the highly-correlated pairs from Table 2. We calculated the 
correlation within a sliding window of 100 seconds for every second 
of the trip. The entire trip was 2 hours and 32 minutes long. Fig. 4b 
shows the CDF of the standard deviation of the correlation for each 
pair of variables for this trip.

On average, we found the deviation to be considerable. Some of the 
pairs, such as the Throttle and Engine Speed, ranged from ≈ -0.5 to 
0.9 correlation for certain time windows. We found a similar 
variability for other trips and other drivers.
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Figure 3. The aggregate correlation of all trips across different drivers and different vehicles. The top figure shows the average correlation for all 9 drivers using vehicle 
1. The bottom figure shows the average correlation for all 16 vehicles. The ID in the X-axis corresponds to the pair of sensors in Table 2.

This is in contrast with the results in Section 4 where we found much 
lower variation in pairwise correlation across trips, drivers and 
vehicles. The analysis in this section is restricted to time windows 
within one trip.

We formed two hypotheses to explain this high variation within one 
trip: (1) the variation is caused by different contexts of the driver, 
vehicle and surroundings at each point in time, and (2) within a single 
context, the variability of the pairwise correlations is much lower. If 
these hypotheses prove true, then we can use knowledge of the 
current context to draw bounds for expected behavior and detect 
anomalous behavior caused by attacks or other factors.

(a). Correlation variation of highly correlated variables within one trip.

(b). CDF of variation for select pairs of variables

Figure 4. The distribution of pairwise correlation within a single trip. One trip 
was divided into multiple 100-second segments. Each pairwise correlation 
was calculated for each segment and shown above in the scatter plot and the 
accompanying CDF. The colors in the scatter plot correspond with the colored 
lines in the CDF.

The above hypotheses are motivated by the following examples. 
Consider the correlation between GPS-speed and speedometer value. 
In normal situations these are nearly perfectly correlated. However, 
when the vehicle goes through a tunnel, the GPS-speed will be 
inaccurate due to poor GPS receptivity. In this situation, the 
correlation between these two variables will be much lower.

Similarly, consider the correlation between acceleration of the car 
and acceleration pedal. If the driver goes uphill, he will have to 
depress the acceleration pedal more in order counteract the force of 
gravity and accelerate the car. In con trast, if he goes downhill, he 
only has to lightly apply the acceleration pedal to speed up the car. In 
the former case, the two variables are highly correlated and are less 
so in the latter case.

We developed the tools to ask our database whether such contexts 
exist and whether our above two hypotheses are correct. We present 
our results next and report on the amount of standard deviation within 
each context.

5.1. Cluster Analysis
We investigated contexts using cluster analysis. For a particular set of 
pairwise variables, one context may lead to very distinct correlations 
compared to another context, thus forming multiple clusters.

We divided each trip into 100-second windows and calculated the 
correlations of certain pairs of sensors. We treat this as a point in an 
N-dimensional space, where N is the number of pairs being 
considered. We applied DBSCAN [3] to identify clusters in this 
N-dimensional space. By looking for clusters in this N-dimensional 
space as opposed to in individual pairs, we are able to capture richer 
relationships between variables.

The selection of pairwise variables directly affects the identification 
of clusters. Table 1 has 14 variables and 14*14 = 196 possible pairs 
of variables. We selected subsets of these which are likely to form 
clusters for different contexts. Specifically, we used the pairs from 
Tables 2 and 3. We heuristically chose the pairs in Table 3 to better 
capture the context of aggressive or sudden driving. For instance, if 
the brake is applied in a forceful and sudden fashion, the master 
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cylinder pressure will increase rapidly. Part of our future work is to 
systematically choose pairs of variables which naturally form 
clusters.

Fig 5 shows clusters for one of the drivers in our database. For this 
example, we chose the variables from Table 3. We used 100-second 
windows within each trip for this driver and set the epsilon parameter 
to 0.2 and minimum samples required to form a cluster to 100.

In Fig. 5, we can see the presence of two clusters. The right side of 
Fig. 5 shows the average correlation and standard deviation of 
members of each cluster. In the green cluster, the brake and master 
cylinder pressure were much more correlated when compared to the 
brown cluster. The pitch was also more positively and more 
negatively correlated with brake and accelerator pedal, respectively, 
when compared to the the brown cluster.

