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Geomagnetism for Smartphone-Based Indoor Localization:
Challenges, Advances, and Comparisons

SUINING HE and KANG G. SHIN, The University of Michigan, Ann Arbor

Geomagnetism has recently attracted considerable attention for indoor localization due to its pervasiveness
and independence from extra infrastructure. Its location signature has been observed to be temporally
stable and spatially discernible for localization purposes. This survey examines and analyzes the recent
challenges and advances in geomagnetism-based indoor localization using smartphones. We first study
smartphone-based geomagnetism measurements. We then review recent efforts in database construction
and computation reduction, followed by state-of-the-art schemes in localizing the target. For each category,
we identify practical deployment challenges and compare related studies. Finally, we summarize future
directions and provide a guideline for new researchers in this field.

CCS Concepts: • Information systems → Mobile information processing systems;

Additional Key Words and Phrases: Geomagnetism, indoor localization, smartphone, mobile computing

ACM Reference format:

Suining He and Kang G. Shin. 2017. Geomagnetism for Smartphone-Based Indoor Localization: Challenges,
Advances, and Comparisons. ACM Comput. Surv. 50, 6, Article 97 (December 2017), 37 pages.
https://doi.org/10.1145/3139222

1 INTRODUCTION

Localization was, is, and will be an interesting problem for mobile computing, services, and ap-
plications. Location-based service (LBS), and its related applications (like Pokemon Go which
emerged in 2016), have recently created significant commercial and social attraction. The absence/
weakness of Global Positioning System (GPS) signals in indoor environments (Lymberopoulos
et al. 2015) has made indoor LBS (ILBS) an important problem for both industry and academia
(Xiao et al. 2016).

Use of various signals has been explored for indoor localization, including Wi-Fi (Bahl and
Venkata N. Padmanabhan 2000; Liu et al. 2007; He and Chan 2016), UWB (Gezici et al. 2005), RFID
(Yang et al. 2014), FM (Yoon et al. 2016), inertial navigation system (INS) (Harle 2013; Yang et al.
2015), image (Tian et al. 2014; Huang et al. 2015; Chen et al. 2015; Zhang et al. 2016; Gao et al.
2016), magnetic field (Shu et al. 2015b; IndoorAtlas 2016), acoustics (Azizyan et al. 2009; Tung and
Shin 2015), and visible light (Hassan et al. 2015; Zhang and Zhang 2016). Among all of the afore-
mentioned signals, magnetic field (also known as geomagnetism or earth magnetic field) is very
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Fig. 1. Comparison of different signals for smartphone-based indoor localization according to the perfor-
mance reported in literature.

promising due to its pervasiveness in indoor and outdoor environments.1 Unlike the traditional
localization schemes using RF signals (e.g., Wi-Fi), the geomagnetism-based scheme does not re-
quire deployment of extra infrastructure (Zou et al. 2016), while the interference and anomaly
due to the indoor building structures leads to the discernibility of magnetic field for location es-
timation. In other words, a geomagnetism signal map is expected to outperform traditional Wi-Fi
fingerprints in differentiating locations (Zhang et al. 2015). In the 2016 Microsoft Indoor Localiza-
tion Competition, the scheme that fuses geomagnetism with Wi-Fi was reported to outperform
many other schemes in terms of localization accuracy (Su et al. 2016). Recent studies (Wang et al.
2014; Shu et al. 2015a; Xie et al. 2016) have found that a main concern in finding signals for indoor
localization is to achieve sufficient accuracy with minimal additional infrastructure (or dedicated
device modification) cost. We have further identified the relative position of geomagnetism-based
schemes in Figure 1 in terms of accuracy and cost in deployment/infrastructure (including device
modification and extra infrastructure other than phones). Note that the closer to the upper left,
the more cost-effective it would be in mobile settings. This figure shows geomagnetism to be more
cost-effective for smartphone-based indoor localization.

According to the geo-science, we usually consider the geomagnetic field which encircles the
entire earth as a huge “dipole magnet” (Storms et al. 2010). Given the earth’s north and south
poles, animals are believed to utilize the magnetic field to derive directional or even positional
information from the anomalies of EMF (Mora et al. 2004). Leveraging such a magnetic field for
navigation and orientation is not only an engineering practice but also the result from important
biological evidences and studies.

Note that leveraging geomagnetism to determine direction (orientation) has long been studied
(Zhou et al. 2014; Roy et al. 2014; Kok and Schön 2016), while extracting the positional information
from magnetic field is more recent (Suksakulchai et al. 2000), especially for smartphone-based
indoor localization. Each location inside a building may have a signature of geomagnetic
fluctuations which can uniquely identify the location. The spatial anomalies in the measured

1In this article, we use “magnetic field,” “geomagnetism,” and “earth magnetic field” interchangeably.
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Fig. 2. (a) Illustration of a distorted geomagnetic field due to ferrous objects (Zou et al. 2016); (b) indoor
geomagnetism anomalies due to building structures.

geomagnetism are usually introduced by the natural objects or artifacts (Figure 2(a)), where
the local magnetic field is the combination of the primary geomagnetic field and a secondary
one brought by the ferrous object (Zou et al. 2016). Figure 2(b) further illustrates three typical
artifacts influencing indoor geomagnetism, including steel-reinforced concrete, metallic door
frames, pillars, and furniture (Subbu et al. 2013). Other artifacts such as power lines and electric
appliances may also influence the geomagnetic field (Shu et al. 2015a). These magnetic influences
can be easily captured by a commodity smartphone’s magnetometer, form the location signatures

(or fingerprints) and support various ways of estimating indoor locations (Shu et al. 2015a).
Most existing surveys for mobile localization (Shang et al. 2015; Brena et al. 2017) focus on use of

WLAN or RF signals (Gu et al. 2009; Yang et al. 2013; Maghdid et al. 2016; He and Chan 2016; Xiao
et al. 2016; Vo and De 2016), and visible light (Pathak et al. 2015), and inertial-positioning (Harle
2013; Yang et al. 2015). Unlike these localization signals, recent advances in geomagnetism-based
positioning (Xie et al. 2014; Shu et al. 2015a) make pervasive and infrastructure-less deployment of
geomagnetism more likely. In fact, there have been increasing efforts in exploiting geomagnetism,
including smartphone magnetometer readings, signal database construction, and localization (Xie
et al. 2016). Despite various fragmented studies for geomagnetism-based indoor localization (Le
Grand et al. 2012; Frassl et al. 2013; Xie et al. 2014; Shu et al. 2015a, 2015b; Xie et al. 2016), there does
not exist any comprehensive survey of these recent smartphone-based systems, including their
pros and cons. Furthermore, challenges and solutions for practical deployment of geomagnetism-
based localization have not yet been adequately discussed. To fill this important gap, we conduct an
extensive survey of geomagnetism-based indoor localization along with a qualitative comparison
of existing results. Such a comprehensive survey will be a good reference for engineers as well as
researchers in this interesting and promising research field.

Geomagnetism-based localization usually consists of three phases: geomagnetism measurement,
signal map and database construction, and target localization. First, the geomagnetic signals are
measured with the smartphone sensors (by engineers or crowdsourcing users). Then, in the phase
of signal map and database construction, the ILBS constructs the corresponding signal map and
the database (cloud or local). Finally, in the target localization phase, location queries are sent from
the ILBS user. Related signals are processed by a certain algorithm and the corresponding location
is returned to the target user. Figure 3 shows the flow of a basic system framework. Specifically,
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Fig. 3. The basic system workflow of indoor geomagnetism-based localization.

following the earlier phases, we will discuss the challenges and review recent advances (with the
corresponding section titles) in three directions:

a) Geomagnetism measurement on smartphones (Section 2): The measured signals are impor-
tant inputs for a geomagnetism-based ILBS system, determining its success of deployment
with quality. However, the measurements can be noisy and device dependency may ex-
ist. Proximity to ferromagnetic materials, such as iron and nickel, may lead to reading
anomalies in the smartphone magnetometer. Device calibration (including the smartphone
orientation calibration (Roy et al. 2014; Zhou et al. 2014)) should be done before taking
measurements.

b) Geomagnetic signal map construction and maintenance (Section 3): Signal map construc-
tion associates the indoor signal distribution with locations, and transforms the collected
data to a heat map. Collection of the geomagnetic signals and their location labeling can
be time-consuming and labor intensive. Data collected from smartphone sensors can also
be voluminous, leading to large search scope and overhead for location estimation on
resource-constrained smartphones (Galván-Tejada et al. 2013). The constructed signal map
may change due to the dynamically changing indoor environment. For feasible and effi-
cient deployment of geomagnetism-based ILBS, several ways of reducing survey, database
update, and search efforts have recently been taken into account (Wahlström et al. 2013;
Solin et al. 2015; Wang et al. 2016).

c) Target localization with magnetic signals (Section 4): While the geomagnetic measurements
have been found to provide spatial discernibility and temporal stability, how to locate the
smartphones in an indoor environment is still an open and non-trivial problem due to the
dimensionless measurements (i.e., only three dimensions are recorded at each location
point). Furthermore, low discernibility in an indoor open space may deviate the location
estimation performance from the expected. In some earlier studies (Wang et al. 2012;
Abdelnasser et al. 2016), geomagnetic anomalies are exploited as landmarks to indicate the
target location. In more recent studies, spatial-temporal signal patterns (Zhang et al. 2015),
and fusing geomagnetic field data with other sensors (including inertial measurement
unit (IMU) (Xie et al. 2014) and Wi-Fi (Shu et al. 2015a)) has been proposed for the target
location estimation.

One may also deploy artificially generated magnetic fields for localization (De Angelis et al.
2015; Pasku et al. 2017). Specifically, extra infrastructures like pre-deployed electric coils (Markham
et al. 2012) are required beforehand to provide range measurements. The traditional trilateration
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or proximity detection algorithm can then be applied for location estimation (Blankenbach and
Norrdine 2010). Despite the controllable signal measurements, the infrastructure and deployment
cost may become high and limit their scalability. On the other hand, the geomagnetism introduced
in indoor environments can be easily measured by handheld devices like smartphones. To support
more pervasive deployment, we will focus on geomagnetism-based localization using smartphone
sensors (Xie et al. 2014) (or emerging wearable devices (Markham et al. 2010; Abrudan et al. 2016))
for pervasive and mobile computing, which considers resource-constrained computation power,
battery, and system deployment cost. Therefore, we will not consider existing magnetism-based
localization schemes using external magnetic field infrastructures (Sheinker et al. 2013) or more
advanced robot sensors (Suksakulchai et al. 2000; Navarro and Benet 2009; Pirkl and Lukowicz
2012).2 Nevertheless, we will discuss their ideas when applicable or potentially helpful for
smartphone applications.

In summary, this survey makes the following three contributions:

(1) The first comprehensive survey of challenges, approaches and insights in geomagnetism-
based indoor localization in mobile environments;

(2) Identification and analysis of issues and approaches related to practical system
deployment;

(3) Suggestion of future research directions for geomagnetism-based localization.

This article is organized as follows. We first discuss state-of-the-art geomagnetism measure-
ments using smartphones in Section 2. We then summarize the approaches in building and main-
taining a geomagnetism signal database in Section 3. Given the constructed database, we present
several important localization schemes using the magnetometer readings in Section 4. Finally, this
article concludes and summarizes future directions in Section 5.

2 MEASURING GEOMAGNETISM WITH SMARTPHONES

We review the challenges of magnetic measurement and existing approaches thereof. In Section 2.1
we first overview the basics of magnetic field measurements using smartphone sensors or off-the-
shelf magnetometers. Then, in Sections 2.2 and 2.3, we discuss the device and usage/environment
dependency in sensor readings, each of which is followed by the related magnetometer calibration
techniques. Finally, we discuss and summarize these recent advances in Section 2.4.

