
Viden: Attacker Identification on In-Vehicle Networks

Kyong-Tak Cho and Kang G. Shin
University of Michigan

Ann Arbor, MI, 48109-2121
{ktcho,kgshin}@umich.edu

ABSTRACT

Various defense schemes — which determine the presence of an at-

tack on the in-vehicle network— have recently been proposed. How-

ever, they fail to identify which Electronic Control Unit (ECU) actu-

ally mounted the attack. Clearly, pinpointing the attacker ECU is

essential for fast/efficient forensic, isolation, security patch, etc. To

meet this need, we propose a novel scheme, called Viden (Voltage-

based attacker identification), which can identify the attacker ECU

by measuring and utilizing voltages on the in-vehicle network. The

first phase of Viden, called ACK learning, determines whether or

not the measured voltage signals really originate from the genuine

message transmitter. Viden then exploits the voltage measurements

to construct and update the transmitter ECUs’ voltage profiles as

their fingerprints. It finally uses the voltage profiles to identify

the attacker ECU. Since Viden adapts its profiles to changes in-

side/outside of the vehicle, it can pinpoint the attacker ECU under

various conditions. Moreover, its efficiency and design-compliance

withmodern in-vehicle network implementations make Viden prac-
tical and easily deployable. Our extensive experimental evaluations

on both a CAN bus prototype and two real vehicles have shown

that Viden can accurately fingerprint ECUs based solely on voltage

measurements and thus identify the attacker ECU with a low false

identification rate of 0.2%.

CCS CONCEPTS

• Security and privacy→ Embedded systems security;

KEYWORDS

Automotive Security; CAN bus; Attacker Identification

1 INTRODUCTION

Remote and/or driverless control of a car is no longer science fiction.

In fact, demonstration and deployment of such a vehicle control

have become prevalent, triggering significant R&D efforts and in-

vestments from industry, governments, and academia. Despite their

numerous benefits, these technological developments have created

serious safety/security concerns.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS’17, , Oct. 30–Nov. 3, 2017, Dallas, TX, USA.

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/http://dx.doi.org/10.1145/3133956.3134001

These concerns are genuine and real. For example, researchers

evaluated various remote access points on vehicles and demon-

strated that an attacker can exploit them to remotely compromise

Electronic Control Units (ECUs) [11]. By exploiting the compro-

mised ECUs, researchers have shown that it is feasible to remotely

control or even shut down a vehicle [9–11, 13, 16, 21, 23].

Numerous schemes have been proposed to detect and/or prevent

various vehicle cyber attacks [12, 19, 20, 28, 29, 31, 33]. Although

these countermeasures are capable of determining whether or not

there is an intrusion in the in-vehicle network, they cannot deter-

mine which ECU is actually mounting the attack, i.e., incapable

of attacker identification. This is because in-vehicle networks are

mostly configured as broadcast buses and their messages lack in-

formation on the transmitters. An accurate attacker identification,

however, is imperative as it provides a swift pathway for foren-

sic, isolation, security patch, etc. No matter how well an Intrusion

Detection System (IDS) detects the presence of an intrusion in a ve-

hicle, if we still do not know which ECU is mounting the attack and

hence which ECU to isolate/patch, the vehicle remains insecure and

unsafe. It is much better and more economical to isolate/patch the

attacker ECU, than blindly treating all ECUs as (possible) attackers.

To meet this essential need for attacker identification — that

existing solutions have not yet been able to satisfactorily meet —

we propose a novel scheme, called Viden (Voltage-based attacker

identification), which fingerprints message transmitter ECUs on

Controller Area Network (CAN) via voltage measurements and

thus facilitates attacker identification. Of the various in-vehicle

network protocols, we focus on CAN as it is the de facto standard

for in-vehicle networks and its adoption has been mandated in

all cars manufactured since 2008 [5]. The rationale behind using

voltage for fingerprinting ECUs is the existence of small inher-

ent discrepancies in different ECUs’ voltage outputs when they

inject messages. To capture this and then use it to fingerprint the

transmitter ECUs, Viden first monitors the output voltages from

the two dedicated wires on the CAN bus: CAN-High (CANH) and

CAN-Low (CANL). All ECUs’ transceivers are connected to, and

use these for their message transmissions and receptions. Through

the acquired voltage measurements for each message ID, Viden
first learns the ACK threshold, the key information Viden uses to
discard the measurements of voltages outputted by ECUs while

acknowledging the receipt of, but not transmitting, the message.

Viden utilizes the thus-derived ACK threshold to learn the voltage

output behavior of each in-vehicle ECU by constructing new fea-

tures called voltage instances. Then, it transforms those instances to

the transmitter ECU’s voltage profile (i.e., fingerprint) via Recursive

Least Square (RLS) algorithm, an adaptive signal processing tech-

nique. As a result, Viden utilizes the derived voltage profiles for an

accurate attacker identification. Through experimental evaluations

on a CAN bus prototype and on two real vehicles, we show that

the constructed voltage profiles are distinct for different ECUs, thus

validating Viden’s capability of identifying the attacker ECU.

While there have been proposals to fingerprint ECUs with tim-

ing [12] or voltage (like Viden) measurements [14, 27], their practi-

cality and efficiency in identifying the attacker ECU remain limited

to only certain attack scenarios, mainly because they were designed

for intrusion detection, not attacker identification. In other words,

there are many scenarios in which existence of an attack is detected

but the attacker cannot be identified correctly. Thus, we design,

implement, and evaluate Viden by focusing on attacker identifica-

tion via a distinct way of fingerprinting ECUs from the existing

schemes. As a result, Viden is efficient and easy to deploy on any

ECU, thanks to its adaptability and practicality.

Adaptability. Existing voltage-based fingerprinting uses super-

vised batch learning that generates a norm model by learning from

a pre-defined training data set [14, 27]. So, until the training data

set and hence models/fingerprints are updated again, the norm

models remain unchanged. Such an approach, however, cannot

adapt the norm models to unexpected changes (e.g., changes in

temperature) inside/outside the vehicle. More importantly, adver-

saries who intentionally generate changes can evade these existing

fingerprinting schemes. Viden takes a very different approach from

them in that it models and updates the voltage-based fingerprints

by applying adaptive signal processing (i.e., online (not batch) learn-

ing) to its new set of features: voltage instances. This enables Viden
to correctly modify the fingerprints and hence adapt to inevitable

but unpredictable changes in vehicles that can either occur natu-

rally (due to the mother nature) or be intentionally triggered by

an intelligent adversary. Such adaptability is essential for vehicle

security.

Practicality. Unlike the existing voltage-based fingerprinting

schemes, the unique approach taken by Viden eliminates the re-

quirement/assumption of using a specific CAN message type or

CAN bus speed, thus facilitating its deployment. Moreover, it does

not require any knowledge of which message fields the voltages

are measured on, i.e., message-field-agnostic. This enables Viden to

achieve its goal even with a low voltage sampling rate, thus low-

ering cost. Furthermore, even though it is message-field-agnostic,

since Viden filters out undesired samples using its derived ACK

thresholds, there is no need to impose restrictions on which fields

of the message should be sampled to run Viden. All of these salient
features enable Viden to run without re-designing current CAN

controllers and make Viden very practical and cost-efficient, which

is very important for the cost-conscious automotive industry.

We have implemented and evaluated Viden on a CAN bus pro-

totype and on two real vehicles. Our evaluation results show that

Viden can identify the attacker ECU with a low false identifica-

tion rate of 0.2%, thanks to its unique fingerprinting that makes it

adaptive to handle various attack scenarios.

This paper makes the following main contributions:

(1) Proposal of a new scheme which retains only the voltage

measurements output by the transmitter ECU (Section 3.4);

(2) Design of Viden which constructs voltage profiles, i.e., fin-

gerprints, by modeling the norm voltage output behaviors of

in-vehicle ECUs and exploits them for accurate identification

of the attacker ECU (Sections 3.5–3.8);

0 ID
R
T
R

I
D
E

R
B
0

DLC Data CRC
CRC
Del

A
C
K

ACK
Del

EOF

Arbitration Control Data CRC ACK

(a) Format of a standard CAN data frame.

Recessive [1-bit]
2.5V

3.5V

1.5V

Dominant [0-bit]

Recessive [1-bit]

CANH

CANL

(b) CAN output voltages when sending a message.

Figure 1: Message transmission via outputting voltages.

(3) Implementation and demonstration of Viden on a CAN bus

prototype and on two real vehicles (Section 4).

2 BACKGROUND

2.1 CAN Message Transmission

In-vehicle ECUs broadcast their retrieved sensor data via a CAN

frame/message. Instead of carrying the address of the transmit-

ter/receiver, as shown in Fig. 1a, it contains a unique identifier (ID),

which represents its priority. Starting from a 0-bit followed by a

sequence of dominant (0) or recessive (1) bits, all fields within the

CAN frame are sent on the bus by the “transmitter ECU” except for

the Acknowledgment (ACK) slot. The ACK slot is, in fact, used by all

ECUs at the same time— except for the transmitter ECU — that have

correctly received the preceded fields of the ACK slot, regardless

of whether they are interested in their content or not. If correctly

received, those ECUs send a 0-bit in the ACK slot. Thus, multiple

ECUs acknowledge the message simultaneously, even before the

transmitter finishes sending its message on the bus.

To send either a 0- or 1-bit, CAN transceivers (are agreed to)

output certain voltage levels on the two dedicated CAN wires:

CANH and CANL. As shown in Fig. 1b, to issue a 0-bit on the CAN

bus, CAN transceivers (are agreed to) output approximately 3.5V on

CANH and 1.5V on CANL so that the differential voltage becomes

approximately 2V. On the other hand, when sending a 1-bit, the

transceivers output approximately 2.5V on both CANH and CANL,

yielding a differential voltage of approximately 0V [2, 8]. So, by

measuring the differential voltage of CANH and CANL, receiver

ECUs read the streams of 0 and 1 bits, and thus receive the message.

From this perspective, CAN is a differential bus.

CAN transceivers output the intended voltages by simultane-

ously switching on/off their transistors. Fig. 2a shows an equivalent

schematic of a CAN transceiver [6, 7]. Note that CAN transceivers of

multiple ECUs are connected to the CAN bus in parallel, thus shar-

ing the same load resistance RL , which is normally set to 60Ω [3].

The high- and low-side output circuits consist of a series diode and

a P- and N-channel transistor, respectively.

For the transceiver to send a 1-bit, both the high and low side

transistors are switched off and are thus in a high impedance state.

This results in negligible current flowing fromVCC to ground, yield-

ing negligible differential voltage on CANH and CANL. On the other

hand, when sending a 0-bit, both transistors are turned on and are

thus in a low impedance state. When the transistors are on, they can

VCC

RL

CANH

CANL

(a) Transceiver schematic.

CANH

CANL

VCC

RDSON,P

RDSON,N

RL

(b) When sending a 0-bit.

