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ABSTRACT
Voice has become an increasingly popular User Interaction (UI)
channel, mainly contributing to the current trend of wearables,
smart vehicles, and home automation systems. Voice assistants
such as Alexa, Siri, and Google Now, have become our everyday
�xtures, especially when/where touch interfaces are inconvenient
or even dangerous to use, such as driving or exercising. The open
nature of the voice channel makes voice assistants di�cult to secure,
and hence exposed to various threats as demonstrated by security
researchers. To defend against these threats, we present VAuth,
the �rst system that provides continuous authentication for voice
assistants. VAuth is designed to �t in widely-adopted wearable
devices, such as eyeglasses, earphones/buds and necklaces, where
it collects the body-surface vibrations of the user and matches it
with the speech signal received by the voice assistant’s microphone.
VAuth guarantees the voice assistant to execute only the commands
that originate from the voice of the owner. We have evaluated VAuth
with 18 users and 30 voice commands and �nd it to achieve 97%
detection accuracy and less than 0.1% false positive rate, regardless
of VAuth’s position on the body and the user’s language, accent or
mobility. VAuth successfully thwarts various practical attacks, such
as replay attacks, mangled voice attacks, or impersonation attacks.
It also incurs low energy and latency overheads and is compatible
with most voice assistants.

1 INTRODUCTION
Siri, Cortana, Google Now, and Alexa are becoming our everyday
�xtures. Through voice interactions, these and other voice assis-
tants allow us to place phone calls, send messages, check emails,
schedule appointments, navigate to destinations, control smart ap-
pliances, and perform banking services. In numerous scenarios such
as cooking, exercising or driving, voice interaction is preferable
to traditional touch interfaces that are inconvenient or even dan-
gerous to use (e.g., while driving). Furthermore, a voice interface
is even essential for the increasingly prevalent Internet of Things
(IoT) devices that lack touch capabilities [29].

With sound being an open channel, voice as an input mechanism
is inherently insecure as it is prone to replay attacks, sensitive to
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noise, and easy to impersonate. Recent studies have even demon-
strated that it is possible to inject voice commands stealthily and re-
motely with mangled voice [9, 39], wireless signals [17], or through
public radio stations [26] without raising the user’s attention. Ex-
isting voice authentication mechanisms, such as Google’s “Trusted
Voice" and Nuance’s “FreeSpeech", used by banks [33], fail to pro-
vide the security features for voice assistant systems. An adversary
can bypass these voice-as-biometric authentication mechanisms
by impersonating the user’s voice (a feature already enabled by
commercial software [5]) or simply launching a replay attack. Re-
searchers have already shown that voice morphing techniques can
defeat human and machine-based speaker veri�cation systems [30].
Even Google warns against its voice authentication feature as being
insecure,1 and some security companies [6] recommend relinquish-
ing voice interfaces all together until security issues are resolved.
The implications of attacking voice-assistant systems can be fright-
ening, ranging from information theft and �nancial loss [25] all the
way to in�icting physical harm via unauthorized access to smart
appliances and vehicles.

To defend against these threats, we propose VAuth, a novel sys-
tem that provides continuous authentication for voice assistant sys-
tems. Designed as a wearable security token, it supports on-going
authentication by introducing an additional channel that provides
physical assurance. Speci�cally, VAuth collects the body-surface
vibrations of a user and continuously matches them to the voice
commands received by the voice assistant. This way, VAuth ensures
that the voice assistant executes only the commands that originate
from the voice of the owner.

In this paper, we choose to implement VAuth using an accelerom-
eter because of its extremely low energy footprint and its ability
to collect on-body vibrations (the direct product of user’s speech)
which the attacker cannot readily compromise or alter. This, how-
ever, does not preclude utilizing other sensors (e.g., specialized
microphones), in VAuth, that can achieve a similar functionality
and security guarantees as for the accelerometer. VAuth o�ers the
following salient features.

Continuous Authentication. VAuth speci�cally addresses the
problem of continuous authentication of a speaker to a voice-
enabled device. Most authentication mechanisms, including all
smartphone-speci�c ones such as passwords, PINs, patterns, and
�ngerprints, provide security by proving the user’s identity be-
fore establishing a session. They hinge on one underlying assump-
tion: the user retains exclusive control of the device right after
the authentication. While such an assumption is natural for touch
interfaces, it is unrealistic for the case of voice assistants. Voice

1When a user tries to enable Trusted Voice on Nexus devices, Google ex-
plicitly warns that it is less secure than password and can be exploited by
the attacker with a very similar voice.
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allows access for any third party during a communication session,
rendering pre-session authentication insu�cient. VAuth provides
ongoing speaker authentication during an entire session by en-
suring that every speech sample recorded by the voice assistant
originates from the speaker’s throat. Thus, VAuth complements
existing mechanisms of initial session authentication and speaker
recognition.

Improved Security Features. VAuth overcomes a major secu-
rity problem of voice biometric authentication schemes: the possibil-
ity of the voice biometric information to be leaked or compromised.
A voice biometric (akin to a �ngerprint) is a long term property
of an individual, and compromising it (e.g., through impersonat-
ing the owner’s voice) renders the voice authentication insecure.
Automated speech synthesis engines can construct a model of the
owner’s voice (thereby impersonating him/her) using a very limited
number of his/her voice samples [30]. On the other hand, when
losing VAuth for any reason, the user has to just unpair the token
and pair a new one.

Many of the existing biometric-based authentication approaches
try to reduce time-domain signals to a set of vocal features. Regard-
less of how descriptive the features are of the speech signal, they still
represent a projection of the signal to a reduced-dimension space.
Therefore, collisions are bound to happen; two di�erent signals can
result in the same feature vector. Such attacks weaken the security
guarantees provided by almost all voice-biometric approaches [35].
In contrast, VAuth depends on the instantaneous consistency of the
entire signal from the accelerometer and the microphone. Thus, it
can identify even minor changes/manipulations of the signal.

Usability. A user can use VAuth out-of-the-box as it does not
require any user-speci�c training, a drastic departure from existing
voice biometric mechanisms. It only depends on the instantaneous
consistency between the accelerometer and microphone signals.
Therefore, VAuth is immune to voice changes over time and dif-
ferent situations, such as sickness (a sore throat) or tiredness – a
major limitation of voice biometrics. VAuth provides its security
features as long as it touches the user’s skin at any position on the
facial, throat, and sternum2 areas. This allows us to incorporate
VAuth into wearables that people are already using on a daily basis,
such as eyeglasses, Bluetooth earbuds and necklaces/lockets. Our
usability survey of 952 individuals revealed that users are willing
to accept the di�erent con�gurations of VAuth when it comes in
the forms with which they are already comfortable.

Another issue that a�ects the usability of VAuth is the quality
of the accelerometer and voice signals. In the real world, the micro-
phone and accelerometer do not pick up clean signals, rendering
their matching non-trivial. VAuth is equipped with a matching al-
gorithm that can handle the noise and other artifacts in both the
accelerometer and voice signals without sacri�cing its security
features.

