Hieroglyph: Locally-Sufficient Graph Processing
via Compute-Sync-Merge

Xiaoen Ju
University of Michigan

jux@umich.edu

Hani Jamjoom
IBM T.J. Watson Research
Center

Kang G. Shin

University of Michigan
kgshin@umich.edu

jamjoom@us.ibm.com

ABSTRACT

Despite their widespread adoption, large-scale graph processing
systems do not fully decouple computation and communication, of-

ten yielding suboptimal performance. Locally-sufficient computation—

computation that relies only on the graph state local to a computing
host—can mitigate the effects of this coupling. In this paper, we
present Compute-Sync-Merge (CSM), a new programming abstrac-
tion that achieves efficient locally-sufficient computation. CSM en-
forces local sufficiency at the programming abstraction level and
enables the activation of vertex-centric computation on all vertex
replicas, thus supporting vertex-cut partitioning. We demonstrate
the simplicity of expressing several fundamental graph algorithms
in CSM. Hieroglyph—our implementation of a graph processing
system with CSM support—outperforms state of the art by up to
53x, with a median speedup of 3.5x and an average speedup of 6x
across a wide range of datasets.

1. INTRODUCTION

Mainstream graph processing systems (such as Pregel [23], Pow-
erGraph [12], and GraphX [13]) follow the bulk synchronous par-
allel (BSP) model [31] in which they iteratively and synchronously
apply a vertex-centric algorithm on a graph. Inherent in their design
is the tight coupling of computation and communication, where no
vertex can proceed to the next iteration of computation until all ver-
tices have been processed in the current iteration and graph states
have been synchronized across all hosts. Especially for computa-
tionally-light graph algorithms, this coupling of computation and
communication incurs significant performance penalty [35].

Intuitively, if graph processing systems can fully decouple com-
putation from communication, they should achieve higher perfor-
mance because they can better overlap communication and com-
putation. We argue that fully decoupling computation from com-
munication can be achieved; it requires (i) restricted access to only
local state during computation and (ii) independence of inter-host
communication from computation. We call the combination of
both conditions local sufficiency. Conceptually, local sufficiency
allows all vertices to always make progress without blocking on
input from remote vertices (i.e., those residing on remote hosts).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SIGMETRICS 17 June 5-9, 2017, Urbana-Champaign, IL, USA
© 2017 ACM. ISBN 123-4567-24-567/08/06. . . $15.00
DOI: 10.475/123_4

Since all vertices are executing in parallel, local sufficiency can in-
troduce state inconsistency in two ways: (i) vertices might make
progress using incomplete input, and (i) replicated vertices might
make progress—in parallel—on different sets of inputs. As we will
show in the paper, resolving both types of inconsistencies can be
done efficiently.

Local sufficiency is not efficiently supported by state of the art
systems. Synchronous systems, by design, do not support local
sufficiency due to their intrinsic computation-communication cou-
pling. Even systems that implement asynchronous execution only
partially achieve local sufficiency. For example, PowerGraph [12]’s
asynchronous mode satisfies local sufficiency by distributed schedul-
ing. If a vertex-centric function uses remote state, then it will not
be marked as ready for execution until its remote input becomes
locally available after state propagation. Thus, the function itself
is not locally sufficient. Furthermore, the scheduling overhead can
be substantial. GiraphUC [14] avoids such a cost by concentrating
computation on master vertex replicas, efficiently supporting local
sufficiency for edge-cut partitioning. But this approach does not
support vertex-cut and thus cannot benefit from its balanced work-
load distribution.

Towards efficient support for local sufficiency, we set two design
goals. The first goal is to activate vertex-centric computation on
all vertex replicas, enabling each replica to independently update
its local state. This relaxed consistency model would support ver-
tex-cut and enable fast local state propagation without inter-host
coordination. The second goal is to enforce local sufficiency at
the programming abstraction level. This would eliminate any re-
lated coordination overhead at the system level. Additionally, any
inconsistency would be resolved by user-defined functions, which
are coordinated across all hosts to achieve globally-consistent state
upon convergence.

Following these design choices, we introduce a new program-
ming abstraction called Compute-Sync-Merge (CSM). The Com-
pute abstraction (Compute for short) defines locally-sufficient com-
putation, which is iteratively and independently applied to all ver-
tex replicas on each host. Local sufficiency is enforced by the ab-
straction. Compute has access only to local input state. The Sync
and Merge abstractions (referred to as Sync and Merge henceforth)
coordinate the execution on all hosts. The former is in charge of
state propagation and the latter is responsible for the merging of
remote updates with local state. Together, they resolve the incon-
sistency caused by locally-sufficient computation.

We demonstrate the expressiveness and simplicity of CSM by
implementing several widely-used single-phase algorithms, such
as PageRank, single-source shortest path (SSSP), and weakly con-
nected component. The CSM abstraction also provides a new di-
mension for designing efficient locally-sufficient multi-phase graph



(a) 100 (b) 3 PowerGraph (sync, vertex-cut)
= PowerGraph (async, vertex-cut)

B& Giraph (sync, edge-cut)

[ ]
o o

2
9
g
g
=}
S
i3
3
%
Q}

g=]
=

% of idle time
=
o

N
(=]

5
4
3
2
1

=1

o

0
0
0
0
0

0 20 40 60 80 100
% of progress

1

Figure 1: Deficiency when executing SSSP over a Twitter fol-
lowers graph with PowerGraph and Giraph on 16 Amazon
EC2 c3.8xlarge instances. (a) Instantaneous idle time (in gray)
of PowerGraph. (b) Comparison of execution modes and graph
partitioning.

algorithms. In general, multi-phase algorithms limit the perfor-
mance gains of locally-sufficient computation due to global syn-
chronization at phase boundaries [14]. CSM, however, enables
the design of multi-phase algorithms in which (i) locally-sufficient
computation freely proceeds beyond phase boundaries and (ii) con-
flicting state due to computation with local input is resolved in Sync
and Merge. We exemplify such use of CSM with an efficient new
design of a multi-phase maximal bipartite matching algorithm.

We have fully implemented Hieroglyph, a graph processing sys-
tem supporting CSM on top of PowerLyra [7]. We extend Power-
Graph’s gather-apply-scatter (GAS) abstraction [12] to realize the
CSM abstraction, augmenting the portability of GAS-based algo-
rithms to CSM. Experiments with real-world graphs show that Hi-
eroglyph consistently and significantly outperforms state of the art
systems. It outperforms PowerGraph and PowerLyra by up to 22x
and GiraphUC by up to 53x, achieving a median speedup of 3.5x
and an average speedup of 6x among all algorithm-dataset combi-
nations in our evaluation.

The contributions of this paper include:

e the introduction of the Compute-Sync-Merge (CSM) abstrac-
tion, enabling efficient local-sufficiency on vertex-cut parti-
tioning,

e the design of several CSM algorithms to demonstrate the
expressiveness, simplicity, and efficiency of the abstraction,
and

e the implementation of Hieroglyph, a graph processing sys-
tem supporting the CSM abstraction and significantly out-
performing state of the art systems.

The remainder of the paper is as follows. Section 2 provides
background information on state-of-the-art graph processing. We
introduce the CSM abstraction in Section 3 and present Hieroglyph,
a CSM-compliant system, in Section 4. Section 5 demonstrates
Hieroglyph’s superiority by comparing its performance with three
state-of-the-art systems. Related work is discussed in Section 6.
We then conclude the paper in Section 7.

2. BACKGROUND

Synchronous Model. In a synchronous model, vertex-centric com-
putation proceeds in supersteps. Computation and communication
iterations alternate. Such coupling can cause a significant perfor-
mance penalty. Figure 1a shows the instantaneous idle time' due to
communication when running SSSP on a Twitter followers graph
with PowerGraph. Along the course of the execution, the idle time

!The instantaneous idle time is the percentage of execution time
that is idle at time ¢. That is, if in a time interval (¢,¢ 4 dt), the
total idle time is p dt, then the instantaneous idle time at time ¢ is

p.

remains substantial, indicating considerable blocking of computa-
tion due to communication.

Asynchronous Model. Asynchronous execution [12] decouples
computation and communication at the vertex boundary: per-ver-
tex computation-communication tasks are no longer aligned by su-
persteps and can be independently performed, improving the com-
putation-communication interleaving. Such cross-vertex computa-
tion-communication decoupling partially satisfies local sufficiency.
For a given vertex, however, the coupling still exists, albeit hidden
behind the scheduling of the processing system. Regarding per-
formance, the scheduling overhead, along with the communication
deficiency due to the lack of message batching and increased lock-
ing overhead, causes asynchronous execution to underperform syn-
chronous execution for several common algorithms, despite the for-
mer’s faster convergence [21]. For example, Figure 1b shows that
PowerGraph’s synchronous execution significantly outperforms its
asynchronous mode, when running SSSP over the Twitter graph.