Figure 2: Output schematics of a CAN transceiver.

be equivalently described as resistors with drain-to-source on-state

resistance RDSON as shown in Fig. 2b, where current flows from

VCC to ground through RL and thus creates a differential voltage of

(approximately) 2V between CANH and CANL. This way, the CAN

transceivers are capable of outputting either 0 or 2V of differential

voltage on the two CAN wires.

2.2 Related Work

Researchers have attempted to fingerprint ECUs in various ways,

mostly for the purpose of intrusion detection.

A clock-based intrusion detection system (CIDS) was proposed

in [12] to detect intrusions by fingerprinting ECUs on CAN. CIDS

derived the fingerprints by extracting the ECUs’ clock skews from

message arrival times. While the main objective of CIDS was to de-

tect intrusions, the authors of [12] mentioned that the thus-derived

fingerprints may also be used for attacker identification, but only

when attack messages are injected periodically. In other words, if

the attacker transmits messages aperiodically, then CIDS cannot

identify the attacker ECU, i.e., the adversary can evade CIDS as

far as attacker identification is concerned. Viden takes an entirely

different approach: looking at attack messages from the perspective

of ECUs’ output voltages on CAN. This allows Viden to accurately

identify the attacker ECU irrespective of how and when the attacker

injects its messages, which is crucial for attacker identification.

Instead of fingerprinting ECUs based on message timings, as

in Viden, some researchers also proposed to fingerprint them via

voltage measurements. The authors of [27] used the Mean Squared

Error (MSE) of voltage measurements as fingerprints of ECUs. How-

ever, they were shown to be valid only for the voltages measured

during the transmission of CANmessage IDs, and more importantly

when voltages were measured on a low-speed (10Kbps) CAN bus;

this is far from contemporary vehicles that usually operate on a

500Kbps CAN bus.

To overcome these difficulties, researchers proposed to extract

other time and frequency domain features of voltage measurements

(e.g., RMS amplitude) and use them as inputs for classification; more

specifically, supervised (batch) learning algorithms (e.g., SVM) [14].

This way, they were able to fingerprint ECUs with enhanced accu-

racy and was successful on high-speed CAN buses. However, this

solution was neither practical nor attractive for attacker identifi-

cation for the following reasons. First, it required not only a high

sampling rate (2.5 GSamples/sec), but also the use of the extended

CAN frame format with 29-bit IDs, which is seldom used (due to

its bandwidth waste) in contemporary vehicles; most vehicles use

the standard format with 11-bit IDs. Moreover, since the modeling

was done via batch learning, unpredictable changes in the CAN

bus (e.g., temperature, battery level) and adversary’s behaviors can

lead to false identifications. These will be detailed later when we

discuss the details of Viden.
In contrast, Viden fingerprints ECUs very differently and hence

achieves effective attacker identification (1) through online update

of fingerprints via adaptive signal processing to provide adapt-

ability; (2) at a low sampling rate (50 KSamples/sec); and more

importantly, (3) without imposing restrictions on the type of CAN

message or the speed of CAN bus to be used. As a result, the de-

ployment of Viden in legacy and new vehicles will be much easier.

3 VIDEN

Attacker identification is essential for expedited forensic, isolation,

and security patches, all of which are the key requirements for

vehicle safety. To meet this need, we propose a novel fingerprinting

scheme, Viden, that exploits small inherent discrepancies in differ-

ent ECUs’ voltage outputs. Before delving into the inner workings

of Viden, we first describe the system and threat models.

3.1 System and Threat Models

3.1.1 System Model. The vehicle’s CAN bus under considera-

tion is assumed to have been equipped with an IDS as well as a

timing- (e.g., CIDS [12]) and voltage-based (e.g., schemes in [14, 27]

or Viden) fingerprinting device; the latter complements the former

via attacker identification. We discern a fingerprinting device from

an IDS based on the fact that the IDS detects the presence of an

attack whereas the fingerprinting device identifies the source of

the (detected) attack. An attack can be mounted by the adversary

who has control of a physically/remotely compromised ECU. In

our system model, however, we consider such an ECU to have

been remotely compromised and thus controlled by the adversary

as in [11, 25]. We do not consider a compromised device which

was attached to the in-vehicle network (e.g., device plugged in the

OBD-II port), as it requires physical access and its identification has

been addressed elsewhere [14, 32]. So, the compromised ECU we

consider is one of those originally installed on the vehicle’s CAN

bus.

3.1.2 Threat Model. By injecting fabricated attack messages

through his compromised ECU, the attacker can control the vehicle

maneuver. We consider the attacker to be smarter than this: beyond

just controlling the vehicle, the attacker’s goal is to also hide the

identity of the ECU injecting the attack messages. That is, while

the deployed IDS may detect the presence of an attack, the adver-

sary tries to evade the fingerprinting device, i.e., prevent it from

determining the source of the attack. For evasion, the adversary

can perform two different impersonations when injecting his attack

messages:

• Arbitrary impersonation: The attacker misleads the finger-

printing device to think that some arbitrary ECU other than

himself is the attacker.

• Targeted impersonation: The attacker acts smarter by imper-

sonating a targeted ECU for evasion, i.e., make the finger-

printing device believe that the targeted ECU is the attacker.

Depending on the adversary’s capabilities and knowledge of

different defense schemes (available in the market or in literature)

as well as their operation, his approach to evading a fingerprinting

device would be different. Specifically, based on whether the adver-

sary is aware of the fact that an in-vehicle ECU can be fingerprinted

via timing and/or voltage measurements, his best effort in achiev-

ing his goal would be different. Thus, we consider three different

types of adversaries: naive, timing-aware, and timing-voltage-aware

adversaries.

While all attackers are capable of injecting and sniffing messages

on the CAN bus, a naive adversary does not have any knowledge

of how ECUs can be fingerprinted (either via timing or voltage),

due possibly to lack of his technical expertise or curiosity. Thus,

the naive adversary injects his attack messages imprudently at

arbitrary times with forged message IDs (for impersonation).

An intelligent adversary, however, might know how ECUs can

be fingerprinted via timing analysis. Thus, the adversary uses his

knowledge to evade any (possibly-installed) fingerprinting scheme

as much as possible as follows. The adversary logs CAN traffic,

learns the timing behavior of other ECUs, and exploits the learned

information in injecting attackmessages at the appropriate (learned)

times so as to imitate other ECUs’ timing behavior. This way, the

adversary can perform arbitrary/targeted impersonation and thus

attempt to evade the fingerprinting device. We refer to this adver-

sary as a timing-aware adversary.

The adversary might also have knowledge of how ECUs can be

fingerprinted via voltage and timing measurements. Hence, when

injecting attack messages, such an adversary may try to exploit

his knowledge in impersonating other ECU(s) and thus evade any

fingerprinting device as much as possible. We call this adversary

a timing-voltage-aware adversary. We consider such an adversary

to be capable of changing his voltage outputs via running battery

draining processes, changing the supply voltage level, or by heating

up or cooling down the ECU. Although he can change them to a cer-

tain level, we consider him to be incapable of precisely controlling

their instantaneous values. This is reasonable as precise control of

voltages would require, for example, control of even the ambient

temperature. By changing his ECU’s voltage outputs to a certain

level in which the targeted ECU is outputting, a timing-voltage-

aware adversary can perform a targeted impersonation. Similarly,

he can arbitrarily change the output levels for arbitrary imperson-

ation. Since changing his voltage levels (either before or during

message injections) does not necessarily imply that he is attacking

the CAN bus, in this paper, we differentiate “impersonation” from

an actual attack of message injections. In addition, the adversary

might even know when the voltage-based fingerprints are updated

(if not updated in real time) and thus use that as a reference in

determining when to perform arbitrary/targeted impersonation.

Note, however, that he must "play" within the setting boundaries of

the given CAN bus. For example, the attacker cannot control/tune

ID1

ID2

ID3

…

ECU1

…

ECU2

… …

Voltage
Instances

Attacker
Identification

3400 3420 3440 3460 3480 3500 3520 3540
0

0.01

0.02

0.03

0.04

0.05

0.06

CANH: Dominant Output Voltage of a Prototype Node [mV]

K
e

rn
e

l D
e

n
si

ty

Most Frequent
Maximum

3400 3420 3440 3460 3480 3500 3520 3540
0

0.01

0.02

0.03

0.04

0.05

0.06

CANH: Dominant Output Voltage of a Prototype Node [mV]

K
e
rn

e
l D

e
n
si

ty

Most Frequent
Maximum

3400 3420 3440 3460 3480 3500 3520 3540
0

0.01

0.02

0.03

0.04

0.05

0.06

CANH: Dominant Output Voltage of a Prototype Node [mV]

K
e

rn
e

l D
e

n
si

ty

Most Frequent
Maximum

Voltages

Voltages

Voltages

ACK Threshold
Learning

Non-ACK
Voltages

Phase 1
(Section 3.4)

Phase 2
(Section 3.5)

Phase 3
(Section 3.6)

Dominant
Voltages

Dominant
Voltages

Dominant
Voltages … …

Phase 4
(Section 3.7)

Verification

Identify!

Figure 3: An overview of Viden.

CANH

5V Voltage
Regulator

CAN
Transceiver

VCC

VIN

GND
CANL

VOUT

5V
Microcontroller

Unit

Figure 4: CAN typical application schematic.

the values of resistors within the CAN bus in order to control the

voltage levels, as this requires physical access.

3.2 High-Level Overview of Viden
As shown in Fig. 3, Viden fingerprints ECUs via voltage measure-

ments and achieves attacker identification in four phases.

Phase 1: Videnmeasures the CANH&CANL voltages and maps

the recently acquired values to the ID of the message it has just

received through the ECU’s receive buffer. Then, for that message

ID, Viden learns its ACK threshold. This threshold helps Viden
determine whether or not the measured voltage originates from

the actual message transmitter. Phase 1 is run in the initialization

step of Viden and when an update is necessary.

Phase 2: Exploiting the learned ACK threshold, Viden selects

voltages that are outputted solely by the message transmitter. Then,

Viden uses them to derive a voltage instance, which is a set of

features that reflect the transmitter ECU’s voltage output behavior.

Phase 2 and onwards are run iteratively.

Phase 3: Viden uses every newly derived voltage instance to

update the voltage profile of the message transmitter. When an

attack is detected by the IDS, Viden constructs a voltage profile for

the attack messages and maps that profile to one of those Viden
has, thus identifying the attacker ECU.

Phase 4: The results from Phase 3 are verified further via multi-

class classification, only when necessary.

For a given message ID, only one ECU is assigned for its trans-

mission in most cases. Thus, for now we consider the relationship

between the numbers of ECUs, IDs, and voltage profiles to be 1,

N (≥ 1), and 1, respectively. We will discuss further in Section 5 on

how Viden deals with cases where the relationship between the

numbers of ECUs and IDs might be N and 1, respectively.