We have built a prototype of VAuth using a commodity ac-
celerometer and an o�-the-shelf Bluetooth transmitter. Our im-
plementation is integrated into the Google Now system in Android,
and could easily extend to other voice-based platforms such as
Cortana, Siri, or even phone banking services. VAuth can thus be

2The sternum is the bone that connects the rib cage; it vibrates as a result of the speech.

utilized by individuals in enterprises and organizations with high-
security requirements such as �nancial institutions. To demonstrate
the e�ectiveness of VAuth, we recruited 18 participants and asked
each of them to issue 30 di�erent voice commands using VAuth. We
repeated the experiments for three wearable scenarios: eyeglasses,
earbuds and necklace. We found that VAuth:

• delivers results with 97% detection accuracy and close to
0.1% false positives. This indicates most of the commands
are correctly authenticated from the �rst trial and VAuth
only matches the command that originates from the owner;

• works out-of-the-box regardless of variation in accents,
mobility (still vs. jogging), or even languages (Arabic, Chi-
nese, English, Korean, Persian);

• e�ectively thwarts mangled voice attacks and blocks unau-
thenticated voice commands replayed by an attacker or
impersonated by other users; and

• incurs low latency (an average of 300ms) and energy over-
head (requiring re-charging only once a week).

The rest of the paper is organized as follows. Sections 2 and 3 dis-
cuss the related work and background. Section 4 states the system
and threat models and Section 5 details the design and implemen-
tation of VAuth. We discuss our matching algorithm in Section 6,
and conduct a phonetic-level analysis on the matching algorithm
in Section 7. We evaluate VAuth’s e�ectiveness in Section 8. Sec-
tion 9 discusses di�erent aspects of VAuth, and �nally, the paper
concludes with Section 10.

2 RELATEDWORK
Smartphone Voice Assistants. Many researchers have studied

the security issues of smartphone voice assistants [13, 17, 36, 39].
They have also demonstrated the possibility of injecting commands
into voice assistants with electromagnetic signals [17] or with a
mangled voice that is incomprehensible to humans [39]. These
practical attack scenarios motivate us to build an authentication
scheme for voice assistants. Petracca et al. [36] proposed a generic
protection scheme for audio channels by tracking suspicious infor-
mation �ows. This solution prompts the user and requires manual
review for each potential voice command. It thus su�ers from the
habituation and satis�cing drawbacks since it interrupts the users
from their primary tasks [14].

Voice Authentication. Most voice authentication schemes in-
volve training on the user’s voice samples and building a voice bio-
metric [4, 10, 12, 18]. The biometric may depend on the user’s vocal
features or cultural backgrounds and requires rigorous training
to perform well. There is no theoretical guarantee that they pro-
vide good security in general. Approaches in this category project
the signal to a reduced-dimension space and collisions are thus
inherent. In fact, most companies adopt these mechanisms for the
usability bene�ts and claim they are not as secure as passwords or
patterns [31]. Moreover, for the particular case of voice assistants,
they all are vulnerable to simple replay attacks.

Mobile Sensing. Researchers have studied the potential applica-
tions of accelerometers for human behavior analysis [3, 24, 34, 42].
It has been shown possible to infer keyboard strokes [3], smart-
phone touch inputs [42] or passwords [3, 34] from acceleration



Continuous Authentication for Voice Assistants MobiCom ’17, October 16–20, 2017, Snowbird, UT, USA

0.1 0.12 0.14

time (sec)

a
.u

.

signal

glottal pulses

(a) Source

2 4 6 8

frequency (kHz)

-10

0

10

20

30

G
a

in
 (

d
B

)

LP Filter

(b) Filter

Figure 1: The source–�lter model of human speech produc-
tion using the vowel {i:} as an example.

information. There are also applications utilizing the correlation be-
tween sound and vibrations [20, 28] for health monitoring purposes.
Doctors can thus detect voice disorder without actually collecting
the user’s daily conversations. These studies are very di�erent from
ours which focuses on continuous voice assistant security.

3 BACKGROUND
We introduce some basic concepts and terminology regarding the
generation and processing of human speech, which will be refer-
enced throughout the paper.

3.1 Human Speech Model
The production of human speech is commonly modeled as the
combined e�ect of two separate processes [16]: a voice source
(vibration of vocal folds) that generates the original signal and a
�lter (determined by the resonant properties of vocal tract including
the in�uence of tongue and lips) that further modulates the signal.
The output is a shaped spectrum with certain energy peaks, which
together map to a speci�c phoneme (see Fig. 1(b) for the vowel
{i:} – the vowel in the word “see"). This process is widely used
and referred to as the source-�lter model.

Fig. 1(a) shows an example of a female speaker pronouncing the
vowel {i:}. The time separating each pair of peaks is the length of
each glottal pulse (cycle). It also refers to the instantaneous funda-
mental frequency (f0) variation while the user is speaking, which
is the pitch of speaker’s voice. The value of f0 varies between 80
to 333Hz for a human speaker. The glottal cycle length (being the
inverse of the fundamental frequency) varies 0.003sec and 0.0125sec.
As the human speaker pronounces di�erent phonemes in a par-
ticular word, the pitch changes accordingly, which becomes an
important feature of speaker recognition. We utilize the fundamen-
tal frequency (f0) as a reference to �lter signals that fall outside of
the human speech range.

3.2 Speech Recognition and MFCC
The most widely used features for speech recognition tasks are Mel-
frequency cepstral coe�cients (MFCC) [21], which models the way
humans perceive sounds. In particular, these features are computed
on short-term windows when the signal is assumed to be stationary.
To compute the MFCCs, the speech recognition system computes

the short-term Fourier transform of the signal, then scales the
frequency axis to the non-linear Mel scale (a set of Mel bands). Then,
the Discrete Cosine Transform (DCT) is computed on the log of the
power spectrum of each Mel band. This technique works well in
speech recognition because it tracks the invariant feature of human
speech across di�erent users. However, it also opens the door to
potential attacks: by generating mangled voice segments with the
same MFCC feature, an attacker can trick the voice assistant into
executing speci�c voice commands without drawing any attention
from the user.

4 SYSTEM AND THREAT MODELS
4.1 System Model
VAuth consists of two components. The �rst is wearable, housing
an accelerometer that touches the user’s skin at any position on
the facial, throat, and sternum areas. This allows us to incorporate
it into wearables that people are already using on a daily basis,
such as eyeglasses, Bluetooth earbuds and necklaces/lockets. It
constitutes a specialized “microphone" that only registers the user’s
voice via his body, providing a physical security guarantee. The
second component is an extended voice assistant that issues voice
commands after correlating and verifying both the accelerometer
signal from the wearable device and the microphone signal collected
by the assistant. VAuth is not only compatible with smartphone
voice assistants such as Siri and Google Now, but also applies to
voice systems in other domains such as Amazon Alexa and phone-
based authentication systems used by banks.