GiraphUC [14] proposes barrierless asynchronous model, achiev-
ing local sufficiency with the observations that (i) inter-host com-
munication is much more expensive than intra-host communica-
tion and (ii) computation can proceed with partial input state prop-
agated via intra-host communication. Remote input state is con-
sumed when it becomes available. GiraphUC supports local suf-
ficiency over edge-cut partitioning. That is, workload related to a
vertex—including vertex state update and message passing—must
be conducted by only one host. Prior work [7, 12] shows that edge-
cut partitioning leads to more skewed computation workload and
larger memory footprint compared to vertex-cut, the latter capable
of distributing per-vertex workload onto multiple hosts, each hold-
ing a replica of that vertex. Figure 1b compares the performance
of PowerGraph synchronous execution with Giraph [1], an open-
source implementation of Pregel. Using vertex-cut to produce bal-
anced graph partitions and evenly distribute computation workload,
PowerGraph yields a 4x speedup with respect to Giraph, the lat-
ter supporting only edge-cut.> Given the substantial performance
discrepancy between vertex-cut and edge-cut, enabling local suffi-
ciency only for edge-cut would miss an important opportunity for
performance improvement.

3. COMPUTE-SYNC-MERGE

In this section, we discuss the Compute-Sync-Merge (CSM) ab-
straction, including its challenge, design, workflow, consistency
model, and expressiveness.

3.1 Challenge

As mentioned in Section 1, local sufficiency requires (i) restrict-
ing access to only local state available during vertex-centric com-
putation and (ii) independence of inter-host communication from
local computation. Most existing abstractions cannot fully support
local sufficiency, because of the use of remote input state in vertex-
centric computation. Such usage is expressed, for example, in the
form of message exchanges in Pregel, vertex state synchronization
in Distributed GraphLab [22] and Cyclops’ distributed immutable
view [6], and distributed gathering/scattering in PowerGraph. Gi-
raphUC achieves local sufficiency for edge-cut, but lacks support
for vertex-cut.

Supporting local sufficiency on vertex-cut is challenging because
of the partial distribution of vertex-centric computation. Specifi-
cally, vertex-cut distributes per-vertex computation workload onto
multiple hosts, each maintaining a replica of that vertex. In order to

Differences in systems implementation also contribute to the per-
formance discrepancy.



Table 1: CSM Abstraction

compute(Dy, Ny) — (DY, N°*)
sync(Dy) — My,
merge(Dy, Nu, My) — (D, NyY)

Table 2: Notation

Symbol  Semantics

D, data of vertex u

D) data of edge u — v

N, neighboring states of u, i.e., UvenOhr(u){Dv7 Dy,v)}
M, final sync data for vertex u

Jioeal local sync data for vertex u

Imrrer sum of sync data from mirrors of u

ISt interim sync data for u at master

guarantee vertex state consistency, however, any vertex state update
is restricted to the host holding the master replica. Consequently,
per-vertex computation is partially distributed: only non-state-up-
date functions are processed by all replicas. Thus comes the need
to coordinate the computation across multiple replicas of a vertex,
for example, by properly aligning the computation stages in which
each replica resides. This, in turn, leads to the coupling of compu-
tation and communication. Such coupling needs to be resolved to
achieve local sufficiency on vertex-cut. In contrast, edge-cut con-
centrates computation related to a vertex to only one host. The
challenge imposed by partial distribution of vertex-centric compu-
tation thus does not apply to edge-cut.

3.2 Abstraction and Workflow

To achieve local sufficiency in a vertex-cut abstraction, we make
two design decisions. First, for vertex-centric computation on each
host, we confine the input scope to local state at the program-
ming abstraction level. Such enforcement elimintates the need for
sophisticated local-sufficiency-related coordination at the system
level. Second, we activate vertex-centric computation on all vertex
replicas and, if such computation consists of multiple stages (e.g.,
gather-apply-scatter), we activate all stages on all vertex replicas
and enable autonomous stage transition without inter-host coordi-
nation. This allows computation to proceed at full speed over a
vertex-cut partitioned graph. Synchronization of vertex state and
merging of local and remote states are necessary in such a design
to achieve consistency of the final converged graph state across all
hosts. We expose them at the programming abstraction level, en-
abling flexible inconsistency resolution.

Following this reasoning, we design Compute-Sync-Merge (CSM)
(cf. Table 1). We discuss CSM along its workflow (cf. Figure 2).
A CSM-compliant system maintains two groups of worker threads,
one for computation and the other for communication. Locally-suf-
ficient computation progresses in iterations, independently on each
host. For an iteration, the computation workers invoke a Compute
function on all active vertices. A vertex is activated for the next it-
eration, if it receives messages as a result of the current iteration of
computation. The next iteration starts immediately after the com-
pletion of the current iteration, without inter-host communication.

The communication workers run in parallel with the computation
workers, synchronizing local updates across all vertex replicas with
a Sync function. State synchronization also progresses in iterations.

compute sync Sync compute
thread thread thread thread

local state at ¢

local state at ¢
,:’;ync'ed state at ¢
’

local state at t'} #

local state
merged

Figure 2: Interaction of computation, synchronization, and
merging in CSM workflow, illustrated with two hosts (placed
left and right). One compute thread and one synchronization
thread are shown for each host. Logical time progresses down-
ward.

Contrary to computation iterations, which are locally maintained,
synchronization iterations are aligned across all hosts by global bar-
riers. Upon completion of a synchronization iteration, states prop-
agated from remote hosts are merged with the local states used for
locally-sufficient computation via a Merge function.

3.3 Consistency and Expressiveness

To support local sufficiency on vertex-cut, CSM employs a re-
laxed consistency model for vertex-centric computation. Specif-
ically, the state of a local replica can be updated independently to
other replicas of the same vertex. No ordering constraint is imposed
on such updates. Resolving the inconsistency caused by parallel
updates, as well as the achievement of eventual consistency upon
task completion, depends on the collaboration of Compute, Sync,
and Merge.

An algorithm can be expressed by CSM if it can tolerate transient
inconsistency. It requires the following conditions:

e There exists an inconsistency resolution procedure that syn-
chronizes inconsistent state across multiple vertex replicas
due to locally-sufficient computation. Thus, inconsistency
across vertex replicas remains transient.

e Such a procedure preserves forward progress. Otherwise, the
execution may endlessly switch between locally-sufficient
computation and inconsistency resolution, affecting conver-
gence.

e The resolution result—the consistent state of a vertex—corrects
the state of other vertices generated by using the previously
inconsistent vertex state as input.

Several common graph algorithms, such as SSSP, weakly connected
component, PageRank, maximal bipartite matching, betweenness
centrality, and approximate diameter, are tolerant of transient state
inconsistency and can be easily expressed by CSM.

CSM'’s expressiveness of inconsistency resolution can lead to
better performance, if the gain from local sufficiency outweighs the
cost incurred by inconsistency resolution. Such is the case for the
four algorithms studied in this paper. As expected, with such ex-
pressiveness comes an increase in algorithm complexity. We eval-
uate both aspects in Section 5.

Algorithms intolerant of local inconsistency can also be expressed
in CSM, albeit without the potential performance gain from local
sufficiency. This is because stronger consistency can be flexibly
reintroduced to the workflow via the three functions in CSM. For
example, GAS can be expressed in CSM by (i) reducing the collec-



Table 3: Hieroglyph’s Implementation of CSM

Compute

gather(Dy, Dy v), Dy) — acc
sum(acc left, acc right) — acc
apply(D., acc) — D%
scatter(Dy, ", D(y,v), Dv) — D

(u,v)

Sync

sync_switch(D,,) — I2¢%!
sync_sum(70° left, Ilo¢%! right) — 1loce!
sync_apply([local, [mirrory _, pmaster

sync_commit(710¢e!, [mastery _y M,

Merge

merge_apply(Dy, M,) — D"
merge_scatter(Dy ", Dy, vy, Dy, My) — D(J"

(u,v)

tion of local gather states to Compute, (ii) reducing the propagation
of gather states, the generation of the updated master state in the ap-
ply function, and the synchronization of the master state, to Sync,
and (iii) reducing the vertex state update in the apply function, as
well as local scatter, to Merge. GAS algorithms can thus be con-
verted to their corresponding CSM versions.

4. Hieroglyph

We have fully implemented a CSM-compliant graph process-
ing system called Hieroglyph. It is implemented as an integrated
component of PowerLyra [7], which is, in turn, built on Power-
Graph [12]. Hieroglyph extends PowerLyra and PowerGraph’s ver-
tex-centric abstraction to support CSM. It implements the CSM
workflow in a standalone processing engine, parallel to existing
ones in PowerGraph and PowerLyra. It also extends PowerGraph’s
graph analytics toolkit with algorithms implemented with the CSM
abstraction.

4.1 Implementation of CSM in Hieroglyph

Hieroglyph decomposes the CSM abstraction into several prim-
itive functions (cf. Table 3). We detail this implementation along
Hieroglyph’s workflow.

Compute. In each locally-sufficient computation iteration (cf. Al-
gorithm 1, Line 3), the computation workers iterate through all ac-
tive local vertices. Vertex-centric computation is implemented in
a GAS style. The reuse of the GAS abstraction in CSM’s Com-
pute increases the portability of existing GAS-based algorithms to
CSM. For each vertex, information regarding its neighbor vertices
and edges is accumulated through a gather-sum function pair or via
a sum over messages sent by a previous scatter stage. Such infor-
mation is then used to update the vertex state via an apply func-
tion. A scatter function concludes the vertex-centric computation
by updating neighbor edges according to the new vertex state. Hi-
eroglyph’s Compute differs from PowerGraph’s GAS in that (i) all
of its three stages are executed on all active vertex replicas and (if)
its stage transition is autonomous, without inter-host coordination.