3.3 CANH and CANL Voltage Outputs

Before presenting the details of Viden, we first discuss which volt-

age characteristics of ECUs it exploits for attacker identification.

RLDriver

VCC

CANH

CANL

VCC

Current

Over Temperature
Sensor

Mode Select

(Gate)

(Gate)

VOUT+

VOUT-

Figure 5: Transistors’ gate voltages are fed by the driver.

Variations in supply and ground voltages. Fig. 4 shows a

typical ECU connection to CAN [6, 7]. In order to output the desired

voltage levels on CANH and CANL, transceivers are powered with

the nominal supply voltage (VCC) of 5V, which is provided and

maintained by a voltage regulator. The input of the regulator, VI N ,

comes from a power supply, i.e., a 12V/24V battery powering all the

ECUs [22]. Not only the voltage regulator but also the connected

bypass capacitors help stabilize theVCC level. However, the output

voltage of an ECU’s regulator varies independently and differently

from other ECUs’ regulators, as their supply characteristics are

different (e.g., different regulators’ common-mode rejection ratios).

Thus, there are inherent, small but non-negligible differences in

ECUs’ VCC . There exist variations in not only VCC but also in the

ground voltage since there does not exist a perfect ground [3].

For these reasons, CAN transceivers are built to operate over

a range of voltages (e.g., TI TCAN10xx devices are designed to

handle 10% supply variations [7]). This guarantees transceivers with

different VCC and/or ground to communicate messages correctly.

Variations in on-state resistance.When transceivers send a

0-bit, their two transistors are turned on so that the flowing cur-

rent generates the required differential voltage between CANH and

CANL. In such a case, transistors in the transceivers are considered

as resistors RDSON ,P/N (see Fig. 2b). Although transceivers are de-

signed to have the sameRDSON ,P/N values, process/manufacturing

variations/imperfections cause transistors’ RDSON ,P/N values to

be slightly different from each other [26].

Fig. 5 shows a typical circuit diagram of a CAN transceiver.

Transistors’ RDSON values are inversely related to their gate volt-

ages, which are supplied by a driver, i.e., a fully differential ampli-

fier [4, 17]. Interestingly, since the driver input is affected by VCC ,
which also varies with ECU, the transistors’ gate voltages are also

affected by VCC . Therefore, variations in VCC lead to variations in

transistors’ actual RDSON values. In summary,

V1. There exist differences/variations in CAN transceivers’ nomi-

nal supply voltage, ground voltage, and RDSON ,P/N values,

especially during the transmission of a 0-bit.

When transmitting a 1-bit, the two transistors are simply turned

off and thus there is little voltage variation between nodes. Hence,

we do not consider any voltage measurements when the transmitter

was sending a 1-bit. Instead, we only consider those measured when

it was sending a 0-bit, and refer to those as dominant voltages.

Variations in dominant voltages. From Fig. 2b, when transceiver

i is transmitting a 0-bit, the current, I(i) flowing from itsVCC(i) to its

ground can be derived as I(i) =
VCC (i)−VG (i)−2VD

RDSON ,P (i)+RDSON ,N (i)+RL
, where

… 1 1 1 0 0 1 0 0 1 0 1 0 … 0 1 0 1 1

SOF

Rx Message
in Buffer

3.4V 2.6V 2.5V 3.3V 3.8V1st measured Volt.
>2.75V

ACK

Figure 6: Videnmeasuring CANH voltages.

VG(i) denotes its ground voltage, and VD the diodes’ forward bias

(assuming they are equivalent). To simplify the analysis, we omit

other factors such as leakage current or variations in diodes. We

can thus derive the CANH and CANL dominant voltages,VCANH (i)

and VCANL(i), from transceiver i as:

VCANH (i) = VCC(i) −VD − I(i)RDSON ,P (i),

VCANL(i) = VG(i) +VD + I(i)RDSON ,N (i).
(1)

From Eq. (1), one can see that

V2. Variations inVCC , ground, and RDSON ,P/N result in different

ECUs with different CANH and CANL dominant voltages.

For this reason, the ISO11898-2 specifies that a compliant transceiver

must accommodate dominant voltages of CANH=2.75∼4.5V and

CANL=0.5∼2.25V [8]. Hence, we refer to any voltage valuesmeeting

this requirement as dominant voltages.

Transient changes in on-state resistances. In Fig. 5, when

VOUT+ of the driver increases, VOUT− concurrently decreases as

they are differential outputs. So, for both transistors, the absolute

differences between their gate and source voltages simultaneously

decrease. This results in both RDSON ,P and RDSON ,N to increase,

i.e., change in the same direction [4, 17]. Even when a change in

the ECU temperature affects RDSON ,P & RDSON ,N , they change

in the same direction. So, for a given VCC and ground voltage, the

opposite signs of I(i)RDSON ,P/N (i) in (1) indicate that

V3. Transient changes in the ECU temperature and driver’s in-

put/output affect RDSON ,P/N , and thus make VCANH and

VCANL temporarily deviate in the “opposite” direction.

Since regulated VCC and ground voltage remain constant, and

are not affected by transient changes in RDSON ,P/N ,

V4. Transient changes inVCC and ground are significantly smaller

than those in VCANH and VCANL , i.e., their values remain

relatively constant.

V1–V4 indicate that CANH and CANL dominant voltages of

each ECU are different from each other. Viden exploits this fact in

constructing different voltage profiles for (fingerprinting) ECUs.

3.4 Phase 1: ACK Threshold Learning

Viden is designed to run with a low voltage sampling rate so that

it can be easily installed as a low-cost software application, which

requires no changes in the CAN protocol; the high rate of voltage

sampling would only be required for the CAN protocol to receive

messages as it is designed to be. Such a feature, however, renders

Viden incapable of determining at which slot the voltage values

were measured; all it knows is the value. Thus, Viden goes through
a phase of learning theACK threshold, which determines whether or

not the measured voltage was outputted by the message transmitter.

Measuring dominant voltages. Viden’s measurement is trig-

gered whenever a CANH voltage exceeds 2.75V after a certain idle

period. This is because the first measured voltage exceeding 2.75V

represents the case of some transmitter transmitting a 0-bit on

the bus [8]. Since Viden is only interested in dominant voltages, it

discards any measurements that are lower than 2.75V on CANH

and higher than 2.25V on CANL. The measurement continues until

some message is shown to have been received into Viden’s receive
message buffer, i.e., an indication that the transmitter has finished

sending amessage. By reading the ID value of that receivedmessage,

Viden knows which message ID the acquired dominant voltages

correspond to.

Non-ACK voltages. Viden continues collection of more domi-

nant voltages for the acquired ID (whenever themessage is received)

until it learns its CANH and CANL ACK thresholds. When collect-

ing and exploiting voltage measurements, one needs to be cautious

of the fact “During the ACK slot of a transmitted message, if re-

ceived, all other nodes but its transmitter output a 0-bit on the CAN

bus” [1]. Thus, even though Viden samples at least a few dominant

voltages while receiving a certain message, not all represent the

outputs from the actual message transmitter. Fig. 6 shows an ex-

ample of Viden’s five voltage measurements of {3.4V, 2.6V, 2.5V,

3.3V, 3.8V} from the CANH line during the reception of a message,

where 3.8V was measured during the ACK slot. Of them, Viden
discards measurements {2.6V, 2.5V} as they do not meet the criteria

of dominant voltages. If Viden had considered the remaining 3

measurements as if they were output by the message transmitter,

it would have been incorrect since 3.8V was from all ECUs but

the message transmitter in the ACK slot. Therefore, to accurately

fingerprint the transmitter ECU, Viden derives the ACK threshold

which distinguishes a non-ACK voltage measurement from an ACK

voltage measurement. We refer to non-ACK voltages as dominant

voltages measured from slots other than the ACK slot, and ACK

voltages as those measured from the ACK slot. The threshold is

derived by exploiting the following two facts of the ACK voltage.

K1. Low probability: Since ACK is only 1 bit long, when measur-

ing dominant voltages during a message reception, most of

them would be outputted from the message transmitter.

K2. Different voltage level for ACK: During an ACK slot, all ECUs

but the transmitter acknowledge their message reception.

Since those responders are connected in parallel and turned

on concurrently, when receiving the ACK, the measured

voltages are much higher on CANH and much lower on

CANL than those when receiving non-ACK bits.

Viden exploits these facts to collect M dominant voltages from

both CANH and CANL for N rounds for a given message ID. So,

based on K1, the most frequently measured voltage value (of theM
values) will most likely represent the non-ACK voltage. During the

N rounds, we refer to the set of N most frequently measured values

as the most frequent set, Sf r eq . On the other hand, if we were to

determine the maximum and the minimum of theM values from

CANH and CANL, respectively, then they would represent ACK as

well as non-ACK voltages. This is because even a single dominant

voltage value collected (without awareness) from the ACK slot

would become the maximum/minimum of the M values due to

K2. Here, the set of N maximum/minimum values measured from

CANH/CANL is defined as the maximum/minimum set, denoted

as Smax/min . For each message ID, Viden exploits sets Sf r eq and

3400 3420 3440 3460 3480 3500 3520 3540
0

0.01

0.02

0.03

0.04

0.05

0.06

CANH: Dominant Output Voltage of a Prototype Node [mV]

Ke
rn

el
 D

en
si

ty

Most Frequent
Maximum

ACK

Sidelobe of S’

S’max

max

Figure 7: ACK threshold in a CAN bus prototype.

Smax/min to derive the ACK threshold that differentiates a non-

ACK voltage from an ACK voltage.

Derivation of ACK threshold. Fig. 7 shows the kernel density

plots of the most frequent and the maximum sets of the measured

dominant voltages from the CANH line. The measurements were

made while running Viden on our CAN bus prototype, which will

be detailed in Section 4. One can see that only for the maximum set,

there exists a side lobe, whereas the most frequent set resembles

a Gaussian distribution. Note that during the N rounds ofM mea-

surements each, the most frequent and the maximum values can be

different. Thus, from the maximum set, Viden first discards values

lower than max(Sf r eq) + BσSf r eq , where σSf r eq is the standard de-

viation of set Sf r eq , and B a design parameter determining how ag-

gressive one wants to be in discarding ACK voltages. Note that such

a value also represents the rightmost end-point of the most frequent

set’s kernel density (e.g., dotted vertical line in Fig. 7). Then, the

usual side lobe of the maximum set (Smax) becomes the main lobe

of a refined maximum set, S ′max . From S ′max , Viden determines

Γ1 = median(S ′max) − 3MAD(S ′max) and Γ2 = μS ′max
− 3σS ′max

,

whereMAD(x) denotes the median absolute deviation of x , and μx
its mean. The CANH ACK threshold of the given message ID (or its

transmitter), ΓH
ACK

, is then derived to be max(Γ1, Γ2). We take the

maximum of the two to be conservative in discarding any non-ACK

voltages. Moreover, not only the lower 3σ limit but also the lower

3-MAD limit is used since the refined maximum set S ′max may still

contain its own (new) side lobe as shown in Fig. 7, i.e., an outlier

for S ′max . Using these processes, the ACK threshold of the example

in Fig. 7 is determined to be ΓH
ACK

= 3.499V — a point where the

two lobes in the maximum set are separated. Depending on the

transmitter ECU, the ACK threshold can be different as the set of

responders is different. Thus, the ACK learning is performed for all

message IDs of interest.