We assume the communications between the two components
are encrypted. Attacks to this communication channel are orthogo-
nal to our work. We also assume the wearable device serves as a
secure token that the user will not share with others. The latter is
known as security by possession, which is widely adopted in the se-
curity �eld in the form of authentication rings [40], wristbands [23],
or RSA SecurID. Thus, the problem of authenticating the wearable
token to the user is orthogonal to VAuth and has been addressed
elsewhere [11]. Instead, we focus on the problem of authenticat-
ing voice commands, assuming the existence of a trusted wearable
device.

4.2 Threat Model
We consider an attacker who is interested in stealing private in-
formation or conducting unauthorized operations by exploiting
the voice assistant of the target user. Typically, the attacker tries
to hijack the voice assistant of the target user and deceive it into
executing mal-intended voice commands, such as sending text mes-
sages to premium phone numbers or conducting bank transactions.
The results can be much more serious considering voice is becom-
ing the most promising UI interface for controlling smart home
appliances and vehicles. The adversary mounts the attack by inter-
fering with the audio channel. This does not assume the attacker
has to be physically at the same location as the target. It can uti-
lize equipment that can generate a sound on its behalf, such as
radio channels or high-gain speakers. Speci�cally, we consider the
following three categories of attack scenarios.



MobiCom ’17, October 16–20, 2017, Snowbird, UT, USA Huan Feng, Kassem Fawaz, and Kang G. Shin

Figure 2: The high-level design of VAuth, consisting of the
wearable and the voice assistant extension.

Scenario A – Stealthy A�ack. The attacker attempts to inject
either inaudible or incomprehensible voice commands through
wireless signals [17] or mangled voice commands [9, 39]. This
attack is stealthy in the sense that the victim may not even be
aware of the on-going threat. It is also preferable to the attacker
when the victim has physical control or within proximity of the
voice assistant.

Scenario B –Biometric-overrideA�ack. The attacker attempts
to inject voice commands [35] by replaying a previously recorded
clip of the victim’s voice, or by impersonating the victim’s voice.
This attack can have a very low technical barrier: we found that by
simply mimicking the victim’s voice, an attacker can bypass the
Trusted Voice feature of Google Now within �ve trials, even when
the attacker and the victim are of di�erent genders.

Scenario C – Acoustic Injection A�ack. The attacker can be
more advanced, trying to generate a voice that has a direct e�ect on
the accelerometer [38]. The intention is to override VAuth’s veri�ca-
tion channel with high energy vibrations. For example, the attacker
can play very loud music which contains embedded patterns of
voice commands.

5 VAUTH
We present the high-level design of VAuth, describe our prototype
implementation with Google Now, and elaborate on its usability
aspects.

5.1 High-Level Overview
VAuth consists of two components: (1) a wearable component,
responsible for collecting and uploading the accelerometer data,
and (2) a voice assistant extension, responsible for authenticat-
ing and launching the voice commands. We chose to employ an
accelerometer instead of an additional microphone because the
accelerometer does not register voice (vibrations) through the air,
thus providing a better security guarantee. The �rst component

easily incorporates into existing wearable products, such as ear-
buds/earphones/headsets, eyeglasses, or necklaces/lockets.

When a user triggers the voice assistant, for example, by saying
“OK, Google" or “Hey, Siri", our voice assistant extension collects
accelerometer data from the wearable component, correlates it with
signals collected from microphone and issues the command only
when there is a match. It is worth noting that the wearable com-
ponent of VAuth stays in an idle mode (idle connection and no
accelerometer sampling) and only wakes up when it receives a trig-
ger from the voice assistant extension. After the command �nishes,
the wearable component goes back to its idle mode. This helps
reduce the energy consumption of VAuth’s wearable component
by reducing its duty cycle.

Fig. 2 depicts the information �ows in VAuth. To reduce the pro-
cessing burden on the user’s device, the matching does not take
place on the device (that runs the voice assistant), but rather at the
server side. The communication between the wearable component
and the voice assistant takes place over Bluetooth BR/EDR [7]. Blue-
tooth Classic is an attractive choice as a communication channel,
since it has a relatively high data rate (up to 2Mbps), is energy-
e�cient, and enables secure communication through its pairing
procedure. Upon losing the wearable component of VAuth, the user
has to just unpair it with the voice assistant. This unpairing pre-
vents an attacker from misusing a stolen wearable component to
access the user’s voice assistants.

5.2 Prototype
To build the wearable component, we use a Knowles BU-27135
miniature accelerometer with the dimension of only 7.92×5.59×2.28mm
so that it can easily �t in any wearable design. The accelerome-
ter uses only the z-axis and has an analog bandwidth of 11kHz,
enough to capture the bandwidth of a speech signal, as opposed to
the accelerometers available in commercial wearables with typical
bandwidth of 200Hz. We utilize an external Bluetooth transmitter
that provides Analog-to-Digital Conversion (ADC) and Bluetooth
transmission capabilities to the voice assistant extension. To reduce
energy consumption, VAuth starts streaming the accelerometer sig-
nal only upon request from the voice assistant. Our prototype com-
municates the microphone and accelerometer signals to a Matlab-
based server which performs the matching and returns the result to
the voice assistant. Fig. 3 depicts our wireless prototype standalone
and attached to a pair of eyeglasses.

Our system is integrated with the Google Now voice assistant to
enable voice command authentication. VAuth starts execution im-
mediately after the start of a voice session (right after “OK Google”
is recognized). It blocks the voice assistant’s command execution
after the voice session ends until the matching result becomes avail-
able. If the matching fails, VAuth kills the voice session. To achieve
its functionality, VAuth intercepts both the HotwordDetector and
the QueryEngine to establish the required control �ow.

We implement our voice assistant extension as a standalone
user-level service. It is responsible for retrieving the accelerometer
signals from the wearable device and sending both accelerometer
and microphone to our Matlab-based server for analysis. The user-
level service provides two RPC methods, start and end, which are
triggered by the events generated when the hotword “OK Google”
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(a) Wireless (b) Eyeglasses

Figure 3: Our prototype of VAuth, featuring the accelerome-
ter chip and Bluetooth transmitter, (a) compared to US quar-
ter coin and (b) attached to a pair of eyeglasses belonging to
one of the authors.

(a) Earbuds (b) Eyeglasses (c) Necklace

Figure 4: The wearable scenarios supported by VAuth.

is detected, and when the query (command) gets executed, respec-
tively. The �rst event can be observed by �ltering the Android
system logs, and we intercept the second by overriding the Android
IPC mechanisms, by �ltering the Intents sent by Google Now.

Note that the above modi�cations and interceptions (in the An-
droid framework) are necessary only because Google Now is closed
source. The incorporation of VAuth is straightforward in the cases
when developers try to build/extend their voice assistant.