Sync. After an iteration of computation, the computation workers
resume the communication workers to perform metadata synchro-
nization (cf. Algorithm 1, Line 6). They then continue with locally-
sufficient computation. The goal of metadata synchronization is to
achieve consensus among all hosts regarding the set of to-be-syn-

Algorithm 1 Overall Execution Flow

1: /* executed by compute workers */
2: while true do

3 compute an iteration
4 if sync_worker_state == INACTIVE then
5 sync_worker_state < META
6: resume sync workers for metadata sync
7 else
8 if sync_done == false then
9 continue /* to next iteration of computation */
10: sync_done <+ false
11: if sync_worker_state == META then
12: if has_updated_vertices == 0 then
13: /* all hosts have converged */
14: terminate computation
15: else
16: sync_switch /* prepare sync data */
17: sync_worker_state < DATA
18: resume sync workers for data sync (cf. Algo. 3)
19: else
20: sync_worker_state < INACTIVE
21: merge

Algorithm 2 Execution Flow: Metadata Synchronization

: /* executed by communication workers */

. has_updated_vertices < local_updated_vids.count()
Za” hosts has_updated_vertices

: /* exclude single-replica (i.e., internal) vertices */

. updated_vids < local_updated_vids — internal_vids
: sync updated_vids across all hosts

: sync_done < true

chronized vertices. At the end of the metadata synchronization, if
no progress can be made by any host since the last synchronization
(cf. Algorithm 1, Line 12), then the computation has completed.
Otherwise, computation workers invoke a sync_switch function on
to-be-synchronized vertices. The purpose of sync_switch is to cre-
ate a standalone copy of the subset of vertex state used for commu-
nication, so that subsequent computation can freely proceed, updat-
ing vertex state without conflicting with communication. * After
switching state, the computation workers resume locally-sufficient
computation tasks, delegating vertex state synchronization to the
communication workers.

The vertex state synchronization is divided into three stages, sep-
arated by global barriers (cf. Algorithm 3). In the first stage, all mir-
ror replicas (I7"*""°7) are sent to their corresponding master hosts.
In the second stage, each host generates intermediate master copy
(I7*****"™) by combining master replicas with received mirror state
in a sync_apply function and distributes the master copy to the cor-
responding mirroring hosts. In the third stage, each host creates the
final merging state (M,,) for all vertices participating in the current
synchronization by combining the local synchronization state and
the master copy in a sync_commit function. *

3Optimization related to benign contention is discussed in Sec-
tion 4.

“Note that, when vertex state is updated independently by each
replica, there is no distinction between master and mirror in the ver-
tex-centric computation phase. As a result, synchronization cannot
be simply reduced to overwriting mirrors with the master state and
needs to be exposed at the programming abstraction. This explains
the introduction of sync_apply and sync_commit in Sync.



Algorithm 3 Execution Flow: Data Synchronization

: /* executed by communication workers */
: for v in updated_vids do
if u is not master copy then
send I'°°* to master
: global barrier
: for w in updated_vids do
if u is master copy then
I;naster «— Sync_apply(liocal’ [Lni'rro'r)
send It to mirror hosts
10: global barrier
11: for v in updated_vids do
12: M, < sync_commit(J}0c®!, [master)
13: sync_done < true

WRIADN 2D

Algorithm 4 SSSP in CSM

Compute
gather(Dy, Dy,v), Dy): no-op
sum(a, b): return min(a, b) /* message combiner */
apply(Dw, acc): Dy, = min(D,,, acc)
scatter(Dy, D(y,v), Dy): /* to out neighbors */
if changed(D.) and (D, + Dy, ) > D,) then
send_msg(v, Dy + D(y,v))

Sync

sync_switch(D,,): Il°¢® = D,,

sync_sum(a, b): return min(a, b)

Sync_apply(jiocal’ LGirror): Llnaster — min([iocal’ L’;nirr'or)
sync_commit(ZL°°®!, [estery. N, = [rester

Merge
merge_apply(Dw, My): Dy, = min(D,,, M,)
merge_scatter(Dy, D (y,v), Dv, My): /* to out neighbors */
if changed(D.,) and (D, + Dy, ) > D.) then
send_msg(v, Dy + D(y,+))

Merge. Upon communication completion, the computation work-
ers enter the merging stage (cf. Algorithm 1, Line 21). They first
use a merge_apply function to merge remote state with the local
counterpart. Another merge_scatter function is then invoked to up-
date neighbor edges according to the newly merged state. >

4.2 CSM Algorithm Design: Case Studies

We exemplify single- and multi-phase CSM algorithm designs
with SSSP and bipartite matching.

SSSP. For SSSP (cf. Algorithm 4), Compute is expressed similarly
to its counterpart in common vertex-centric abstractions [12]. If
the shortest distance of a vertex changes due to apply, it notifies its
neighbors in scatter. Messages are combined with the min operator,
as shown in sum.

Sync involves the propagation of the minimum shortest distance
among all replicas. Specifically, sync_switch first makes a copy of
the local vertex state, which is then propagated from mirror replicas
to the master. The shortest distances from mirror replicas are com-

SGiven that local vertex state may advance further during concur-
rent synchronization, simply overwriting the local state with the
remote state may negate the progress of locally-sufficient compu-
tation. As a result, how to merge local and remote state also needs
to be exposed at the programming abstraction, thus justifying the
introduction of merge_apply and merge_scatter in Merge.

bined with the min operator in sync_sum. The intermediate master
value is the minimum of the shortest distance of the master replica
and that of the received mirror replicas. It is then broadcasted to all
mirror replicas. Sync_commit establishes the intermediate master
value as the final merge value.

As for Merge, merge_apply and merge_scatter have identical
functionality to their counterparts in Compute. Thus, if the local
vertex state has a shortest distance that is no larger than the merge
value, then the merge value is ignored. This is the case when the
current replica contributes the minimum shortest distance to the
previous synchronization iteration. It can also happen because lo-
cally-sufficient computation further advances the vertex state dur-
ing the previous synchronization. When merging, the current local
vertex state may have become smaller than the minimum shortest
distance of all replicas in the previous synchronization. Otherwise,
the current local state is larger than the merge value and is overwrit-
ten by the latter in merge_apply. Such an update is then propagated
to local neighbors in merge_scatter.

In summary, SSSP demonstrates the simplicity and elegance of
algorithm design using CSM. Compute handles locally-sufficient
computation and is identical to PowerGraph’s GAS implementa-
tion, facilitating design reusing. In addition, Sync and Merge rely
on the same message combining and vertex updating logic in Com-
pute’s sum and apply, leading to simple inconsistency resolution.

Regarding transient inconsistency resolution, SSSP’s Sync and
Merge are designed so that all replicas of a vertex obtain a consis-
tent view, that is, the minimum of local shortest distances. It also
preserves forward progress: the resolved state is aligned to the local
state that has advanced the most in locally-sufficient computation.
In addition, the propagation of the resolution result in Merge—the
new minimum—Ieads to the correction of neighbor vertex states, if
they are generated using a previously inconsistent state.

The CSM implementation of SSSP is guaranteed to converge to
the correct final graph state. This is because, if a destination ver-
tex vq is unreachable from the source vertex vs, then vq converges
upon algorithm initialization (i.e., 0c0). If v4 is reachable, then let n
denote the minimum number of vertices along the shortest path(s)
from v, to vq (inclusive). vq enters the final converged state within
n — 1 iterations of synchronization: after at most ¢ iterations, ver-
tices 4 steps away from v receive the correct final states, propa-
gated via scatter or merge_scatter.

Bipartite Matching. Multi-phase algorithms impose new chal-
lenges to locally-sufficient computation [14]. Due to the different
functionality across computation phases, global synchronization is
generally required to guarantee the correctness of execution. In
addition, messages sent from a phase to be processed by the sub-
sequent phase must be hidden until phase switching. Otherwise,
they will be combined with messages targeting at the current phase,
producing erroneous results. As a result, locally-sufficient compu-
tation is applied only phase-by-phase in GiraphUC, reducing the
performance gain.

CSM, in contrast, enables locally-sufficient computation to freely
proceed across phase boundaries, when the following two condi-
tions are satisfied. First, progress can be made across phases based
only on local state. Second, inconsistent vertex state as a result
of cross-phase locally-sufficient computation can be fixed without
affecting the correctness of the final converged graph state.

We demonstrate CSM’s potential in multi-phase algorithm de-
sign with our implementation of the bipartite matching algorithm.
We adapt the four-phase matching algorithm in Pregel [23] for
CSM’s Compute. When applying it to locally-sufficient compu-
tation with no inter-host coordination, that algorithm produces a
maximal matching on each host. Inconsistent final state may oc-



(a) input state

U3
o OOk

(b) partitioning

2 U1 O_O Us

| |
I I
| |
| v Uyl v,
1)4 ‘Z 4‘ 1
| |
| |
| |
| |
| |

(c) state after
merge iteration 1

v,
4
2 O—Oe

1 3 v.