When deriving the CANL ACK threshold, ΓL
ACK

, the minimum

(instead of the maximum) and the upper (instead of the lower) limits

are used. In Appendix A, we show that the proposed scheme can

correctly determine the ACK thresholds even in real vehicles.

3.5 Phase 2: Deriving a Voltage Instance

Once ACK thresholds, ΓH
ACK

and ΓL
ACK

, of the given message ID

are learned, from that point and on, Viden continuously collects

dominant voltages, but discards those from CANH that are lower

than 2.75V or higher than ΓH
ACK

, and those from CANL that are

Algorithm 1 Dispersion Update

1: function UpdateDispersion(V , Λ, P ∗)

2: return Λ ← Λ + α (P ∗ −
#(V <Λ)

#V)3 � Adjust tracking position

3: end function

4: if #measured CANH and CANL voltages both ≥ κ then

5: VH , VL ← {past κR CANH, CANL measurements}

6: F3 ← UpdateDispersion(VH , F3, 0.75)

7: F4 ← UpdateDispersion(VL, F4, 0.25)

8: F5 ← UpdateDispersion(VH , F5, 0.9)

9: F6 ← UpdateDispersion(VL, F6, 0.1)

10: end if

higher than 2.25V or lower than ΓL
ACK

. This way, Viden selects

and processes only non-ACK voltages. Whenever Viden obtains κ
new measurements of CANH and CANL non-ACK voltages, Viden
derives a new voltage instance which is defined as the set of 6

tracking points, F1–F6.

F1–F2: Most frequent values. Similarly to Phase 1, Viden de-
termines the most frequently measured CANH and CANL voltages

(from κ values), which are denoted as F1 and F2, respectively. Since
Viden knows the ACK thresholds, the main differences from Phase

1 are that only non-ACK voltages as well as κ (< M) of them are

used in deriving the most frequent values. This way, Viden keeps
track of the median of the transmitter’s dominant voltages.

F3–F6: Dispersions. Viden also keeps track of the dispersions

of CANH and CANL dominant voltages. As the transmitter’s volt-

age output behavior can change over time, Viden continuously

updates 4 different tracking points, F3–F6, which reflect (1) F3: 75th,

(2) F5: 90th percentile of the transmitter’s CANH outputs, (3) F4:

25th, and (4) F6: 10th percentile of CANL outputs. By tracking the

transmitter’s voltage distribution, Viden understands its momen-

tary voltage output behavior. Thus, voltage instances represent

those momentary behaviors. Since even a single ACK voltage can

significantly distort Viden’s understanding of transmitters’ behav-

iors, it is important to learn the ACK threshold. The reasons for

Viden’s tracking of different percentiles of CANH and CANL are

that the low percentiles of CANH would contain voltages measured

when the transmitter switches from sending a 1-bit to sending a

0-bit, and vice versa. The same applies for the high percentiles of

CANL measurements. Although other percentiles can be tracked

as well, to minimize Viden’s overhead, we only track F3–F6.
Algorithm 1 describes how the tracked dispersions are updated

whenever Viden acquires κ dominant voltages from each of CANH

and CANL. Using the past κR measurements, as in line 2, Viden
roughly estimates what percentile the current tracking point, Λ,
represents. In Viden, we set R = 10. Then, to correct and thus move

the tracking point Λ to the desired position — where it represents

the P∗ percentile — an adjustment is made as in line 2, where α is a

design parameter determining the sensitivity to changes. With the

adjustment function proportional to (P∗ − #(V <Λ)
#V)3, the tracking

points move faster if they are far away from their desired positions.

As a result, the four tracking points move if the transmitter’s voltage

distribution (i.e., output behavior) shows changes, thus adapting

to any changes on the CAN bus. Instead of tracking, it is also

possible to directly derive the percentiles from theκR values. Viden,
however, does not follow this since it is too sensitive to transient

changes, especially when κR is small, i.e., insufficient samples in

deriving the percentiles. Thus, in order to make Viden work under

various circumstances, we track them instead.

3.6 Phase 3: Attacker Identification

A voltage instance (F1–F6) represents the momentary voltage out-

put behavior of the message transmitter. So, to log its usual be-

havior, Viden exploits every newly derived voltage instance to

construct/update the voltage profile of the message transmitter.

Although the voltage instances are derived "per message ID", if mes-

sages originate from the same transmitter/ECU, their instances are

near-equivalent, thus leading to construction of the same voltage

profile. We will later show through evaluations that there exists

only one voltage profile for a given transmitter/ECU, thus enabling

its fingerprinting. By exploiting a newly derived voltage instance,

Viden first updates the cumulative voltage deviations (CVDs) of

features F1–F6. We define a CVD to represent how much the trans-

mitter’s dominant voltages deviated cumulatively from their ideal

values. Thus, for feature Fx , the CVD at step n,CVDx [n], is updated
as:

CVDx [n] = CVDx [n − 1] + Δ[n]
(
1 − νx [n]/ν

∗
x

)
, (2)

where Δ[n] is the elapsed time since step n − 1, νx [n] the value

of feature Fx at step n, and ν∗x the desired value of νx . Ideally, the
most frequently measured as well as any percentiles of the CANH

and CANL dominant voltages should be equal to 3.5V and 1.5V,

respectively, i.e., no variations in their output voltages. Therefore,

for features {F1, F3, F5}, which represent CANH values, we set

ν∗
{1,3,5}

= 3.5V and similarly we set ν∗
{2,4,6}

= 1.5V .

Suppressing transient changes. As ECUs have different VCC ,
ground, and RDSON values, they output different CANH and CANL

dominant voltages. Their momentary voltage instances would,

therefore, be different, and hence the trends in their CVD changes

would also be different from each other. So, for every obtained

CVD of features F1–F6, Viden derives Ψ[n] =
∑6
x=1CVDx [n]. The

reason for Viden’s summing of all the CVDs is to exploit V3. Recall

from Section 3.3 that V3 gives us transient deviations in CANH

and CANL output voltages are opposite in direction. So, via CVD

summation, Viden suppresses any transient deviations that have

occurred (due to changes in driver, temperature, etc.) when con-

structing and/or updating the voltage profiles. Note that since CAN

is a differential bus, F2, F4, F6 suppress F1, F3, F5, respectively.

Voltage profile. Suppression of transient changes yields a value,

Ψ, that (mostly) represents the consistent factors in the voltage in-

stances: VCC , ground voltages, and the usual voltage drops across

the transistors. As stated in V4, since these values are rather con-

stant, the accumulated sum of Ψ, Ψaccum [n] =
∑n
k=1

Ψ[k] becomes

linear in time. Moreover, from V1–V2, as Ψ values are distinct for

different ECUs, the trends in how Ψaccum changes also become dif-

ferent, i.e., the slopes in a Ψaccum–time graph are different. There-

fore, Viden formulates a linear parameter identification problem as

Ψaccum [n] = ϒ[n]t[n]+e[n], where at step n, ϒ[n] is the regression
parameter, t[n] the elapsed time, and e[n] the identification error.

As the regression parameter ϒ represents the slope of the linear

model and varies with the transmitter, we define this as the voltage

profile. This way of formulating the problem and constructing the

profiles facilitates Viden’s online update of fingerprints, which is

key to Viden’s adaptability. To determine the voltage profile ϒ, i.e.,

fingerprint ECUs, we use an adaptive signal processing technique,

the Recursive Least Squares (RLS) [18], which is an online approach

in learning the regression parameter. Note, however, that the choice

of algorithm does not affect Viden’s performance. In RLS, we use

kiloseconds (=103 secs) as the unit for t . Due to space limitation, we

omit details of RLS, and refer the readers to [18] for its details. We

will later show, via experimental evaluations, that the thus-derived

profile ϒ is constant over time and also distinct for different ECUs,

thus allowing Viden to correctly fingerprint them.

Identifying the attacker. When an adversary mounts an at-

tack, the underlying IDS can determine whether the message is

malicious or not, so Viden can filter out the voltage outputs ob-

tained only from the (detected) attack messages and build a voltage

profile from only those. We refer to such a voltage profile as an

intrusion voltage profile. Viden then looks up the voltage profiles it

had built until the detection of the attack and searches for the one

that is similar to the intrusion voltage profile.1 This way, Viden
identifies the attacker ECU.

The performance of Viden will, of course, depend on how well

the IDS detects the intrusion; this dependency needs to be inves-

tigated when an IDS and Viden are integrated as a whole system.

Note, however, that the mostly periodic nature of in-vehicle mes-

sages makes correct detection of intrusions not as difficult as pin-

pointing the attacker ECU. Researchers and car-makers are now

well aware of how to detect intrusions, but not how to accurately

identify the attacker ECU.

The only case where the identified ECU would have an un-

known/unlearned profile is when it was physically attached to

the vehicle by an adversary. However, since this requires physical

access and its identification has been addressed elsewhere [14, 32],

we do not discuss its detection any further in this paper.

3.7 Phase 4: Verification

By the birthday paradox, two different ECUs may naturally have

near-equivalent voltage profiles, i.e., voltage profile collision, thus

confusing Viden in identifying the attacker ECU. Note, however,

that Viden has at least narrowed its search scope significantly. An

adversary may also attempt to mimic some other ECU’s voltage

output behavior, i.e., targeted impersonation. In such a case where

further verification besides the voltage profiles is required, in Phase

4 of Viden, machine classifiers are run with the (momentary) volt-

age instances as their inputs, i.e., F1–F6 as their features. This way,

an analysis of attacks from a different vantage point — not only its

trend (Phase 3) but also its momentary behavior — is performed,

thus resolving ambiguities in attacker identification. We, however,

stress that while the adaptability achieved from Phase 3 is an essen-

tial attribute for an accurate attacker identification, Phase 4 cannot

totally replace it, i.e., only complements Phase 3. We will later show

through evaluations that by using voltage instances as machine

classifiers’ input, Viden can resolve issues such as voltage profile

collision and an adversary’s targeted impersonation.

1The initial set of “ground truth” voltage profiles can be verified via timing-based
fingerprinting schemes [12, 30].

3.8 Voltage Profile Adjustment

For attacker identification, it is important to not only have the

correct fingerprint of an ECU but also that fingerprint to be still

valid when examining a voltage measurement obtained during the

(detected) attack. If it was updated much earlier than when the

attack was detected, any changes occurred between those two time

instants would not be reflected in the latest model, thus leading to

false identifications. We refer to this as a model-exam discrepancy.