5.3 Usability
VAuth requires the user to wear a security-assisting device. Since
security has always been a secondary concern for users [41], we
design VAuth in a way such that it can be easily embedded into ex-
isting wearable products that the users are already comfortable with
in their daily lives. Our prototype supports three widely-adopted
wearable scenarios: earbuds/earphones/headsets, eyeglasses, and
necklace/lockets. Fig. 4 shows the positions of the accelerometer
in each scenario. We select these areas because they have consis-
tent contact with the user’s body. While VAuth performs well on
all facial areas, shoulders and the sternal surface, we only focus
on the three positions shown in Fig. 4 since they conform with
widely-adopted wearables.

We have conducted a survey to evaluate the users’ acceptance of
the di�erent con�gurations of VAuth with 952 participants using
Amazon Mechanical Turk. We restricted the respondent pool to
those from the US with previous experience with voice assistants;

Figure 5: A breakdown of respondents’ wearability prefer-
ence by security concern and daily wearables. Dangerous
and Safe refer to participants’ attitudes towards the attacks
to voice assistants after they’ve been informed; the Danger-
ous category is further split according to the wearables that
people are already wearing on a daily basis; Yes and No refer
to whether participants are willing to use VAuth in at least
one of three settings we provided.

58% of them reported using a voice assistant at least once a week.
We follow the USE questionnaire methodology [22] to measure the
usability aspects of VAuth. We use a 7-point Likert scale (ranging
from Strongly Disagree to Strongly Agree) to assess the user’s
satisfaction with a certain aspect or con�guration of VAuth. We
pose the questions in the form of how much the respondent agrees
with a certain statement, such as: I am willing to wear a necklace that
contains the voice assistant securing technology. Below, we report
a favorable result as the portion of respondents who answered a
question with a score higher than 4 (5,6,7) on the 7-point scale. Next
to each result, we report the portion of those surveyed, between
brackets, who answered the question with a score higher than 5 (6
or 7).

We �rst asked the respondents about their opinion regarding the
security of voice assistants. Initially, 86% (63%) of the respondents
indicate that they think the voice assistants are secure. After being
primed about the security risks by iterating the attacks presented
in Section 4, the respondents’ perceptions shifted considerably. 71%
(51%) of the respondents indicate that attacks to voice assistants
are dangerous, and 75%(52%) speci�ed that they would take steps
to mitigate the threats. This suggests that serious e�orts remain to
be made to raise the public awareness of the security concerns of
voice assistants.

Then, we study the perception of using VAuth from individuals
who are already aware of the security problems of voice assistants.
We ask the participants about their preferences for wearing VAuth
in any of the three con�gurations of Fig. 4. We have the following
takeaways from the analysis of survey responses.

• 70%(47%) of the participants are willing to wear at least one
of VAuth’s con�gurations to provide security protection.
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Figure 6: Pre-processing stage of VAuth’s matching.

Speci�cally, 48% (29%) of the respondents favored the ear-
buds/earphone/headset option, 38% (23%) favored the eye-
glasses option and 35% (19%) favored the necklace/locket
option.

• As expected, the �ndings �t the respondents’ wearables in
their daily lives. 71% of the respondents who wear earbuds
on a daily basis favored that option for VAuth, 60% for
eyeglasses and 63% for the necklace option.

• There is no discrepancy in the wearable options among
both genders. The gender distribution of each wearable
option followed the same gender distribution of the whole
respondent set.

• 75% of the users are willing to pay $10 more for a wearable
equipped with this technology while more than half are
willing to pay $25 more.

Fig. 5 presents a breakdown of the major �ndings from our
usability survey. These results demonstrate that users are willing
to accept the di�erent con�gurations of VAuth, when they are well-
educated about the privacy/security threats and when VAuth comes
in the form with which they are already comfortable.

6 MATCHING ALGORITHM
To enable the useful scenarios we described in the previous section,
the matching algorithm of VAuth (highlighted in Fig. 2) needs to be
(1) resilient to the di�erent placements of the accelerometer, while
being (2) sensitive enough to identify even minor discrepancies of
potentially modi�ed microphone signals.

The matching algorithm of VAuth takes as input the speech
and vibration signals along with their corresponding sampling
frequencies. It outputs a decision value indicating whether there is
a match between the two signals as well as a “cleaned" speech signal
in case of a match. VAuth performs the matching in three stages:
pre-processing, speech segments analysis, and matching decision. In
what follows, we elaborate on VAuth’s matching algorithm using a
running example of a male speaker recording the two words: “cup"
and “luck" with a short pause between them. The speech signal is
sampled by an accelerometer from the lowest point on the sternum
at 64kHz and recorded from a built-in laptop (HP workstation)
microphone at a sampling frequency of 44.1kHz, 50cm away from
the speaker.

6.1 Pre-processing
First, VAuth applies a highpass �lter which removes all the artifacts
of the low-frequency movement to the accelerometer signal (such as
walking or breathing) and negates the e�ect of other environmental
vibrations (such as the user being on a subway platform). We use
100Hz as a cuto� threshold because humans cannot generate more
than 100 mechanical movements per second. VAuth then re-samples
both accelerometer and microphone signals to the same sampling
rate while applying a low-pass �lter to prevent aliasing.

Second, VAuth normalizes the magnitude of both signals to have
a maximum magnitude of unity, which necessitates removal of
the spikes in the signals. Otherwise, the lower-energy components
referring to the actual speech will not be recovered. The matching
algorithm computes a running average of the signal’s energy and
enforces a cut-o� threshold, keeping only the signals with energy
level within the moving average plus six standard deviation levels.

After normalizing the signal magnitude, as shown in the top
plot of Fig. 6(b), VAuth aligns both signals by �nding the time
shift that results in the maximum cross correlation of both signals.
Note that VAuth does not utilize more sophisticated alignment
algorithms such as Dynamic Time Warping (DTW), since they
remove timing information critical to the signal’s pitch and require
a higher processing load. Fig. 6(b) shows both accelerometer and
microphone signals aligned and normalized.

The next pre-processing step includes identi�cation of the energy
envelope of the accelerometer signal. VAuth identi�es the parts of
the signal that have a signi�cant signal-to-noise ratio (SNR). These
are the “bumps" of the signal’s energy as shown in the top plot of
Fig. 6(b). This results in four energy segments of the accelerometer
signal of Fig. 6(b). The thresholds for energy detection depend on the
average noise level (due to ADC chip’s sampling and quantization)
when the user is silent.

Finally, VAuth applies the accelerometer envelope to the micro-
phone signal so that it removes all parts from the microphone signal
that did not result from body vibrations, as shown in the bottom
plot of Fig. 6(b). This is the �rst real step towards providing the se-
curity guarantees. In most cases, it avoids attacks on voice assistant
systems when the user is not actively speaking. Inadvertently, it
improves the accuracy of the voice recognition by removing back-
ground noise and sounds from the speech signals that could not
have been generated by the user.