2.1 Overview of Mobile Geomagnetism Measurement

To express mobile magnetism measurements, the strength of geomagnetic field is considered as a
three-dimensional vector, B = [Bx , By , Bz]T . A magnetic field signal map is built relative to
the earth coordinate regardless of how the smartphone is rotated (Zhou et al. 2014). The magnetic
readings with respect to the mobile device are thus transformed in the coordinate for localization.
Specifically, let Bp be the magnetic field readings at the smartphone coordinate system, and Be

be the environmental magnetic readings (the earth coordinate system). Given the smartphone’s
rotation, that is, yaw ψ , pitch θ , and roll ϕ, let Rx (ϕ), Ry (θ ), and Rz (ψ ) be the corresponding
rotation matrices for the yaw, pitch and roll. We can then define the relationship between Bp and
Be in the two coordinate systems as

Bp = Rx (ϕ)Ry (θ )Rz (ψ )Be . (1)

2Note that some of the existing studies in the field of robotics usually assume the sampling rate of the robot’s magnetometer
can be several hundred hertz, which may not be achievable on most commodity smartphone platforms like Android and
iOS (less than 100Hz in practice) due to resource and energy constraints.
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Table 1. The Magnetometers in the Recent Typical Smartphones (by Jan. 2017)

Device Model Year Sensor Model Measurement Range Sensitivity

iPhone 7 2016 Alps HSCDTD008A ±2,400μT 0.15μT/LSB
Samsung Note 7 2016 AKM AK09916 ±4,912μT 0.15μT/LSB

Samsung S7 2016 AKM AK09911 ±4,900μT 0.6μT/LSB
Google Pixel 2016 AKM AK09915 ±4,912μT 0.15μT/LSB

Google Nexus 6P 2015 Bosch BMM 150 ±1,300 ∼ 2,500μT 0.3μT
Samsung Galaxy S6 2015 Willow YAS537 2,000μT 0.3μT/count

Samsung Note 5 2015 Willow YAS537 2,000μT 0.3μT/count
iPhone 6 2014 AKM AK8963C ±4,900μT 0.6μT/LSB

The magnetic readings contain external environment noises, including hard iron offsets

as well as soft iron deviation (Gebre-Egziabher et al. 2006). Hard iron offsets come from the
slowly time-varying magnetic fields (Gebre-Egziabher et al. 2006). Such fields are introduced
by permanently magnetized materials, yielding a fixed magnetic deviation or offset upon the
measurement. In other words, the offsets or biases are brought by the materials which exhibit a
constant, additive field to the existing EMF, thereby generating a constant offset to the output at
each magnetometer axis (Konvalin 2009). The hard iron effect remains constant for a given area.
In an indoor environment, a speaker magnet, for example, can produce a hard-iron effect upon
the nearby magnetometer (Konvalin 2009). On the other hand, soft iron effect stems from ability
of a ferromagnetic object in supporting its internal magnetism (so-called permeability) when
influenced by the external magnetic field (Gebre-Egziabher et al. 2006). From the magnetometer’s
perspective, it can be considered as the interfering magnetic field induced by the geomagnetic
field onto the unmagnetized ferromagnetic components at the chip-set PCB. For example, iron
and nickel, which do not necessarily generate a magnetic field themselves, can introduce a
soft-iron distortion effect (Konvalin 2009). Thus, the soft iron effect is subject to the measurement
environment, including location and nearby instrumentation.

Let V and W be the effect matrices imposed upon the readings by the hard and soft iron
effects. Based on the preceding discussion, we can model the hard iron bias (offset) as V =

[Vx , Vy , Vz]T , and the soft iron effect as W = [W 1
x ,W

2
x ,W

3
x ; W 1

y ,W
2

y ,W
3

y ; W 1
z ,W

2
z ,W

3
z ]. Con-

sidering the soft- and hard-iron effects, we may first model the geomagnetic measurement in Equa-
tion (1) as Ozyagcilar (2012):

Bp =WRx (ϕ)Ry (θ )Rz (ψ )Be + V. (2)

Besides the environmental influence, we can also consider the measurement error due to the
magnetometer itself. The magnetic sensor introduces three sources of measurement errors: de-

vice offset, scale factor error and sensor misalignment (Gebre-Egziabher et al. 2006). For the same
magnetic field signal, different measurement instruments may yield different readings because of
varying sensitivity of the sensors to the magnetic field. Experimental studies have shown that a
clear offset exists in magnetometer readings (magnitude) even on the same walking path, despite
how the phone is posed. Table 1 lists several typical device models proposed over the last 5 years,
their magnetometer models and corresponding vendors (based on iFixit (2017) and related sensor
datasheets; LSB = Least Significant Bit). Despite the reading differences, one may also observe a
great similarity in the sequence shape subject to some measurement noise or temporal distortion,
which also matches the observations in Shu et al. (2015a). Mathematically, the device offset in the
magnetometer readings can be modeled as Bdev = [ox , oy , oz].
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Scale factor and misalignment error mainly come from the installation imperfection of the sen-
sors. In particular, with respect to different dimensions, we characterize the randomness in the
reading magnitudes as the scale factor errors: Wsf = diag(sx , sy , sz ). Furthermore, misalign-
ment of the sensor exists, which can be further modeled as Wm = [ϵx, ϵy, ϵz]−1, where ϵx, ϵy,
and ϵz are three three-dimensional (3D) column vectors containing the orthogonality corrections.

Based on Equation (2) and the preceding errors, the measurement is finally modeled as

B̂ =Wsf Wm
(
WRx (ϕ)Ry (θ )Rz (ψ )Be + V

)
+ Bdev + N, (3)

where N is considered as a zero-mean white Gaussian noise.
Given the preceding background, we briefly summarize the recent feasibility studies of

geomagnetism-based location estimation. A reliable location signature must have two important
properties: spatial differentiation and temporal stability (Angermann et al. 2012; Frassl et al. 2013).
The feasibility of constructing a geomagnetism-based location signature has recently been studied
extensively (Haverinen and Kemppainen 2009; Li et al. 2012). They involve the time-varying nature
and the spatial variation as discernibility (Solin et al. 2015). The indoor geomagnetism is shown
to exhibit discernible spatial variations and stable temporal fluctuations, which can be used as lo-
cation fingerprints (Subbu et al. 2013). Significant spatial variations have been reported, making
magnetic field another source of positional information. Long-term studies (say, in days (Shu et al.
2015a) or weeks (Subbu et al. 2013)) on its temporal stability have also been reported, showing
reasonably small variations within the measurement. In terms of mobile objects nearby, however,
significant temporal changes have been observed, especially when the user is walking between
metallic objects or in a moving elevator. Despite this, if the metallic objects are reasonably far
away from the magnetometer (say, 1 m), the observations tend to be more stable (Shu et al. 2015a).
Further challenges in device and usage dependency will be discussed next.

2.2 Device Dependency

As modeled earlier, different magnetometers might have different readings for the same magnetic
field, leading to device dependency. In practice, the scale factor Wsf and misalignment Wm in the
magnetometers are given, or hard to be calibrated at the smartphone application level (Xie et al.
2014), and hence most of the existing related studies focus on device calibration of Bdev . Some of
the recent studies (Zheng et al. 2014; Xie et al. 2014; Shu et al. 2015a) on mobile localization ad-
dressed the device dependency issue. The magnetometer information on some smartphone models
has also been investigated (Subbu et al. 2013). Offline calibration that mitigates device heterogene-
ity might be useful, but it is inconvenient to ILBS users. To address this problem, the recent stud-
ies consider sequential measurements as locational signatures, and calculate the signal gradient
between two neighboring data points instead of absolute values (Xie et al. 2014). This way, the
inherent device offset is removed, thus avoiding the need for extensive device calibration.

Another method is to leverage the shape matching of geomagnetic sequence instead of raw
value comparison, which has also been reported in Magicol (Shu et al. 2015a) and WaveLoc
(Rallapalli et al. 2016). Specifically, one may collect a sequence of magnetic field readings along
her/his walking trajectory. When a user is holding another device and walking along the same
path in the same direction, a similar sequence shape in the time domain is expected, despite the
differences of device dependency and measurement noise. Such sequence-shape similarity can
be easily quantified with some existing signal processing schemes, which will be discussed in
Section 4. This way, we can mitigate the effect of device dependency, and directly locate the user’s
walking path. However, the data along the walking path has to be accumulated before conducting
localization, which introduces delay in making a positioning decision. Furthermore, the matching
process has to be suspended and restarted once the user changes her/his walking direction in the
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middle. Making geomagnetism-based localization decisions therefore becomes more complicated
than the traditional point localization.

2.3 Usage and Environment Dependency

Despite the device dependency, at the same indoor position, even the same mobile phone may
experience distinct geomagnetic readings. It may be due to the soft-iron effect introduced by the
nearby metallic objects, which affects the readings with respect to usage and environment. We
term this usage and environment dependency.

Thus, the smartphone magnetometer needs recalibration whenever it is placed in a magneti-
cally different environment. Traditional calibration of device magnetometer, or “compass swing-
ing” (Apple’s Developer Library 2016), has been widely applied on existing Android/iOS platforms.
In these applications, the smartphone needs to be rotated in almost all possible orientations such
that the local magnetic field can be compensated as much as possible.

Many of the earlier studies focus on industrial magnetometer calibration. Based on the difference
in the calibration intuition, we can categorize these methods into three groups: scalar checking (dif-
ference minimization), ellipsoid fitting, and maximum likelihood estimation (Kok and Schön 2016).
Scalar checking aims at minimizing the value difference between the sampled field and that of the
local field (Alonso and Shuster 2002). For ellipsoid fitting approaches (Renaudin et al. 2010), a geo-
metric formulation is usually considered. Specifically, if perfectly calibrated, the smartphone can
measure the rotated version of the local geomagnetic field, which is considered as a sphere with
radius equivalent to this field. In fact, due to the measurement noise, the “locus” of geomagnetic
signal values (Renaudin et al. 2010) (i.e., the reading trace) converts to an ellipsoid. The ellipsoid
of geomagnetic values is hence mapped towards a sphere via the calibration scheme, and finally
the magnetometer gets calibrated.

A more recent study (Kok and Schön 2016) leverages the maximum likelihood (ML) and other
inertial sensors (accelerometer and gyroscope) to map the ellipsoid towards the sphere. Calibration
is done without knowledge of the sensor orientation. The heading estimation is reported to have
been improved significantly. Furthermore, it does not require external equipment and can thus be
operated by any magnetometer users. However, it formulates a non-convex optimization (Boyd
and Vandenberghe 2004) problem to find the ML estimates, which may be computationally expen-
sive for resource-constrained smartphones. Despite the algorithmic difference, the three categories
of magnetometer calibration share the basic principle in magnetometer calibration: to fit the mea-

surement against the local magnetic field.
With the fast development of the smartphone inertial measurement units (IMUs), smartphone-

based algorithms have emerged for more advanced signal calibration. Some heading/orientation
estimation of a smartphone (w.r.t. the earth coordinate) provides higher-level information than the
traditional compass calibration (Abadi et al. 2015), mainly because it involves not only the compass
direction detection but also the holding gesture classification problem in practice (Xie et al. 2014).
Note that the knowledge of smartphone orientation is important for geomagnetism-based indoor
localization. An ILBS system may leverage the magnetic anomalies as location pattern. Meanwhile,
it has to detect the ground-truth of user heading for correct indoor map rotation. A3 (Zhou et al.
2014) and WalkCompass (Roy et al. 2014) are two typical ways of addressing the smartphone’s
heading estimation problem.

A3 in Zhou et al. (2014) leverages the gyroscope, accelerometer and magnetometer to estimate
the smartphone’s attitude. It proposes an automatic method called “opportunistic calibration” to
differentiate the sensing modalities, select the best among them and find the attitude estimation
which is the most accurate. It quantifies the calibration capabilities of each sensor based on their
mutual consistency. For most of the time, the gyroscope reading is considered as the major heading
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Fig. 4. Illustration of smartphone heading estimation via WalkCompass (Roy et al. 2014).

reference. If closely matched measurements in attitude change are made by both of the compass
and gravity sensors, then A3 resets the gyroscope from the new attitude base. Given mutual consis-
tency of sensor readings, A3 reduces the measurement error introduced by the individual sensors.