Since Viden continuously updates the voltage profiles in real time,

such a model-exam discrepancy is minimized/nullified. Since at-

tacker identification is performed upon detection of an intrusion, as

long as Viden keeps the fingerprints up-to-date until an intrusion

is detected (by an IDS), Viden can locate the source of the attack.

Even when there are abrupt changes in the temperature of an ECU,

Viden suppresses those transient changes, and adapts its model

accordingly for an accurate attacker identification.

One corner case in which the performance of Videnmight suffer

from the model-exam discrepancy would be when the vehicle has

not been turned on for a long time. During that period, various

features (e.g., power supply level, ambient temperature) which

affect the output voltages might have changed. In such a case, since

the old voltage profiles may not correctly reflect the current status,

Viden may have to reconstruct (instead of update) them. In fact,

a timing-voltage-aware adversary may attempt to exploit such a

fact and attack the CAN bus as soon as the vehicle is turned on,

making Viden incapable of handling the attacks. However, even

in such a case, as ECUs use the same power source, i.e., battery,

and thus all voltage profiles change in the same direction and with

the same magnitude, Viden re-adjusts and reuses the old ones as a

starting point for voltage profile update rather than reconstructing

it from scratch when the vehicle is turned on. Specifically, Viden
first determines how much of common changes occurred in ECUs’

VCC by deriving the differences between the previous and current

mean values of (F3+F4+F5+F6)/2 — an estimated value ofVCC based

on Eq. (1). Viden then adds the thus-derived differences to ν∗ (in
Eq. (2)) based on the fact that if common changes in VCC incur,

CANH and CANL output values increase simultaneously [6, 7]. This

way, Viden correctly adjusts/updates its voltage profile(s) and thus

identifies such a type of timing-voltage-aware adversary; we will

later evaluate this via real vehicle experiments. Note, however, that

if voltage-based fingerprinting was done solely via batch learning

(as in [14, 27]), it cannot make such an adjustment, suffer from high

model-exam discrepancy, thus allowing a timing-voltage-aware

adversary to evade it.

3.9 Security of Viden
Once an intrusion is detected, via voltage measurements, Viden
can identify the attacker ECU.

A naive adversary would be capable of controlling the vehicle via

continuous message injections. However, since he has no knowl-

edge of how ECUs might be fingerprinted, he would inject them

imprudently. In such a case, he cannot evade Viden.
A timing-aware adversary who knows that ECUs can be finger-

printed via timing analysis, will attempt to exploit this knowledge

in not only controlling the vehicle but also evading the fingerprint-

ing device. For example, the adversary may know that CIDS [12]

(a) CAN bus prototype. (b) 2013 Honda Accord. (c) 2015 Chevrolet Trax. (d) Connection to the vehicle.

Figure 8: Experiments were conducted on a CAN bus prototype and on two real vehicles.

0 20 40 60 80 100 120 140 160
−25

−20

−15

−10

−5

0

5

Time [Sec]

Ac
cu

m
ul

at
ed

 C
VD

 (Ψ
ac

cu
m

)

0x01 by A
0x07 by B
0x15 by C

(a) CAN bus prototype.

0 200 400 600 800 1000 1200 1400
−100

−50

0

50

100

150

200

Time [Sec]

Ac
cu

m
ul

at
ed

 C
VD

 (Ψ
ac

cu
m

)

0x091 by A
0x1A6 by A
0x309 by B
0x191 by C
0x1ED by C
0x1EA by D
0x1D0 by D
0x1AA by E
0x1A4 by F

(b) 2013 Honda Accord.

0 100 200 300 400 500 600 700
−12

−10

−8

−6

−4

−2

0

2

4

6

Time [Sec]

Ac
cu

m
ul

at
ed

 C
VD

 (Ψ
ac

cu
m

)

0x1FC by A
0x362 by A
0x19D by B
0x199 by B
0x348 by C
0x1E9 by D
0x2F9 by E

(c) 2015 Chevrolet Trax.

Figure 9: Voltage profiles obtained from the CAN bus prototype and the two real vehicles.

can identify the attacker ECU only if the attack messages were

injected periodically. Hence, he may perform an arbitrary imper-

sonation by injecting messages aperiodically, thus fooling CIDS.

Note, however, that CIDS would still detect the presence of the

attack. In addition, based on his knowledge that CIDS’s fingerprints

are basically clock skews, he may attempt to imitate the targeted

ECU’s clock behavior, i.e., targeted impersonation. However, with

Viden also installed in the vehicle, since it identifies the attacker

ECU via voltage measurements, i.e., irrespective of message timings,

a timing-aware adversary can evade CIDS, but not Viden.
A timing-voltage-aware adversary may also try to evade Viden

using his knowledge of how voltage-based fingerprinting devices

run. In order to achieve this, when or before the adversary in-

jects the attack messages, he may attempt to change the voltage

output levels by changing the supply voltage (e.g., run processes

which drain battery) or by heating up or cooling down the ECUs

so that the transistors’ internal resistance values change. He could

even attempt to start attacking the CAN bus only when the ve-

hicle is turned on after staying off for a long time as discussed

in Section 3.8. However, since Viden performs an online update

of voltage-based fingerprints and also adjusts them if necessary,

thus minimizing/nullifying model-exam discrepancy, it would be

difficult for the timing-voltage-aware adversary to evade Viden.
Moreover, since Viden analyzes voltage outputs from two differ-

ent perspectives — momentary behavior (Phase 4) and its trend

(Phase 3) — a timing-voltage-aware adversary incapable of precisely

controlling the instantaneous voltage outputs cannot evade Viden.

4 EVALUATION

Wenow evaluate the practicability and efficiency of Viden in achiev-
ing an effective and accurate attacker identification on a CAN bus

prototype and two real vehicles. When running Viden for both

evaluation settings, in Phase 1, M = 30 dominant voltages were

obtained for each message ID forN = 50 rounds. From Phase 2, volt-

age instances were outputted whenever κ = 15 non-ACK voltages

from both CANH and CANL were acquired.

4.1 Evaluation Setups

CAN bus prototype. As shown in Fig. 8a, we configured a CAN

prototype in which all four nodes were connected to each other.

Each node consists of an Arduino UNO board and a SeeedStudio

CAN shield. The CAN bus shield consists of a Microchip MCP2515

CAN controller and a MCP2551 CAN transceiver to provide CAN

bus communication capabilities. Only two nodes were configured

to have a 120Ω terminal resistor so as to match RL = 60Ω.
The three prototype nodes A, B, and C were programmed to

inject messages 0x01, 0x07, and 0x15 at random message intervals

within [20ms, 200ms]. The fourth node V was programmed to run

Viden and construct voltage profiles for messages 0x01, 0x07, and

0x15 (i.e., transmitters A, B, and C), respectively. The reason for in-

jecting the messages aperiodically is to show that even in such cases,

Viden is capable of fingerprinting the transmitters. For node V that

runs Viden, its CANH and CANL lines were not only connected

to the bus but also to the microcontroller’s Analog-to-Digital Con-

verter (ADC), which had 10-bit resolution and was configured to

sample voltages at its maximum rate of 50 KSamples/sec. This way,

V acquired measurements of dominant voltages on the bus when

nodes A–C were sending their messages. The CAN bus prototype

was set up to operate at 500Kbps, which is typical for in-vehicle

high-speed CAN buses. In such settings, Viden required only 2–3

messages to output a voltage instance and update the profiles.

0 50 100 150 200 250 300
3400

3450

3500

3550

3600

Time [Sec]

F 1 −
 M

os
t f

re
qu

en
t C

AN
H

 [m
V]

0 50 100 150 200 250 300
1300

1350

1400

1450

1500

1550

Time [Sec]

F 2 −
 M

os
t f

re
qu

en
t C

AN
L

[m
V]

0x309 by B
0x191 by C
0x1D0 by D

0x309 by B
0x191 by C
0x1D0 by D

(a) 2013 Honda Accord.

0 10 20 30 40 50 60 70 80 90 100
3400

3450

3500

3550

3600

Time [Sec]

F 1 −
 M

os
t f

re
qu

en
t C

AN
H

 [m
V]

0 10 20 30 40 50 60 70 80 90 100
1400

1420

1440

1460

1480

Time [Sec]

F 2 −
 M

os
t f

re
qu

en
t C

AN
L

[m
V]

0x1FC by A
0x199 by B
0x1E9 by D

0x1FC by A
0x199 by B
0x1E9 by D

(b) 2015 Chevrolet Trax.

Figure 10: Features F1 and F2 of Viden in the two real vehicles.

0 100 200 300 400
3450

3500

3550

3600

Time [Sec]

F 3 −
 C

AN
H

: 7
5t

h
pe

rc
en

til
e

[m
V]

0 100 200 300 400
1300

1350

1400

1450

1500

Time [Sec]

F 4 −
 C

AN
L:

 2
5t

h
pe

rc
en

til
e

[m
V]

0 100 200 300 400
3450

3500

3550

3600

3650

Time [Sec]

F 5 −
 C

AN
H

: 9
0t

h
pe

rc
en

til
e

[m
V]

0 100 200 300 400
1300

1350

1400

1450

Time [Sec]

F 6 −
 C

AN
L:

 1
0t

h
pe

rc
en

til
e

[m
V]

Figure 11: Changes of message 0x1D0 in the Honda Accord.

Real vehicles. Two cars, 2013 Honda Accord (Fig. 8b) and a

2015 Chevrolet Trax (Fig. 8c), were also used for our experimental

evaluation of Viden. Through the OBD-II port, the Viden node (V)

was connected to the in-vehicle CAN bus, both running at 500Kbps.

From a laptop and through the Viden node, as shown in Fig. 8d,

we were able to read messages from the 2013 Honda Accord’s and

the 2015 Chevrolet Trax’s CAN buses. While Viden was receiving

messages from the two vehicles, it sampled their CANH and CANL

voltages and then derived their ECUs’ voltage instances and profiles.

4.2 Voltage Profiles as Fingerprints

We first evaluate the accuracy and validity of using voltage profiles

to fingerprint the transmitter ECUs.

CAN bus prototype. Fig. 9a shows the voltage profiles of all

the three messages sent on the prototype bus. Although the three

CAN prototypes nodes were built with the same hardware, the

corresponding message IDs showed different trends in how their

Ψaccum changed over time, since the three ECUs differ in their

supply and transistor characteristics. Based on the RLS implemented

in Viden, we were able to find that nodes A, B, and C had different

voltage profiles (ϒ) being equal to 10.1, -154.3, and -4.9, respectively.
In other words, voltage profiles of 0x01, 0x07, and 0x15 were shown

to be different from each other as they were sent by different ECUs,

thus verifying the feasibility and accuracy of Viden.
Real vehicles. In the CAN prototype, we knew which ECU is

sending which message(s), but it is difficult to know this in a real

vehicle. In order to obtain the ground truth on themessage source(s),

we exploit the schemes in [12, 30], which analyzed timing patterns

in CAN for fingerprinting the ECUs. Note, however, that these

are used only for obtaining the ground truth, since those cannot

identify the attacker ECU if messages are injected at random times.