The average inter-cluster distance is 0.99 and the intra-cluster 
distance is 0.41, strongly suggesting the presence of well-defined 
clusters. The standard deviation of individual pairs within each 
cluster is quite small. For example, the standard deviation of the 
brake and master cylinder pressure is 0.06 for the green cluster and 
0.05 for the brown cluster. However, when both are considered 
together, the standard deviation is much larger — 0.41 in total.

Table 3. A subset of variables from the IVBSS dataset specifically chosen to 
capture the context of aggressive driving. If the driver quickly applies the 
brake or jolts the vehicle when accelerating or turning, we expect to see a high 
positive or negative correlation among these pairs.

For the variables in Tables 2 and 3, we surveyed all 108 drivers in our 
database for the presence of clusters. For each driver, we used a 
100-second time window through their trips and generated correlation 
signatures. For all experiments, we empirically set the DBSCAN 
parameters to EPS=0.1 and minimum points for a cluster=50. We fed 
this into the clustering algorithm and measured how many clusters 
are found for each driver. As shown in Fig. 6, clustering with Table 3 
predominantly yields two clusters (59 drivers) and for all but one 
driver, it finds 2 or more clusters. Clustering with Table 2 yields a 
wider spread of clusters. For 22 drivers, it only identified 1 cluster, 
and identified at least 2 for the remainder.

The different number of clusters for different drivers can be explained 
by the types of data encountered by that driver. For example, if a 
driver lives near a tunnel and often drives through the tunnel, then a 
new cluster will form when they leave GPS range. Deeper manual 
inspection is part of our future work.

DBSCAN is a density-based clustering algorithm and may classify 
some points as unclustered. Fig. 7 shows what percent of trips are 
clustered and what percent remain unclustered. 50% of the drives are 
clustered 51.4% of the time for Table 2 and 50% of the drives are 
clustered 62.4% of the time for Table 3.

Variables in Table 3 more consistently form two cluster and more of 
their trips fall under one of these clusters compared to variables in 
Table 2. This highlights the importance of choosing the right 
variables when searching for clusters. The proper choice of variables 
is one of the focuses of our future work. This is a challenging 
problem because we cannot exhaustively search through all subsets 
of variables (power set of the variables is a combinatorial explosion) 
and must resort to heuristics or other simplifying transformations to 
reduce the search space.

From these results we conclude that (1) clusters exist in pairwise 
correlation and that (2) majority of the time-window correlations fall 
inside these clusters. In future, we will form the connection between 
clusters and contexts. For the purposes our analysis, if we can detect 
the cluster which belongs to a particular time in the drive (based on 
contextual clues such as GPS is out of range), then we can more 
tightly bound the expected pairwise correlation values.

5.2. Variation within each Custer
In the previous section, we established the presence of clusters and 
that majority of the time-windows within a tip falls in one of these 
clusters. In this section, we investigate the second hypothesis formed 
above — the variability within a cluster remains small compared to 
across clusters. If the variability is low, we can form a tighter bound 
of expected behavior and detect anomalies more accurately.

Figs. 9a and 9b show the change in standard deviation when 
clustering the trip data for variables in Tables 3 and 2, respectively. 
The figures show the standard deviation of the unclustered trips and 
the average standard deviation of all the clusters for both variable 
sets. For Table 3, clusters reduce the standard deviation to 15.5% of 
the unclustered standard deviation in the best case, and 91% in the 
worst case. For Table 2, they reduce the standard deviation to 19.8% 
in the best case and 50.6% in the worst case.

6. Detecting Attacks
In this section, we leverage our understanding of clusters and 
pairwise correlations to detect an anomaly. This may be caused by a 
malicious attack or a system fault. The pseudocode to detect an attack 
is shown in Fig. 8. For each time window, the context is first 
determined and the cluster describing that context is identified. Then, 
we perform the pairwise cross correlation and compare the computed 
correlation values with those expected for that cluster. For each pair, 
we calculate the deviation from the mean correlation value for that 
cluster and report it in terms of number of standard deviations from 
the mean.

(a). Two clusters emerge in the pairwise correlation.
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(b). The average value and the standard deviation for each pair of variables.

Figure 5. Each trip for a driver was divided into 100-second windows. Within 
each 1 minute window, we calculated the correlation and used DBSCAN to 
find clusters. For this driver, DBSCAN identified two clusters.