WalkCompass (Roy et al. 2014) also fuses different smartphone sensors to identify the walking
direction of a target user. WalkCompass designs different techniques other than the aforemen-
tioned approaches, to locate, quantify and isolate the magnetic interference in the environment.
Figure 4 illustrates the basic idea using WalkCompass for magnetometer calibration. Specifically,
given a few walking steps, WalkCompass iteratively conducts magnetic triangulation to cancel the
vector bias (say,�I1,�I2, and�I3 w.r.t. time in the illustration) introduced from outside metallic objects
(say, a metallic pillar).

The details are as follows. Recall that the smartphone magnetometer readings �Bi
p =

�Bi
e +

�Ii (in

the vector space), and the geomagnetic field with respect to the earth, �Bi
e , is usually considered as

static and constant. Based on this, WalkCompass iterates the values of �Be ’s direction. Given the
sequential measurement �Bi

p ’s, one can find�Ii ’s which coincide together (Roy et al. 2014) (minor
deviation might be expected). As the user walks from one side to another, the source of magnetic
interference (say, the metallic pillar) is discovered and the compass reading gets calibrated. Further
fine-grained measurement correction can be made via crowdsourcing when multiple people walk
along the same path and their heading readings can be combined (Abadi et al. 2015).

Despite the measurement and calibration accuracy, WalkCompass needs dynamic walking trace
for orientation estimation, which is in practice inconvenient for many compass applications. If the
user is static or the mobile system is at a cold start, then WalkCompass does not receive sufficient
readings for calibration and may not fully address the compass error.

2.4 Summary and Comparison

Table 2 summarizes the existing studies of geomagnetism calibration and measurement, comparing
their deployability in terms of:

(1) Calibration Accuracy: including calibration performance on device dependency, smartphone

heading, and noise filtering.
(2) Robustness to Measurement and Environmental Noise (or Robustness to Noise): The sensor

measurement contains noise due to the magnetometer fabrication imperfection or the
user mobility. Environmental noise exists due to indoor environment changes. Both may
influence the performance of the final measurement.
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Table 2. Typical Schemes for Device and Usage Calibration

Category Scheme

Calibration

Accuracy

Robustness

to Noise

Battery

Consumption

Limitation in Practi-

cal Deployment

Device

Calibration

Direct DTW @LocateMe

(Subbu et al. 2013)
Low Low Low

Only suitable for

1D trace matching

DTW-based Time-

Normalization

&Clustering @Groping

(Zhang et al. 2015)

High High High

Computationally

high with affinity

propagation clustering;

many samples required

Mean Removal @Magicol

(Shu et al. 2015a)
Medium Medium Low

Error-prone to biased

magnetic field

Differential Fingerprint

@MaLoc (Xie et al. 2014)

@FollowMe Shu et al. 2015b)

Medium Medium Low

Require activity

detection for

walking direction

Usage and

Environment

Calibration

Ellipsoid Fitting

(Renaudin et al. 2010)
Low Low Low

Prone to sensor

measurement noise

ML Estimate

(Kok and Schön 2016)
Medium Medium High

Non-convex optimi-

zation is formulated

A3

(Zhou et al. 2014)
Medium High Low

Depends on

gyroscope quality

Walk-Compass

(Roy et al. 2014)
High Medium High

Dynamic walking

is required

(3) Battery Consumption: If different smartphone sensors other than the magnetometer are
extensively used without proper optimization, then energy consumption would be high,
draining the smartphone battery quickly.

(4) Limitations in Deployment: Some proposed systems may rely on important assumptions or
hypotheses which may not hold in different application scenarios. Based on our deploy-
ment experience, we summarize their potential limitations and provide some insights on
their practical applications.

From Table 2, one can observe that measuring indoor geomagnetism still has some open issues,
and how to practically deploy it is still critical for indoor LBSes. One must know the advances in
the magnetometer and smartphone applications, including automatic hard-iron effect compensa-
tion (Android Sensor Document 2016) and system-level calibration for compass. However, in the
practical application level, we still need to consider better filter design, noise source identification
and energy-efficiency for the geomagnetism measurement (Shu et al. 2015a).

3 CONSTRUCTING GEOMAGNETISM DATABASE

Given the measurements, constructing a signal map is critical for location estimation in ILBS sys-
tems. The signal map construction should be fast and convenient, and adapt to environmental
changes. Furthermore, due to the smartphone’s high sampling rate, the amount of sensed data at
the target site can be huge. The signal map construction should therefore support efficient query of
the current user’s location. This section is organized as follows. We first review the signal map and
database construction (Section 3.1). Then, we discuss the search scope reduction for computational
efficiency (Section 3.2), followed by the survey reduction and signal map studies (Section 3.3). Fi-
nally, we discuss and summarize the recent advances in addressing these issues (Section 3.4).

3.1 Signal Map and Database Construction

We mathematically describe the forces from magnetic objects and electricity currents as magnetic

field. In the data management point of view, a signal map of geomagnetism usually comprises many
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<magnetic readings (say, in μT ), location coordinates (say, in pixels on a map or in meters)> tuples.
Its construction process associates the spatial coordinates at an indoor site with the magnetic
measurements in the signal space.

Clearly, the atomic element of a signal map is the geomagnetic reading. Different forms of geo-
magnetic readings may be applied in the database management. Three types of magnetic readings
have recently been applied (Xie et al. 2014): direct usage of 3D readings, signal magnitude, and
horizontal and vertical components. We elaborate these next.

Direct usage of 3D readings (Bp and Be ): which directly leverages Bp at the smartphone co-
ordinate system as the geomagnetic fingerprints (Chung et al. 2011). It can be easily implemented
for traditional robot navigation, as the robot heading (say, an automated robot car) may be con-
sidered as fixed with respect to the moving path. In contrast, as the smartphone heading can be
random in the earth coordinate system (similar problems may happen in the indoor unmanned
aerial vehicles (Brzozowski et al. 2016)), readings at different headings have to be explored at each
location (Xie et al. 2014), which, however, is both labor intensive and error prone due to the mea-
surement noise.

An alternative and more intuitive approach is transforming the measurement vector Bp to that at
the earth coordinate Be to directly reflect the environmental signal properties. Nevertheless, as the
smartphone orientation needs to be measured before the transformation can be conducted, how
to mitigate the potential measurement noise and synchronize the sensor readings (i.e., magnetic
data and rotation matrix) becomes challenging.

Magnitude as fingerprints (|Bp |): Instead of Bp , one may record the magnitude of Bp (i.e.,
|Bp |) as the fingerprints despite the smartphone orientations and placements (Subbu et al. 2013).
Besides earlier attempts in robot navigation, this pattern has been widely leveraged in many recent
geomagnetism-based smartphone localization systems (Wang et al. 2012; Zheng et al. 2014).

However, it is dimensionless with much less spatial uniqueness during the signal comparison
than using the 3D vector Bp . Clearly, some positional information with respect to each magne-
tometer axis is filtered out as a consequence of magnitude calculation, leading to potential spatial
ambiguity. Therefore, for those location estimation studies on magnitude measurement, geomag-
netism is more or less considered as a supplementary measure to RF (say, Wi-Fi), rather than a
major location indicator (Zheng et al. 2014). If a particle filter is applied for fusion-based local-
ization (Frassl et al. 2013), then it may take longer to converge towards the correct location than
using all the three dimensions in practice (Xie et al. 2014).

Horizontal and vertical components (Bh and Bv ): If the tilt information of the smartphone
is available, then we can convert the geomagnetic field at the device coordinate system into the
components on the horizontal (denoted as Bh ) and vertical (denoted as Bv ) planes (Li et al. 2012).
These two components are independent of the user’s walking directions. It provides more posi-
tional features for localization than using only magnitude |Bp |.

Despite the preceding advantages, as the motion during walking may influence the gravity
readings, the components Bh and Bv may not provide robust measurements for locating mobile
users. Recent schemes like MaLoc (Xie et al. 2014) combine |Bp |, |Bh |, and |Bv | together to form
a 3D vector for indoor localization. This way, the influences of user mobility and fingerprint am-
biguity can be jointly considered and mitigated. Similarly, some recent studies (Abadi et al. 2015)
utilize the international geomagnetic reference field (IGRF) for the spatial representation. IGRF
utilizes the magnitude |Bp |, horizontal element Bh and the inclination angle (I = tan−1 (Bz/Bh ))
to form the geomagnetic vector (Thébault et al. 2015).

Table 3 summarizes the preceding forms of geomagnetism measurements applied in recent
geomagnetism-based systems. We discuss the representative schemes, along with their imple-
mentability, robustness to measurement noise, and location discernibility (qualitative comparison).
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Table 3. Typical Geomagnetism Measurement Forms

Measurement

Form

Typical

Schemes

Easiness for

Implementation

Robustness

to Noise

Location

Discernibility Comments

Direct Readings (Chung et al. 2011) Easy Low High
Exploration of different

headings and orientations

Coordinate

Transformation
(Bilke and Sieck 2013) Difficult Low High

Error-prone to orientation

measurement noise

Magnitude
LocateMe

(Subbu et al. 2013)
Easy High Low

Regardless of user heading

and phone placement

Horizontal

& Vertical

Components

Feasibility studies

(Li et al. 2012);

MaLoc

(Xie et al. 2014)

Medium Medium Medium

Error-prone when

the user is walking; better

when fused with magnitude

(Xie et al. 2014)

We also show the potential issues in their implementation. As discussed in the table, the magni-
tude can be the most robust readings against measurement noise due to its least dependency on
smartphone orientation. However, as it is dimensionless and less informative in labeling location,
additional sensing information is needed to make the signature more discernible (Xie et al. 2016).

3.2 Search Scope Reduction for Computation Efficiency

Given the high sampling rate from the smartphone sensors (e.g., 100Hz on commodity smart-
phones), the granularity (density of fingerprints) of the geomagnetic signal map can be much
higher than that of RF fingerprint map (say, Wi-Fi). However, such high granularity in practice
does not necessarily lead to high localization accuracy, while the highly redundant signal data
set significantly increases the search scope in location estimation. For practical deployment in
spacious indoor sites, the search scope should be carefully reduced before performing location
estimation.

Down-sampling of the signal map: Down-sampling the signal map may still provide suffi-
cient information for localization. For example, FollowMe (Shu et al. 2015b) triggers the sequence
sampling with respect to the step detection to improve the computation efficiency. Specifically, as
a pedestrian walks, each step triggers one geomagnetism measurement. In other words, the geo-
magnetic sequence can be further discretized into multiple data points. Thus, the resultant sample
size and the density can be much smaller. Some researchers (Wang et al. 2016) propose multi-
scaling and construct a database in different levels of granularity, thus reducing computation and
increasing resilience to noise.

GROPING (Zhang et al. 2015) proposes clustering via so-called affinity propagation to choose
appropriate fingerprint that represents each walking path segment. By using the affinity propaga-
tion, GROPING finds the exemplar magnetic fingerprints which can best represent the segment.
In this way, when localizing the target walking path, only a few signals need to be compared and
the computational complexity is significantly reduced. Due to the sophisticated clustering process,
the offline computation and preprocessing complexity is increased as the price to pay.

Hierarchal location estimation: Besides the down-sampling, multi-layered or hierarchal lo-
cation estimation can be applied to reduce the localization computation overhead at resource-
constrained smartphones (or embedded systems). For example, the target can first be located
within a floor or even a room via the magnetic field patterns. Given the geomagnetic signal map
in that space, we may further execute the fine-grained geomagnetism-based localization, such as
MaLoc (Xie et al. 2014) or Magicol (Shu et al. 2015a)). With such an area classification mechanism,
the final search scope and power consumption can be significantly reduced, especially for those
sophisticated machine learning algorithms (Shu et al. 2015a).
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Fig. 5. Illustration of the constructed geomagnetic signal map at the ground floor of an office building. The
warmer the color is, the higher the geomagnetic magnitude (in μT ) is.

