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a b s t r a c t 

In a typical cyber-physical system (CPS), the cyber/computation subsystem controls the physical subsys- 

tem, and therefore the computer society has recently paid considerable attention to CPS research. To 

keep such a CPS stable, feedback control with periodic computation tasks has been widely used, and 

its theoretical guarantee of stability has been made with periodic real-time task models that enforce 

strict periodic control updates. However, some control update misses are usually allowed (e.g., via sys- 

tem over-design) in certain physical subsystem states (PSSes) without causing system instability, and the 

resources required for strict periodic control updates can thus be reduced or used for other purposes, 

achieving efficient controls for the entire CPS in terms of the operational cost, such as fuel consumption 

or tracking accuracy. In this paper, we propose a new periodic, fault-tolerant CPS task model , which not 

only expresses efficiency and stability of the underlying physical subsystem, but also generalizes exist- 

ing periodic real-time task models, by capturing a tolerable number of control update misses in different 

PSSes. To demonstrate the utility of this model, we develop a new scheduling mechanism that prioritizes 

jobs (i.e., periodic invocations) of a set of tasks not only by the nature of each task, but also by the num- 

ber of consecutive prior job deadline misses. Based on its analysis in terms of stability and efficiency, we 

also propose a priority-assignment policy that lowers the system operation cost without compromising 

stability. Our in-depth analysis and simulation results show that the scheduling mechanism and its anal- 

ysis, as well as the priority-assignment policy under the proposed model not only generalize the existing 

periodic real-time task models, but also significantly lower the system operation cost without losing sta- 

bility. 

© 2017 Elsevier Inc. All rights reserved. 
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. Introduction 

Engineered systems with computation and physical parts have

een getting more complex and tightly interacting with each

ther, necessitating a new concept of Cyber-Physical Systems

CPSes) ( National Science Foundation NSF, 2014; Lee, 2006, 2008 ).

s a new systems science of tight integration and coordina-

ion between computation and physical processes, CPS researchers

ave been exploring various functional/non-functional attributes, 

uch as stability, efficiency, reliability, predictability, and auton-

my. Since the computation process takes an important part in

PSes, the computer society has paid attention to CPS research,

.g., Chipara et al. (2013) ; Shen et al. (2015) ; Yang et al. (2015) . 
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In a diverse collection of CPSes, such as airplanes, robots, and

utomobiles, the computation part controls the physical part, and

uch control systems have traditionally focused on stability—how

o keep the systems stable to prevent catastrophic failure or crash.

o achieve stability, feedback control with periodic computation

asks has been widely studied and deployed in real systems. That

s, each task periodically executes its control “jobs”1 with input

ata taken at the beginning of a period, and as long as every

ob completes execution within the period, the feedback controller

uarantees system stability. Based on periodic control task mod-

ls ( Liu and Layland, 1973 ), numerous real-time scheduling algo-

ithms have also been developed to make such deadline guarantees

ith limited resources ( Törngren, 1998; Davis and Burns, 2011 ).

hese studies presume that all control jobs must be completed be-

ore their deadlines, but this is usually not strictly required in real
1 In the field of real-time computing, periodic invocations of a computation task 

re called jobs . 
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Fig. 1. Periodic steering wheel controls for an unmanned ground vehicle under dif- 

ferent physical subsystem’s states. 
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deployed systems. For example, when an unmanned ground vehi-

cle is running on an unpaved, winding road as shown in Fig. 1 (b),

strictly periodic control updates of the steering wheel are neces-

sary for the vehicle to follow the road without veering off the road,

but some control update misses may not compromise the vehicle’s

safety/stability when the vehicle is running on an even, almost

straight road as in Fig. 1 (a). In this case, the resources allocated for

the strictly periodic controls of the steering wheel can be reduced

or used to finish other control tasks (e.g., controls of acceleration

and break pedals) earlier, achieving more efficient controls for the

entire system in terms of operational or control cost, such as fuel

consumption or deviation from the desired vehicle’s trajectory. 

The goal of this paper is to achieve efficient controls without

compromising stability for CPSes with limited resources by devel-

oping a new task model and a scheduling mechanism that satisfy

the following requirements together : 

G1 A new task model should express stability and efficiency

(i.e., control cost) by capturing the number of tolerable con-

trol update misses; and 

G2 A new scheduling mechanism, associated with the new task

model, should reduce the control cost while guaranteeing

system stability. 

We first develop a new task model that meets G1. To abstract

the effect of a control task on stability and efficiency, the model

employs the number of consecutive job deadline misses of a given

task, i.e., the frequency of control updates. Then, the model is

used to address stability and efficiency, respectively, by limiting the

number (i.e., the minimum frequency) of control updates for each

task, and mapping that number to the control cost (i.e., specify-

ing the control cost according to the frequency of control updates).

Note that since both the limit and the mapping vary with different

physical subsystem’s states (PSSes), e.g., the condition of a road on

which the vehicle is running in Fig. 1 (a) and (b), the model differ-

entiates them according to PSSes. We call this model the periodic,

fault-tolerant CPS task model which will be detailed in Section 2 :

the definition and properties, and the necessity of the new model

compared to existing task models. 

To devise a new scheduling mechanism that meets G2, we dif-

ferentiate jobs of a periodic task by the number of consecutive

job deadline misses of the task experienced before, which is a

key parameter for stability and efficiency under the periodic fault-

tolerant CPS task model. We call the number a cyber subsystem’s

state (CSS), and develop a CSS-level fixed priority scheduling algo-

rithm (CFP), which prioritizes jobs not only by the task itself that

invokes them, but also by each job’s CSS. For a given CSS-level
xed priority ordering, we perform a stability analysis—whether

obs of each task exceed the maximum tolerable number of con-

ecutive job deadline misses, and efficiency—the control cost by

ach task according to the actual number of consecutive deadline

isses of its jobs. Using this analysis, we develop an algorithm that

nds a CSS-level priority ordering that can lower the control cost

ithout causing system instability. To this end, we identify useful

roperties of the optimal priority ordering, and incorporate them

nto a greedy approach to reducing time-complexity. We prove that

FP, its analysis, and the proposed priority assignment are gen-

ralizations of the task-level fixed priority scheduling algorithm

TFP) ( Liu and Layland, 1973 ), its analysis ( Audsley et al., 1991 ), and

ts optimal priority assignment ( Audsley, 1991 ), associated with the

raditional periodic task model ( Liu and Layland, 1973 ). Also, our

n-depth evaluation results show that CFP with this priority as-

ignment significantly reduces the control cost while guarantee-

ng system stability, compared to the optimal priority assignment

or TFP with the traditional periodic task model and an extension

hereof ( Buttazzo et al., 1998, 2002 ). 

The novelty of this paper is to address G1 and G2 together .

hile there are some existing task models which address a part

f G1 (See Section 2 ), they did not properly abstract the efficiency

n G1 so as to facilitate development of G2. In summary, this paper

akes the following two significant contributions: 

• Development of a new periodic, fault-tolerant CPS task model

that not only addresses stability and efficiency in different

PSSes, but also generalizes existing task models; and 

• Development of CFP, its analysis and priority assignment, which

not only are generalizations of the corresponding scheduling,

analysis and priority assignment, but also significantly reduce

the control cost without losing stability, thus demonstrating

benefits of the periodic fault-tolerant CPS task model. 