2

(d) compute iteration 0
|

vz U3

On6)

-0

|
|
|
5!
}
|
I

(e) sync iteration 0

v,{3,5} 0,{3,4,5} v;{1,2} v, {2} wvs{1,2}

arbitration

v; {3} v, {3} v; {1} v, {2} vs {1}

(g) merge iteration 0, step 1
|

| |
| |
| |
I R2 I I I
U2 v} (ﬁ@ 102 o5 [0, ®—D vy 10, D vs
10, Uyl 1 0. @_®U |
} 2 4} R5 } 2 4}
"lw”ﬂ }”1@_®U% v,@—®er }”1@_®03
| | |
| | |
I I I

(h) compute iteration 1 (i) sync iteration 1
|

I
i 0,[RD,3)  0,RO} 0,{RD,1}
|

arbitration

vz®_® U3
oO®

2,0} 2@ {9}

|

|

|

|

ROL 0%
”2@_®U4}

|

MoSo!

|

|

|

I

i
I

I
Vsl
5

I

I

I

(j) merge iteration 1, step 0 (k) merge iteration 1, step 1
]

| | |

I I I I

| | R2 | |

! R2 I I |
”ZO_(DW} d t 102 s Z’ZO_@”%} lsz—Ovs

1D vyl 1D, O_OU\

} 2 4} R5 } 2 4}
”1@_01’5} }v;@—@v; 1’!@_07’&} }vi@_@vx
| | | |
| | | |
I I I I

Figure 3: Illustration of bipartite matching in CSM. Each cir-
cle represents a vertex. The number inside a circle represents
the id of the vertex with which the center vertex (represented
by the circle) currently matches. A circled “R” represents the
revoked state. An arrow associated with “R{vid}’ represents a
local revocation message with vid as its payload.

cur, nevertheless, in the form of vertices having different matching
states across multiple replicas.

Such inconsistency is resolved in Sync and Merge. In a nutshell,
Sync propagates local matching decisions to the master replicas of
each vertex, which then use an arbitration function to resolve con-
flicting decisions. Such a decision is then distributed to all replicas
of a vertex and is used as its merge value. Merge first corrects local
decisions. Then, for each replica of which the matching decision
is corrected, Merge notifies its previous partner vertex with a revo-
cation message. This enables the previous partner vertex to enter
a revoked state, become unmatched, and activate itself for the next
iteration of computation. The proof of correctness of this imple-
mentation is presented in the appendix.

We use an example to describe bipartite matching in CSM, shown
in Figure 3. The input graph (cf. Figure 3a) has five vertices, two
on the left and three on the right, with five edges connecting them.
Suppose the graph is partitioned onto three hosts (cf. Figure 3b).
We follow the execution of the algorithm step by step until the
completion of the second iteration of synchronization and merging
(shown in Figures 3d-3k), reaching the state shown in Figure 3c.
Note that, for bipartite matching, CSM confines the resumption of
communication workers to the start of the four-phase matching cy-

cles. The semantics of one iteration of computation in CSM’s over-
all execution flow (cf. Algorithm 1, Line 3) thus refers to a cycle
of four-phase matching. Intermediate state within a cycle is hidden
from communication workers, simplifying the synchronization.

In the first iteration of computation, matching is performed lo-
cally (cf. Figure 3d). Local state is then synchronized (cf. Fig-
ure 3e), with the master replica of each vertex accumulating all lo-
cal matching decisions. Each master replica then uses an arbitration
function to resolve conflicting decisions. In our current implemen-
tation, each master replica selects the matching decision with the
minimum matching vertex id. Such decision is then distributed to
all replicas of a vertex and is used as its merge value.

Merge is separated into two steps in bipartite matching. In the
first step, merge value obtained from synchronization is used to
correct local decisions (cf. Figure 3f). When a local decision is
corrected, it also sends a revocation message to its previous partner.
For example, on the left host, after v3’s local decision of matching
with vs is overwritten by the merge value v1, v3 sends a message
to v2, notifying its revocation of its previous matching decision. In
the second step (cf. Figure 3g), each vertex receiving revocation
messages checks the relevance of those messages. That is, whether
the payload of a revocation message matches the current matching
decision of the receiving vertex. Irrelevant revocation messages
stem from global state synchronization: upon receipt of a revoca-
tion message, the vertex’s state may have been updated to its glob-
ally consistent value. Since the receiving vertex has rematched to a
vertex different than the sending vertex, the sender’s revocation of a
previous matching becomes irrelevant and is ignored. Such are the
cases for v2 and vs on the right host, each receiving an irrelevant
revocation message from the other. When a relevant revocation
message arrives (e.g., v2 on the left host), the receiving vertex sets
its state to revoked, becomes unmatched, and then activates itself
for the next iteration of computation.®

The second iteration of computation progresses as the first one
(cf. Figure 3h). Since all revoked vertices have their local neigh-
bors in a matched state, no process can be made. In the subsequent
synchronization (cf. Figure 3i), local revocations from the previ-
ous merging phase are propagated globally. The arbitration logic
guarantees that revocation decisions overwrite matched state. For
example, regarding vz, the unmatched state (represented by &) pre-
vails after a message combination with a matching decision of v3.

The second iteration of merging proceeds as the first one (cf. Fig-
ures 3j and 3k), applying synchronized state and propagating local
revocations in the first step and performing or ignoring revocations
in the second step. After the merging, the graph reaches the state
as shown in Figure 3c.

4.3 Discussion

Termination Condition. In Hieroglyph, the termination condition
is checked against the total number of vertices updated across all
hosts since the last synchronization (cf. Algorithm 1, Line 12). An
algorithm completes when this number becomes zero.” In contrast,
in the synchronous mode of PowerGraph and PowerLyra, this con-
dition is checked at the superstep boundaries, owing to the tight
coupling between computation and communication. If no progress

%In addition, a revoked right vertex also needs to activates all its
unmatched left neighbors.

"This statement holds for single-phase algorithms. It also holds
for multi-phase algorithms whose CSM implementations do not re-
quire global synchronization, such as our bipartite matching algo-
rithm. For multi-phase algorithms mandating global synchroniza-
tion at the phase-switching boundaries, this condition marks the
end of a phase.



can be made after an iteration of computation followed by an itera-
tion of communication, then the execution terminates.

The correctness of Hieroglyph’s termination condition derives
from the following patterns in the workflow (cf. Algorithm 1): (i)
one iteration of computation (Line 3) is performed after an iteration
of merging (Line 21) and before the termination condition checking
(Line 12), and (ii) the termination checking, in turn, precedes the
subsequent iteration of synchronization (Line 18). If no progress
can be made in any host since the last synchronization, after incor-
porating the remote states in the merging stage and a subsequent
iteration of locally-sufficient computation, then no progress is pos-
sible. Convergence over the entire graph has thus been achieved.

Computation-Communication Interleaving. In Hieroglyph, to
achieve computation-communication decoupling, we use two groups
of worker threads: one for computation and the other for communi-
cation. PowerGraph and PowerLyra, in contrast, rely on one group
of threads to perform both computation and communication.

The two groups of worker threads in Hieroglyph are of an equal
size, both equating the number of cores on a computing host. Hi-
eroglyph supports fine-tuning of computation-communication in-
terleaving. On the one hand, in order to expedite the integration
of remote vertex state updates into locally-sufficient computation,
the computation workers separate vertices into chunks and perform
computation one chunk at a time, yielding to the communication
workers at the chunk boundaries and thus improving their interleav-
ing.” On the other hand, Hieroglyph can be configured to enforce
algorithm-specific restrictions on computation-communication in-
terleaving. Our bipartite matching algorithm, for instance, confines
the interaction between the two groups of worker threads only to the
boundaries of a four-phase computation cycle. It ensures that local
matching decisions, instead of intermediate states during locally-
sufficient multi-phase computation, are used for synchronization.

Deferred Switching. Deferred switching refers to postponing the
preparation of the synchronization state from the beginning of the
synchronization to when the state is accessed by the communica-
tion workers. Specifically, it delegates the invocation of sync_switch
from the computation worker (cf. Algorithm 3, Line 16) to the com-
munication workers, before the sending of I'°°®! in the case of
a mirror replica (cf. Algorithm 3, Line 4) and before the invoca-
tion of sync_apply for a master replica (cf. Algorithm 3, Line 8).
In comparison, the original workflow of the computation work-
ers (cf. Algorithm 1) invokes sync_switch before the start of the
communication, isolating the vertex state used by computation and
communication workers and thus guaranteeing lock-free access.
Deferred switching relaxes such isolation, exploiting benign data
race to expedite state propagation. For example, in SSSP (cf. Al-
gorithm 4), sync_switch involves a copy of the locally-maintained
shortest distance. Since this value is monotonically non-increasing,
correctness remains intact if functions in Sync access a vertex state
different from the one that would have been copied by sync_switch
before the start of a synchronization iteration. It is also beneficial
to defer the access of the vertex state during synchronization: the
use of an updated state from one host potentially expedites conver-
gence on other hosts. The monotonically non-increasing property,
combined with read-only access from the communication workers,

80ur discussion focuses on threads used by the processing engine
layer and does not include those used for background communica-
tion.