Sensor fusion for search scope reduction: Note that in a practical deployment trial, lever-
aging other sensors helps reduce the search scope in addition to improving localization accuracy.
For example, opportunistic detection of Wi-Fi (Shu et al. 2015a), GPS (Chintalapudi et al. 2010) or
iBeacon (Conte et al. 2015; Martin et al. 2014) can help pinpoint the location and narrow down the
search space of geomagnetism-based localization. Furthermore, if the sensors can be dynamically
and adaptively initiated for localization in different environments, the energy consumption due to
computational search can also be greatly reduced (Zhang et al. 2015).

Discussion: It is important to reduce the search scope for indoor LBS as low computational ef-
ficiency degrades the quality of service and the user experience. It is also critical for real-time
computing and signal processing systems. The preceding approaches should be applied with care
as each of them has a trade-off in their deployment.

Down-sampling the geomagnetic signal map definitely leads to a smaller dataset. However, the
signal map down-sampling may also miss important locational information, potentially lowering
the quality of signal map (Shu et al. 2015b). Hierarchal location estimation requires proper area
division and granularity design with respect to each layer applied in the map processing phase. Be-
sides, if the location estimation is wrong during a coarse phase (i.e., the target location is mapped
to incorrect areas), the user experience is much worse than applying the traditional localization al-
gorithms. Sensor fusion often requires more sophisticated schemes and sensing techniques, which
may also increase system complexity and energy consumption (He and Chan 2016). One should
optimize and combine the preceding measures to achieve more real-time localization performance
and better user experience.

3.3 Survey Reduction for Deployment Efficiency

Building a signal map is important and necessary for indoor localization in a complex environ-
ment (Akai and Ozaki 2015). Figure 5 shows a typical signal map of the geomagnetic distribu-
tion in an academic office building. We collected more than 6, 500 data points with the Samsung
Galaxy Note 7 to construct the signal map. Note that traditional fingerprinting for indoor localiza-
tion is often expensive and labor-intensive, which is infeasible for ubiquitous and global localiza-
tion (He and Chan 2016). Therefore, researchers attempted to make the signal map construction
accurate and efficient. Specifically, we discuss the following three phases for geomagnetic field
signal map construction: signal and location labeling, data cleaning (washing), and signal map con-

struction/reconstruction.
Signal and location labeling: Ground-truth location labeling is important for signal map con-

struction. Explicit manual labeling is simple yet intrusive to users. More advanced approaches
consider using inertial sensors or external tracking devices, which may function transparently
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to ILBS users. Based on how the signals are collected and labeled with locations, we discuss
in the following two categories: user bootstrapping and crowdsourcing, and sensor-assisted data

collection.

—User bootstrapping and crowdsourcing: With the power of crowdsensing (Howe 2006) and the
era of emerging Big Data (Laurila et al. 2012), a signal map can be constructed via crowd-
sourcing to scale for large indoor sites. In some existing geomagnetism-based localization
systems (Xie et al. 2014), crowdsourcing has been mentioned to improve the scalability in
spacious sites. One may apply an organic fingerprinting method (Park et al. 2010) using
explicit user location inputs. It may be often annoying to explicitly prompt users for signal
collection, but we can provide some practical incentives (say, shopping coupons or mone-
tary rewards) to motivate the users for contribution. While interesting problems may have
been widely studied for mobile crowdsourcing, with its benefits how to boost forward the
ILBS system deployment is still an open question for geomagnetism-based localization.

—Sensor-assisted data collection: One may deploy additional sensing infrastructures to help
label the crowdsourced signals with locations and calibrate the parameters in the sig-
nal map. The cross-modality learning work in Papaioannou et al. (2017) proposes use of
image/vision-based tracking to locate the target users and construct the geomagnetic sig-
nal map. The proposed system utilizes the site-wide closed-circuit television (CCTV) to
monitor and track the targets. Meanwhile, CCTV labels the locations of the target w.r.t. the
magnetometer readings, and hence the signal map can be constructed.
Different from the earlier work, Travi-Navi (Zheng et al. 2014) utilizes only the smart-
phone sensors (smartphone camera and inertial sensors) to label the magnetic field data
with the indoor locations. During the signal collection, the geomagnetic field along the
trace is recorded. The magnetometer readings are associated with the photos and Wi-Fi
signals. Their combination (or cross-labeling) is then used as the reference for later users’
navigation. More advanced studies in mobile robotics utilize the Light Detection And Rang-
ing (LIDAR) and particle filter for magnetic field collection (Akai and Ozaki 2015). Given
the measured signals and the trajectory, they also apply a Gaussian process for signal map
construction. However, its deployment cost is high (especially using LIDAR) and it is still
far from large-scale deployment.

Though sensor-assistance improves the location labeling accuracy of the magnetic map,
some deployment restrictions may exist before the devices other than smartphones can be
deployed. Issues like infrastructure costs, extra sensor calibration efforts and occlusions in
images should be carefully considered.

Data cleaning/washing: Crowdsourced signals will likely contain measurement error and
noise. Sometimes even malicious/erroneous feedbacks may be included in the measurements, thus
severely degrading the quality of stored heat map. Given a significantly large data set, the influ-
ence from minor erroneous inputs can be filtered out (e.g., via some the majority voting or random
sampling consensus (Fischler and Bolles 1981; He and Chan 2016)). Further data washing can be
conducted via unsupervised learning (e.g., clustering (Park et al. 2010; Wang et al. 2012)) and other
statistical analysis tools widely applied in crowdsourcing (e.g., partial least squares (Wu et al. 2015),
support vector machine and minimum covariance determinant).

Unsupervised machine learning infers a function to describe the hidden structure in unlabeled
data, and hence is a good tool for indoor localization without site survey (Chintalapudi et al. 2010;
Yang et al. 2012). Unsupervised learning (Bishop 2006) with clustering has been widely studied for
data washing and preprocessing. According to the concept of signal fingerprint, one can expect
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that similar geomagnetic signatures which tend to cluster in the signal space would lie at physically
close locations (Wang et al. 2012). Schemes like GROPING (Zhang et al. 2015) utilize the affinity

propagation clustering to find the most representative magnetic fingerprints for each path segment
where the target has walked. The clustering process also filters away some unnecessary erroneous
fingerprints (or outliers) before location comparison, which can serve as a good means of data
preprocessing and cleaning.

However, when given only a limited amount of user feedback, it is difficult and inaccurate to
conduct simple majority voting and statistical analysis. Therefore, in the initialization of the ILBS,
more labor-intensive but more accurate fingerprint collection is often needed before the ILBS sys-
tem can function satisfactorily.

Signal map construction and reconstruction: At the output stage, the construc-
tion/reconstruction of a signal map is non-trivial for geomagnetism-based indoor localization. The
crowdsourced signals may be sparse at sites with limited coverage. The geomagnetic signals at the
unexplored locations need to be estimated, introducing the so-called “construction” problem. On
the other hand, given the stored geomagnetic signal map, regular maintenance is required to keep
it up-to-date, which becomes the “reconstruction” problem. In either case, we need to estimate or
adapt the signals given only the crowdsourced data.

Below we briefly discuss the three methods for signal map construction/reconstruction: (1) Geo-

magnetic field interpolation: Given sparse geomagnetic measurements, we can interpolate them to
estimate the missing signal values at unexplored locations. Different linear or nonlinear interpola-
tion (regression) methods can be applied (Bishop 2006). For example, one may apply the Gaussian
kernels for geomagnetic interpolation. Let Bi

e be the magnetic fingerprint at location i , and B̂e be
the signal to be predicted at an unexplored location, which is given by B̂e = (

∑
i ωi B

i
e )/(
∑

i ωi ). The
weight ωi can be calculated as exp(−d2

i /σ
2), where di is the fingerprint-to-target distance while σ

represents the sensitivity. In other words, the closer the two locations, the more correlated their
signals in the signal space. The geomagnetic map shown in Figure 5 is generated based on the pre-
ceding kernel-based interpolation. However, the interpolation based on signal values rather than
the inherent geomagnetic properties may not sufficiently reflect features of the signals, potentially
introducing errors in missing value prediction. (2) Learning-based signal map prediction: The pre-
ceding (traditional) interpolation usually focuses on some explicit or implicit relationship in signal
space. However, indoor geomagnetic anomalies are often complicated due to the complex environ-
ment, despite the formulation of a mathematical relationship between the generated field and the
source (Jackson 2007). If fully parametric characterization of the geomagnetic anomalies is diffi-
cult, then one may resort to the nonparametric algorithm for better description or less over-fitting.

Early works (Vallivaara et al. 2010) used the Gaussian process (GP) for geomagnetic signal map
construction. However, they only leveraged the squared exponential GP priors for the signal map
interpolation. Physical properties correlated with the EMF itself have not yet been considered
in their GP for better signal prediction accuracy. The work in Wahlström et al. (2013) proposes
using the Gaussian process (Rasmussen and Williams 2006) to model the geomagnetic field. GP
has been widely applied for signal map modeling in indoor localization (Ferris et al. 2007; Atia
et al. 2013; Herranz et al. 2016). It considers the magnetic signals to be spatially correlated with a
Gaussian distribution. This scheme first calculates the hyper-parameters from the training signals
(e.g., crowdsourced from mobile users in the target site). These parameters determine the closeness
between two locations in geographical and signal spaces. Given the learned hyper-parameters, the
system can predict the signals at unexplored locations with these samples.

Mathematically, the traditional Gaussian process (Rasmussen and Williams 2006) is writ-
ten in the form of f (x ) ∼ GP (0,κ (x, x′)), where yi = f (xi ) + ϵi , ϵi ∼ N (0,σ 2

n ). The task of
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Table 4. Typical Schemes for Geomagnetism Signal Map Construction/Reconstruction

Type Scheme

Signal Map

Construction

Geomagnetism

Measurement

Sampling

Density

Limitations

in Deployment

Inter-

polation

3D Mapping

(Le Grand et al. 2012)

Linear

interpolation

Full 3D vector

measurement

7 m

between

collection

line

Sampling with

high directions;

labor-intensive;

linear-interpolation

is error-prone

Maloc

(Xie et al. 2014)
Interpolation

Magnitude

Vertical

Horizontal

0.1 m

×
0.1 m

Sampling with

high density;

labor-intensive

Magicol

(Shu et al. 2015a)

Interpolation

Extrapolation
Magnitude

Step

length

Error-prone

to step

detection error

Learning-

based

GP

(Vallivaara et al. 2010)

Squared

exponential

GP

Full 3D vector

measurement
High

Geomagnetic

physical properties

not considered

GP+ Physical properties

(Solin et al. 2015)
Gaussian process

Full 3D vector

measurement
High

Computationally

expensive

geomagnetism interpolation with GP is to characterize the hyper-parameters in the covariance
function (relationship in signal space) between the locations x and x′ (Solin et al. 2015). We can
then find the function f (xi ) so given each input location x∗ to be predicted, we may find the
corresponding signal estimation y∗.

Despite the prediction accuracy reported, this scheme uniformly applies the hyper-parameters
estimated from all input data in the entire site. It is problematic in complex indoor environments
with various characteristic length scales and signal amplitudes in different regions of the space.
More recent work (Akai and Ozaki 2015) divides the entire spatial map into multiple subareas for
more fine-grained training, which is more adaptive and accurate in performance.

(3) Signal map update: To adapt the stored geomagnetic signal map to a dynamic environment,
one may implement interpolation- and learning-based techniques for reconstruction or update.
One key challenge is how to distinguish between the transient (due to moving metallic objects)
and permanent changes (due to building structure changes) in the dynamic signal map. An imme-
diate patch may not be necessary for transient fluctuations while it is imperative for permanent
signal changes (He and Chan 2016). To better differentiate between them, the site monitor may
leverage the long-term consistency check (outlier detection (He and Chan 2016)), data aggrega-
tion or majority voting (truth discovery (Jin et al. 2017)) on the crowdsourced signals.