The remainder of the paper is organized as follows.

ection 2 identifies the requirements of a CPS task model,

nd develops a new CPS task model to meet the requirements.

ection 3 makes a formal definition of CFP, while Section 4 ana-

yzes it in terms of stability and efficiency. Based on the analysis,

ection 5 derives a priority-assignment policy towards the optimal

riority ordering. Section 6 evaluates the efficiency and stability

f CFP under the proposed priority-assignment policy. Finally,

ection 7 concludes the paper. 

. A new periodic CPS task model 

In this section, we develop a new task model that captures

PS stability and efficiency. We first discuss the requirements of

 CPS task model and elaborate why existing task models cannot

ully meet these requirements. Then, we introduce a new CPS task

odel and show how it meets the CPS requirements, along with

ts salient properties. 

.1. Requirements of a new CPS task model 

The periodic task model in Liu and Layland (1973) has been

idely used to represent the feedback loop of a CPS where compu-

ation tasks (part of the cyber subsystem) control the physical sub-

ystem, or the controlled plant. In that model, a real-time control

ask τ i ∈ τ is specified with its period T i and worst-case computa-

ion time C i . That is, at every T i time units, an invocation/job of τ i 

s released with input data (e.g., from sensors) taken at the begin-

ing of the period; each job takes at most C i time units for con-

rol computation, and must be completed before the release of τ i ’s

ext job, i.e., each job of τ i is completed (discarded) within (after)

 i time units. Let J i, h be the hth job of τ i . The execution window
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Fig. 2. Control cost by different update frequencies, where Update i is the output 

computed using Input data i . 
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f J i, h represents an interval between the release and deadline of

 i, h , and | τ | denotes the number of tasks in τ . 

The periodic task model is used to achieve the physical sub-

ystem’s stability and/or other objectives by enforcing every job to

omplete before its deadline. However, such a stringent require-

ent is usually overly conservative/pessimistic since real (phys-

cal) systems in some PSSes (e.g., Fig. 1 (a)) have built-in mar-

ins of “safety” and hence do not lose stability even if some jobs

iss their deadlines. However, a certain number of job deadline

isses degrade control performance/cost, such as fuel/time con-

umption or deviation from a desired trajectory; the more job

eadline misses, the more control cost. This calls for a more gen-

ral task model (than existing ones) that captures tolerable job

eadline misses and the resultant control cost (related to CPS effi-

iency). To capture the stability and efficiency of CPSes, the model

hould meet the following requirements. 

1 The new CPS task model should capture tolerable job deadline

misses without losing system stability. 

2 The model should capture the control cost associated with job

deadline misses (that do not cause system instability). 

3 The model should express a number of job deadline misses

with finite (and meaningful) states, such that the states capture

the coupling between cyber and physical subsystems. 

While R1 and R2 deal with the model’s expressiveness in

erms of CPS stability and efficiency, respectively, R3 enables the

odel to provide a manageable interface/abstraction between cy-

er and physical subsystems that will enable the development of

 scheduling mechanism. That is, under the model compliant with

3, one can (re)arrange schedules that yield less control cost with-

ut losing stability, by identifying and prioritizing tasks using their

bstracted states. 

.2. Why not existing task models? 

Before proposing a new CPS task model that satisfies R1–R3, we

ould like to review if existing models can meet R1–R3. Among

he numerous models of periodic control/non-control tasks, we

rst discuss existing models that allow some job deadline misses.

e can classify such fault-tolerance models with the following two

otions, as defined in Bernat et al. (2001) . 

• Of M consecutive jobs of a task, at least N jobs in any order

meet their deadlines, such as (i) ( m − k ) deadline ( Hamdaoui

and Ramanathan, 1995; Ramanathan, 1999 ) with N = m and

M = k ; (ii) the skip factor s ( Kohen and Shasha, 1995 ) with N =
s and M = (s + 1) ; (iii) window-constrained model ( West et al.,

2004 ) with N = x M = y ; and (iv) job skipping ( Yoshimoto and

Ushio, 2011 ). 
• The event of L consecutive job deadline misses never occurs,

e.g., the criticality factor c and sensitivity of s ( Wedde and

Lind, 1997 ). 

Although the fault-tolerance task models can meet R1 by lim-

ting tolerable job deadline misses with these two notions, they

annot satisfy R2 because they do not account for the control

ost associated with a number of job deadline misses. Also, they

o not define/provide the concept of meaningful finite states that

apture the coupling between cyber and physical subsystems de-

cribed in R3. There are also some models that allow deadline

isses ( Fontanelli et al., 2013a, 2013b ), but they also do not fully

ddress R2 and R3. Therefore, we need a more general task model

hat captures both the stability and efficiency of CPSes. 

Besides the fault-tolerance models, there are other task models

roposed to accommodate more general task parameters, such as

lastic task parameters ( Buttazzo et al., 1998, 2002; Chantem et al.,
009 ), continually varying periods ( Kim et al., 2012 ), two or more

hases of the execution time ( Mok and Chen, 1997; de Niz et al.,

012 ), mandatory and optional execution parts ( Aydin et al., 2001 ),

nd control update delay analysis ( Kim and Shin, 1994 ). Since these

ask models do not allow any deadline miss, they capture neither

fficiency (i.e., R2) nor the coupling between cyber and physical

ubsystems with finite states (i.e., R3). 

.3. New periodic CPS task model 

To develop a new periodic, fault-tolerant CPS task model satis-

ying R1–R3, we make the following two observations. 

O1 The stability of CPSes depends on the number of consecutive

control update misses. In other words, a control system does

not lose its stability in the presence of up to X consecutive

control update misses, where X depends on the dynamics

and state of the underlying control system. 

O2 The control cost depends on the frequency of control up-

dates; the higher the update frequency, the less the con-

trol cost. For example, the control cost with no deadline

miss in Fig. 2 (a) (i.e., update period of T i ) is smaller than

that with alternating deadline miss and success in Fig. 2 (b)

(i.e., update period = 2 · T i ), which is also smaller than that

with two consecutive deadline misses and then success in

Fig. 2 (c) (i.e., update period = 3 · T i ). 

Based on O1 and O2, we abstract the number of job deadline

isses with the number of consecutive job deadline misses. While

his abstraction has a direct connection to R1 as shown in O1, it

lso satisfies R2. For example, the control cost when there is at

ost one (likewise two) deadline miss(es) after a successful con-

rol update is upper-bounded by that with alternating deadline

iss and success in Fig. 2 (b) (likewise two consecutive deadline

isses and then success in Fig. 2 (c)). Therefore, while the con-

rol cost depends on the update frequency as mentioned in O2, we
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can express an upper-bound of the control cost by associating the

control cost with the number of consecutive job deadline misses,

hence satisfying R2. 

Therefore, we propose a new model that captures the stability

and efficiency of a CPS via the number of consecutive job deadline

misses for each real-time control task. To specify the control update

requirements for stability in different PSSes, we use m i ( pss ) to de-

note the maximum number of consecutive job deadline misses of

task τ i without losing stability in a given PSS. Also, to identify jobs

of τ i according to the number of consecutive job deadline misses,

let J � 
i,h 

( 1 ≤ � ≤ m i (pss ) + 1 ) denote the hth job of τ i after missing

(� − 1) consecutive job deadlines, which is defined mathematically

as: 

J � i,h � J i,h | J i,h −1 , · · · , J i,h −� +1 miss their job deadlines 

while J i,h −� does not. (1)

For notational simplicity, we omit h whenever it is irrelevant,

e.g., J � 
i 

instead of J � 
i,h 

. We call � in J � 
i 

the cyber subsystem state

(CSS), and express J � 
i 

as a job of τ i with CSS � . Then, τ i has

( m i (pss ) + 1 ) different classes of jobs according to CSSes, i.e., � =
1 , 2 , · · · , m i (pss ) + 1 . 