6.2 Per-Segment Analysis
Once it identi�es high-energy segments of the accelerometer signal,
VAuth starts a segment-by-segment matching. For each segment,
VAuth normalizes the signal magnitude to unity to remove the
e�ect of other segments, such as the e�ect of the segment s1 in
Fig. 6(b). VAuth then applies the approach of Boersma [8] to extract
the glottal cycles from each segment. The approach relies on the
identi�cation of periodic patterns in the signal as the local maxima
of the auto-correlation function of the signal. Thus, each segment is
associated with a series of glottal pulses as shown in Fig. 7. VAuth
uses information about the segment and the corresponding glottal
pulses to �lter out the segments that do not correspond to human
speech. Speci�cally, we keep only those segments with the average
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Figure 8: Matching decision stage of VAuth’s matching.

fundamental frequency falling into the human speech range ([80Hz,
333 Hz]).

Also, if the average relative distance between glottal pulse se-
quence between the accelerometer and microphone segments is
higher than 25%, then VAuth removes the segment from both signals.
This refers to the case of interfered speech (e.g., attacker trying to
inject speech); the instantaneous pitch variations should be similar
between the accelerometer and microphone [27] in the absence of
external interference. For example, it is evident that the pitch infor-
mation is very di�erent between the accelerometer and microphone
of Fig. 7(a).

After performing all the above �ltering steps, VAuth does a �-
nal veri�cation step by running a normalized cross correlation
between the accelerometer and microphone segments. If the maxi-
mum correlation coe�cient falls inside the range [-0.25,0.25], then
the segments are discarded. We use this range as a conservative
way of specifying that the segments do not match (correlation coef-
�cient close to zero). The correlation is a costlier operation but is a
known metric for signal similarity that takes into consideration all
the information of the time-domain signals. For example, the seg-
ment “s4" depicted in Fig. 7(b) shows matching pitch information
and a maximum cross-correlation coe�cient of 0.52.

6.3 Matching Decision
After the segment-based analysis �nishes, only the “surviving"
segments comprise the �nal accelerometer and microphone signals.
In Fig. 8(a), only the segments “s2" and “s4" correspond to matching
speech components. It is evident from the bottom plot that the
microphone signal has two signi�cant components referring to
each word.

The �nal step is to produce a matching decision. VAuth measures
the similarity between the two signals by using the normalized
cross-correlation, as shown in the top plot of Fig. 8(b). VAuth can-
not just perform the cross-correlation on the input signals before
cleaning. Before cleaning the signal, the cross-correlation results
do not have any real indication of signal similarity. Consider the
lower plot of Fig. 8(b), which corresponds to the cross-correlation
performed on the original input signals of Fig. 6(a). As evident from
the plot, the cross-correlation shows absolutely no similarity be-
tween the two signals, even though they describe the same speech
sample.

Instead of manually constructing rules that map the cross-correlation
vector to a matching or non-matching decision, we opted to uti-
lize a machine learning-based classi�er to increase the accuracy of
VAuth’s matching. Below, we elaborate on the three components of
VAuth’s classi�er: the feature set, the machine learning algorithm
and the training set.

Feature Set. The feature vector comprises the normalized cross-
correlation values (h(t )) of the �nal accelerometer and microphone
signals. However, we need to ensure that the structure of the feature
vector is uniform across all matching tasks. To populate the feature
vector, we identify the maximum value of h(t ), and then uniformly
sample 500 points to the left and another 500 to the right of the
maximum. We end up with a feature vector containing 1001 values,
centered at the maximum value of the normalized cross-correlation.

Classi�er. We opted to use SVM as the classi�er thanks to its
ability to deduce linear relations between the cross-correlation val-
ues that de�ne the feature vector. We utilize Weka [15] to train
an SVM using the Sequential Minimal Optimization (SMO) algo-
rithm [37]. The SMO algorithm uses a logistic calibrator with nei-
ther standardization nor normalization to train the SVM. The SVM
utilizes a polynomial kernel with the degree equal to 1. We use the
trained model in our prototype to perform the online classi�cation.

Training Set. We recorded (more on that in Section 7) all 44
English phonemes (24 vowels and 20 consonants) from one of the
authors at the lower sternum position using both the accelerometer
and microphone. Hence, we have 44 accelerometer and microphone
pair of recordings corresponding for each English phoneme. To
generate the training set, we ran VAuth’s matching over all 44 × 44
accelerometer and microphone recordings to generate 1936 initial
feature vectors and labeled them accordingly.

Here, it is critical to specify that VAuth’s classi�er is trained
o�ine, only once and only using a single training set. The classi�er
is thus agnostic of the user, position on the body and language. In
our user study and rest of the evaluation of Section 8, this (same)
classi�er is used to perform all the matching. To use VAuth, the
user need not perform any initial training.
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Table 1: The IPA chart of English phonetics.

Vowel Examples Conso-
nants Examples

2 CUP, LUCK b BAD, LAB
A: ARM, FATHER d DID, LADY
æ CAT, BLACK f FIND, IF
e MET, BED g GIVE, FLAG
@ AWAY, CINEMA h HOW, HELLO

3:r TURN, LEARN j YES, YELLOW
I HIT, SITTING k CAT, BACK
i: SEE, HEAT l LEG, LITTLE
6 HOT, ROCK m MAN, LEMON
O: CALL, FOUR n NO, TEN
U PUT, COULD N SING, FINGER
u: BLUE, FOOD p PET, MAP
AI FIVE, EYE r RED, TRY
AU NOW, OUT s SUN, MISS
eI SAY, EIGHT S SHE, CRASH
oU GO, HOME t TEA, GETTING
OI BOY, JOIN úS CHECK, CHURCH

e@r WHERE, AIR T THINK, BOTH
I@r NEAR, HERE D THIS, MOTHER
U@r PURE, TOURIST v VOICE, FIVE

- - w WET, WINDOW
- - z ZOO, LAZY
- - Z PLEASURE, VISION
- - ãZ JUST, LARGE

After computing the matching result, VAuth passes the �nal
(cleaned and normalized) microphone signal to the voice assistant
system to execute the speech recognition and other functionality.

7 PHONETIC-LEVEL ANALYSIS
We evaluate the e�ectiveness of our matching algorithm on phonetic-
level matchings/authentications. The International Phonetic Alpha-
bet (IPA) standardizes the representation of sounds of oral lan-
guages based on the Latin alphabet. While the number of words
in a language, and therefore the sentences, can be uncountable,
the number of phonemes in the English language are limited to
44 vowels and consonants. By de�nition, any English word or sen-
tence, as spoken by a human, is necessarily a combination of those
phonemes [19]. Our phonetic-level evaluation represents a baseline
of VAuth’s operation.

We study if VAuth can correctly match the English phoneme
between the accelerometer and microphone (true positives), and
whether it mistakenly matches phoneme samples from accelerome-
ter to other phoneme samples from the microphone (false positives).
We recruited two speakers, a male and a female, to record the 44
examples listed in Table 1. Each example comprises two words,
separated by a brief pause, both representing a particular phoneme.
We asked the speaker to say both words, not just the phoneme,
as it is easier for the speaker to pronounce the phoneme in the
context of a word. Both speakers were wearing VAuth, with the
accelerometer taped to the sternum.