Table 4 summarizes different schemes mentioned earlier for geomagnetic signal map
construction/reconstruction. We also qualitatively compare their pros and cons in practical de-
ployment, including signal map density and limitations in database construction. From deploy-
ment point of view, one should balance between implementation efficiency and signal accuracy.
Small sites like an office room may be easier for validation of sophisticated learning-based methods
due to less difficult characterization of parameters in these models. This may also account for the
lack of testing related methods under spacious environments in these works. On the other hand,
for spacious sites like airports or supermarkets, inherent factors affecting the signals may be enor-
mous. Traditional interpolation can be more efficient to be implemented, from which fine-grained
granularity may not be expected. Such trade-off highly depends on the actual deployment demand.
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Table 5. Signal Map/Database Construction for Geomagnetism-based ILBS Systems

Scheme

Data

Washing

& Cleaning

Signal

& Location

Labeling

Signal

Construction

&

Reconstruction

Signal

Construction

Reconstruction

Accuracy

Adaptivity

towards

Environment

Computation

Efficiency

Deployment

Cost

Limitaions

in

Deployment

3D Mapping
(Le Grand et al. 2012)

N/A Manual Interpolation Low Low High Medium
Data-intensive
preprocessing

MaLoc
(Xie et al. 2014)

N/A Manual Interpolation Low Low High Medium
Data-intensive
preprocessing;

no data washing

Magicol
(Shu et al. 2015a)

N/A
Manual+
IMU/INS

Interpolation
&

Extrapolation
Medium Low Medium Medium

Inertial
sensor labeling
contains errors

GRPOING
(Zhang et al. 2015)

Clustering
& Exemplar

Selection

DTW-based
Segment
Matching

N/A Medium High Low Low
Clustering is

computationally
expensive

LIDAR+GP
(Akai and Ozaki 2015)

N/A
LIDAR &

SLAM
Gaussian Process High Medium Low High

Gaussian process is
computationally

expensive

Cross Modality
Training

(Papaioannou et al. 2017)

Particle
Filter

Parameter
Estimation

Particle
Filter &
CCTV

Regression High Low Medium High

CCTV monitoring
is error-prone
to none-line-

of-sight measurement

3.4 Summary of Approaches and Comparisons

We summarize the recent approaches applied in geomagnetism-based systems, and qualitatively
compare them based on our own deployment experience. The summary and comparison of these
schemes are based on the following metrics:

(1) Signal Construction/Reconstruction Accuracy: the accuracy of different construction/
reconstruction schemes or systems based on our deployment experience, including the
prediction error and robustness to noise.

(2) Adaptivity towards Indoor Environmental Changes: including wall decoration, building
renovation, structure reconstruction or even human mobility, which may introduce new
anomalies in the collected geomagnetism.

(3) Computational Efficiency: To achieve fast and scalable deployment, one may need a com-
putationally efficient scheme for the signal map and database construction. Otherwise, the
ILBS systems may not adapt to the dynamic market demand and indoor environments.

(4) Deployment Cost: Extensive site survey inside the target area is labor-intensive and costly.
Furthermore, one may also deploy additional infrastructures besides smartphones for
more accurate signal map monitoring, which may introduce extra deployment cost. The
engineers for geomagnetism-based ILBS should make a feasible decision in selecting a
construction scheme.

(5) Limitations in Practical Deployment: including other pressing issues which may be specific
to each of the schemes discussed, and the assumptions which may degrade the generaliz-
ability of the algorithms.

Table 5 summarizes and compares the differences in recent signal map and database construc-
tion approaches. From this table, we can observe that most existing schemes have not thoroughly
considered data washing and cleaning, because their proposed schemes have not fully leveraged
crowdsourcing for data collection. The works in Le Grand et al. (2012) and Xie et al. (2014) usually
consider controlled signal fingerprinting rather than the layman ILBS users, thus not requiring
extensive data washing. The deployment cost for the geomagnetism-based localization is often
claimed to be smaller than traditional Wi-Fi fingerprinting-based localization. However, advanced
sensors like LIDAR and CCTV may increase the system deployment cost.
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4 SMARTPHONE LOCALIZATION WITH GEOMAGNETISM MEASUREMENT

Given the constructed signal database and the online magnetometer readings in the query, the ILBS
needs to find the corresponding location in the map. Here we consider how to locate the target
given smartphone geomagnetism measurements. After overviewing location inference methods
(Section 4.1), we discuss how to leverage the local geomagnetic anomalies at landmarks to pinpoint
the target location (Section 4.2). We then discuss how to exploit the spatial-temporal geomagnetic
patterns for location matching (Section 4.3). We then study the location estimation via sensor
fusion (Section 4.4) and discuss the problem of joint localization and mapping (Section 4.5). Finally,
we discuss and summarize the state-of-the-art location estimation (Section 4.6).

4.1 Overview of Geomagnetic Location Inference

We first overview the existing algorithms and techniques for geomagnetism-based smartphone
localization. Based on the patterns leveraged, we categorize them as landmark-based or spatial-

temporal sequence. Despite the difference of their geometric and semantic representation in sig-
nal space, they share common properties of the positional signatures (Suksakulchai et al. 2000)
including (1) minimum/maximum signals or bot, (2) ignoring flat signatures that are less informa-
tive, and (3) increasing the number of dimensions by combining or adding features. Specifically,
the landmark-based schemes leverage the local anomalies in geomagnetic magnitude to identify
the locations, while the spatial-temporal sequence matching focuses on the sequential magnetic
measurements to identify the walking path (trace). Clearly, the latter may retrieve more abundant
signal-location mapping information than the former. Due to lack of dimensions, using only geo-
magnetism for indoor localization is difficult in practice. To address this, many recent studies focus
on sensor fusion with other signals. Besides the preceding pattern matching techniques, we will
also discuss how to fuse the magnetic signals with other sensors (say, Wi-Fi (He and Chan 2016) or
Bluetooth (Mirowski et al. 2013)) to further enhance the localization scalability and accuracy. Dif-
ferent fusion models, including Hidden Markov Model and particle filter, will be discussed along
with some recent state-of-the-art approaches.

4.2 Local Magnetic Anomalies as Landmarks

Local magnetic anomalies can be exploited to pinpoint specific indoor locations, hence forming
indoor “landmarks.” A pioneering approach, UnLoc (Wang et al. 2012), followed by more recent
SemanticSLAM (Abdelnasser et al. 2016), has proposed use of unsupervised learning to extract
indoor geomagnetic field anomalies (including the variance of magnetic field within a sliding
time window) while the user is walking. Using unsupervised clustering, the algorithm extracts
the indoor magnetic field anomalies which can uniquely identify locations, and pins them on the
map for navigation. Such an unsupervised-learning approach reduces reliance on the traditional
signal fingerprinting, and hence facilitates cost-effective deployment. Some recent efforts like
MapCraft (Xiao et al. 2014) also consider the magnetic field anomalies along a corridor for location
indication/identification. They form the “peak point in a map” to pinpoint the target location, and
hence the search scope can be narrowed further. Figure 6 illustrates the process of landmark-based
indoor localization, where the landmark is generated by the geomagnetic anomalies. Given the
thus-discovered geomagnetic anomalies, the estimated trajectories are corrected by comparing
them with those without landmark information.

Geomagnetic anomalies have also been applied for indoor/outdoor detection. IO-Detector (Li
et al. 2014) utilizes the geomagnetic anomalies to determine whether the LBS user is indoor or not.
Recall that both the indoor electric instrumentation and the metallic building structures generate
geomagnetic anomalies. Distinct features can be identified when one travels between outdoor
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Fig. 6. Illustration of the geomagnetism landmark-based localization and trajectory matching. The discov-
ered geomagnetism anomalies can be used as “pinpoint” to correct the trajectory mapping.

and indoor with smartphones. Hence, IO-Detector sets a certain threshold for the magnetometer
readings as the decision boundary. Besides the geomagnetic field measurements, the IO-Detector
also combines the readings from cell and the light sensors to further improve the overall detection
accuracy. Note that simple thresholding may not be able to deal with significant environmental
variations, which has also been shown in some following studies (Li et al. 2014; Radu et al. 2014).

Simple location information can also be retrieved for context awareness. More recent studies
have also considered use of the magnetic field measurement change to identify the rooms of the
target (Galván-Tejada et al. 2013), or detect the door opening (Zhao et al. 2015). The former consid-
ers the extraction of spectral and temporal magnetic features for room classification. Their evalua-
tion shows that the temporal state features are more suitable for signal behavior characterization,
given the higher identification accuracy. Based on the immediate magnetic change when passing
a door, LMDD in Zhao et al. (2015) leverages a “kernel-based edge-preserving filter” for detection,
and uses the cross-correlation function to mitigate the influence of measurement error. Specifi-
cally, a Gaussian kernel is proposed to detect the rising/falling edge in the sensor readings. Hence,
the environmental white noise is mitigated. To reduce the false detection of door opening (e.g.,
when the smartphone is approaching other metallic objects), LMDD exploits the following cross-
correlation function to preserve only the regular door information and filters out the irregularities:

cxy =

∑n
i=1 (Bx (i ) − μ (Bx ))

(
By (i ) − μ (By )

)
√∑n

i=1 (Bx (i ) − μ (Bx ))2 ·∑n
i=1

(
By (i ) − μ (By )

)2 , (4)

where n and μ (Bx ) are the size and the mean of a sliding window, respectively. LMDD considers
only the x-axis and y-axis readings of the magnetometer. If the cross correlation exceeds a prede-
fined threshold, then the signals will be filtered out to prevent the false door detection. Despite its
accuracy reported in their environmental settings, LMDD may likely fail to recognize a glass door
with little metallic elements inside.

Discussion: While the aforementioned methods are simple and efficient to implement, their ge-
omagnetic field measurements are not fully utilized in practice. In their settings, only point-wise
magnitude (i.e., the strength or intensity) of the magnetic field is usually recorded, which may not
be sufficient for large-scale location identification. Such a dimensionless representation provides
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very limited location information, thus limiting the generality of different and complex environ-
ments (e.g., various thresholds for different sites). As a result, these approaches often consider fus-
ing the landmark information with other sensor readings for better decision-making (Radu et al.
2014), which will be thoroughly discussed next.

4.3 Spatial-Temporal Sequence Patterns

In the context of localization, the spatial-temporal sequence refers to successive measurements
of signals at multiple locations (He et al. 2015). These temporal readings are inherently corre-
lated in the signal space, exhibiting a pattern to represent a certain location. Besides geomag-
netism, the spatial-temporal sequence matching has recently been studied for localization with
other signals (He and Chan 2016), including the RF RSS in Walkie-Markie (Shen et al. 2013) and
WarpMap (Ye et al. 2016). While its basic principle might be similar, the sequence matching on
geomagnetism is different from that on traditional RF (like Wi-Fi) signals in the following two
aspects.

(1) For the same smartphone, the sampling rate of magnetometer sensor is often much higher
than that of its COTS RF (like Wi-Fi) sensing, for example, 100Hz (Shu et al. 2015a) vs.
1Hz (He and Chan 2016)). Given such large data size and search scope, conducting dynamic
sequence matching (e.g., via maximum string matching (Leiserson et al. 2009)) can be
computationally costlier than traditional Wi-Fi.

(2) For Wi-Fi fingerprinting, a Wi-Fi sample dumped from Android API may consist of RSSIs
from multiple access points (APs), forming an RSSI vector. In many indoor environments,
the number of detected APs can easily exceed 10. Each sample point within the Wi-Fi mea-
surement sequence can thus support location estimation with fine granularity. In other
words, one may further leverage the RSSI vectors to find the specific point on the trace. In
contrast, sequential magnetometer readings are a trace or trajectory which is composed
of only 3D values. If similar signal readings exist, then obtaining a more accurate location
point beyond the roughly matched trace (Rallapalli et al. 2016) will be more challenging (Ye
et al. 2016).