To express the control cost for each job with CSS � , we let

I � 
i 
(pss ) denote the control cost incurred by τ i when the control is

updated by τ i every � · T i under a given PSS. For example, I 1 
i 
(pss ) ,

I 2 
i 
(pss ) and I 3 

i 
(pss ) represent the control costs under a given PSS,

when there are 0, 1 and 2 consecutive deadline misses after each

successful control update, respectively, as shown in Fig. 2 (a), (b)

and (c). Note that the control costs { I � 
i 
(pss ) } are associated with

fresh input data ; for example, Updates 3 and 6 in Fig. 2 (c) are

made with Input data 3 and 6, respectively, and therefore, I 3 
i 
(pss )

in Fig. 2 (c) is smaller than the control cost resulting from use of

an old input data , i.e., the control cost with Updates 1 and 4 in

Fig. 2 (d), which are made with Input data 1 and 4, not with Input

data 3 and 6. 

Obviously, I � 
i 
(pss ) is a non-decreasing function of � ; by defini-

tion of m i ( pss ), I � 
i 
(pss ) = ∞ , ∀ � > m i (pss ) + 1 . Also, the control cost

incurred by τ i does not exceed I X 
i 
(pss ) for given 1 ≤ X ≤ m i (pss ) +

1 , as long as the actual number of consecutive job deadline misses

of τ i is less than X . 

The proposed CPS task model satisfies R3 in that the number of

consecutive job deadline misses not only provides the task model

with a “good” abstraction of job deadline misses, but also enables

the model to capture the coupling between cyber ( � ) and physi-

cal subsystems (stability and efficiency). That is, as long as every

job of τ i associated with a cyber element � (i.e., J � 
i 
) does not miss

its deadline for a given 1 ≤ � ≤ m i (pss ) + 1 , we can meet the effi-

ciency and stability requirements of physical subsystems, by guar-

anteeing that τ i does not incur more than the control cost I � 
i 
(pss ) ,

and τ i does not cause the underlying system to be unstable. 

We call the new task model the periodic, fault-tolerant CPS task

model in contrast to the periodic pure task model ( Liu and Lay-

land, 1973 ). Note that one may argue that the model of (m-k)

deadline ( Hamdaoui and Ramanathan, 1995; Ramanathan, 1999 )

can express what our task model does, which is not true; for better

understanding, we will give an example regarding the difference

between the two models at the end of Section 6 . In this paper, we

would like to capture and address both the stability and efficiency

in a given PSS. For simplicity of presentation, we omit the variable

PSS for relevant parameters, i.e., using m i and I � 
i 

instead of m i ( pss )

and I � 
i 
(pss ) . Then, the periodic fault-tolerant CPS task model has

the following properties. 

• J 1 
i,h 

exists only if J i,h −1 completes its execution within T i time

units, or h = 1 , i.e., the first job of τ i . On the other hand, J � 
i,h
for 2 ≤ � ≤ m i + 1 exists only if there exists a predecessor job

J � −1 
i,h −1 

and it misses its deadline. 

• If J � 
i,h 

does not finish its execution within T i time units, the job’s

control update will not be made and the system will use a de-

fault value, such as the previous/old value, depending on the

underlying control algorithm. Thus, we do not execute the job

after its deadline, meaning that at most one job per periodic

task will be ready to execute at any time. 

The periodic fault-tolerant CPS task model is more general than

he existing periodic pure task model, as stated in the following

emma. 

emma 1. The periodic fault-tolerant CPS task model subsumes the

eriodic pure task model ( Liu and Layland, 1973 ). 

roof. If we assign m i = 0 for all τ i ∈ τ , the periodic fault-tolerant

PS task model becomes the usual real-time task model. �

Now, we summarize and emphasize the distinct characteristics

f the periodic fault-tolerant CPS task model. 

1 The model can express both the stability and efficiency of a

control system. 

This has not been achieved by any other existing periodic task

odels, including the fault-tolerance models. 

2 The model does not change the sampling frequency, and pro-

vides a more general form of control updates. 

One approach to adjusting the control update frequency is to

hange the sampling frequency, e.g., ( Seto et al., 1996 ), which

an be accommodated by the task models that adjust task peri-

ds ( Buttazzo et al., 1998, 2002; Chantem et al., 2009; Kim et al.,

012 ), or by overrun execution ( Cervin, 2005 ). While this ap-

roach is suitable for some systems, e.g., automotive engine con-

rol ( Kim et al., 2012 ), it does not have general applicability be-

ause changing the sampling frequency yields different physical

ehavior than allowing some job deadline misses. To see this dif-

erence, let us consider two cases when (i) the task period is ex-

ended by a factor of 3 as shown in Fig. 2 (d); and (ii) two con-

ecutive deadline misses are allowed under our new task model.

f the number of actual consecutive deadline misses is 2 for (ii) as

hown in Fig. 2 (c), the update periods of both (i) and (ii) would

e the same as, and equal to 3 · T i , where T i is the original task

eriod. However, the accuracy of each control update is different

ecause (i) and (ii) use, respectively, 3 · T i and T i time units old in-

uts as shown in Figs. 2 (d) and (c). Besides the accuracy difference

ue to different input data, if there is no or only one deadline miss

fter a successful control update for (ii) as shown in Fig. 2 (a) or (b),

hen (ii) results in a higher update frequency than (i), because (i)

an update its control every 3 · T i time units while (ii) can try a

ontrol update at every T i or 2 · T i . This is a distinct feature of our

ask model, which is provided by neither the task models with fre-

uency change ( Buttazzo et al., 1998, 2002; Chantem et al., 2009;

im et al., 2012 ) nor those with self-triggered execution ( Velasco

t al., 2003; Anta and Tabuada, 2009 ). Therefore, our model ex-

resses more accurate controls and offers a more general form of

ontrol updates. 

3 The characteristics of C1 and C2 are abstracted by a single pa-

rameter ( � ), the number of consecutive job deadline misses of

a given task. 

Thanks to C3, scheduling a control task set associated with our

ask model can easily address stability and efficiency by differen-

iating jobs according to the parameter � . We will present how a
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Algorithm 1 CFP scheduling algorithm. 

Job release : when J � 
k 
is released, 

1: Set the timer of J � 
k 

to t + T k ,where t is the current time. 
2: Check whether there is a currently executing job J y 

i 
. 

3: if J y 
i 

does not exist or p 

y 

i 
< p 

� 
k 

holds then 

4: if J y 
i 

exists then 

5: Stop the execution of J y 
i 

and put the job to the 
ready queue 

6: end if 
7: Start the execution of J � 

k 
. 

8: else 

9: Put J � 
k 

in the ready queue. 
10: end if 

Job completion : when the currently executing job 

J y 
i 
finishes its execution, 

1: Unset the timer of J y 
i 

2: if the ready queue is not empty then 

3: Start the execution of a job with the highest priori- 
tyin the ready queue. 

4: end if 

Timer expiration : when the timer of a job J y 
i 

expires, 

1: if J y 
i 

is currently executing then 

2: Stop the execution of J y 
i 
, and perform the job com- 

pletion process. 
3: else 

4: Remove J y 
i 

from the ready queue. 
5: end if 
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cheduling mechanism utilizes such an abstraction of stability and

fficiency in Sections 3, 4 and 5 . 