Through the connected Viden node, we not only logged the CAN
traffic of the 2013 Honda Accord but also measured the dominant

voltages from its CAN bus. The measurements were made on a sta-

tionary vehicle, but while continuously changing their operations

(e.g., pressing brake pedal, turning the steering wheel) to generate

some transient changes. In Appendix B, we show that outputs in

Viden is not affected by whether the car is being driven or sta-

tionary. By logging the CAN traffic and exploiting the schemes

in [12, 30], we were able to verify that messages {0x091, 0x1A6}

were sent from some ECU A, {0x309} from B, {0x191, 0x1ED} from

C, {0x1EA, 0x1D0} from D, {0x1AA} from E, and {0x1A4} from F.

Fig. 9b shows themessages’ voltage profiles. The profiles (ϒ) derived
by Viden are shown to be equivalent only for those messages sent

from the same ECU; ECU A sending {0x091, 0x1A6} had ϒA = 102.6,

B sending {0x309} had ϒB = 85.0, C sending {0x191, 0x1ED} had

ϒC = 137.0, D sending {0x1EA, 0x1D0} had ϒD = −39.2, E sending

{0x1AA} had ϒE = 67.5, while F sending {0x1A4} had ϒF = 120.8.

This result again shows that voltage profiles for different ECUs are

different and can thus be used as their fingerprints.

To further verify that Viden’s capability of fingerprinting is not

restricted to a specific vehicle model, Viden was also run on a

2015 Chevrolet Trax. Again, by exploiting the schemes in [12, 30],

we obtained the ground truths of messages {0x1FC, 0x362} sent

from some ECU A, {0x19D, 0x199} from B, {0x348} from C, {0x1E9}

from D, and {0x2F9} from E. Fig. 9c shows the result of Viden
determining that {0x1FC, 0x362} have a voltage profile of ϒA =

0 20 40 60 80 100
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

Time [Sec]

Ac
cu

m
ul

at
ed

 C
VD

 (Ψ
ac

cu
m

)

0x01 by A,C (Attacked)
0x07 by B
0x15 by C

(a) CAN bus prototype.

0 50 100 150 200 250 300
−30

−20

−10

0

10

20

30

40

50

Time [Sec]

Ac
cu

m
ul

at
ed

 C
VD

 (Ψ
ac

cu
m

)

0x091 by A
0x309 by B, D (Attacked)
0x1EA by D
0x1D0 by D

(b) Real vehicle.

Figure 12: Viden identifying a timing-aware adversary.

−14.7, {0x19D, 0x199} have ϒB = −2.8, {0x348} has ϒC = 5.9, {0x1E9}

has ϒD = 1.8, and {0x2F9} has ϒE = −4.4. Thus, using voltage

measurements, Viden correctly fingerprinted their transmitters.

This again confirms the diversity of voltage profiles (of different

ECUs), thus facilitating Viden’s fingerprinting of in-vehicle ECUs.
Moreover, these results show that Viden’s fingerprinting is not

limited to a specific vehicle model, and can thus be applied to other

vehicle models.

4.3 Voltage Outputs in Real Vehicles

We provided 4 characteristics, V1–V4, which were imperative for

Viden in fingerprinting ECUs.We evaluate whetherV1–V3 actually

hold in real vehicles. Note that Fig. 9 verifies V4, corroborating that

the voltage profiles of ECUs were constant over time, i.e., linear.

Different outputs. According to V1–V2, ECUs output differ-

ent dominant voltages. Fig. 10a plots features F1–F2 (i.e., the most

frequently measured CANH and CANL values) outputted by Viden
for messages 0x309 (sent by B), 0x191 (sent by C), and 0x1D0 (sent

by D) in the Honda Accord. Although the transceivers of all those

messages are to output the agreed-on CANH=3.5V and CANL=1.5V

when sending a 0-bit, they outputted values deviating from them.

More importantly, their output levels were clearly discriminable.

Even though ECUB, which sent 0x309, was shown to output similar

CANH dominant voltages to ECU D, it outputted totally different

voltages on CANL. Similarly, Fig. 10b plots F1–F2 values of 0x1FC

(sent from A), 0x199 (sent from B), and 0x1E9 (sent from D) out-

putted by Viden in the 2015 Chevrolet Trax. Again, we can see that

the transmitters of those messages did not output the desired levels,

but outputted discernible levels. These results confirm that V1–V2

hold even in real vehicles, thus facilitating Viden’s fingerprinting.
Transient changes. V3 states that transient changes in CANH

and CANL voltages are opposite in direction. Fig. 11 shows the 4

tracked percentiles, F3–F6, of message 0x1D0 in the 2013 Honda Ac-

cord. F3–F6 values are shown to temporarily deviate from and later

return to their usual values. Since F3 and F5 are inverses of F4 and

F6, respectively, vertically reversed shapes of the former resemble

those of the latter. Thus, summing them suppressed their transient

deviations when deriving the voltage profiles. Note, however, that

since the tracked values in Viden depend on the time of sampling

and its accuracy, the summation did not completely remove the

deviations, but it sufficed for fingerprinting.

4.4 Against a Timing-Aware Adversary

We evaluated Viden’s performance of attacker identification in the

CAN bus prototype and in a real vehicle against a timing-aware

adversary. We did not evaluate its performance against a naive ad-

versary since the timing-aware adversary subsumes his capabilities.

CAN bus prototype. In the CAN bus prototype, we further

programmed node C to be the timing-aware adversary who injects

not only 0x15 but also attack messages with ID=0x01 at a random

interval of 10–20ms; injecting messages aperiodically to perform

arbitrary impersonation and thus evade timing-based fingerprinting

devices. Note that 0x01 is also being sent from the legitimate node

A at a random interval of 20–200ms. Fig. 12a shows the determined

voltage profiles for all three messages during the mounted attack.

Even though the voltage profile for 0x01 now reflects both the

voltage outputs from A and C, since the injection frequency from

the attackerCwasmuch higher, the voltage profile for 0x01 changed

to a profile equivalent to the one shown in 0x15 (sent by C). As

a result, Viden determined that the transmitters of 0x01 and 0x15

are the same, thus identifying the source of the attack to be ECU C.

Note that even when the injection frequency is lower, the attacker

ECU can be identified by observing the intrusion voltage profile.

Real vehicle.We also evaluated Viden’s performance against a

timing-aware adversary in a real vehicle setting. We focus on the

results obtained from the 2013 Honda Accord for the purpose of

more in-depth discussion. We consider a scenario in which a timing-

aware adversary controlling the Honda Accord ECU D attacks ECU

B and also impersonates ECU A, i.e., targeted impersonation. Thus,

from the vehicle, Viden acquired voltage instances and profiles of

the monitored messages: 0x091 sent from A, 0x309 from B, and

{0x1EA, 0x1D0} fromD. To generate the scenario ofD impersonating

A (while attacking B), V was further programmed to record only

every 4-th message of 0x091 (sent by A every 15ms), and every 3rd

message of 0x1D0 (sent by D every 20ms) as its ID to be 0x309. This

was to emulate a scenario where the attacker D injects its attack

messages with forged ID=0x309 at a similar frequency to A, thus

attempting to imitate its timing behavior for impersonation.

Fig. 12b plots the voltage profiles of {0x091, 0x1EA, 0x1D0} and

the intrusion voltage profile of 0x309. Although the adversary at-

tempted to impersonate ECUA, one can see that since Viden finger-
prints the transmitter regardless of message timings, the intrusion

voltage profile of 0x309 matched the profiles of {0x1EA, 0x1D0}. As

a result, Viden concluded the attacker to be D.

4.5 Against a Timing-Voltage-Aware Adversary

Based on his knowledge of voltage-based fingerprinting devices, a

timing-voltage-aware adversary could attempt to evade Viden in
two ways. First, the adversary might perform arbitrary imperson-

ation by attacking the vehicle only when voltage-based fingerprints

have not been updated for a long period of time, i.e., a high model-

exam discrepancy. Next, the adversary might also perform targeted

impersonation by changing its voltage output levels so as to imitate

some specific ECUs’ voltage output behavior.

4.5.1 Arbitrary impersonation. Inmost cases of a timing-voltage-

aware adversary performing arbitrary impersonation, Viden ac-

cordingly/adaptively updates the voltage profiles and can thus cor-

rectly identify the attacker. One corner case, however, in detecting

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80

90

100

Time [Sec]

Ac
cu

m
ul

at
ed

 C
VD

 (Ψ
ac

cu
m

)

0x091 (Day 0)
0x091 (Day 8)
0x091 (Day 10)
0x191 (Day 0)
0x191 (Day 8)
0x191 (Day 10)

(a) Before adjustment.

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80

90

100

Time [Sec]

Ac
cu

m
ul

at
ed

 C
VD

 (Ψ
ac

cu
m

)

0x091 (Day 0)
0x091 (Day 8)
0x091 (Day 10)
0x191 (Day 0)
0x191 (Day 8)
0x191 (Day 10)

(b) After adjustment.

Figure 13: Adjusting voltage profiles of {0x091, 0x191}.

0 100 200 300 400 500 600 700
0

20

40

60

80

100

120

140

160

180

Time [Sec]

Ac
cu

m
ul

at
ed

 C
VD

 (Ψ
ac

cu
m

)

0x091 by A
0x309 by B, C (Attacked)
0x191 by C

(a) Targeted impersonation.

0x091 (A)
0x309 (B)

0x191 (C)

0x091 (A)

0x309 (B)

0x191 (C)

0

2000

4000

6000

8000

10000

Predicted Instance
Detected Instance

C
ou

nt

(b) Predicting the attacker ECU.

Figure 14: Efficacy of Viden’s Phase 4 execution.

the adversary would be when he performs arbitrary impersonation

by attacking the vehicle only after a long idle period. To verify

Viden’s reaction to such an adversary, we evaluated the following

scenario. We first obtained the voltage profiles of 0x091 and 0x191

from the 2013 Honda Accord while driving the vehicle for approxi-

mately 10 mins. After 8 and 10 days had elapsed, we again obtained

their profiles; the average temperatures during the three days were

14.4℃, 7.7℃, and 12.2℃, respectively. In between the three update

dates, the vehicle was driven 700 miles and 40 miles to generate (on

purpose) the considered scenario where the voltage profiles might

be outdated, thus becoming a chance for the timing-voltage-aware

adversary to perform arbitrary impersonation.

Fig. 13a shows the acquired voltage profiles corresponding to

messages 0x091 and 0x191 on the three different dates. The initial

profiles obtained were found different from those obtained on the

8-th and 10-th elapsed days, whereas the latter two were equivalent.