°One iteration of computation over all local vertices is performed
immediately after an iteration of merging, regardless of chunk con-
figuration, in order to maintain the validity of the termination con-
dition.

justifies benign data race: access to vertex state from both worker
groups remains lock-free.

In Hieroglyph, we support both the eager switching design and
the deferred switching mode as an optimization.

Local Synchronous/Asynchronous Execution. The CSM abstrac-
tion does not define whether locally-sufficient computation should
be performed synchronously or asynchronously on each host. As-
sume PowerGraph GAS for locally-sufficient computation. For an
iteration of computation, locally-synchronous execution involves
running the gather, apply, and scatter phases each in a dedicated
iteration, with a local barrier separating two consecutive phases.
Messages produced in the current iteration can be processed only
in the subsequent iteration. In locally-asynchronous execution [14,
30,35], on the other hand, the three phases are applied to a vertex
as an integrated function. Messages sent from vertices v; to v; are
processed in the same iteration, if v; is processed after v;.

Locally-synchronous execution achieves lock-free access to ver-
tex and edge data. Locally-asynchronous execution, in contrast, has
the advantage of fast state propagation. Hieroglyph supports both
execution modes and, for locally-asynchronous execution, supports
different consistency models, similar to the vertex/edge/full consis-
tency in distributed GraphLab [22].

Fault-Tolerance. Hieroglyph resorts to a checkpoint-based fault-
tolerance mechanism [1, 12, 16]. Checkpoints are created by com-
putation workers independently on each host. The checkpoint inter-
val is specified with respect to synchronization iterations, which are
globally consistent. Specifically, state in a checkpoint corresponds
to that at the beginning of a metadata synchronization stage. When
a fault occurs, all hosts are rolled back to their most recent check-
points.

Such a design minimizes the graph state stored in a checkpoint:
only vertex state and intra-host messages used by Compute need to
be checkpointed. This is because, at the time of checkpoint cre-
ation, there exists no state associated with either Sync or Merge.
The next Sync stage is pending, with its initial state yet to be created
based on the vertex state from Compute. The previous Merge has
completed, with all its related state incorporated into vertex state.
Also recall that no inter-host message exists in locally-sufficient
computation. Thus, checkpointing intra-host messages is sufficient
for the resumption of locally-sufficient computation.

Optimizations such as computation-checkpointing overlapping
apply to Hieroglyph as well. On each host, instead of first check-
pointing all related state of its graph partitions and then resuming
computation, we can resume the locally-sufficient computation for
a vertex, as long as its state and local incoming messages are check-
pointed. When such computation produces local outgoing mes-
sages, they can be delivered as long as the incoming messages of
the receiving vertices are checkpointed. Similarly, inter-host com-
munication and checkpointing can overlap.

Regarding performance overhead, the cost of a fault—measured
in the amount of computation lost due to a rollback—is higher for
Hieroglyph than general-purpose BSP approaches. This is a di-
rect outcome of the fact that Hieroglyph can progress faster than
BSP, thanks to local sufficiency. On the other hand, the overhead of

checkpointing in Hieroglyph—in terms of the slowdown of convergence—

should be on a par with that of BSP. Assume that (i) a fixed check-
pointing interval is configured for Hieroglyph and BSP, (ii) the cost
of generating a checkpoint is the same for both approaches, and
(iii) an algorithm in Hieroglyph converges x% faster than BSP. The
slowdown attributed to each checkpoint for Hieroglyph is 101(?81
of that for BSP. The number of checkpoints taken by Hieroglyph is

101%51 of that of BSP. The two effects negate each other, leading to




Table 4: Graph datasets. Counts in parenthesis are for undi-
rected graphs.

Dataset V| |E|
Livejournal 4.8M 69.0M (85.7M)
Wiki 4.2M 101.3M (183.9M)
Twitter 41.7M 1.5B (2.4B)
Road 2.8M 6.8M (6.8M)
Web 118.1M 1.0B (1.7B)

the same slowdown of convergence.

S. EVALUATION

We compare the performance of Hieroglyph with three state-of-
the-art graph processing systems and show the superiority of our
proposed CSM abstraction.

5.1 Experiment Setup

To evaluate Hieroglyph’s performance, we use five realistic datasets
(summarized in Table 4). Livejournal [2, 19] describes the friend-
ship relation in the LiveJournal social network. Wiki [3,4] compiles
English Wikipedia pages. Twitter [17] captures the “who follows
whom” relation in the Twitter social network. Road [11] is the road
network of the great lakes area of the United States. Web [3,4] is a
web graph generated by WebBase [8].

We evaluate Hieroglyph with four algorithms: bipartite matching
(abbreviated as Biparr),'® weakly connected component (abbrevi-
ated as CC), PageRank, and SSSP, all common building-block al-
gorithms in graph analytics.

We compare Hieroglyph with PowerGraph !' [12], PowerLyra
1271, and GiraphUC B 4. PowerGraph uses vertex-cut par-
titioning and features efficient processing of high-degree vertices.
PowerLyra extends PowerGraph to support hybrid-cut, enhancing
computation efficiency for low-degree vertices. Hieroglyph aug-
ments PowerLyra with efficient locally-sufficient computation. Given
such relation, regarding both design and implementation, a perfor-
mance comparison between Hieroglyph and its two predecessors
identifies the gain of locally-sufficient computation over vertex-
cut. GiraphUC is a vertex-centric graph processing system pro-
viding locally-sufficient computation over edge-cut. Despite the
discrepancy between GiraphUC and Hieroglyph in terms of imple-
mentation details,' a comparison between them sheds light on the
potential of enabling efficient locally-sufficient computation over
vertex-cut partitioning.

All experiments are conducted in a cluster of 16 Amazon EC2
c3.8xlarge instances, each with 32 2.8GHz vCPUs, 60GB memory,
and 10 Gbps network connection. All instances run Ubuntu 14.04.2
LTS (Linux 3.13.0-54-generic). PowerGraph, PowerLyra, and Hi-
eroglyph are compiled with gcc 4.8.2. GiraphUC is implemented
on Giraph 1.1.0 and run with Hadoop 1.0.4 and jdk 1.7.0_79. Each
data point is the mean of at least three runs. For all experiments,

0Treating vertices with an even id as left vertices and the rest
as right vertices enables the evaluation of Bipart on all five
datasets [26].

""We evaluate GraphLab PowerGraph version 2.2 (March 2014).
12We use PowerLyra release in April 2014.

3We use GiraphUC snapshot in May 2015.

Such discrepancy includes different vertex-centric abstractions,
programming languages, and inter-host communication mecha-
nisms.

grid vertex-cut is used for PowerGraph by default, hybrid-cut with
ginger heuristics for PowerLyra and Hieroglyph, and hash-based
edge-cut for GiraphUC. PowerGraph and PowerLyra run in the syn-
chronous mode by default.

5.2 Performance

Figure 4 shows that Hieroglyph outperforms all the other three
systems for all algorithm-dataset combinations in our evaluation.
Hieroglyph’s speedup varies from 1.02x to 52.50x, with a median
speedup of 3.54x and an average speedup of 6.00x."

Comparing against PowerGraph and PowerLyra. In most set-
tings, the performance improvement of Hieroglyph with respect to
both PowerGraph and PowerLyra maximizes on Road and mini-
mizes on Twitter. This is because locally-sufficient computation
is most effective with respect to synchronous execution, when lo-
cal state propagation in synchronous execution is severely hindered
by global synchronization. Hieroglyph’s effectiveness is thus am-
plified by Road, which has a large diameter and requires numerous

supersteps—each concluded with an iteration of global synchronization—

for local state propagation in PowerGraph and PowerLyra.'®

The diminishing performance gap in Twitter can be understood
from the perspective of computation-communication balancing. Given
its size, Twitter imposes considerable computation workload on
each participating host. On the one hand, it improves the com-
putation-communication interleaving in PowerGraph and Power-
Lyra, effectively reducing the penalty of inter-host communication.
On the other hand, it magnifies the computation overhead of Hi-
eroglyph caused by (7) repeated per-vertex computation to process
asynchronously-delivered input state and (i7) the need for resolv-
ing inconsistent local state. Indeed, compared to Livejournal and
Wiki, we observe an increase in vertex update rate—an indicator
of the computation efficiency—for PowerGraph and PowerLyra in
the case of Twitter. The update rate for Hieroglyph, however, drops
in the case of Twitter. The opposite trend thus reduces the perfor-
mance improvement of Hieroglyph.

Results for Bipart show the superiority of Hieroglyph due to
its ability to perform locally-sufficient computation across phase
boundaries. Given that each of the four phases in Bipart consists
of only one superstep and that messages generated in one phase
are always processed by the next phase, Hieroglyph’s performance
would be identical to that of PowerLyra if local sufficiency is con-
fined within phase boundaries. In other words, system-only sup-
port for locally-sufficient computation—without the flexibility in-
troduced in the CSM abstraction—would miss the opportunity of
performance enhancement in Bipart. With our CSM bipartite match-
ing design, Hieroglyph achieves up to 3.58x speedup over Power-
Graph and 3.49x over PowerLyra.