One may argue for the need of capturing the average num-

er of consecutive job deadline misses. However, as discussed so

ar, guaranteeing the stable and efficient control of CPSes requires

he actual (but not average) number of consecutive job deadline

isses. To see this more clearly, let us consider two cases: (i) al-

ernating deadline miss and success in Fig. 2 (b), and (ii) no dead-

ine miss for an arbitrarily long period of time and then no control

pdate for that same period. Then, although the average number

f deadline misses of (i) is the same as that of (ii), (ii) causes sys-

em instability due to no update for a long period of time while (i)

oes not. Therefore, the average number of deadline misses is not

 suitable abstraction for the control of CPSes. 

In summary, the periodic fault-tolerant CPS task model captures

ot only the stability and efficiency of control systems under dif-

erent PSSes, but also more general scenarios, only with a single

dditional parameter. Thus, the model is well-suited for real-time

ontrol tasks in CPSes. 

. CSS-level fixed priority scheduling 

Suppose, for example, that in a given PSS, up to two deadline

isses are tolerable after a successful control update for τ k (i.e.,

 k = 2 ). Then, there are three types of τ k ’s jobs according to their

SSes: J 1 
k 
, J 2 

k 
and J 3 

k 
. The timely execution of J 3 

k 
is more impor-

ant/critical than that of J 1 
k 

and J 2 
k 

since missing J 3 
k 

’s deadline leads

o system instability while missing J 1 
k 

’s and J 2 
k 

’s does not. Of J 1 
k 

and

 

2 
k 
, missing the deadline of J 2 

k 
not only incurs more control cost

i.e., I 1 
k 

≤ I 2 
k 

), but also leads to transitioning to a more critical job

tate (i.e., J 3 
k 

). Therefore, in scheduling a job of τ k with other ready

obs, the criticality of τ k ’s job should be considered differently ac-

ording to its CSS, thus calling for the need to assign priority ac-

ording to not only the task itself that invokes jobs, but also each

ob’s CSS. In this section, we describe the CSS-level fixed priority

cheduling algorithm and useful properties thereof. 

Let p � 
k 

( τ k ∈ τ , 1 ≤ � ≤ m k + 1 ) denote the global CSS-level fixed

riority of J � 
k 
; a larger index indicates a higher priority for jobs of

k with the cyber subsystem state � . We consider a scheduling al-

orithm which always executes a job J � 
k 

with the highest CSS-level

riority ( p � 
k 
) among all ready jobs. We call this scheduling the CSS-

evel fixed priority (CFP) scheduling which is described formally in

lgorithm 1 . While the job release and completion processes in

he algorithm are similar to those of the task-level fixed priority

cheduling (TFP) ( Liu and Layland, 1973 ), the timer expiration pro-

ess represents the property of the new task model—disallowance

f the execution of a job J � 
k 

that does not finish execution within

 k time units. Note that Algorithm 1 as well as its analysis and

riority assignment to be presented in Sections 4 and 5 target a

niprocessor platform, which can serve at most one job at a time. 

Note that CFP is a new type of dynamic-priority scheduling

lgorithm; the task priority changes dynamically according to its

obs’ CSS, distinguishing it from the traditional dynamic-priority

cheduling algorithms (e.g., EDF) in which the task priority varies

ith its jobs’ deadlines. 

CFP is a generalization of TFP, as stated in the following lemma.

emma 2. The CFP scheduling algorithm subsumes the TFP scheduling

lgorithm ( Liu and Layland, 1973 ). 

roof. If we assign a task-level uniform priority to all jobs of τ k ∈
, i.e., { p � 

k 
= p k } 1 ≤� ≤m k +1 , CFP with the periodic CPS task model is

quivalent to TFP with the periodic task model. �

w  
. Analysis of stability and efficiency for CFP 

Before deploying and operating a system in the field, we need

o guarantee offline that (i) the system will always remain sta-

le and (ii) controlling the system will not cost more than bud-

eted (e.g., amount of reserved fuel). In this section, we analyze

equirements (i) and (ii) when a task set is scheduled by CFP with

iven CSS-level fixed priority. While the first analysis generalizes

he analysis of TFP, our (improved) analysis links the deadline miss

onditions of the previous jobs to those of the job of interest,

roviding tighter results. This analysis will be used as a basis for

etter priority assignment to reduce operational cost in (ii) while

uaranteeing (i), as detailed in Section 5 . 

.1. The first analysis of CFP 

The analyses of existing scheduling algorithms associated with

he periodic pure task model ( Liu and Layland, 1973 ) usually fo-

us on stability—meeting all job deadlines. To analyze both stabil-

ty and efficiency, we need to adapt the analysis for stability with

espect to the periodic fault-tolerant CPS task model and extend it

or efficiency. To this end, we express stability and efficiency us-

ng the response time of each job J � 
k 
, measured from its release to

ompletion. That is, if the response time of J � 
k 

does not exceed T k ,

e guarantee that (i) J � +1 
k 

does not exist, and (ii) the control cost

ncurred by τ k does not exceed I � 
k 
, which address stability and ef-

ciency, respectively. 

Now, we calculate an upper-bound of a job’s response time.

ince the response time of J � 
k 

depends on the execution time of

ther higher-priority jobs, we first compute the amount of time

obs of τ i ∈ τ to execute in the execution window of J � 
k 
. Let W i ( l,

 ) denote an upper-bound of the amount of execution of τ i ’s jobs

ith priority strictly higher than p in an interval of length l such



50 J. Lee, K.G. Shin / The Journal of Systems and Software 126 (2017) 45–56 

Fig. 3. The amount of execution of τ i ’s jobs with priority higher than p 1 
i 

in an 

interval of length l such that the interval starts at one of the release times of jobs 

of τ i . 
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that the interval starts at one of the release times of τ i ’s jobs.

To calculate W i ( l, p ), let n i ( p ) denote the number of τ i ’s CSSes

whose priorities are strictly higher than p ; by definition, the range

of n i ( p ) is [0, m i + 1 ]. Then, as shown in Fig. 3 (a) where m i = 3

and l = 10 · T i , for every (m i + 1) · T i time units, there exist at most

n i (p 1 
i 
) = 3 jobs of τ i , with priority higher than p 1 

i 
. Therefore, at

most 8 · C i amount of execution is done by J 2 
i 
, J 3 

i 
and J 4 

i 
(i.e., jobs

of τ i with priority higher than p 1 
i 
) during an interval of length

l = 10 · T i that starts at one of the release times of jobs of τ i . How-

ever, this worst case does not always occur; if J 2 
i 

( J 3 
i 

) finishes ex-

ecution within T i time units, J 3 
i 

( J 4 
i 

) does not exist as shown in

Fig. 3 (b), resulting in only 7 · C i amount of execution done by J 2 
i 
, J 3 

i 

and J 4 
i 

in an interval of length l = 10 · T i . Considering the remain-

ing part which does not belong to the multiple of (m i + 1) · T i as

shown in Fig. 3 , we calculate W i ( l, p ) as follows. 

 i (l, p) = 

⌊ 

l 

(m i + 1) · T i 

⌋ 

· n i (p) · C i 

+ min 

(⌈ 

l mod (m i + 1) · T i 
T i 

⌉ 

, n i (p) 
)

· C i . (2)

Using W i ( l, p ), the following lemma derives a property of the

execution time of jobs that have higher priority than p . 

Lemma 3. The time of executing jobs of tasks in τ that have higher

priority than p in an interval of length l is upper-bounded by 
∑ 

τi ∈ τ
W i (l, p) . (3)

Proof. We consider two cases: (a) every τ i ∈ τ with W i ( l, p ) > 0

satisfies that one of jobs of τ i is released at the beginning of the

interval; (b) otherwise. 