The basic principle used in many recent studies leveraging the spatial-temporal geomagnetic se-
quence can be summarized as follows. A sequence/string-matching-like problem is first formulated
based on intuitive observations (Shu et al. 2015a). Then, different matching algorithms, including
dynamic programming (DP) (Shu et al. 2015a) or dynamic time warping (DTW) (Rallapalli et al.
2016), are applied. To satisfy the specific application requirements (e.g., low-cost navigation), more
advanced system modes like the leader-follower mode are then applied (Shu et al. 2015b). Details
of each phase are discussed next.

Sequence/string matching: When the user is walking indoors, her/his mobile device can ac-
quire a sequence of geomagnetic readings. Given the signal values within the temporal sequence,
one may consider formulation of a sequence matching problem (Leiserson et al. 2009; Rallapalli
et al. 2016), which has been studied widely and extensively in the field of natural language pro-
cessing (NLP) (Weikum 2002; Liddy et al. 2007). Specifically, given these temporal geomagnetic
measurements with respect to a walking trace, one may model them as a sequence of strings for
further trace matching (Shu et al. 2015a). Sequence matching of the user motion and magnetometer
readings along the walking path can be easily solved with traditional string matching and DP.

However, the traditional sequence matching based on DP is still computationally expensive. A
longer sequence length may lead to higher matching accuracy, but suffer from inefficiency and
high energy consumption, thus creating a practical trade-off in deployment (Paek et al. 2011). In
the context of geomagnetic localization, even with some noisy signal measurements, one may find
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Fig. 7. A typical example showing the
dynamic time warping path.

Fig. 8. Illustration of leader-follower mode in the FollowMe
system (Shu et al. 2015b).

that a long data sequence does not necessarily lead to more accurate location matching. Besides
DP, one may apply more advanced probabilistic schemes including the Hidden Markov Model
(HMM), Sequential Monte Carlo (particle filter) method (Shu et al. 2015a) and conditional random
fields (CRFs) (Xiao et al. 2014), to solve the matching problem. As these schemes usually involve
further sensor fusion, we will detail them in Section 4.4.

Dynamic Time Warping (DTW) (Subbu et al. 2011; Shu et al. 2015a): DTW measures and
aligns the similarity in temporal shape between two given time series (Berndt and Clifford 1994;
Senin 2008). Specifically, DTW maps each element within a given temporal sequence against one or
several entries of another time series. In the geomagnetism-based localization, the algorithm with
DTW maps the target’s magnetic data (in a sequence) against the preloaded ones in the reference
trajectory.

Specifically, DTW considers compressing or stretching the time axis of geomagnetic sequences
to better align them (Müller 2007; Subbu et al. 2011), that is, finding the warping path with the
minimum difference between the magnetic sequences. To solve this, two sequences are usually
compared based on the dynamic programming (DP) (Leiserson et al. 2009) to find the warping
path. During the search, DTW considers the constraints of index monotonicity, bounded traversal

and continuous index browsing (Subbu et al. 2013). Based on these requirements, at each iteration,
DTW finds the minimum values among the cumulative differences of neighboring entries, and the
distance accumulated (Subbu et al. 2011) in the discovered path so far.

However, in practical deployment, directly applying traditional DTW is computationally infea-
sible and unscalable (Shu et al. 2015b) for three reasons. First, the user’s walking trace dynami-
cally increases as he walks. Traditional DTW works offline upon two given sequences, which is
nevertheless not scalable to online streaming data. Second, the quadratic cost function using Eu-
clidean distance incurs high computational overhead. Third, the traditional quadratic cost function
compares two sequences based on the absolute values, which is not scalable to device and usage
heterogeneity (Section 2.2). Clearly, practical adaptation on DTW should be considered.

Figure 7 shows a typical warping path example of DTW between two sequences u and v. The
red line indicates the minimum warping path. In Shu et al. (2015b), a slight modification has been
made to the traditional DTW. That is, after computing the costs of neighboring entries, the system
only searches within a specific range along the row v and the column u (Shu et al. 2015b) and
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Table 6. Typical Geomagnetism Localization Systems Using DTW

Scheme

Name DTW Type

Cost Function

Adaptation

Efficiency

Enhancement

Other

Adaptations Limitations

Localization

with DTW

(Subbu et al. 2011)

Sliding

windowed DTW

Absolute

value; l2-norm

Sliding

windowed

Hallway

comparison

Device and usage

heterogeneity

not considered

LocateMe

(Subbu et al. 2013)

Sliding

windowed DTW

Absolute

value; l2-norm

Sliding windowed;

short signature

Short signature

comparison

Device and usage

heterogeneity

not considered

FollowMe

(Shu et al. 2015b)

Step-constrained

trace

synchronization

Differential

magnetic

information

Step

detection

constraint

Adaptive

search band

change

High latency

compared with

traditional schemes

WaveLoc

(Rallapalli et al. 2016)

Enhanced

DTW

l1-norm;

weighted

function

Wavelet coefficient;

short-term memory;

incremental feature

Hierarchical locali-

zation; first trace &

then point

Device

dependency

not considered;

finds the minimum matrix elements. A similar efficiency enhancement has also been proposed
in Marshall (2015), where the matching is done within a regional window of each data point. This
way, the computation and search scope of DTW can be reduced.

To address the device dependency, one can use differential values during the sequence compar-
ison (Shu et al. 2015b). One may also apply the cosine similarity instead of Euclidean distance.
Specifically, the distance at a warping path can be computed by the inverse of cosine similar-
ity (Zhang et al. 2015), which compares the relative shape of 3D vectors. If the shape is closer, then
the cosine similarity is greater, leading to a smaller difference (distance).

Since many recent studies proposed different ways of adapting DTW for geomagnetism-based
localization, we summarize and compare their properties in Table 6, including computational effi-
ciency and adaptivity to random noise. The basic studies of DTW algorithms focus on how to make
the comparison more efficient and adaptive. This table lists several studies adapting DTW to more
real-time and localization scenarios. We summarize the DTW type, cost function or adaptation,
efficiency enhancement, and deployment limitations according to our own experience.

Leader–Follower mode: Leader–follower mode, or leader following, has been widely used for
robot navigation (Stein et al. 2016). Basically, a lead agent (not necessarily a robot (Stein et al. 2016))
traverses the target environment. It measures signal–location mapping properties (including the
geomagnetic field) and reports them to other following agents (robots). Then, a following agent
tries to find the path of the most similar measurement sequences to the leader’s (Storms et al.
2010). In terms of ILBS application, such a mode is useful when the ILBS has little knowledge of
the indoor map information, and time-consuming extensive bootstrapping is not needed for smart
scale deployment (Shu et al. 2015b). Figure 8 illustrates a typical scenario of the leader–follower
mode in indoor localization. The system finds the leader trace (the red line) whose geomagnetism
matches the most with the follower’s temporal sequences (the orange dashed line).

However, as stated in the beginning of this section, such a mode is tailored to some specific ap-
plication (e.g., temporary or plug-and-play (Shu et al. 2015b)) scenarios. Conversely, if the indoor
site is spacious with complex signal properties, the leader–follower mode may achieve no better
performance than the traditional localization systems (Bahl and Venkata N. Padmanabhan 2000;
Youssef and Agrawala 2005). To support more general long-term ILBS deployment and mainte-
nance, given map information of the large target site, the system still requires full knowledge of
indoor map and signal collection. However, with a proper combination of adaptation and opti-
mization, we can build a more ubiquitous localization system with a hybrid mode.
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4.4 Location Estimation via Sensor Fusion

As the geomagnetic landmarks may be less informative given noisy or complex environment, many
of recent studies focus on fusing the magnetic field with the pedometer (motion information) or
the RF signals to further improve localization accuracy and deployability. Discussed later in the
text are several directions of geomagnetism fusion along with some deployment issues.

(1) Fusing with the pedometer (step counter): As the user walks, the accelerometer, gyroscope
and magnetometer inside his smartphone can jointly measure the walking steps. The repetitive
step patterns are detected via the step counter. If the step length is provided or calculated, and
then fed to the step counter, then we may derive the walking distance and constrain the location
estimation. We may apply the existing state-of-the-art RF-pedometer fusion algorithms (Rai et al.
2012; Xiao et al. 2014), replace the RF signals with geomagnetism, and then apply them similarly.
The difference lies in that the geomagnetism is sampled at a much higher frequency, and therefore,
the search space can be much larger than that in traditional RF-based fingerprinting algorithms.

However, fusing with the pedometer requires extensive calibration of the step detector and
the stride length estimator (He et al. 2015). Recent approaches like MaLoc (Xie et al. 2014) ap-
plies the augmented particle filter (each particle is also associated with various step lengths and
heading values for resampling) to estimate the potential step length and heading without requir-
ing explicit calibration. Anomalies in user behaviors (such as shaking smartphones abnormally)
may also influence the motion detection accuracy of inertial sensors (Brajdic and Harle 2013). In-
stead of inflexible thresholding for motion detection, one may design more advanced model-based
classification algorithms, including support vector machine (SVM) (Lau et al. 2008) and principal
component analysis (PCA) (Brajdic and Harle 2013), to identify the true walking behaviors.

We have observed that the inertial motion sensors are more suitable for offline site survey (Wu
et al. 2013) than for online (real-time) localization, mainly because more accurate or “clean” data
can be collected from professional engineers or dedicated users—if a proper incentive is given—
than from the inertial sensors or IMUs. However, in case of practical online localization, the user
behaviors are much less controllable. It is also intrusive and inconvenient to constrain the user
behaviors for motion data collection. Handling diverse motion behaviors, on the other hand, makes
the deployment of inertial motion sensing on smartphones much more difficult.

(2) Fusing with Wi-Fi: Wi-Fi (including traditional trilateration (He and Chan 2016), angle of
arrival (Kotaru et al. 2015) and fingerprinting (He and Chan 2016)) has recently been studied ex-
tensively. Using existing WLANs, one may easily deploy an indoor LBS. Fusing the geomagnetic
field with Wi-Fi has recently attracted considerable attention (Li et al. 2015). When applied with
a particle-filter-based system, Wi-Fi signals can be used as the distribution constraint on the par-
ticles (or as the initial location input). Similarity between measured Wi-Fi signals and the finger-
prints can also be used to adjust the particle weights (Shu et al. 2015a), or find the confidence
level assigned to candidate locations (Xiao et al. 2015). Furthermore, Wi-Fi supports large-scale
localization across multiple areas and floors, which can help reduce the search scope and improve
computational efficiency (Li et al. 2015).

Despite the aforementioned advantages, traditional Wi-Fi RSSI fingerprinting still suffers from
expensive survey cost (Wu et al. 2013), vulnerability to multipaths (Kotaru et al. 2015) and high
energy consumption (Constandache et al. 2009; Subbu et al. 2014). A simple combination of Wi-Fi
and geomagnetism without careful adaptation or optimization may offset the benefits brought by
both signals.

(3) Cross-modality fusion: Beyond Wi-Fi and other traditional RF signals for indoor localization,
many other modalities including image (Papaioannou et al. 2017), Bluetooth (Mirowski et al. 2013),
cell (Li et al. 2014) and visible light (Kuo et al. 2014; Zhang and Zhang 2016) have been applied,
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or can be easily fused with geomagnetism for improving localization accuracy and deployability.
A cross-modality system was proposed in Papaioannou et al. (2017) where image, radio signals
and geomagnetism were used jointly for learning site environments. Specifically, given some im-
age and inertial sensor tracking information, the system utilizes the particle filter to estimate the
parameters of a geomagnetic signal map. Based on the learned geomagnetic field database, the
system then can track the target if its camera does not function properly. These signals or sens-
ing techniques have strengths and weaknesses when applied in complex indoor environment. For
example, image-based tracking does not perform well given occlusion between the target and the
camera (Papaioannou et al. 2017). For more pervasive deployment, sensor fusion is essential to
achieve increasingly ubiquitous localization.