Comparing against GiraphUC. GiraphUC achieves better per-
formance than both PowerGraph and PowerLyra for all four al-
gorithms on LiveJournal, Wiki, and Road. It, however, becomes
inferior on Twitter and Web. GiraphUC’s performance variation
mirrors that of Hieroglyph. When the computation workload in-
creases in the synchronous execution, the relative effectiveness of
local sufficiency reduces.

Yet, speedups of Hieroglyph over GiraphUC for Twitter and Web

GiraphUC runs in BSP mode (i.e., reducing to Giraph) in our Bi-
part measurement. This is because GiraphUC terminates prema-
turely when executing our Bipart algorithm with locally-sufficient
computation. Note, however, that GiraphUC’s execution time ob-
tained in BSP mode lower-bounds that with locally-sufficient com-
putation enabled, given the one-superstep-per-phase property of Bi-
part.

16Such pattern conforms to observations in GiraphUC [14].



PowerGraph 586 545 1392 294 1809 361 378 1299

- 601.52  200.65 2201 2026 7632 615 174.72 3.08 1042 529
abs. time (s)

473.72 0.74
3.16x 4.20x 1.39x 1.47x 2.40x 1.89x 15.82x

—_
=N

L O PowerGraph

L 0 u u H M @ PowerLyra

-l b 10t 1L L 1l m

& Hieroglyph
Lfourn:}’lllcf 7 Wiffefoad Wep, L/'Ourn:}/ikj 7 Wiﬂefoad Wep L/'Ourn:}’fkf 7 Wiffefoad Wey,

normalized time
[N RN

oo ®
T

o L, 11 11
Ljourn:}/fkj 7 Wfftefoad Wep

Bipart CcC PageRank SSSP

Figure 4: Performance comparison. Execution time is normalized to that of PowerGraph. Absolute average execution time of
PowerGraph (in seconds) is marked atop each cluster. Normalized execution time of GiraphUC, when exceeding the plotting range,
is also marked.

g 1 8 O cpu .35 N
= D C A

s 0.8 <& = memor > 30 t. PowerGrap!
v 0.6 0.3 6 = netw. g5t o~ PowerLyra
204 = g networ £ 5 o Hierol%{};ph
Qo < . N

g O.S é% 4 E 15 X GiraphUC
2 SR~ =1

= {/(')72&4 %5 (/672,,. '72,,_ &8 2 g

) R ¢

& U G R R 0 b}

g X Y X X Loy, Wip. Tny, R 0

g , Jouy, Wiky {Wig Koay 8§ 16 24 e
(@) Bipart CC PageRank SSSP (b) L2y (98 © number of hosts

Figure 5: Results on performance breakdown, resource consumption, and scalability. (a) Performance breakdown of Hieroglyph’s
Compute and Merge. (b) Resource consumption, normalized to PowerLyra. (c) Scalability comparison, with the number of hosts

varying from 8 to 48.

are larger than those for the remaining datasets. Although the re-
duced effectiveness of locally-sufficient computation affects both
Hieroglyph and GiraphUC in Twitter and Web, Hieroglyph, with
its vertex-cut support via CSM, gracefully handles the increasing
workload with respect to GiraphUC.

Performance Breakdown. Figure 5a shows the performance break-
down of the compute workers, which are responsible for both the
compute and the merge stage. For the four algorithms used in our
evaluation, the compute stage dominates the workload of the com-
pute workers in most cases. The compute-merge ratio is a function
of algorithm and dataset. Figure 5a shows that, (i) the compute-
merge ratio related to the Twitter dataset is higher than that of Live-
journal and (i) the ratios related to Bipart and CC are higher than
those of PageRank and SSSP.

In general, a larger portion of execution time in the merge stage
indicates a higher cost of inconsistency resolution. This cost is de-
termined by two factors: the frequency of the activation of merge
stages and the cost of each activation with respect to the cost of
compute stages. In the case of SSSP, for example, given that the
costs of each activation of the merge stage and the compute stage
are comparable, the large portion of execution time in the merge
stage indicates frequent activation of the merging logic. Note, how-
ever, that both compute and merge stages contribute to the final
graph state convergence. A low compute-merge ratio does not en-
tail an insufficient CSM algorithm design.

Resource Consumption. Figure 5b shows the resource consump-
tion of Hieroglyph with respect to PowerLyra when executing SSSP.
CPU consumption is measured by the number of vertex state up-
dates. Hieroglyph conducts a substantially larger amount of vertex
updates, due to the activation of the update function on all replicas
of each vertex, instead of only the master replica. Such overhead is
also due to the use of potentially inconsistent local state for update
in Hieroglyph. Inconsistency resolution incurs a 51%-182% over-
head regarding network traffic. Since the communication workers
progress independently, however, the negative impact of such an
overhead on the overall performance is minimized. Hieroglyph’s

Table 5: Hieroglyph’s speedup over synchronous and asyn-
chronous PowerGraph and PowerLyra

CC PowerGraph  PowerLyra
synchronous 2.38x 2.07x
asynchronous 8.27x 6.15x
SSSpP PowerGraph  PowerLyra
synchronous 1.94x 1.65x
asynchronous 17.42x 18.58x

memory overhead varies from 3% to 65%, thanks to the mainte-
nance of additional states for Sync and Merge.

Scalability. Figure 5c shows the scalability of the four systems
when executing CC on Twitter. The execution time of all sys-
tems reduces with the increasing number of hosts. Yet, all sys-
tems demonstrate sublinear speedup with the increasing number of
hosts, due to the intrinsic inter-host dependency of the workload.
In terms of execution time, Hieroglyph outperforms the other sys-
tems in all our settings. Its speedup varies between 1.66x—3.37x,
2.38x-2.47x, 1.83x-2.08x, and 1.78x-2.08x, when the number of
hosts are 8, 16, 24, and 48, respectively.

Asynchronous Execution. When running in the asynchronous
mode, the performance of PowerGraph and PowerLyra degrades
significantly for CC, PageRank, and SSSP.!” Figure 6a compares
the performance of PowerGraph, PowerLyra, and Hieroglyph when
executing CC and SSSP on Twitter (summarized in Table 5). We
choose Twitter for evaluating the asynchronous mode of Power-
Graph and PowerLyra, because it produces the minimum speedup
for Hieroglyph and thus provides a conservative view of the perfor-
mance improvement.

""Bipart requires synchronous mode on PowerGraph and Power-
Lyra.



1.2
=60 o 14 O hash
&L O PowerGraph 5 & 12 B ginger — % 1
g ig ’ g g?gg;%y;i E*; oé sne _g'g 0.8 S rdee%;lrlsgdl%gacgls};;;c
< ‘ Y g,g 06 S8 0.6 O regular-local-async
230 ¢ £% 04 £3 04 & deterred-local-async
S 20 ? 220 gg
: / 25 02 25 02
§10 & 2, 8§ v
0 4 - ?’a,fo e, /‘)SSP 0 Twitter Road Twitter Road
@ cc sSSP (b) %, (© cC Sssp

Figure 6: Results on asynchronous execution, effects of graph partitioning, and Hieroglyph’s optimization using deferred switching
and locally-synchronous and asynchronous modes. (a) Performance of PowerGraph and PowerLyra in asynchronous mode. (b)
Effect of graph partitioning. (c) Effect of regular vs. deferred switching and locally-synchronous vs. asynchronous execution in

Hieroglyph .

For CC, the speedup of Hieroglyph with respect to PowerGraph
more than triples when comparing the latter’s synchronous execu-
tion to asynchronous execution. As for PowerLyra, the speedup
of Hieroglyph triples, as well. The increase is even more signifi-

Table 6: Algorithm Complexity in Lines of Code

Algorithm GAS CSM

cant in the case of SSSP. Hieroglyph’s speedup boosts from 1.94x Bipart 123 206
for synchronous PowerGraph to 17.42x for asynchronous Power- cc 46 88
Graph, enlarging the performance gap by 8x. For PowerLyra, the PageRank 48 99
gap enlarges by over an order-of-magnitude. SSSP 44 88

Graph Partitioning. Figure 6b shows the performance of Hiero-
glyph using hash and ginger-heuristic graph partitioning [7], mea-
sured with the Twitter dataset. Overall, Hieroglyph achieves high
performance in both hash and ginger partitioning. Given its ability
to perform locally-sufficient computation, Hieroglyph can mitigate
the effect of unbalanced workload caused by graph partitioning.
Yet, in general, Hieroglyph still benefits from more balanced gin-
ger partitioning.