By definition, W i ( l, p ) is an upper-bound of the execution time

of τ i ’s jobs with higher priority than p in Case (a). Therefore, the

lemma of Case (a) follows, if Eq. (2) is correct, which is proved as

follows. 

For a job of τ i to finish its execution, we need 1, 2, ... , or m i + 1

tries, in which the number of jobs whose priority is higher than p

is 1 - ( m i + 1 − n i (p) ), 2-( m i + 1 − n i (p) ), ... or n i ( p ), respectively.

For example, in the previous example for Fig. 3 , if there is 1, 2, 3

and 4 tries for a job of τ i to finish its execution, the number of

jobs whose priority is higher than p 1 
i 

is 0, 1, 2 and 3, respectively.

Therefore, to have more jobs whose priority is higher than p within

the interval of interest, (i) the interval should start at the release

of J x 
i 

with the smallest x such that J x 
i 

has a higher priority than p ,

as illustrated in Fig. 3 (a). Also, to have more jobs whose priority is

higher than p within the interval of interest, (ii) each job finishes

its execution with the maximum try, as illustrated in Fig. 3 (a) as

opposed to Fig. 3 (b). Therefore, what remains is to upper-bound
he amount of execution of jobs whose priority is higher than p

ithin the interval of length � , when (i) and (ii) are satisfied, which

s calculated by Eq. (2) as follows. In the inequality, � l 
(m i +1) ·T i � in

he first-term computes the number of full cycles (each of which

onsists of J 2 
i 
, J 3 

i 
, J 4 

i 
, and J 1 

i 
in Fig. 3 (a)) of jobs when (i) and (ii)

re satisfied; then, the first term means the amount of execution

hose priority is higher than p from the full cycles. For example,

here are two full cycles within the interval of interest of length

 = 10 · T i in Fig. 3 (a). Next, the second term means the amount

f execution of jobs (whose priority is higher than p ) that do not

elong the full cycles within the interval of length � ; for example,

uch jobs are the last two jobs J 2 
i 

and J 3 
i 

in the interval of interest

f length � = 10 · T i in Fig. 3 (a). Therefore, Eq. (2) is an upper-bound

f the execution time of τ i ’s jobs whose priority is higher than p

n an interval of length � in Case (a). 

In Case (b), suppose we are interested in an interval [ t, t + l) ,

 job of τ j ∈ τ is released at t − x (0 < x < T j ), and the amount

f execution of τ j ’s jobs with priority higher than p in [ t, t + l) is

trictly larger than W j ( l, p ). This means that the job of τ j released

t t − x is not executed fully or partially in [ t − x, t) due to the ex-

cution of other higher-priority jobs, and the interval [ t − x, t) is

ompletely occupied by the job of τ j or jobs whose priorities are

igher than p ; otherwise, the amount of execution of τ j ’s jobs with

riority higher than p in [ t, t + l) cannot be larger than W j ( l, p ).

n this case, if we consider [ t − x, t − x + l) instead of [ t, t + l) , the

xecution time of jobs of tasks in τ with higher priority than p in

 t − x, t − x + l) is larger than or equal to that in [ t, t + l) . This in-

erval shift can be repeated until the final interval belongs to Case

a) or there is no task τ j whose jobs’ execution with higher pri-

rity than p in the interval of interest is strictly larger than W j ( l,

 ). Then, the execution time of jobs of tasks in τ that have higher

riority than p in the final interval is not smaller than that in the

riginal interval. By Case (a), this proves the lemma of Case (b). �

Using the lemma, we can iteratively calculate an upper-bound

f the response time of J � 
k 
, which is similar to the response time

nalysis under TFP ( Audsley et al., 1991 ). 

heorem 1. Suppose that a task set τ is scheduled by CFP. Then, R x 
∗

k 
s an upper-bound of the response time of J � 

k 
such that the following

ormula satisfies R x 
∗+1 

k 
≤ R x 

∗
k 

, starting from R 0 
k 

= C k : 

 

x +1 ← C k + 

∑ 

τi ∈ τ−{ τk } 
W i (R 

x , p � k ) . (4)

roof. Suppose that R ≥ C k + 

∑ 

τi ∈ τ−{ τk } W i (R, p � 
k 
) holds for given R

 ≤ T k ); we will prove that R is an upper-bound of the response

ime of J � 
k 
. Here, for given J � 

k 
, we assume that J 

y 

k 
with y > � does

ot exist before the job. This is because, if the response time of J � 
k 

s not larger than T k , there does not exist J 
y 

k 
with y > � . So, in this

omputation, J 
y 

k 
with y > � cannot affect the execution of other

obs with higher priority than J � 
k 
. 

By Lemma 3 , the maximum time for J � 
k 

not to execute in an

nterval of length R does not exceed 

∑ 

τi ∈ τ−{ τk } W i (R, p � 
k 
) . Therefore,

f C k + 

∑ 

τi ∈ τ−{ τk } W i (R, p � 
k 
) is not greater than R , J � 

k 
’s execution (as

uch as C k ) is finished within an interval of length R . This implies

hat R is an upper-bound of the response time of J � 
k 
, which proves

he theorem. �

One may argue that the above theorem can be pessimistic be-

ause it does not remove J � +1 
i 

’s effect on Eq. (2) when the response

ime of J � 
i 

does not exceed T i time units, meaning that J � +1 
i 

does

ot exist. The theorem can immediately accommodate this case

y assigning the lowest priority to J � +1 
i 

. However, this is unnec-

ssary since the priority assignment algorithm to be developed in

ection 5 will make such an assignment. 
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Fig. 4. The worst-case for jobs of τ i with a higher priority than J 1 
k 

to execute in 

the execution window of J 1 
k 

and that for jobs of τ i with a higher priority than J 2 
k 

to execute in the execution window of J 2 
k 

cannot happen at the same time. Here a 

grey-colored job of τ i implies a higher priority than the corresponding job of τ k , 

e.g., in Case 1, J 2 
i 

has a higher priority than J 1 
k 
, and J 3 

i 
and J 4 

i 
have a higher priority 

than J 2 
k 

. 
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g  
Then, the following lemma states a generalization of the re-

ponse time analysis in Theorem 1 . 

emma 4. The response time analysis of CFP associated with the pe-

iodic fault-tolerant CPS task model (Theorem 1 ) is a generalization

f the response time analysis of TFP associated with the periodic pure

ask model (Section 2 in Audsley et al. (1991) ). 

roof. As we proved in Lemma 2 , if the task-level uniform prior-

ty ( p k ) is assigned to J � 
k 

for all 1 ≤ � ≤ m k + 1 , CFP is equivalent

o TFP. In such a case, n i ( p k ) is equal to m i if p i > p k (0, other-

ise), and therefore, W i ( l, p k ) in Eq. (2) is reduced by � l T i 
� · C i if

 i > p k (0, otherwise). Then, Eq. (4) is also reduced by R x +1 ←
 k + 

∑ 

τi ∈ τ−{ τk }| p i >p k 
� R x T i 

� · C i , which is the same as the response

ime analysis of TFP. �

There are 
∑ 

τi ∈ τ (m i + 1) different priorities, and each priority

eeds the calculation of | τ | − 1 other tasks’ W i for given R x 
k 
. In

ddition, at most T k iterations are required for the calculation

f R x 
∗

k 
. Thus, Theorem 1 incurs O 

(| τ | · ∑ 

τi ∈ τ m i · max τi ∈ τ T i 
)

time-

omplexity. 