7.1 Accelerometer Energy & Recognition
Phonemes originate from a possibly di�erent part of the chest-
mouth-nasal area. In what follows, we show that each phoneme
results in vibrations that the accelerometer chip of VAuth can reg-
ister, but does not retain enough acoustic features to substitute a
microphone speech signal for the purpose of voice recognition. This
explains our rationale for employing the matching-based approach.

All phonemes register vibrations, with the minimum relative
energy (accelerometer relative to microphone) coming from the OI
(the pronunciation of “oy" in “boy") phoneme of the male speaker.

Table 2: The detection accuracy for the English phonemes.

microphone accelerometer TP (%) FP (%)

consonants consonants 90 0.2
consonants vowels - 1.0
vowels consonants - 0.2
vowels vowels 100 1.7

all all 94 0.7
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Figure 9: Examples of tested noise signals.

While the accelerometer chip senses considerable energy from the
chest vibrations, it cannot substitute for the microphone. To con�rm
this, we passed the recorded and cleaned accelerometer samples of
all phonemes for both speakers to the Nuance Automatic Speaker
Recognition (ASR) API [32]. The state-of-the-art ASR engine fails
to identify the actual spoken words. In particular, for about half of
the phonemes for both speakers, the ASR fails to return any result.
For the rest of the phonemes, Nuance API returns three suggestions
for each accelerometer sample. The majority of these results do not
match any of the spoken words. In only three cases for consonants
phonemes for both speakers, the API returns a result that matches
at least one of the spoken words.

The above indicates that existing ASR engines cannot interpret
the often low-�delity accelerometer samples, but it does not indicate
that ASR engines cannot be retro�tted to recognize samples with
higher accuracy. This will, however, require signi�cant changes to
deploying and training these systems. On the other hand, VAuth is
an entirely client-side solution that requires no changes to the ASR
engine or the voice assistant system.

7.2 Phonemes Detection Accuracy
We then evaluate the accuracy of detecting each phoneme for each
speaker as well as the false positive across phonemes and speakers.
In particular, we run VAuth to match each accelerometer sample
(88 samples — corresponding to each phoneme and speaker) to all
the collected microphone samples; each accelerometer sample must
match only one microphone sample. Table 2 shows the matching
results.

First, we match the consonant phonemes across the two speakers
as evident in the �rst row. The true positive rate exceeds 90%, show-
ing that VAuth can correctly match the vast majority of consonant
phonemes. We also report the false positive rate which indicates
the instances where VAuth matches an accelerometer sample to the
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inappropriate microphone sample. As shown in the same �gure,
the false positive rate is very low. Using the Hoe�ding bound, it is
easy to show (we do not provide this proof because of space con-
straints) that the false positive rate of a sentence comprising more
phonemes decays exponentially fast in the number of phonemes. As
such, the false positive rate of phonemes matching is only a (loose)
upper bound of the whole sentence matching. Our evaluation in
Section 8 further supports this property of VAuth. We also show
that this non-zero false positive rate does not constitute a viable
attack vector.

Moreover, a phoneme contains speaker-independent features.
VAuth overcomes these similar features to successfully distinguish
the same phoneme across the two speakers. The fourth row of
Table 2 shows comparable results when attempting to match the
vowel phonemes for both speakers.

The second and third rows complete the picture of phoneme
matching, showing the matching results of the vowel to the conso-
nant phonemes for both speakers. Both rows do not contain true
positive values as there are no phoneme matches. Finally, the �fth
row shows results of matching all the accelerometer samples to all
the microphone samples. The true positive rate is 93%, meaning
that VAuth correctly matched 82 accelerometer samples matched
to their microphone counterparts. Moreover, the false positive rate
was only 0.6%.

7.3 Idle Detection Accuracy
Last but not least, we evaluate another notion of false positives:
VAuth mistakenly matches external speech to a silent user. We
record idle (the user not actively speaking) segments from VAuth’s
accelerometer and attempt to match them to the recorded phonemes
of both participants. We considered two types of idle segments: the
�rst contains no energy from speech or other movements (Fig. 9(a)),
while the other contains signi�cant abrupt motion of the accelerom-
eter resulting in recordings with high energy spikes (similar to the
spike of Fig. 6(a)). We also constructed a high energy noise signal
with periodic patterns as shown in Fig. 9(b).

We executed VAuth over the di�erent idle segments and micro-
phone samples and recorded the false matching decisions. In all
of the experiments, we did not observe any occurrence of a false
matching of an idle accelerometer signal to any phoneme from the
microphone for both speakers. As recorded phonemes are repre-
sentative of all possible sounds comprising the English language,
we can be con�dent that the false positive rate of VAuth is zero in
practice for silent users.

8 EVALUATION
We now evaluate the e�cacy of VAuth in identifying common voice
assistant commands, under di�erent scenarios and for di�erent
speakers. VAuth is shown to achieve a matching accuracy exceeding
95% (True Positives, TPs) regardless of its position on the body, user
accents, mobility patterns, or even across di�erent languages except
for the Korean language — which we will describe later. Since the
TP rate is high, the False Negative rate is very low (less than 5%),
meaning that the user need not repeat the command to get a positive
match in the absence of an attacker. Moreover, we elaborate on
the security properties of VAuth, demonstrating its e�ectiveness in

Table 3: The list of commands to evaluate VAuth.

Command Command

1. How old is Neil deGrasse Tyson? 16. Remind me to buy co�ee at 7am from Starbucks
2. What does colloquial mean? 17. What is my schedule for tomorrow?
3. What time is it now in Tokyo? 18. Where’s my Amazon package?
4. Search for professional photography tips 19. Make a note: update my router �rmware
5. Show me pictures of the Leaning Tower of Pisa 20. Find Florence Ion’s phone number
6. Do I need an umbrella today? What’s the weather
like? 21. Show me my bills due this week

7. What is the Google stock price? 22. Show me my last messages.
8. What’s 135 divided by 7.5? 23. Call Jon Smith on speakerphone
9. Search Tumblr for cat pictures 24. Text Susie great job on that feature yesterday
10. Open greenbot.com 25. Where is the nearest sushi restaurant?
11. Take a picture 26. Show me restaurants near my hotel
12. Open Spotify 27. Play some music
13. Turn on Bluetooth 28. What’s this song?
14. What’s the tip for 123 dollars? 29. Did the Giants win today?
15. Set an alarm for 6:30 am 30. How do you say good night in Japanese?
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Figure 10: The detection accuracy of VAuth for the 18 users
in the still position.

thwarting various attacks. Finally, we report the delay and energy
consumption of our wearable prototypes.

8.1 User Study
To support the conclusions derived from our model, we conducted a
detailed user study of the VAuth prototype with 18 users and under
six di�erent scenarios. We tested how VAuth performs at three po-
sitions, each corresponding to a di�erent form of wearable (Fig. 4)
eyeglasses, earbuds, and necklace. At each position, we tested two
cases, asking the user to either stand still or jog. In each scenario,
we asked the participants to speak 30 phrases/commands (listed
in Table 3). These phrases represent common commands issued
to the “Google Now" voice assistant. In what follows, we report
VAuth’s detection accuracy (TPs) and false positives (FPs) when
doing a pairwise matching of the commands for each participant.
We collected no personally identi�able information from the indi-
viduals, and the data collection was limited to our set of commands
and posed no privacy risk to the participants. As such, we obtained
non-regulated status from the IRB of our institution.