Deferred Switching. The effect of deferring the switching of syn-
chronization state from the beginning of a synchronization itera-
tion to the time when such state is accessed is negligible for CC
and SSSP, yielding a maximum of 5% reduction in execution time
(cf. Figure 6¢). Such ineffectiveness may be partly attributed to the
high priority assigned to the communication workers in the current
implementation of Hieroglyph. While the computation workers fre-
quently yield to the communication workers (e.g., by reducing the
vertex chunk size), the latter proceed until all available data have
been exchanged. The rationale behind this default mode of Hi-
eroglyph is that, when local state is updated, it is advantageous to
propagate the update to all replicas. In other words, it is desir-
able to minimize the time window during which the vertex state
remains inconsistent. Locally-sufficient computation proceeds op-
portunistically, aiming at making progress to hide communication
cost yet minimizing additional communication delay (in the form
of reduced responsiveness of the communication workers due to
parallel locally-sufficient computation). The probability that the
local vertex state is repeatedly updated before synchronization is
thus minimized, so is the effect of deferred switching.

There are, nevertheless, cases where it is beneficial to assign high
priority to local state propagation [35].'® In those cases, we expect
deferred switching to significantly shorten the execution time.

Local Asynchrony. Figure 6¢ also compares the performance of
locally-synchronous execution with that of locally-asynchronous
execution. For all cases in Figure 6c, local asynchrony leads to su-
perior performance, with the speedup ranging from 1.13x to 1.76x.
For both CC and SSSP, the gain of local asynchrony is larger for

18In graph-centric approaches [30, 35], the same problem bares the
form of whether to perform per-partition computation iteratively
(e.g., until the partition converges) or to frequently propagate up-
dated external vertex state to adjacent partitions.

Road than for Twitter. This is because the effect of fast state prop-
agation in locally-asynchronous mode is amplified by the large di-
ameter of Road.

It is also worth noting that, for CC and SSSP, vertex-consistency
is sufficient for correctness [22]. Since during local-sufficient com-
putation, vertex state can be updated only in the apply function,
there is no write-write data race. In addition, read-write data race
is benign in both CC and SSSP."” Consequently, no lock is required
for accessing vertex state. Regarding operations on the message
queue, message enqueuing requires lock protection in both locally-
synchronous and asynchronous modes. The only additional lock-
ing overhead induced by locally-asynchronous execution is thus for
message dequeuing. This slight overhead is outweighed by the ben-
efit of fast state propagation, leading to the significant improvement
of locally-asynchronous execution.

The performance improvement of local asynchrony is encour-
aging. Yet, locally-synchronous execution has its own merit. For
example, it efficiently supports the bipartite matching algorithm, in
which active vertices of the current phase send messages to be pro-
cessed by the subsequent phase. Had Hieroglyph only supported
locally-asynchronous mode, it would require the implementation
of phase-related message tagging [14], complicating multi-phase
algorithm design.

Complexity. Table 6 compares the complexity of CSM algorithms
with their GAS counterparts, using lines of code as the metric. Us-
ing Hieroglyph’s implementation of the CSM abstraction, the four
algorithms studied in the evaluation require 67%—106% more lines
of code to be expressed in CSM. Note that, the complexity of algo-
rithm design in CSM is also determined by the inconsistency reso-
lution logic in Sync and Merge. For CC, PageRank, and SSSP, their
corresponding inconsistency resolution logic resembles the logic
used in their locally-sufficient computation, the latter an extension

YFor example, assume that a vertex v; will not send a message to
another vertex vj, if v; obtains (i.e., reads) the most recent update
(i.e., write) of v;. Then, if v; sends a message to v; due to the
access of a stale state of v; but the message arrives after v;’s update,
it will be discarded due to program logic, for both CC and SSSP.
Such race thus does not affect correctness.



of the GAS implementation. As a result, these three algorithms
are relatively easy to be implemented. Bipart is more difficult, in
contrast, because of the dissimilarity between Compute and the in-
consistency-fixing logic in Sync and Merge.

6. RELATED WORK

We have discussed Pregel [23], PowerGraph [12], PowerLyra [7],
and GiraphUC [14]. Below we summarize other graph processing
systems.

Execution Modes. Many graph processing systems, such as Gi-
raph [1], Mizan [16], GPS [27], Pregel+ [37], GraM [33], Quegel [38],
and Version Traveler [15], follow the bulk synchronous parallel
model. Giraph [1] is an open-source implementation of Pregel.
Mizan [16] features dynamic workload balancing. GPS [27] sup-
ports master computation—computation performed by a master host
and serialized to BSP supersteps on all hosts—and introduces dy-
namic graph repartitioning and large adjacency list partitioning for
reducing communication overhead. Pregel+ [37] analyzes the ben-
efit of vertex state mirroring [22] and extends the Pregel abstraction
with a request-respond paradigm, enhancing the flexibility in state
propagation. GraM [33] achieves overlapping of computation and
communication at the architectural level, via a multi-core-aware
RDMA-based communication stack. Quegel [38] extends BSP to
support superstep-sharing execution, effectively amortizing the cu-
mulative synchronization cost across the parallel execution of mul-
tiple queries. Version Traveler [15] enables fast version switching
in multi-version graph processing.

Besides BSP-style systems, PowerGraph [12], Trinity [28], and
GRACE [32] support both synchronous and asynchronous modes.
PowerSwitch [34] employs Hsync, a hybrid mode featuring adap-
tive switching between synchronous and asynchronous modes for
better performance. Several parameter server frameworks, such as
LazyTable [10] and the work of Li et al. [20], explore the stale syn-
chronous parallel (SSP) model [9]—a relaxed synchronous model
achieving high communication efficiency and bounded staleness.

None of the above systems supports local sufficiency over ver-
tex-cut with a vertex-centric abstraction. Hieroglyph enhances state
of the art by closing this critical gap.

Graph-Centric Programming. Graph-centric programming (e.g.,
Giraph++ [30] and Blogel [36]) exposes graph partitions to users,
enabling more efficient algorithm design. The use of per-partition
local input state during computation resembles local sufficiency.
The two differ, nevertheless, in the following aspects. Graph-cen-
tric programming, by definition, diverges from vertex-centric pro-
gramming. It is synchronous in that computation proceeds in su-
persteps and computation and communication—over all vertices of
a partition and/or the partition itself—alternate. It reduces the com-
munication overhead via partition-oriented algorithm redesign. Lo-
cal sufficiency is, in contrast, vertex-centric and intrinsically asyn-
chronous due to the independence between computation and com-
munication. It hides the communication overhead behind compu-
tation. Despite the substantial performance gain witnessed by prior
work on graph-centric programming [30,35,36], vertex-centric pro-
gramming remains dominant due to simplicity.

Multi-Core/Out-of-Core Processing. Approaches towards effi-
cient multi-core [29] and out-of-core processing [18,24,25,39,40],
are orthogonal to Hieroglyph, the latter targeting a distributed in-
memory scenario.

Dataflow Operators. Pregelix [S] and GraphX [13] both map a
vertex-centric abstraction onto distributed dataflow operators, en-
abling graph processing over general purpose dataflow engines.

Mapping CSM onto dataflow operators would enable locally-suffi-
cient computation on graph processing systems built atop dataflow
engines, thus improving the latter’s performance in the graph pro-
cessing stage.

7. CONCLUSIONS

In this paper, we introduced Compute-Sync-Merge, a vertex-cen-
tric abstraction supporting efficient locally-sufficient computation.
CSM enforces local sufficiency at the abstraction level and supports
vertex-cut by activating vertex-centric computation on all vertex
replicas. We demonstrated the expressiveness of CSM by imple-
menting several fundamental algorithms. Hieroglyph—our CSM-
compliant prototype system—outperforms state of the art by up to
53x.

8. ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd, Abhishek
Chandra, for their feedback. The work reported in this paper was
supported in part by Intel Corporation.

9. REFERENCES

[1] Apache Giraph. http://giraph.apache.org.

[2] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan.
Group formation in large social networks: Membership,
growth, and evolution. In KDD 06, pages 4454, 2006.

[3] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label
propagation: A multiresolution coordinate-free ordering for
compressing social networks. In WWW’11, 2011.

[4] P. Boldi and S. Vigna. The WebGraph framework I:
Compression techniques. In WWW’04, pages 595-601, 2004.

[51 Y. Bu, V. Borkar, J. Jia, M. J. Carey, and T. Condie. Pregelix:

Big(ger) graph analytics on a dataflow engine. PVLDB,

8(2):161-172, 2014.

R. Chen, X. Ding, P. Wang, H. Chen, B. Zang, and H. Guan.

Computation and communication efficient graph processing

with distributed immutable view. In HPDC ’14, pages

215-226, 2014.

R. Chen, J. Shi, Y. Chen, and H. Chen. Powerlyra:

Differentiated graph computation and partitioning on skewed

graphs. In EuroSys ’15, pages 1:1-1:15, 2015.

[8] J. Cho, H. Garcia-Molina, T. Haveliwala, W. Lam,

A. Paepcke, S. Raghavan, and G. Wesley. Stanford webbase

components and applications. Technical Report 2004-34,

Stanford InfoLLab, 2004.

J. Cipar, Q. Ho, J. K. Kim, S. Lee, G. R. Ganger, G. Gibson,

K. Keeton, and E. Xing. Solving the straggler problem with

bounded staleness. In HorOS’13, pages 22-22, 2013.