Given the extra signals to be fused, different machine learning models have been explored to im-
prove the localization accuracy. Traditional Bayesian models have been studied widely for the pur-
pose of fusioning, including the typical Bayesian filters like HMM (Rabiner and R. 1989), Kalman
filter (Welch and Bishop 2001), and particle filter (Arulampalam et al. 2002). Finally, we will discuss
the Conditional Random Field algorithms (Sutton and McCallum 2010).

Hidden Markov Model: HMM is a well-known probabilistic sequential model. It provides a
scoring mechanism to determine the compatibility between state labels X (locations in our prob-
lem) and sensor observations S (Wi-Fi (Seitz et al. 2010) or geomagnetic field measurements). It has
been widely studied for indoor localization with sensor fusion, including fusing pedometer with
geomagnetism. In HMM, the joint probability distribution between the states and observations
(Rabiner and R. 1989) is p (x0:T , s1:T ) = p (x0)

∏T
t=1 p (xt |xt−1)p (st |xt ), where p (xt |xt−1), p (st |xt ),

and p (x0) represent the probabilities of transition, emission and the initial (prior) distribution,
respectively. The objective of HMM is to determine the optimal hidden state sequences of the
maximum joint probability among all possible combinations given the observation sequence.
To solve this problem efficiently, the basic assumption for HMM is that the next state depends
only upon the previous one (constrained interaction between X and S is formed), which achieves
high computation efficiency. The authors of Park et al. (2014) use HMM for indoor multi-modal
trajectory matching. Via HMM, the system in Park et al. (2014) finds the indoor path which is the
most “compatible” (maximum joint probability) with the measured motion and magnetometer
readings (Lee et al. 2013).

More recent studies (Ma et al. 2016) leverage backward sequences matching algorithms (BSMA)
to further improve the HMM-based algorithm. A single magnetometer reading was considered
as low discernibility due to little dimensional information for indoor localization. To address the
preceding problem, the authors of Ma et al. (2016) proposed a system, called Basmag, by optimizing
the HMM framework. The intuition behind Basmag is that instead of focusing on a specific data
point, it further conducts backward search to consider the geomagnetic field measurements in a
vectorized form. Based on the adapted HMM formulation, Basmag finds the trace of the target
with higher accuracy and efficiency.

One common property shared by these HMM-based schemes is that they often discretize the
indoor space into multiple cells, each of which is represented by the geomagnetic readings inside.
State-space discretization benefits the HMM implementation, and makes the entire location esti-
mation efficient. Such discretization has also been applied in other localization scenarios, including
outdoor cell-based LBS.

Discussion: Despite the efficiency of location estimation, the assumption of HMM, that is,
the conditional independence, may not provide sufficiently accurate location information. If
additional noise exists, then the location estimation accuracy may deteriorate due to the incorrect
state indication. It has been shown in Wen et al. (2013) and Xiao et al. (2014) that jointly
considering multiple temporal sensor signals can improve the localization accuracy with noisy
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measurements. Furthermore, when the indoor space is discretized into cells, the size of each cell
needs to be determined carefully according to the size of environment, accuracy requirement,
user walking speed, and so on.

Kalman filter: Like HMM, Kalman filter has also been studied for tracking and localization
problems in many fields including robotics (Welch and Bishop 2001). From the magnetometer’s
perspective, Kalman filter has been applied in the sensor fusion to mitigate the measurement
noise (Beravs et al. 2014). In terms of indoor localization, Kalman filter, including its extended
version (nonlinear state estimation), has been applied to mitigate the location error (Zhao and
Wang 2012).

Specifically, the Kalman filter models the location estimation problem under an interactive
framework between predictor and corrector (Zhao and Wang 2012). In the prediction phase, the
location is estimated based on the previously known position and the state transition modeled by
pedestrians’ walking. Then, measurements from sensor readings including geomagnetic field are
fed and the location estimation is corrected or updated on the weighted observations. The Kalman
gain characterizes the weight assigned for the observation corrections.

Discussion: Kalman filter cannot fully address the location estimation problems based on ge-
omagnetism and pedometer due to the complex indoor signal properties (Xiao et al. 2014). The
traditional Kalman filter is based on the Gaussian noise assumption and might not accurately
represent the realistic measurements. Furthermore, Kalman filter works the best given fusion of
different sensor readings (Xiao et al. 2014). If some of the fused signals are missing or removed,
then its performance may degrade significantly. Therefore, to achieve more accurate and general
localization, most of the recent work is based on the particle filter.

Particle filter: The particle filter has been widely applied for indoor localization. Multiple par-
ticles are spread to indicate the potential locations (sometimes including the candidate headings
and step lengths), and travel through the indoor site according to the pedestrian motion (Rai et al.
2012). Given the wall constraints brought by the corridors and rooms, incorrect candidate loca-
tions that violate the constraints can be filtered out via particle re-sampling (Arulampalam et al.
2002).

Specifically, each particle in the filter is associated with potential locations of the target (other
motion information like heading directions, step length, and relative direction changes may be also
included) and a weight function describing its importance for location estimation. These weights
quantify the degree of consistency between the predicted and the measured states (locations).
Initially, the weights are assigned uniformly or according to some external hints. Given geomag-
netism measurements (say, similarity comparison or probability distribution) and motion estima-
tion, the particles move accordingly within the target site. Meanwhile, their weights are updated
dynamically. For a sensing modality A, let dA be a certain similarity metric between signals in the
target side and a reference location in the signal map (i.e., the larger dA, the more similar) (Shu
et al. 2015a). The weight of a particle p can be given empirically by

κp = exp �
�
−
d2

mag

σ 2
mag

�
�
, or κp = exp �

�
−
d2
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σ 2
mag

�
�
+
∑

k
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�
−
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k

σ 2
k

�
�
, (5)

if there is any other specific signal k involved in the fusion. A more advanced weight assignment
may be applied. Note that σA determines the specific sensitivity to specific signal A. The system
may normalize all the weights and perform “re-sampling” (Arulampalam et al. 2002). Particles of
better consistency with the external signal correction have heavier weights (importance), making
them more likely to be re-sampled and appear in the next round, while others may be less im-
portant (or even perish due to low sampling possibility). The location estimation (represented by
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the weighted average of the particle locations) is expected to converge to the ground truth, given
continuous accurate sensor measurements.

Discussion: The particle filter (PF) and its adaptation have been widely studied for
geomagnetism-based localization. Despite the ease of implementation and soundness in the per-
formance reported, it is still challenging to determine the particle weight, number of particles, and
weight update. Improper setting of particle weight and its update may lead to slow convergence
and less robustness to external signal noise. Moreover, the number of particles may also influence
the estimation accuracy, robustness and convergence speed. Due to its ease of implementation for
localization and potentially high accuracy, researchers proposed numerous ways to improve the
PF fusion performance further (He and Chan 2016). For example, the authors of Hilsenbeck et al.
(2014) propose discretization of a continuous indoor map into a graph of connected edges to con-
strain the particles, reduce the search space and overhead, and improve PF robustness. A two-pass
bidirectional particle filter was also proposed in Shu et al. (2015a) to improve the fusion accuracy.

EConditional random fields (CRFs): The concept of CRFs has recently become popular for
“structured prediction based on undirected graph” (Klinger and Tomanek 2007). Besides indoor
localization, it has also been widely used, for example, to analyze human languages or activities.
Some researchers (Park et al. 2014) propose using CRFs to model the trend changes in compass
azimuth. CRFs in conjunction with other sensor readings are then used to predict the user’s walk-
ing path. The basic idea of CRFs is to find the sequence of locations, that is, a trajectory, which
best matches the sensor (including geomagnetism and motion) measurements. The existing HMM
requires the observations induced by an action (say, a stride) which depends only on that state (un-
der the naive Bayes assumption). In contrast, CRFs allow a feature function to associate a chain
of sensor observations with one or more states (Xiao et al. 2014). This way, instead of considering
one single snapshot of signal measurement, CRFs can jointly consider a sequence of readings and
mitigate random errors. A more recent approach, called MapCraft (Xiao et al. 2014, 2015), imple-
ments CRFs with Wi-Fi (or magnetic field disturbance map, if exists) and inertial motion sensors
for indoor map matching.

The localization scheme based on CRFs has been shown to outperform the traditional HMM
in noisy environments as multiple temporal measurements are considered together for making
location decisions (Xiao et al. 2014).

Discussion: However, traditional CRFs require extensive training for the hyper-parameters in the
maximum entropy framework (Wallach 2002). Especially when new training samples are provided
(e.g., newly collected geomagnetism and motion data in the site), the high computational complex-
ity makes it difficult to retrain the models (Sutton 2008). Hence, it is still challenging to scale CRFs
in dynamic indoor environments, especially in the context of ubiquitous localization and naviga-
tion. In indoor LBS application, if some new measurement traces which are not considered in the
training phase appear, the under-trained CRFs may not perform well.

4.5 Addressing Simultaneous Localization and Mapping (SLAM) Problem

SLAM is a critical problem for indoor mobile robot and smartphone localization. In the traditional
SLAM problem, the mobile (a robot/smartphone) neither knows the indoor map information nor
possesses the site fingerprints. Therefore, dead-reckoning is often required to capture the target’s
walking trajectory. As odometer- and pedestrian-based dead-reckoning degrades in location ac-
curacy over time, external ambient signals are needed to correct both location estimation and
constructed map. The basic idea of solving SLAM is to simultaneously update the target location

and map information to achieve their joint maximum likelihood. Investigation of geomagnetic SLAM
problems has recently begun after Wi-Fi and other SLAM systems (Huang et al. 2011; Herranz et al.
2016) have been studied widely. The authors of Vallivaara et al. (2010) propose fusing geomagnetic
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field and robot odometer to construct indoor maps. Specifically, they exploit Rao-Blackwellized
particle filter (Arulampalam et al. 2002) to find the potential locations and filter out the incorrect
odometer measurements. Meanwhile, a Gaussian process (Rasmussen and Williams 2006) is im-
plemented to model the spatial relationship of geomagnetism. Using this fusion, the system finds
the target’s location while constructing the indoor map.

Discussion: Despite its proof-of-concept prototype in the field of robotics, SLAM can also be ap-
plied to smartphone-based localization, only with step counter and device heading estimation. On
the other hand, introduction of vision/image or even LIDAR processing may improve accuracy at
the cost of additional system overhead. Therefore, smartphone-based SLAM needs to make good
use of raw sensor data to balance between mapping accuracy and system overhead. Some recent
studies (Huang et al. 2011) have shown that solving the joint optimization in SLAM problems is
often computationally expensive due to simultaneous map calculation (Smith et al. 1990). To ad-
dress this, FastSLAM (Montemerlo et al. 2002), followed by Robertson et al. (2013), was proposed
to recursively estimate the posterior distribution of landmarks, and scales w.r.t. their number in
a logarithmic manner. Efficient GraphSLAM (Huang et al. 2011)—which reduces the sophisticated
optimization problem to the least-squares problem—was also proposed to improve the system scal-
ability. To summarize, with proper taming over incoming data and the algorithm design, SLAM-
based approaches can be efficiently deployed on smartphone platforms.