One interesting observation, however, was that the voltage profiles

of both message IDs were decreased by the same amount. The

changes we observed were due to a slight shift in all ECUs’ VCC —

most probably due to the change in the battery state after the long

700 miles driving. In such a case, as we discussed in Section 3.8,

Viden adjusts its voltage profiles. Once such an adjustment was

made, we obtained the results shown in Fig. 13b, where all voltage

profiles were properly aligned. This result shows that Viden is

capable of handling cases where a timing-voltage-aware adversary

performs arbitrary impersonation right after a vehicle’s long idle

period.

4.5.2 Targeted impersonation. Under scenarios where a timing-

aware adversary performs arbitrary/targeted impersonation or

where a timing-voltage-aware adversary performs an arbitrary

impersonation, Viden can correctly identify him solely based on

voltage profiles, i.e., within Phase 3. It could be much more chal-

lenging for Viden (requiring to run Phase 4) when a timing-voltage-

aware adversary performs a targeted impersonation, i.e., trying to

imitate some specific ECU’s voltage outputs. Since the adversary

creates a situation of at least two ECUs having similar voltage

profiles (i.e., not unique), targeted impersonation would be more

difficult for Viden to handle than arbitrary impersonation. We eval-

uated how Viden performs against such an adversary via (1) vehicle

experiments and (2) simulations based on vehicle data.

Experiment-based evaluation. In the real vehicle setting, to

generate a case which reflects a timing-voltage-aware adversary

performing targeted impersonation, we considered the following

scenario in the Honda Accord: adversary’s ECU C, which usually

sends 0x191, injects attack messages with ID=0x309, thus attacking

its original sender B and at the same time imitating A’s voltage

output behavior. In generating such a scenario, evaluation settings

were similar to the previous ones, except that Viden recorded every
10n-th message of 0x191 as its ID to be 0x309. This was to generate

the voltage profile of 0x309 to be similar to A’s as in Fig. 14a; C

impersonates A. To introduce ambiguity in the decision, we do

not use the intrusion voltage profile in this evaluation. In such a

case, if only voltage profiles are exploited, Viden might consider

ECU A to be the attacker. However, Viden deals with this in Phase

4 by using voltage instances as machine classifier’s input. In this

evaluation, we used a 200-tree Random Forest classifier with 50%

of the acquired data until detecting the intrusion as its training set.

Fig. 14b shows the number of misclassified voltage instances by

the Random Forest classifier. It shows that Viden misclassified a

large number of 0x309’s voltage instances as those of 0x191. That

is, even when the voltage profiles of 0x091 and 0x309 were similar,

since Viden observed the measurements in a momentary manner

and the adversary was incapable of precisely matching them, the

attack source was correctly identified as C, i.e., transmitter of 0x191,

not A. This validates that by using voltage instances as machine

classifiers’ inputs, Viden can prevent targeted impersonation by a

timing-voltage-aware adversary.

By the Birthday paradox, at least two ECUs may naturally have

similar voltage profiles. However, since Videnwas feasible to distin-
guish them via machine classifiers, profile collision can be mitigated.

Simulation-based evaluation. In addition to the scenario shown

in Fig. 14a, which we evaluated via real vehicle experiments, there

could be different ways in which a timing-voltage-aware adversary

might perform targeted impersonation. For example, the adversary

might heat up or cool down his ECU to match some other ECUs’

voltage profiles, even before he starts injecting attack messages.

Thus, we conducted a more in-depth evaluation as follows. Based on

the 35-min data of voltage instances output by the Honda Accord’s

6 ECUs and those output by the Chevrolet Trax’s 5 ECUs, two attack

datasets were constructed to each contain 1000 different “targeted

impersonation” attempts by a timing-voltage-aware adversary. We

refer to Honda Accord’s ECUs as A–F and Chevrolet Trax’s ECUs

as G–K. The first dataset was based on only voltage instances of

A–F whereas the second was based on data from both vehicles,

assuming that A–K lie in the same vehicle. Such an assumption

was made to evaluate how Viden performs when the number of

ECUs increases. Each impersonation attempt was constructed by

A B C D E F

A 100 0 0 0 0 0

B 0 99.3 0 0 0.7 0

C 0 0 100 0 0 0

D 0 0 0 100 0 0

E 0 0 0 0 100 0

F 0 0 0 0 0 100

(a) "Honda Accord" attack dataset.

A B C D E F G H I J K

A 100 0 0 0 0 0 0 0 0 0 0

B 1.5 98.5 0 0 0 0 0 0 0 0 0

C 0 0 100 0 0 0 0 0 0 0 0

D 0 0 0 100 0 0 0 0 0 0 0

E 0 0 0 0 100 0 0 0 0 0 0

F 0 0 0 0 0 100 0 0 0 0 0

G 0 0 0 0 0 0 100 0 0 0 0

H 0 0 0 0 0 0 0 100 0 0 0

I 0 0 0 0 0 0 0 0 100 0 0

J 0 0 0 0 0 0 0 0 0 100 0

K 0 0 0 0 0 0 0 0 3.2 0 96.8

(b) "Honda Accord + Chevrolet Trax" attack dataset.

Table 1: Confusion matrix of Viden [Unit: %].

(1) randomly choosing one ECU to be the adversary and another

to be the victim, then (2) randomly choosing the times when the

adversary starts to change his voltage outputs and (later) when

to start attacking the victim, and finally (3) steadily shifting the

adversary’s voltage instance values (when it starts impersonation)

so that his voltage profile matches the victim’s, i.e., profile collision,

before mounting an attack. Note, however, that such a shift does

not make their instantaneous instances to be equivalent. As we

discussed in Section 3.1, although an adversary may match the

target’s profile, it would be very difficult for him to precisely follow

the target’s instantaneous behaviors (e.g., transient changes due to

temperature). This way, we were able to emulate a scenario where

the adversary first imitates some specific ECU’s voltage output

behavior and then injects attack messages.

Table 1a shows the confusion matrix of Viden when identifying

the attacker of the 1000 targeted impersonation attempts in the

first attack dataset. For identification, Viden not only used voltage

profiles but also a 200-tree Random Forest with voltage instances

as its input. Again, half of the data until an attack was detected

was used as the training set. Thanks to Viden’s analysis of the
adversary’s impersonation attempts from two different viewpoints

— ECU’s usual voltage output behavior via voltage profiles and its

momentary behavior via voltage instances — Viden was able to

identify the attacker with only a 0.2% false identification rate. Even

when Viden was evaluated based on our second attack dataset,

which had 11 ECUs, Viden identified the attacker with a 0.3% false

identification rate where the confusion matrix is shown in Table 1b.

Albeit the increased number of ECUs, Viden’s false identification
rate increased only by 0.1%, thus corroborating its effectiveness.

Note that such false rates reflect Viden’s capability and robustness

against the most skillful adversary who is aware of timing and

voltage, i.e., the timing-voltage-aware adversary. Thus, Viden’s
false rate against all types of the considered adversaries — including

the naive and timing-aware adversaries — would be much lower.

One can also interpret such good performance of Viden equiva-

lent to its effectiveness in mitigating (naturally occurred) profile

collision.

5 DISCUSSION

Number of ECUs on CAN. As of 2017, the average vehicle is

reported to have approximately 25 ECUs, while luxury cars have

approximately 50 [34], but not all of them on CAN; some are in-

stalled on LIN, MOST, etc. Moreover, to accommodate a large (in-

creasing) number of ECUs on bandwidth-limited CAN, each vehicle

is equipped with multiple CAN buses [15]. Accordingly, network

architectures of various modern vehicles (Audi A8, Honda Accord,

Jeep Cherokee, Infiniti Q50, etc.) are shown to have 3∼20 ECUs

per CAN bus [24]; a similar figure to which we considered in our

evaluations. Hence, if Viden was installed on each CAN bus in a

vehicle, profile collision within that bus is much less likely to occur

than the case when all ECUs are (considered to be) installed on one

single CAN bus. Even in such a case with profile collisions, Viden
can still handle it via the execution of its Phase 4.

Multiple ECUs per ID. Viden may underperform when multi-

ple ECUs are assigned to send messages with the same ID, albeit

unusual/rare. For example, although message ID=0x040 is sched-

uled to be sent, in turn, by ECUs A–D, Viden would construct only
one voltage profile for 0x040. However, if such scheduling informa-

tion is known in advance (e.g., every 4n-th message of 0x040 is sent

by D), which is in fact defined by the car-makers, then Viden could
construct voltage profiles accordingly, thus solving the problem.

Intrusion Detection. Timing-based IDSs exploit the periodic

nature of CAN messages and thus suffice to detect attacks on pe-

riodic messages, but fail to detect attacks on aperiodic ones. Since

Viden determines the transmitter ECU based on voltages, similarly

to [14, 27], it can complement those IDSs in detecting intrusions.

However, since most in-vehicle messages are periodic [12] and

thus most intrusions are detectable, Viden’s potential is maximized

when it is used for attacker identification.

Attacker from Another In-vehicle Network. If the attack

originates from a different in-vehicle network (e.g., FlexRay, MOST,

LIN) inside the vehicle other than CAN, the corresponding gateway

ECU will be the one that injects attack messages into CAN. Viden
will, therefore, identify that gateway ECU as the attacker, since

Viden is designed just for CAN. In such a case, the best both Viden
and the gateway ECU can do is to look up the message routing

table (describing which messages/signals to forward to/from), and

identify the “compromised network”. Handling such a scenario is

important in integrating Viden in real vehicles.

Limitations. For Viden to identify the attacker ECU, it requires
at least one voltage profile to use. For the example shown in Fig. 12b,

Viden referred to the voltage profiles of {0x1EA, 0x1D0} to deter-

mine that the attacker ECU was D. Since most ECUs are designated

to transmit at least one message ID, one can identify the attacker

ECU with Viden. However, if the compromised ECU does not send

any messages, Viden’s attacker identification can be inaccurate. In

such a case, the best Viden can do would be obtaining the voltage

profile of those ECUs during the manufacturing stage and updating

them via voltage profile adjustments.

6 CONCLUSION

State-of-the-art vehicle security solutions lack a key feature of

identifying the attacker ECU on the in-vehicle network, which

is essential for efficient forensic, isolation, security patching, etc.

To meet this need, we have proposed Viden, which fingerprints

ECUs based on voltage measurements. Via the ACK learning phase,

Viden obtained correct measurements of voltages only from the

message transmitters, and exploited them for constructing and

updating correct voltage profiles/fingerprints. Using these profiles,

we showed via evaluations on a CAN bus prototype and two real

vehicles that Viden can identify the attacker ECU with a low false

identification rate of 0.2%. Considering the fact that vehicles are

safety-critical, Viden is an important first step toward securing the

vehicles and protecting drivers and passengers.