.2. Improved analysis of CFP 

By applying Theorem 1 for all J � 
i 

( τ i ∈ τ , 1 ≤ � ≤ m i + 1 ), we

now whether a given J � 
i 

finishes its execution within T i time units.

lthough the analysis provides conservative guarantees on stability

nd the required control cost, it may introduce a non-trivial pes-

imism in computing the amount of higher-priority job execution.

hat is, while considering the worst-case situation where the re-

ease times of all higher-priority jobs coincide, we can prove that

he situation cannot happen for many cases, an example of which

s given next. 

xample 1. Suppose a task system consists of several task sets

ncluding τk = (T k = 10 , C k = 5 , m k = 1) and τi = (5 , 3 , 3) , and the

elative priority ordering for jobs of τ k and τ i is p 1 
i 

< p 1 
k 

< p 2 
i 

<

p 2 
k 

< p 3 
i 

< p 4 
i 
. As shown in Fig. 4 , W i (T k , p 

1 
k 
) = 2 · C i for J 1 

k 
holds

see Cases 2 and 3). This is because if we focus on J 1 
k 
, J 2 

i 
and

 

3 
i 
, or J 3 

i 
and J 4 

i 
can execute by delaying J 1 

k 
’s execution. Similarly,

 i (T k , p 
2 
k 
) = 2 · C i for J 2 

k 
holds due to the execution of J 3 

i 
and J 4 

i 
(see

ase 1). 

However, to calculate the response time of J 2 
k 
, we can extend

he interval of interest to a continuous interval of length 2 · T k 
ncluding J 2 

k 
itself and its predecessor job J 1 

k 
, because J 2 

k 
exists only

hen J 1 
k 

misses its deadline. Then, as shown in the same figure, the

orst-case for jobs of τ i with a higher priority than J 1 
k 

to execute

n the execution window of J 1 
k 

and that for jobs of τ i with a higher

riority than J 2 
k 

to execute in the execution window of J 2 
k 

cannot

ccur at the same time. That is, if jobs of τ i execute for 2 · C i time

nits in the execution window of J 2 
k 
, the execution of jobs of τ i in
he execution window of J 1 
k 

cannot be larger than C i (see Case 1 in

he figure). On the other hand, if jobs of τ i execute for 2 · C i time

nits in the execution window of J 1 
k 
, the execution of jobs of τ i in

he execution window of J 2 
k 

cannot be larger than C i (see Cases 2

nd 3 in the figure). This can lead to timely execution of J 2 
k 

or the

uarantee of non-existence of J 2 
k 

. 

As illustrated in the above example, a less pessimistic computa-

ion of the response time of J � 
k 

requires examination of the interval

efore J � 
k 
, i.e., J � −1 

k 
, J � −2 

k 
, ���, J 1 

k 
. To investigate the extended inter-

al, we need to identify the worst-case release patterns that upper-

ound the execution time of jobs of other tasks in the execution

indow of jobs of τ k . However, this is challenging because each

redecessor job (e.g., J � 
k 
, J � −1 

k 
, ���, J 1 

k 
) has its own priority, meaning

hat a set of higher-priority jobs of J � 
k 

is different from that of J � 
′ 

k 
if

 � = � ′ . To abstract the complex worst-case response time calcula-

ion, we derive the following property. 

bservation 1. Suppose that J � −1 
k 

misses its deadline, and we want

o calculate the response time of J � 
k 
. We consider two cases: (a) J � 

k 
s executed with its original priority (i.e., p � 

k 
); and (b) J � 

k 
is executed

ith its predecessor priority (i.e., p � −1 
k 

). Then, the response time of

 

� 
k 

in Case (b) is not smaller than that in Case (a). 

Since we assign a lower priority to Case (b), the observation is

traightforward. 

Then, we have new upper-bounds of the response time of J � 
k 

s follows. While we investigate whether J � 
k 

finishes its execution

taking C k time units) within T k times units in Theorem 1 , we in-

estigate 2 consecutive jobs of J � −1 
k 

finish their execution (taking 2

C k time units) within 2 · T k time units, which is generalized in

he following theorem. 

heorem 2. Suppose that a task set τ is scheduled by CFP. Then, an

pper bound of the response time of J � 
k 

is R x 
∗(α) 

k 
− T k · α such that the

ollowing formula satisfies R x 
∗(α)+1 

k 
≤ R x 

∗(α) 
k 

, starting from R 0 
k 

= C k +
 k · α, for a given integer α (0 ≤ α ≤ � − 1) : 

 

x +1 ← (α + 1) · C k + 

∑ 

τi ∈ τ−{ τk } 
W i (R 

x , p � −α
k 

) . (5) 

Then, we use an upper-bound of the response time of J � 
k 

as

in 0 ≤α≤� −1 R 
x ∗(α) 
k 

− T k · α. 

roof. To calculate the response time of J � 
k 
, we assume that J � −1 

k 
isses its deadline; otherwise, J � 

k 
does not exist. Using this as-

umption and Observation 1 , we can derive another upper-bound

f the response time J � 
k 
, by calculating the response time of the

ast job of J � −α
k 

when α + 1 consecutive jobs of J � −α
k 

are released

nd the first α jobs miss their deadlines. �

Note that Theorem 2 is a generalization of Theorem 1 in that

he former with α = 0 is the same as the latter. Then, by Lemma 4,

heorem 2 is also a generalization of the response time analysis

f TFP associated with the periodic pure task model (Section 2

n Audsley et al. (1991) ). 

Compared to Theorem 1, Theorem 2 repeats the response

ime calculation process in Theorem 1 at most max τi ∈ τ m i times.

herefore, the time-complexity of Theorem 2 is O 

(| τ | · ∑ 

τi ∈ τ m i ·
ax τi ∈ τ m i · max τi ∈ τ T i 

)
. 

. Priority assignment for CFP 

In Section 4 , we provided a theoretic basis for assuring sta-

ility and measuring the required control cost under CFP with a

iven priority assignment. We now present an algorithm that finds
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a “better” priority assignment of CFP, yielding smaller control costs

without compromising stability. 

Since there are 
∑ 

τi ∈ τ (m i + 1) different priorities to be as-

signed for CFP, the number of possible priority assignments is in

O 

(
( 
∑ 

τi ∈ τ (m i + 1))! 
)
, which is an exponential function of the num-

ber of tasks in τ . Therefore, our goal is to develop an algorithm

that finds a “good” priority assignment with reasonable time-

complexity. To do this, we design an algorithm that determines

priorities from the lowest to the highest. As shown in Algorithm 2 ,

we assign the lowest priority first in Line 1, assuming all undecided

priorities are the highest in Line 2. Then, the while-loop in Lines

3–22 is executed until there is no undecided priority. For the given

remaining undecided lowest priority, the for-loop in Lines 5–15 in-

vestigates a job per task such that the response time of the job

does not exceed its period. If so, the current priority is assigned to

the job. This preserves the optimal priority assignment in terms of

stability and efficiency, as stated in the following observation. Note

that J in Line 16 becomes empty only when 

ˆ � in Line 7 is equal to

m i + 1 and the upper-bound of the response time of J 
m i +1 

i 
is larger

than T i (since it does not execute Line 13); this implies the task

set’s instability. 

Observation 2. In Algorithm 2 , if the priority of J � 
i 

is assigned by

Line 12, J � 
i 

for all ˆ � ≤ � ≤ m i + 1 does not affect the response time

of all other jobs whose priorities are not yet determined (i.e., all

other jobs which will eventually be assigned a higher priority than

J � 
i 

for all ˆ � ≤ � ≤ m i + 1 ). 

Algorithm 2 Priority assignment for CFP. 