Figure 6. Histogram of how many clusters we found for each of the contexts 
specified in Table 3. For each driver, we collected all 100-second time 
windows for their trips and ran DBSCAN on the final aggregate plot. We used 
epsilon between clusters = 0.3 and minimum samples within each cluster = 50

We spoofed the speed of the vehicle by modifying collected vehicle 
traces. Specifically, the attacker injects fake speed values into the 
CAN bus for 50 seconds from 800– 850. He brings the speed down 
from the current speed to 4 mph in that time frame, then stops the 
attack and the vehicle resumes to broadcast the correct value. The 
attack and detection results are shown in Fig. 10.

When considering the context and cluster, we notice a considerable 
spike immediately at the attacked time. The error rises to 106.6 x the 
standard deviation for that cluster. However, when we fail to consider 
the cluster, the error only rises to 4.59 x the standard deviation. This 
may be sufficient to detect the attack, however, we notice that in at 
other times, the error rises to 4.48 x the standard deviation even when 
there is no attack. For the clustered case, the error rises up to 3.05 x 
the standard deviation when there is no attack. However, this is 
dwarfed by the spike in error at the actual attack time so can be safely 
disregarded.

Figure 7. The percent of time windows which fall under a cluster across all 
drivers for each context.

Our preliminary results on attack detection using pairwise 
correlations is very promising. In future, we will more thoroughly 
study this for different kinds of attacks and more broadly across our 
entire database.

7. Discussion and Future Work

Context vs. Cluster
Naturally there is a lot of variation of pairwise correlations within a 
single drive. This is caused by various factors such as road condition, 
driving behavior, time of day or outside weather. One of our key 
findings is that such conditions manifest as clusters in the set of 
pairwise correlations, and that the variability within each cluster is 
smaller than without clusters. We are currently bridging the gap 
between clusters and context of the vehicle or driver. We are studying 
which contexts give rise to clusters, and how we can determine the 
current context of the driver accurately. This will help deepen our 
understanding of clusters and make it easier to identify to which 
context the vehicle currently belongs.

Multi-layered Detection
In this paper, we explored the pairwise correlation between sensors 
within the vehicle (e.g. speedometer, engine RPM) and sensors in an 
external IMU unit. This can be enhanced by considering other 
sources of information. We envision a multi-layered system which 
uses (1) local vehicular data, (2) passenger and driver smartphone 
sensors, (3) vehicle-to-vehicle communication, and (4) collaboration 
from cloud services to better model the expected behavior of the 
vehicle. We hypothesize that with the proper fusion of all this 
information, we can create tight bounds on the expected behavior and 
quickly and accurately detect attacks or faults.

Figure 8. Pseudocode for attack detection
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      (a). Variables from Table 3                   (b). Variables from Table 2

Figure 9. The average standard deviation for unclustered and clustered trips 
for each set of variables. We averaged the standard deviation of the clustered 
and unclustered across all drivers in the IVBSS dataset. In many cases, we 
found that clustering significantly reduces the standard deviation of the 
pairwise correlation, therefore making it a promising technique for attack 
detection.

Beyond Anomaly Detection
Once we detect anomalous correlation between pairs of sensors, we 
need to determine the cause of the anomaly and take remedial 
actions. The cause could be a number of situations including a 
malicious attack, ECU fault or extreme driving conditions. Any 
remedial action has to improve security while ensuring safety of 
vehicles and drivers. We will explore this post-anomaly aspect as part 
of our future work.

8. Conclusion
Vehicle security is becoming paramount as we enter the era of 
intelligent and self-driving cars. Costly solutions include adding 
redundant sensors within the vehicle. We present an alternate solution 
which takes advantage of existing redundancy in heterogenous 
sensors.

Figure 10. The bottom figure shows the attack on the speed sensor of the 
vehicle. From 800–850 seconds, the vehicle speed is spoofed to appear as 
though it is slowing down to 4 mph. Then, it returns back to normal after a 
few minutes. The attacked signal is in red and the original trip is in blue. The 
top figure shows the normalized error (measured as a multiple of the standard 
deviation) with and without clusters, shown in red and blue, respectively. The 
Y axis of the top figure is drawn in log scale to highlight the difference 
between unclustered and clustered cases.

In this paper, we make inroads on this defense by studying the nature 
of the correlation between sensors. In the macroscopic scale across 
trips and drivers, there is low pairwise correlation variability, but in 
the microscopic scale within one trip we found significant variability. 
This variability is caused by different contexts of the vehicle. With 
this insight, we employed cluster analysis to model the context and 
reduce the variability. Finally, we demonstrated how pairwise 
correlation can be used to detect an attack on the vehicle’s ECUs.9. 
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