[10] H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A. Kumar, J. Wei,
W. Dai, G. R. Ganger, P. B. Gibbons, G. A. Gibson, and E. P.
Xing. Exploiting bounded staleness to speed up big data
analytics. In USENIX ATC’ 14, pages 37-48, 2014.

[11] DIMACS. 9th dimacs implementation challenge - shortest
paths.
http://www.dis.uniromal .it/challenge9/download.shtml.

[12] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
Powergraph: Distributed graph-parallel computation on
natural graphs. In OSDI’12, pages 17-30, 2012.

[13] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.
Franklin, and I. Stoica. Graphx: Graph processing in a
distributed dataflow framework. In OSDI ’14, pages
599-613, Oct. 2014.

[6

—_

[7

—

[9

—



[14] M. Han and K. Daudjee. Giraph unchained: Barrierless
asynchronous parallel execution in pregel-like graph
processing systems. PVLDB, 8(9):950-961, May 2015.

[15] X.Ju, D. Williams, H. Jamjoom, and K. G. Shin. Version
traveler: Fast and memory-efficient version switching in
graph processing systems. In USENIX ATC’16, pages
523-536, 2016.

[16] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom,

D. Williams, and P. Kalnis. Mizan: A system for dynamic
load balancing in large-scale graph processing. In EuroSys
’13, pages 169-182, 2013.

[17] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a
social network or a news media? In WWW ’10, pages
591-600, 2010.

[18] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi:
Large-scale graph computation on just a pc. In OSDI’12,
pages 31-46, 2012.

[19] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney.
Community structure in large networks: Natural cluster sizes
and the absence of large well-defined clusters. Internet
Mathematics, 6(1):29-123, 2009.

[20] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling
distributed machine learning with the parameter server. In
OSDI’14, pages 583-598, 2014.

[21] Y. Low. GraphLab: A Distributed Abstraction for Large
Scale Machine Learning. PhD thesis, Carnegie Mellon
University, 2013.

[22] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein. Distributed graphlab: A framework for
machine learning and data mining in the cloud. PVLDB,
5(8):716-727, Apr. 2012.

[23] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,

I. Horn, N. Leiser, and G. Czajkowski. Pregel: A system for
large-scale graph processing. In SIGMOD ’10, pages
135-146, 2010.

[24] A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel.
Chaos: Scale-out graph processing from secondary storage.
In SOSP 15, pages 410424, 2015.

[25] A.Roy, I. Mihailovic, and W. Zwaenepoel. X-stream:
Edge-centric graph processing using streaming partitions. In
SOSP ’13, pages 472488, 2013.

[26] S. Salihoglu, J. Shin, V. Khanna, B. Q. Truong, and
J. Widom. Graft: A debugging tool for apache giraph. In
SIGMOD 15, pages 1403-1408, 2015.

[27] S. Salihoglu and J. Widom. Gps: A graph processing system.
In SSDBM, pages 22:1-22:12, 2013.

[28] B. Shao, H. Wang, and Y. Li. Trinity: A Distributed Graph
Engine on a Memory Cloud. In SIGMOD’13.

[29] J. Shun and G. E. Blelloch. Ligra: A lightweight graph
processing framework for shared memory. In PPoPP ’13,
pages 135-146, 2013.

[30] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and
J. McPherson. From “think like a vertex” to “think like a
graph”. PVLDB, 7(3), 2013.

[31] L. G. Valiant. A bridging model for parallel computation.
Commun. ACM, 33(8):103-111, Aug. 1990.

[32] G. Wang, W. Xie, A. J. Demers, and J. Gehrke.
Asynchronous large-scale graph processing made easy. In
CIDR ’13,2013.

[33] M. Wu, F. Yang, J. Xue, W. Xiao, Y. Miao, L. Wei, H. Lin,

Y. Dai, and L. Zhou. Gram: Scaling graph computation to the
trillions. In SoCC ’15, pages 408421, 2015.

[34] C. Xie, R. Chen, H. Guan, B. Zang, and H. Chen. Sync or
async: Time to fuse for distributed graph-parallel
computation. In PPoPP 2015, pages 194-204, 2015.

[35] W. Xie, G. Wang, D. Bindel, A. Demers, and J. Gehrke. Fast
iterative graph computation with block updates. PVLDB,
6(14):2014-2025, Sept. 2013.

[36] D. Yan,J. Cheng, Y. Lu, and W. Ng. Blogel: A block-centric
framework for distributed computation on real-world graphs.
PVLDB, 7(14):1981-1992, Oct. 2014.

[37] D. Yan,J. Cheng, Y. Lu, and W. Ng. Effective techniques for
message reduction and load balancing in distributed graph
computation. In WWW °15, 2015.

[38] D. Yan,J. Cheng, M. T. Ozsu, E. Yang, Y. Lu, J. C. S. Lui,
Q. Zhang, and W. Ng. A general-purpose query-centric
framework for querying big graphs. PVLDB, 9(7):564-575,
Mar. 2016.

[39] P. Yuan, W. Zhang, C. Xie, H. Jin, L. Liu, and K. Lee. Fast
iterative graph computation: A path centric approach. In SC
’14, pages 401-412, 2014.

[40] D.Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E.
Priebe, and A. S. Szalay. Flashgraph: Processing
billion-node graphs on an array of commodity ssds. In
FAST’15, pages 45-58, 2015.

APPENDIX

Correctness of Bipartite Matching in Hieroglyph. The CSM im-
plementation of bipartite matching is based on the original Pregel
implementation—a randomized maximal matching algorithm. Its
correctness is determined by the properties of the final graph state.

DEFINITION 1. A distributed randomized maximal bipartite match-

ing algorithm is correct if, upon graph convergence, (i) all replicas
of a vertex are in the same state; (ii) if a vertex is matched, then it
matches with a vertex on the other side of the bipartite graph; (iii)
if a vertex v; matches with another vertex v;, then v; matches with
v, and (iv) if a vertex is unmatched, then all its neighbors on the
other side of the graph, if any, are matched.

Regarding the four properties of the final graph state, the first
addresses general consistency of distributed graph state. The sec-
ond property is the requirement of bipartite matching. The third
property is the consistency requirement of a matching. The fourth
property is the requirement of a maximal matching.

THEOREM 1. The CSM implementation of bipartite matching
is correct.

We prove Theorem 1 by proving the following lemmas.

LEMMA 1. Upon graph convergence, all replicas of a vertex
are in the same state.

PROOF. The final state of all replicas of a vertex v; is the same
as the state decided by the arbitration logic in the last synchroniza-
tion iteration k related to v;. After that iteration of synchronization,
there exists no local update to v; at any host. This is because, any
further local update to a replica of v; after k, due to either computa-
tion or revocation, leads to another synchronization iteration k + 1
related to v;, contradicting with the assumption that k is the last
synchronization for v;.

The consistent final state of v; is thus an outcome of the arbitra-
tion logic, which selects one and only one value from all replicas
ofv;. [



LEMMA 2. Upon graph convergence, if a vertex is matched,
then it matches with a vertex on the other side of the bipartite
graph.

PROOF. All matching decisions are results of local matching de-
cisions, direct (on the same host where the local matching takes
place) or indirect (via propagation). Local matching decisions are
made according to the original proven-correct bipartite matching
algorithm used in Pregel. Left vertices thus only match with right
vertices, and vice versa. [

LEMMA 3. Upon graph convergence, if a vertex v; matches
with another vertex v;, then v; matches with v;.

PROOF. Suppose, in the final graph state, v; matches with v;
but v; does not match with v;.

For v;, the matching between v; and v; stems from a local match-
ing decision made by a host h maintaining the edge connecting v;
and v;. The last state update of v; on h must be because of the local
matching decision. Note the time when the last update of v; on h
takes place as ¢.

At t, v;’s local state at h is “matched with v;,” due to the lo-
cal matching decision. Since v;’s final state is “not matched with
v;,” the local state of v; on h must be updated at v, t < t. At
t, v; sends a local revocation message to v;, according to the two-
phase merging logic. Such revocation message must be relevant to
v;, because v;’s state remains “matched with v;” after ¢. This rele-
vant revocation message will then cause v;’s local state to change,
contradicting with the assumption that v;’s state is final after ¢t. [

LEMMA 4. Upon graph convergence, if a vertex is unmatched,
then all its neighbors on the other side of the graph, if any, are
matched.

PROOF. Support v; and v; are neighbors on opposite sides of
the graph and both unmatched in the final graph state.

There are two cases where v; and v; can be both unmatched in
the final graph. First, v; and v; remain unmatched during the course
of the computation. Second, at least one of them becomes matched
during the computation but then becomes unmatched due to CSM’s
revocation logic.

In the first case, there must be a host h maintaining the edge
connecting v; and v;. As a result, the two vertices cannot remain
unmatched on h, according to the proven-correct local matching
algorithm.

In the second case, without loss of generality, assume that v; en-
ters the final unmatched state no earlier than v;. When v; enters
the final unmatched state, it activates itself and/or v; on h, accord-
ing to the two-phase merging logic. After the activation, the two
remain unmatched on h—an impossible condition according to the
proven-correct local matching algorithm. [

According to Lemmas 1-4, we have Theorem 1 by Definition 1.