1: p curr ← 1 , i.e., we determine the lowest priority first. 
2: p 

� 
i 
← p max , ∀ J � 

i 
where τi ∈ τ and 1 ≤ � ≤ m i + 1 . 

3: while there exists J � 
i 

such that p 

� 
i 
= p max do 

4: J ← ∅ . 
5: for ∀ τi ∈ τ such that ∃ p 

� 
i 
= p max do 

6: ˆ � ← the smallest � such that p 

� 
i 
= p max . 

7: if ˆ � < m i + 1 then 

8: J ← J ∪ { J ˆ � 
i 
} 

9: end if 
10: Calculate an upper-bound of the response time

of J ˆ � 
i 

in case it has the priority of p curr using Theorem 2. 
11: if the upper-bound is smaller than or equal to T i 

then 

12: p 

� 
i 
← p curr , ∀ ̂

 � ≤ � ≤ m i + 1 . 
13: Exit for-loop and go to Line 21. 
14: end if 
15: end for 
16: if J = ∅ then 

17: Return UNSTABLE 

18: else 

19: Find J � 
i 

∈ J which has the smallest I � +1 
i 

− I � 
i 
, and

then p 

� 
i 
← p curr . 

20: end if 
21: p curr ← p curr + 1 . 
22: end while 

23: Return STABLE with { p 

� 
i 
} . 

The above observation holds since if the response time of J ˆ � 
i 

is

smaller than or equal to T i , then J � 
i 

does not exist for all ˆ � + 1 ≤
� ≤ m i + 1 . Thus, as long as the for-loop finds such J ˆ � 

i 
, the priority

assignment guarantees the control cost incurred by τ i not to ex-

ceed I ˆ � 
i 

and every job of τ i does not affect the execution of all jobs

whose priorities are not assigned but will be higher than J ˆ � 
i 
. 
However, if the for-loop cannot find any job that satisfies Line

1, we need to assign the lowest undecided priority ( p curr ) to a job

hich cannot be completed before its deadline. Here, we do not

elect a job with CSS (m i + 1) (i.e., J 
m i +1 

i 
) for all τ i ∈ τ since it

esults in system instability. Then, unlike the priority assignment

y Line 12, the selected job with CSS � can affect the execution of

ther jobs whose priorities are not assigned, because it’s successive

ob with CSS (� + 1) exists and may eventually have higher prior-

ty. Among other jobs whose priorities are undecided, we choose

 job J � 
i 

with the smallest I � +1 
i 

− I � 
i 
, meaning the selection of a job

hat results in the smallest rise of control cost with the current

ssignment. The heuristic decision is described in Lines 16–20 in

lgorithm 2 . 

Except for the heuristic decision when there is no timely-

xecutable job to be assigned, our priority-assignment algorithm

s optimal, as stated in the following lemma. 

emma 5. Suppose there exists a priority ordering that guarantees

tability by Theorem 2 . Then, Algorithm 2 finds a priority ordering

hich results in the smallest control cost without compromising sta-

ility with respect to Theorem 2 , if no priority is assigned by Line 19. 

roof. The lemma holds because Algorithm 2 is a generalization

f the optimal priority assignment for TFP ( Audsley et al., 1991 ).

hat is, if Line 19 is not performed, the priority ordering for CFP

s reduced to that for TFP because all jobs invoked by a task have

he same priority by Line 12. This also means that if the algorithm

eturns STABLE in Line 23, the control cost is a simple sum of I 1 
i 

or all τ i ∈ τ , resulting in the minimum control cost without losing

tability. �

While Lemma 5 proves the optimality of Algorithm 2 for triv-

al cases, Section 6 will demonstrate that Algorithm 2 significantly

educes the control cost without compromising stability, even for

eneral cases where some priorities are assigned by Line 19. 

Then, whenever we determine a job priority, the for-loop in-

estigates at most one job per task, executing Theorem 2 O (| τ |)

imes. Since there are 
∑ 

τi ∈ τ (m i + 1) priorities to be determined,

lgorithm 2 needs to execute Theorem 2 O 

(| τ | · ∑ 

τi ∈ τ m i 

)
times.

herefore, the total time-complexity of Algorithm 2 is O 

(
| τ | 2 ·

∑ 

τi ∈ τ m i 

)2 · max τi ∈ τ m i · max τi ∈ τ T i 

)
. 

. Evaluation 

This section demonstrates the capability of the periodic fault-

olerant CPS task model to make a significant improvement of

tability and efficiency. We first describe how to generate task

ets, and then compare CFP with the priority assignment in

lgorithm 2 associated with the periodic CPS task model, and the

orresponding scheduling (i.e., TFP) with the optimal priority as-

ignment associated with the periodic pure task model and its ex-

ended model. 

.1. Task set generation 

As a basis for task set generation, we adapt the technique in

aker (2005) , which has been widely used ( Bertogna et al., 2009;

ee et al., 2015 ). To broaden the spectrum of task sets to be tested,

e use 10 different distributions for C i / T i : bimodal distributions

ith p = 0.1, 0.3, 0.5, 0.7 or 0.9, where the value of C i / T i is uni-

ormly chosen in [0, 0.5) with probability p and in [0.5, 1) with

robability 1 − p, and exponential distributions with 1 /λ = 0.1, 0.3,

.5, 0.7 or 0.9, whose probability density function is λ · exp (−λ · x ) .

or each task, T i is uniformly chosen in [1 , T max = 10 0 0) , and C i is

hosen based on a bimodal or exponential parameter. 
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Table 1 

The number of task sets proven stable by Pure 

and Ours ( ·). 

Task model the number of task sets 

with scheduling proven stable 

Pure 1906 

Ours (0) 1906 

Ours (1) 2892 

Ours (2) 3201 

Ours (3) 3336 

Ours (4) 3397 

Table 2 

Control cost ratio between 

Ours ( m ) and Elas ( m ) with 

different cost functions. 

m Ours ( m ) / Elas ( m ) 

Exp Lin Ran 

0 1 .0 1 .0 1 .0 

1 0 .62 0 .62 0 .66 

2 0 .46 0 .52 0 .56 

3 0 .38 0 .47 0 .51 

4 0 .34 0 .44 0 .48 

 

a  

E  

t  

o

 

t  

w  

(  

p  

a  

a  

b  

T  

i

 

d  

F  

w  

c  

F  

t  

t  

n  

d  

t  

s

 

c  

b  

i  

(  

c  

h  

t  

Elas(m) , we represent the control cost of Elas(m) using the fresh input data, e.g., 
For each distribution of C i / T i , we repeat the following procedure

nd generate 10 0 0 task sets, thus yielding a total of 10,0 0 0 task

ets. 

1. Initially, generate a set of two tasks. 

2. Include the current task set for evaluation. 

3. If the number of tasks in the current task set is not larger than

n max = 10 , add a new task to the current task set and return

to Step 2. Otherwise, discard the current task set and return to

Step 1. 

.2. Generation of control cost functions 

While the parameters generated in Section 6.1 are also required

or the pure periodic task model, we need to determine additional

arameters for the periodic fault-tolerant CPS task model: { m i } and

 I � 
i 
} . To study the effect of m i , we consider five different settings for

 i ; m i for every task τ i in each task set is set to 0,1,2,3 and 4. To

nvestigate how the control cost function affects our scheduling,

e consider three different control cost functions for { I � 
i 
} : expo-

ential, linear and random functions, which are denoted by Exp ,

in and Ran , respectively. 