ACKNOWLEDGMENTS

The work reported in this paper was supported in part by NSF under

Grants CNS-1505785 and CNS-1646130. Assistance from Manoj

Sastry and Zhao Li of Intel is also gratefully acknowledged.

REFERENCES
[1] 1991. CAN Specification Version 2.0. Robert Bosch GmbH (1991).
[2] 2002. Microchip AN228 - CAN Physical Layer Discussion [Online] Available:

http://ww1.microchip.com/downloads/en/AppNotes/. (2002).
[3] 2003. Vector: Common High Speed Physical Layer Problems [Online] Available:

http://vector.com. (2003).
[4] 2005. Optimizing MOSFET Characteristics by Adjusting Gate Drive Amplitude

[Online] Available: http://www.ti.com/lit/an/slua341/slua341.pdf. (2005).
[5] 2010. CAN/CANbus and CAN Protocol Licensing [Online] Available:

http://soc.microsemi.com/ipdocs/. (2010).
[6] 2016. SN65HVD1040-Q1 EMC-Optimized Can Transceiver Datasheet. [Online]

Available: http://www.ti.com/lit/ds/symlink/sn65hvd1040-q1.pdf. (2016).
[7] 2016. TCAN1051 Fault Protected CAN Transceiver with CAN FD Datasheet.

[Online] Available: http://www.ti.com/lit/ds/sllses8c/sllses8c.pdf. (2016).
[8] Dec. 2003. ISO 11898-2. Road vehicles – Controller area network (CAN) – Part

2: High-speed medium access unit. ISO Standard-11898, International Standards
Organisation (ISO) (Dec. 2003).

[9] Jul. 2015. Hackers Remotely Kill a Jeep on the Highway - With Me in It. [Online]
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/. WIRED
(Jul. 2015).

[10] Sep. 2016. Tesla Responds to Chinese Hack With a Major Security Upgrade.
[Online] https://www.wired.com/2016/09/tesla-responds-chinese-hack-major-
security-upgrade/. WIRED (Sep. 2016).

[11] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K.
Koscher, A. Czeskis, F. Roesner, and T. Kohno. Aug. 2011. Comprehensive Exper-
imental Analyses of Automotive Attack Surfaces. Proceedings of USENIX Security
(Aug. 2011).

[12] Kyong-Tak Cho and Kang G. Shin. Aug. 2016. Fingerprinting Electronic Control
Units for Vehicle IntrusionDetection. Proc. of the 25th USENIX Security Symposium
(Aug. 2016).

[13] Kyong-Tak Cho and Kang G. Shin. Oct. 2016. Error Handling of In-vehicle
Networks Makes Them Vulnerable. Proc. of the 23rd ACM Conference on Computer
and Communications Security (CCS) (Oct. 2016).

[14] Wonsuk Choi, Hyo Jin Jo, Samuel Woo, Ji Young Chun, Jooyoung Park, and
Dong Hoon Lee. Jun. 2016. Identifying ECUs Using Inimitable Characteristics of
Signals in Controller Area Networks. arXiv preprint arXiv:1607.00497 (Jun. 2016).

[15] Ian Foster and Karl Koscher. 2015. Exploring controller area networks. In USENIX
;Login: magazine.

[16] I Foster, A Prudhomme, K Koscher, and S Savage. 2015. Fast and Vulnerable: A
Story of Telematic Failures, In WOOT. Proceedings of USENIX Security (2015).

[17] Carlos Galup-Montoro and Marcio Cherem Schneider. 2007. MOFSET modeling
for circuit analysis and design, In International series on advances in solid state
electronics and technology. Proceedings of the 5th Workshop on Embedded Systems
Security (2007).

[18] S. Haykin. 1991. Adaptive Filter Theory, In 2nd ed. Prentice-Hall. Proceedings of
the 5th Workshop on Embedded Systems Security (1991).

[19] A. Herrewege, D. Singelee, and I. Verbauwhede. 2011. CANAuth - A Simple, Back-
ward Compatible Broadcast Authentication Protocol for CAN bus, In ECRYPT
Workshop on Lightweight Cryptography. ECRYPT Workshop on Lightweight
Cryptography (2011).

[20] Tobias Hoppe, Stefan Kiltz, and Jana Dittmann. Jan. 2011. Security threats to
automotive CAN networks - Practical examples and selected short-term coun-
termeasures, In Reliability Engineering and System Safety. IEEE Symposium on
Security and Privacy (Jan. 2011).

[21] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy,
B. Kantor, D. Anderson, H. Shacham, and S. Savage. May 2010. Experimental
security analysis of a modern automobile, In IEEE Symposium on Security and
Privacy. IEEE Symposium on Security and Privacy (May 2010).

[22] J. Lepkowski and B. Wolfe. 2005. EMI/ESD Protection Solutions for the CAN Bus.
iCC (2005).

[23] C. Miller and C. Valasek. 2013. Adventures in Automotive Networks and Control
Units. Defcon 21 (2013).

[24] C. Miller and C. Valasek. 2014. A Survey of Remote Automotive Attack Surfaces.
Black Hat USA (2014).

[25] C. Miller and C. Valasek. 2015. Remote Exploitation of an Unaltered Passenger
Vehicle. Black Hat USA (2015).

[26] Sparsh Mittal. May 2016. A Survey of Architectural Techniques for Managing
Process Variation, In ACM Computing Surveys (CSUR) Journal, Volume 48, Issue
4. IEEE Symposium on Security and Privacy (May 2016).

[27] P. Murvay and B. Groza. Apr. 2014. Source identification using signal character-
istics in controller area networks, In IEEE Signal Processing Letters, vol. 21, no.
4, pp. 395-399. IEEE Symposium on Security and Privacy (Apr. 2014).

[28] M. Muter and N. Asaj. 2011. Entropy-Based Anomaly Detection for In-Vehicle
Networks. IEEE Intelligent Vehicles Symposium (2011).

[29] M. Muter, A. Groll, , and F. C. Freiling. 2010. A structured approach to anomaly
detection for in-vehicle networks, In Information Assurance and Security (IAS),
Sixth International Conference. Proceedings of USENIX Security (2010).

[30] Marco Di Natale, H. Zeng, P. Giusto, and A. Ghosal. 2012. Understanding and Us-
ing the Controller Area Network Communication Protocol: Theory and Practice,
In Springer Science & Business Media - Technology & Engineering. Proceedings
of the 5th Workshop on Embedded Systems Security (2012).

[31] D. Nilsson, D. Larson, and E. Jonsson. 2008. Efficient In-Vehicle Delayed Data
Authentication Based on Compound Message Authentication Codes, In VTC-Fall.
Proceedings of USENIX Security (2008).

[32] Andrea Palanca, Eric Evenchick, Federico Maggi, and Stefano Zanero. Sep. 2016.
A Stealth, Selective, Link-layer Denial-of-Service Attack Against Automotive
Networks. Ph.D Thesis (Sep. 2016).

[33] C. Szilagyi and P. Koopman. 2010. Low Cost Multicast Network Authentication
for Embedded Control Systems, In Proceedings of the 5thWorkshop on Embedded
Systems Security. Proceedings of the 5th Workshop on Embedded Systems Security
(2010).

[34] AMPG Body Electronics Systems Engineering Team. 2017. Future Advances in
Body Electronics. NXP White paper (2017).

APPENDICES

A ACK threshold learning in a real vehicle

Viden first learns the thresholds which determine whether the

measured voltages are from the ACK slot or not, before outputting

voltage instances and profiles. This was achieved by determining

most frequent and maximum/minimum sets, and exploiting the side

lobe which only exists in the latter. In other words, the existence

of such a side lobe (as shown in Fig. 7 in a CAN prototype), which

represents the distribution of ACK voltages, is critical in learning

the ACK threshold. Thus, to show that the proposed ACK learning

is feasible even in real vehicles, through Viden, we obtained both

most frequent and maximum/minimum sets for message ID=0x091,

which was sent every 10ms by some ECU in the 2013 Honda Accord.

Fig. 15 (upper) shows the kernel density plots of the most fre-

quent and maximum sets of the CANH dominant voltages while

receiving ID=0x091, and Fig. 15 (lower) the kernel density of those

obtained from the CANL line. One can see that as in the CAN

prototype result (Fig. 7), side lobes exist in both the CANH and

CANL lines. Thus, the proposed ACK learning mechanism in Viden
derived the refined maximum and minimum sets, S ′max and S ′min ,

correctly and thus derived the ACK thresholds of message 0x091 to

be 3.844V for CANH outputs and 1.114V for CANL outputs.

One interesting observation is how high and low CANH and

CANL ACK voltage levels are. In our evaluation of Viden on the

CAN prototype, since we had only 3 nodes acknowledging to the

message, the median of the CANH ACK voltages was 3.514V as

3200 3400 3600 3800 4000 4200 4400
0

2

4

6

8
x 10−3

CANH: Dominant Output Voltage of Message 0x091 [mV]

Ke
rn

el
 D

en
si

ty

Most Frequent
Maximum

700 800 900 1000 1100 1200 1300 1400 1500 1600 1700
0

2

4

6
x 10−3

CANL: Dominant Output Voltage of Message 0x091 [mV]

Ke
rn

el
 D

en
si

ty

Most Frequent
Minimum

Figure 15: Deriving the ACK thresholds for message 0x091

in the 2013 Honda Accord.

shown in Fig. 7. On the other hand, in our experiment on the 2013

Honda Accord, the median of the CANH ACK voltage showed a

high voltage level, 4.049V — much higher than the one obtained

from the CAN prototype. For the CANL ACK voltage, the median

was 0.953V. Such a result is due to the fact that there were much

more ECUs (compared to 3 in the prototype) inside the vehicle

which ACKed message 0x091.

B Voltage profiles while driving

We further validate that Viden’s derived voltage profiles do not

depend on whether and how the vehicle is driven. We first obtained

the voltage instances of 0x191 from the 2013 Honda Accord’s CAN

bus. At this time of measurement, the vehicle was stationary. Later

on that day, instances of 0x191 was once again obtained, but this

time while driving the vehicle for approximately 10 mins; the same

data which we used in Section 4.5.1.

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

Time [Sec]

Ac
cu

m
ul

at
ed

 C
VD

 (Ψ
ac

cu
m

)

0x191 (Stationary)
0x191 (Driving)

Figure 16: Voltage profiles of message 0x191 when the vehi-

cle was stationary and driven.

Fig. 16 shows the voltage profiles of 0x191 obtained while the

vehicle was stationary and driven. One can see that the two voltage

profiles are equivalent, even though they were measured under

a different condition. These are due to the fact that the voltage

outputs are much more dependent on hardware components’ char-

acteristics than their momentary conditions. Moreover, transient

deviations incurred from changes in momentary conditions would

have been suppressed thanks to how Viden derives its voltage

profiles; summing CVDs of CANH and CANL.