Still. VAuth delivers an overall detection accuracy rate (TPs)
that is very close to 100% (97% on average). This indicates most of
the commands are correctly authenticated from the �rst trial, and
VAuth does not introduce a usability burden to the user. The false
positive rate is 0.09% on average, suggesting that very few signals
will leak through our �ltering. Note that the non-zero false positive
rate does not constitute a viable attack vector.

These false positive events occurred because after our matching
algorithm removes all non-matching segments from both signals,
the remaining segments of the microphone signal and accelerometer
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Figure 11: The energy levels of the outlier users (in Fig. 10(c))
compared to average users. The circles represent commands
of the outlier users that VAuth fails to match.
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Figure 12: The detection accuracy of VAuth for the 18 users
in the moving position.

signal accidentally match. In fact, what was eventually received by
the voice assistants contains no semantic information and sounds
very like random noise. The voice recognition system (Voice-to-
Text) fails to pick them up as sensible voice commands. Fig. 10
shows the overall distribution of detection results for each scenario.

VAuth presents with a median detection accuracy of 100% in two
wearable scenarios, eyeglasses and earbuds, but has two signi�cant
outliers in the case of the necklace. We investigated the commands
that VAuth fails to recognize and found they happen when there are
signi�cant energy dips in the voice level. Fig. 11 reports the energy
levels of the voice sessions for the two outlier users compared to the
average across users. This suggests both participants had a lower
(than average) voice when performing the experiments which did
not generate enough energy to achieve the authentication.

Mobility. We asked the participants to repeat the experiments at
each position while jogging. Our algorithm successfully �lters the
disturbances introduced by moving, breathing and VAuth’s match
accuracy remains una�ected (see Fig. 12). In fact, we noticed in
certain cases, such as for the two outliers observed in our previous
experiments, the results are even better. We studied the di�erence
between their samples in the two scenarios and found both ac-
celerometer and microphone received signi�cantly higher energy
in the jogging scenario even after we �ltered out the signals intro-
duced by movement. One explanation is that users are aware of
the disturbance introduced by jogging and try to use louder voice
to compensate. This observation is consistent across most of our
participants, not just limited to the two outliers.

Table 4: The detection accuracy of VAuth for the 4 di�erent
languages.

Scenario Language TP (%) FP (%)

earbuds

Arabic 100 0.1
Chinese 100 0
Korean 100 0
Persian 96.7 0.1

eyeglasses

Arabic 100 0
Chinese 96.7 0
Korean 76.7 0
Persian 96.7 0

necklace

Arabic 100 0
Chinese 96.7 0
Korean 96.7 0
Persian 100 0

Table 5: The protections o�ered by VAuth.

Sce-
nario Adversary Example Silent

User
Speaking

User

A Stealthy mangled voice,
wireless-based 4 4

B Biometric
Override

replay, user
impersonation 4 4

C Acoustic
Injection

direct communication,
loud voice

distance
cut-o�

distance
cut-o�

Language. We translated the list of 30 commands into four other
languages — Arabic, Chinese, Korean and Persian — and recruited
four native speakers of these languages. We asked the participants
to place and use VAuth at the same three positions. As shown in
Table 4, VAuth performs surprisingly well, even though the VAuth
prototype was trained on English phonemes (Section 6.3). VAuth
delivers detection accuracy of 97% (100% in some cases), except for
one case, with the user speaking Korean when wearing eyeglasses.
The Korean language lacks nasal consonants and thus does not
generate enough vibrations through the nasal bone [43].

8.2 Security Properties
In Section 4, we listed three types of adversaries against which
we aim to protect the voice assistants. Table 5 lists the protections
o�ered by VAuth, when the user is silent or actively speaking, for
each attack scenario.

Silent User. When the user is silent, VAuth completely prevents
any unauthorized access to the voice assistant. In Section 7.3, we
evaluate the false positive rate of VAuth mistakenly classifying
noise while the user is silent for all English phonemes. VAuth is
shown to have a zero false positive rate. When the user is silent,
the adversary cannot inject any command for the voice assistant,
especially for scenarios A and B of Section 4. There might be an
exception, however, for scenario C; an adversary can employ a very
loud sound to induce vibrations at the accelerometer chip of VAuth.
Note that, since the accelerometer only senses vibrations at the
z-axis, the attacker must make the extra e�ort to direct the sound
wave perpendicular to the accelerometer sensing surface. Next,
we will show that beyond a cut-o� distance of 30cm, very loud
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Figure 13: The magnitude of the sensed over-the-air vibra-
tions by the accelerometer as a function of the distance be-
tween the sound source and the accelerometer.

sounds (directed at the z-axis of the accelerometer) do not induce
accelerometer vibrations. Therefore, to attack VAuth, an adversary
has to play a very loud sound within less than an arm’s length from
the user’s body — which is highly improbable.

We conduct experiments on two scenarios: the �rst with VAuth
exposed and the second with VAuth covered with cotton cloth-
ing. Fig. 13 reports how the accelerometer chip of VAuth reacts to
over-the-air sound signals of di�erent magnitudes at di�erent dis-
tances. In each of these scenarios, we played a white noise at three
sound levels: 2x, 4x and 8x the conversation level at 70dB, 82dB and
90dB, respectively [2]. The noise is directed perpendicularly to the
sensing surface of the accelerometer. Fig. 13(a) shows the recorded
magnitude of the accelerometer signal as a function of the distance
between the sound source and VAuth when it is exposed. As evident
from the plots, there is a cut-o� distance of 30cm, where VAuth’s
accelerometer cannot sense even the loudest of the three sound
sources. Beyond the cut-o� distance, the magnitude of the recorded
signal is the same as that in a silent scenario. This indicates that an
adversary cannot inject commands with a high sound level beyond
some cut-o� distance. These results are consistent with the case of
VAuth covered with cotton, as shown in Fig. 13(b).

Speaking User. The adversary may try to launch an attack on
the voice assistant when the user is actively speaking. As we will
show, VAuth matches signals in their entirety, thus can detect even
minor discrepancies of the injected voice command compared to
the authentic voice session. First, we show how VAuth can success-
fully thwart the stealthy attacks of scenario A. Vaidya et al. [9, 39]
presented an attack that exploits the gap between voice recogni-
tion system and human voice perception. It constructs mangled
voice segments that match the MFCC features of an injected voice
command. An ASR engine can recognize the command, but not the
human listener. This and similar attacks rely on performing a search
in the MFCC algorithm parameter space to �nd voice commands
that satisfy the above feature.