First, an exponential function is a typical form of cost func-

ion of real control systems. For example, a bubble control system

or modeling the diving control in submarines has been studied in

eto et al. (1996) , and J is its performance index (see the equation

n page 15 of Seto et al. (1996) ). Then, the control cost function

s represented by the difference between the actual value J ( f ) and

he optimal control J ∗, which is shown to be an exponential func-

ion as in Fig. 2 in Seto et al. (1996) . We can also find other ex-

onential control cost functions in real control systems (see Fig. 7

n Shin et al. (1985) , Fig. 4 in Palopoli et al. (20 0 0) and Fig. 4 in

oshimoto and Ushio (2011) ). To generate an exponential function

or { I � 
i 
} , we uniformly distribute I 1 

i 
for all τ i ∈ τ in [1, 10 0 0). Then,

e set I � +1 
i 

to 2 · I � 
i 
. 

Second, we consider a linear function as a control cost function,

y setting I 1 
i 

for all τ i ∈ τ to a randomly selected value in [1, 10 0 0),

nd then I � 
i 

to � · I 1 
i 

. Finally, a random function is also considered

s a control cost function. To apply a random function to { I � 
i 
} , we

niformly distribute I 1 
i 

for all τ i ∈ τ in [1, 10 0 0). Then, I � 
i 

for all τ i 

 τ and 2 ≤ � ≤ m i + 1 is generated by adding a uniformly random

umber in [1, 10 0 0) to I � −1 
i 

. 

.3. Comparison with respect to stability and efficiency 

With the generated task sets and cost functions, we compare

he following three different scheduling algorithms associated with

ifferent task models: 

• Ours ( m ): CFP with the priority assignment in Algorithm 2 as-

sociated with the periodic fault-tolerant CPS task model when

all tasks in each task set have m i = m ; 
• Pure : TFP ( Liu and Layland, 1973 ) with the optimal priority

assignment ( Audsley, 1991 ), associated with the periodic pure

task model ( Liu and Layland, 1973 ), i.e., no deadline miss is al-

lowed; and 

• Elas ( m ): TFP ( Liu and Layland, 1973 ) with the optimal prior-

ity assignment ( Audsley, 1991 ), associated with the elastic task

model ( Buttazzo et al., 1998, 2002; Chantem et al., 2009; Kim

et al., 2012 ), i.e., the periodic pure task model ( Liu and Lay-

land, 1973 ) with extension of individual periods ( T i ) by ( m +
2 
1 ). 

2 Since we use each period of τ i as (m + 1) · T i , Elas(m) does not yield any 

eadline miss as long as Ours(m) is stable. For comparison between Ours(m) and 

F

e

o

a

Table 1 shows the number of task sets proven stable by Ours ( ·)
nd Pure . Also, Table 2 presents the control cost ratio of Ours ( ·) to
las ( ·), with three different cost functions Exp , Lin , and Ran . From

he results in these tables, we identify three different advantages

f Ours ( ·): generalization, stability and efficiency. 

First, as we proved earlier, the periodic fault-tolerant CPS

ask model, and the CFP scheduling algorithm ( Algorithm 1 )

ith its analysis ( Theorem 2 ) and priority-assignment algorithm

 Algorithm 2 ) are, respectively, generalizations of the periodic

ure task model, and TFP with its analysis and optimal priority-

ssignment algorithm. Therefore, Ours (0) subsumes Pure as well

s Elas (0). The results demonstrate such a relationship; the num-

er of task sets proven stable by Ours (0) and Pure is same in

able 1 , and the control cost by Ours (0) is equal to that by Elas (0)

n Table 2 . 

Second, as shown in Table 1 , if the current PSS allows more

eadline misses, we can accommodate a larger number of tasks.

or example, Ours (4) proves additional 78.2% task sets stable,

hich are not deemed stable by Pure . This improvement is in-

reasing as the number of tasks in each set gets larger, as shown in

ig. 5 (a). When the number of tasks is 2, Ours (4) finds 30.0% addi-

ional stable task sets, i.e., 913 versus 704; the percentage of addi-

ional task sets proven stable by Ours (4) becomes 181.8% when the

umber of tasks is 10, i.e., 124 versus 44. This is because it is more

ifficult to guarantee the stability of sets with a larger number of

asks, and thus Ours (4) has much more room to find additional

table sets with more tasks. 

Third, as to efficiency, Ours ( m ) significantly reduces the control

ost, compared to Elas ( m ) as shown in Table 2 . 3 The difference

etween the control cost incurred by Ours ( m ) and that by Elas ( m )

ncreases as the number of allowed consecutive deadline misses

i.e., m ) gets larger; when m = 4, Ours (4) incurs less than half the

ontrol cost of Elas (4) with all cost functions. We also examine

ow the number of tasks in each task set affects the ratio between

he control costs by Ours (4) and Elas (4). As shown in Fig. 5 (b),
ig. 2 (c). 
3 As we discussed, the control cost of the situation where the control is updated 

very X periods with fresh input as shown in Fig. 2 (c) is no larger than that with 

ld input in Fig. 2 (d). Here, we assume both control costs are the same, which gives 

n advantage to the counterpart Elas ( m ). 
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Fig. 5. Comparison of Ours (4) with Pure and Elas (4) in terms of stability and ef- 

ficiency. 
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the ratio does not highly depend on the number when the cost

function is Exp ; the trend is similar with other cost functions. 

Since other task models discussed in Section 2.2 have differ-

ent characteristics for allowing some job deadline misses, we do

not directly compare them with our approach. For example, the

(m − k ) deadline model in Hamdaoui and Ramanathan (1995) ;

Ramanathan (1999) expresses that in any k consecutive execution

windows, at least m jobs should meet their deadlines. If we com-

pare the (m = 1 , k = 3) deadline model, with our model with al-

lowing two consecutive deadline misses, the former does not ad-

dress R2 (i.e., capturing the control cost associated with job dead-

line misses) and R3 (i.e., expression of a number of job deadline

misses with finite states, such that the states capture the coupling

between cyber and physical subsystems) in Section 2.1 . As shown

in the example, our model is more suitable for control systems

which should meet Requirements R1–R3 in Section 2.1 . 

In summary, the periodic fault-tolerant CPS task model and CFP

with its analysis and priority assignment not only generalize the

existing task model and corresponding scheduling, but also signif-

icantly improve stability and efficiency of the system. 

7. Conclusion and discussion 

In this paper, we have introduced a new periodic fault-tolerant

CPS task model, which not only generalizes existing task models,

but also expresses the physical system’s stability and efficiency by

capturing tolerable control update misses. To demonstrate the util-

ity of this model, we have designed and analyzed a new type of

dynamic-task-priority scheduling called CFP, and also developed an
lgorithm for finding a better priority assignment. Our analysis and

imulation results have shown that CFP associated with the pro-

osed model is more effective in achieving stable and efficient con-

rol of CPSes, than the corresponding scheduling associated with

xisting models, in that it not only guarantees (offline) more task

ets without losing system stability, but also significantly reduces

he control cost. 

Since our focus was confined to introducing the new periodic

ault-tolerant CPS task model and developing a scheduling mecha-

ism with the model under a given PSS, there remains more work

o be done for practical use of the model. From the physical sub-

ystem’s perspective, we need to develop methods for (i) recog-

izing the current PSS and transitioning between different PSSes,

nd (ii) easily and accurately measuring the control cost associated

ith a given number of consecutive job deadline misses. On the

ther hand, cyber subsystems need a scheduling mechanism that

aintains stability and efficiency during a transition between two

ifferent PSSes. Another direction of future work is to study the

ffect of control update with old data, entailing tradeoff between

ower saving and control cost. 
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