4.6 Summary of Approaches and Comparison

Based on recent reports (Xie et al. 2014; Shu et al. 2015a; Xie et al. 2016), we briefly discuss the
performance of geomagnetism-based smartphone localization in practical application scenarios.
Given localization algorithm and mobile device, diverse location estimation accuracy has been ex-
amined for different users and environments. In terms of user dependency, the reported estimation
accuracy may vary marginally with different users (say, less than 10% (Shu et al. 2015a)), relative
smartphone locations to the user body or with similar phone holding positions (Xie et al. 2014; Shu
et al. 2015a), while the user step length, diverse walking frequency and user behavior anomalies
may in practice markedly influence the motion sensor estimation. Taking MaLoc (Xie et al. 2014)
as an example, we have observed that deliberate phone shaking while walking may cause up to
30% degradation of accuracy. Besides user dependency, the same scheme may show significantly
different localization accuracies at sites like parking lots, corridors and shopping malls. Change
of nearby metallic objects, diverse degrees of freedom in user mobility and crowds at a site may
easily influence the localization performance (Shu et al. 2015a). For example, in terms of mean lo-
calization error, Magicol (Shu et al. 2015a) may achieve approximately 3.1m and 4.5m at a complex
office building and a premium supermarket, respectively, which are almost twice the degradation
of accuracy compared to a narrow and constrained environment (1.85m). Like many other local-
ization schemes, how to mitigate the user and environment dependencies is still a major challenge
for the geomagnetism-based localization.

We further summarize the approaches and compare them according to our own deployment
experience based on the following aspects:

(1) Localization accuracy: Location estimation error is the key metric in evaluating the ILBS
systems. Here we focus on the “mean localization error” or “classification accuracy.” These
metrics may depend on the testing environments and hence we list the values for reference
only.

(2) Sensor deployment/infrastructure cost: Some schemes may rely on additional infrastruc-
tures or sensors for further location estimation, which may be expensive in practical
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Table 7. Typical Geomagnetism-based Localization Systems for Mobile Devices

Types Scheme

Location

Estimation

Algorithm

Additional

RF Signals

Used (Y/N)

Reported

Accuracy

(eg. Mean

Localization

Error)

Sensor

Deployment/

Infra-

structure

Cost

Robustness to

Environmental

Noise

Smartphone

Computation/

Energy

Consumption

Limitations/

Restrictions

in Practical

Deployment

Landmark
(Local EMF
Anomalies)

UnLoc
(Wang et al. 2012)/

SemanticLoc
(Abdelnasser et al. 2016)

Landmark
Matching
(bending

coefficient)

Y 1-2 m Low Low High
Orientation detection
& device dependency
not fully addressed;

IODetector
(Li et al. 2014)

Joint
Thresholds

Y
82%-90% in

Indoor/Outdoor
Detection

Medium Low High

Require
cell link; thresholding

in geomagnetism
is not robust

MapCraft
(Xiao et al. 2014)
(Xiao et al. 2015)

CRFs Y <2 m Low High High
Heavy training

overhead in CRFs

Spatial-
temporal
Sequence
Matching

LocateMe
(Subbu et al. 2013)

DTW N 3.5 m Low Low Low
Error-prone

to electro-magnetic
inference

FollowMe
(Shu et al. 2015b)

DTW Y <2 m Low Medium Medium

Leader following
mode fits low-cost

small-scale
deployment

GROPING
(Zhang et al. 2015)

DTW/
Bayesian

Y <5 m Low High Medium
Require incentives for
extensive and high-

quality crowdsroucing

WaveLoc
(Rallapalli et al. 2016)

DTW Y
<1.5 m indoors;
10 m outdoors

High Medium Medium
Require CSI
information

with extra cost

Fusion
with

Motion
(Signal
Value

Compari-
son)

BasMag
(Ma et al. 2016)

HMM N 1 m Low Low Medium
Error-prone to
multiple noisy
measurements

Motion
Compatibility

(Park et al. 2014)
CRF/HMM Y <5 m Low Medium Medium

Error-prone to user
motion anomalies

MaLoc
(Xie et al. 2014)
(Xie et al. 2016)

Particle
Filter

N <2 m Low Low Medium
Particle convergence;
computation power

Travi-Navi
(Zhang et al. 2016)

Particle
Filter

Y <2 m High High High
Require camera
support; applied

to navigation only.
Magicol

(Shu et al. 2015a)
Particle
Filter

Y <4 m Low High High
Particle convergence;
computation power

deployment. In contrast, only leveraging geomagnetic sensing (combined with other
inertial sensors) would incur much lower deployment cost.

(3) Robustness to environmental noise: The environmental noise includes measurement errors
due to the participants in crowdsourcing, indoor structure changes and electrical appli-
ances (like an elevator motor), all of which may influence the magnetometer readings at
nearby smartphones.

(4) Computation/energy efficiency: The computation time determines the response rate of lo-
cation estimation with respect to each localization query. Meanwhile, a long query time
means high computation and power consumption for the algorithms running offline.
Therefore, for better user experience of LBS, one might prefer a scheme with higher com-
putation efficiency.

(5) Limitations/restrictions in practical deployment: including different scenarios or practical
issues which may limit the performance of the proposed algorithms. We will also consider
their reproducibility and generality in deployment.

Table 7 summarizes recent smartphone-based systems using geomagnetism. It also provides
their qualitative comparison based on the preceding aspects. This table indicates that modeling
the magnetic signals during the user’s walking for sequence matching has been studied exten-
sively. Various related algorithms that compare sequences have been applied and promising
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Table 8. Comparison of Geomagnetism with Other Signals
for Smartphone-based Indoor Localization

Smartphone-based

Sensor Signal

Reported

Accuracy

Extra Infra-

structure Cost

Deployment

Scalability

Energy

Consumption

Wi-Fi 5–10m WLAN Medium High

Bluetooth 3–10m iBeacon Micro Medium

GSM 5–50m Cellular Network Macro High

Camera 2–5m No Micro High

FM 2–10m FM Radio Chipset Macro Medium

Acoustic <1m No Micro High

Inertial Sensor 5–20m No Macro Medium

Geomagnetism 1–5m No Medium Low

micro-location estimation results have been reported. Despite their technical merits, a few of
them have identified their limitations in static user localization, floor identification and context
awareness for a more spacious indoor area where users might have much higher mobility.
For example, fusing geomagnetism with the image requires line-of-sight photos (Papaioannou
et al. 2017). Occlusions from walls or furniture may degrade the tracking performance. For the
step-counter measurement (Xie et al. 2014), the step readings may be noisy due to abnormal user
gestures. These will all limit the generality of the proposed localization algorithms. Due to the
requirement of accumulated signals, existing systems may not fully address the “cold start” stage
of the ILBS, given no historical sensor records, that is, “where am I right now” when one launches
the LBS application for the first time. The initial location hints by Wi-Fi and iBeacons might be
needed before more ubiquitous localization can be done (Shu et al. 2015a). This may also increase
the complexity, energy consumption and infrastructure cost.

Finally, Table 8 compares geomagnetism with other available signals for smartphone-based in-
door localization. These schemes are evaluated in terms of localization accuracy, extra infrastruc-
ture cost, deployment scalability and energy consumption. For deployment scalability, we consider
three levels: micro (∼20m2), medium (∼200m2), and macro (∼1,000m2). Traditional RF signals (in-
cluding Wi-Fi, Bluetooth, and GSM) are more likely to provide large-scale site deployment. How-
ever, their accuracy and energy consumption on mobiles may not be as satisfactory as non-RF
signals. Geomagnetism-based schemes are found to achieve reasonably high localization accuracy
with low energy consumption, and do not rely on extra infrastructures, making geomagnetism a
signal with potentials for smartphone-based indoor localization.

5 CONCLUSIONS AND FUTURE WORK

Use of various signals has been explored for indoor localization, and of them, geomagnetism has
emerged as promising for numerous practical reasons. In particular, geomagnetism is pervasive,
does not require any additional infrastructures, and its fingerprint has been observed to be tempo-
rally more stable and spatially more discernible than commonly seen Wi-Fi fingerprints, enabling
accurate localization.

In the context of smartphone-based computing, we have investigated the recent advances
in geomagnetism-based indoor localization. We first discussed the emerging issues with the
geomagnetism measurements using smartphones. We then examined the recent approaches to
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Table 9. Several Commercialized Geomagentism-based ILBSes for Mobiles (By Late 2016)

Company Year Founded Reported Accuracy Other Sensors Extra Features

Indoor Atlas

(IndoorAtlas 2016)
2012 1–2m GPS

Map creator

for layman users

GIPStech

(GIPStech 2016)
2013 1m

Wi-Fi, iBeacons,

Augmented GPS

Different

IoT devices

indoo.rs(Indoo.rs 2016) 2010 2m iBeacon SLAM

Compathnion

(Compathnion Technology 2016)
2015 1m

Wi-Fi;

iBeacon

Crowdsourced

signal map update

Ubirouting(UbiRouting 2016) 2013 1–2m Wi-Fi; iBeacon Map creator

constructing and updating a geomagnetism database (or signal map). We surveyed ways to reduce
the data-collection effort and location-search computation. Given a constructed magnetic field
database, we then reviewed the ways of localizing a target, including pattern matching and sensor
fusion algorithms. We have also identified challenges and presented insights into this research
field for new researchers and engineers. Based on this comprehensive survey, we summarize the
fundamental limitations and potentials, and provide some future research directions as follows.

Improving Magnetometer Calibration: Although researchers have studied how to utilize geomag-
netism for indoor localization and navigation, few of them have fully addressed the problem of
calibrating the smartphone magnetometer for more accurate localization. The magnetometer read-
ings may change significantly when the smartphone is close to electric appliances (e.g., microwave
oven) or placed with metallic objects. In a complex environment with strong electromagnetic in-
terference, the magnetic field measurements may show a different shape than the fingerprints,
leading to potential localization error (Gao and Harle 2015). To fully address these issues, further
sensor fusion and more advanced sensor filtering are needed.

Enhancing Ubiquitousness and Localizability: From Table 8, we also observe that the deployment
of magnetism may not be as scalable as other RF-based signals. Existing localization schemes based
on geomagnetism largely rely on the local anomalies introduced by some indoor building struc-
tures. The available information of plain geomagnetic fluctuations in some areas may not suffice
to distinguish different locations. How to identify the floors or buildings is also critical for ubiq-
uitous geomagnetism-based localization. Therefore, the ubiquity and localizability of the geomag-
netism system often varies with environment, making its pervasive deployment challenging. How
to cooperatively fuse geomagnetism with other signals (Bai et al. 2016) for better ubiquity and
localizability is also an interesting topic to explore.

Updating Geomagnetic Signal Map: Complex indoor magnetic environments make it difficult
to characterize and predict geomagnetic distribution. Unlike relatively sparse RF-signal measure-
ments with long coherence lengths (Gao and Harle 2015), the geomagnetism pattern degrades
more quickly with distance from metallic objects. Knowledge of neighboring sampling points may
not necessarily lead to accurate characterization of local measurements (Xie et al. 2014). The mas-
sive amount of sampled data also makes regressing and updating the entire constructed magnetic
signal map potentially labor intensive (Gao and Harle 2015). To enable its practical deployment, it
is critical to accurately and efficiently update the magnetic signal map.

To show the current status of deployment, we review the recent commercialized systems in
geomagnetism-based smartphone localization. According to Research and Markets (2016), the
global ILBS market is expected to grow at a Compound Annual Growth Rate (CAGR) of 43.44%
during 2016–2020. Table 9 lists several existing commercialized ILBS engines which have reported
use of geomagnetism for localization. Note that for Apple iOS platforms geomagnetism may out-
weigh Wi-Fi fingerprinting, as Apple has not yet provided authorized Wi-Fi RSSI fingerprinting
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service on iOS devices. As of late 2016, commercial trials using Wi-Fi and iBeacon still outnum-
bers those using geomagnetism, due mostly to the challenges mentioned thus far. Bridging the gap
between research and deployment is still very challenging. Table 9 also shows the current trend
of fusing geomagnetism with other RF signals. Despite disadvantages in energy consumption and
fingerprint stability, existing RF (like Wi-Fi) fingerprints still provide higher dimensionality and
larger coverage of location information if properly leveraged. To support more ubiquitous LBS,
one may need to fuse geomagnetism with multiple sensing modalities (Xu et al. 2016).
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