Fig. 14 shows the evaluation �ow. For each of the recorded com-
mand of the previous section, we extract the MFCCs for the full
signal and use them to reconstruct the voice signal. We vary the
number Mel �lter bands between 15 and 30. At 15 Mel �lter bands,

Figure 14: The �ow of the mangled voice analysis.

the reconstructed voice command is similar to what is reported
in existing attacks [39]. At 30 Mel �lter bands, the reconstructed
voice command is very close to the original; it shares the same
MFCCs and is easily identi�able when played back. Finally, we exe-
cute VAuth over the reconstructed voice segment and the original
accelerometer sample to test for a match.

In all cases, while the original microphone signal matches ac-
celerometer signals near perfectly as indicated before, the recon-
structed sound failed to match the accelerometer signal in 99% of
the evaluated cases. Of 3,240 comparisons (2 Mel �lter band lengths
per command, 90 commands per user and 18 users), the recon-
structed sound matched only a handful of accelerometer samples,
and only in cases where we used 30 Mel �lter bands. Indeed, those
sound segments were very close to the original sound segment that
corresponds to the matched accelerometer samples and are not
stealthy at all. To constitute a practical attack, the mangled voice
segment is not supposed to originate from the sound the user is
speaking, let alone preserving discernible acoustic features. This
demonstrates that VAuth matches the signals in their entirety, even
subtle changes which are indistinguishable to human ears can result
in discrepancies of our matching/authentication results.

In scenario B, an attacker also fails to overcome VAuth’s pro-
tection. We indicated earlier in Section 7.2 and in this section that
VAuth successfully distinguishes the phonemes and commands of
the same user. This indicates ‘sounds like’ the user does not help
the attacker much — it must inject the same command the user is
saying using the same voice. Moreover, even if the user is speaking
and the adversary is replaying another sound clip of the same user,
VAuth can di�erentiate between the microphone and accelerometer
samples and stop the attack.

Finally, the matching algorithm of VAuth might result in some
false positives (albeit very low). Even though these false positives
indicate the remaining segments after the “per-segment" stage of
VAuth match, useful information in these accelerometer and micro-
phone signals have already been �ltered by our algorithm. What
gets delivered to the voice assistant is practically random noise.
Note that VAuth could use a more stringent classi�er tuned to force
the false positive rate to be 0. Such a classi�er comes at the cost of
usability but could be preferable in high-security situations.

8.3 Delay and Energy
We measure the delay experienced at the voice assistant and the en-
ergy consumption of the wearable component, using our prototype.
As shown in Fig. 2, VAuth incurs delay only during the matching
phase: when VAuth uploads the accelerometer and microphone sig-
nals to the remote service and waits for a response. According to
our evaluation over the same list of 30 commands, we found that a
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Figure 15: Current levels of the prototype in the idle and ac-
tive states.

successful match takes 300–830ms, with an average of 364ms, while
an unsuccessful match takes 230–760ms, with an average of 319ms.
The response time increases proportionally with the length of the
commands. Still, matching a command containing 30 words still
takes less than 1 second. We expect the delay to decrease further
with a more optimized server implementation.

When the wearable component transmits accelerometer signals,
it switches between an idle state that keeps the connection alive and
an active state to transmit the data. We connected our prototype
to the Monsoon power monitor and recorded the current levels of
the prototype in these two states when powered by a �xed voltage
(4V). Fig. 15 illustrates the changes of the current levels when our
prototype switches from idle to active and then back to idle. In the
active state, our prototype consumes as much as 31mA, while in
the idle state, it only consumes an average of 6mA. Most of the
energy is used to keep the Bluetooth connection and transmit data
(in the active state) — the energy consumed by the accelerometer
sensor is almost negligible (3 µA).

Assuming the user always keeps the wearable open at daytime
and sends 100 voice commands per day (10 seconds per voice com-
mand). Our prototype consumes 6.3mA on average. This might even
be an over-estimation since 90% of the users issue voice commands
at most once per day according to our survey. A typical 500mAh
Li-Ion battery used by wearables (comparable to a US quarter coin)
can power our prototype for around a week. 80% of the participants
in our usability survey think they have no problem with recharging
the wearable on a weekly basis. We conducted all the analyses on
our prototype which directly utilizes o�-the-shelf hardware chips
without any optimization, assuming that VAuth is provided as a
standalone wearable. If incorporated into an existing wearable de-
vice, VAuth will only introduce an additional energy overhead of
less than 10mAh per day (to power the additional accelerometer).

9 DISCUSSION
VAuth requires the user to wear an additional device that is in con-
tinuous contact with his/her body. This requirement restricts our
design options to embedding VAuth within wearables that maintain
constant contact with the user’s body. In this paper, we presented a
proof-of-concept implementation of VAuth where we investigated

three possible wearable scenarios: eyeglasses, earbuds, and neck-
laces. With more engineering e�ort, we can expand the use of
VAuth to cover more wearables, such as watches and wristbands.

VAuth’s energy consumption is another issue that a�ects its
usability and practicality. In Section 8, our prototype was shown
to deliver a week worth of battery life under a usage scenario
of 100 commands per day. This overhead constitutes the energy
consumption of the entire prototype of VAuth, most of which is
spent on keeping the Bluetooth connection alive (between the
matching and wearable components of VAuth). Integrating VAuth
within existing Bluetooth-equipped wearables (such as a Bluetooth
earbud or smartwatch) can limit its additional energy overhead to
that needed to collect and communicate the vibrations from the
user’s body to the matching component. The latter only takes place
when the user is issuing a voice command.

In its core, VAuth consists of the matching and wearable com-
ponents. The wearable component collects the speech signal as
it traverses the user’s body (not injected through the air or an-
other medium) and communicates them to the matching engine.
In this paper, we presented a proof-of-concept implementation of
the wearable component. This implementation, however, does not
preclude other realizations of VAuth, as long as they meet both
requirements: securely collect and communicate speech from the
body to the matching component. We have used an accelerome-
ter which captures vibrations through contact with the skin, as
opposed to an on-body microphone, for instance, which captures
voice through the air making it susceptible to voice injection. Even
with a reasonably tuned sensitivity threshold, an attacker could al-
ways use higher power (louder voice) inject speech signals over the
air for the on-body microphone. On the other hand, the human skin
re�ects most of the energy (95% to 99%) of the voice signal [1]; the
accelerometer will only collect 1% to 5% of the over-air voice signal.
We evaluated this property of the accelerometer in Section 8.2.

10 CONCLUSION
In this paper, we have proposed VAuth, a system that provides
continuous authentication for voice assistants. We demonstrated
that even though the accelerometer information collected from the
facial/neck/chest surfaces might be weak, it contains enough infor-
mation to correlate it with the data received via microphone. VAuth
provides extra physical assurance for voice assistant users and is an
e�ective measure against various attack scenarios. It avoids the pit-
falls of existing voice authentication mechanisms. Our evaluation
with real users under practical settings shows high accuracy and
very low false positive rate, highlighting the e�ectiveness of VAuth.
In future, we would like to explore more con�gurations of VAuth
that will promote wider real-world deployment and adoption.
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