SUPPLEMENT OF "PHYSICAL-STATE-AWARE DYNAMIC SLACK MANAGEMENT FOR MIXED-CRITICALITY SYSTEMS"

Hoon Sung Chwa¹, Kang G. Shin¹, Hyeongboo Baek², and Jinkyu Lee²

¹Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan, U.S.A.

²Department of Computer Science and Engineering, Sungkyunkwan University (SKKU), Republic of Korea.

APPENDIX

A. Example of illustrating the usage of slacks

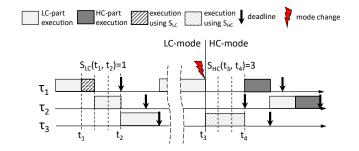


Fig. 3. An example of illustrating the usage of LC- and HC-mode slacks.

Fig. 3 illustrates how LC- and HC-mode slacks can be utilized. In the example, a job of HC task τ_1 completes its LC-part execution at t_1 , and LC-mode slack in $[t_1, t_2)$ is 1. Then, according to Lemma 2, the job can execute its HC-part execution by using LC-mode slack without triggering a modeswitch while satisfying other jobs' LC-part execution before their deadlines. After a mode-switch at t_3 , HC-mode slack in $[t_3, t_4)$ is 3. Then, according to Lemma 3, a job of LC task τ_3 can execute its LC-part execution by using HC.

B. Example of slack calculation in Algorithm 2

Figs. 4(a)–(c) illustrate how to calculate LC-mode slack $S_{LC}^*(0, 8)$ in [0,8). In Fig. 4(a), at time 0, we first plan to defer τ_3 's execution until after d_1 but by its deadline d_3 . Likewise, in Fig. 4(b), we try to fit τ_2 's execution between d_1 and d_2 while guaranteeing that the sum of utilization in the interval is less than or equal to one. Some portion of τ_2 's execution does not fit and must execute before d_1 , requiring use of interval [6,8). In Fig. 4(c), after assigning the remaining portion of τ_1 's execution, we can calculate $S_{LC}^*(0,8)$ as the amount of idle time in [0,8), which is 2.

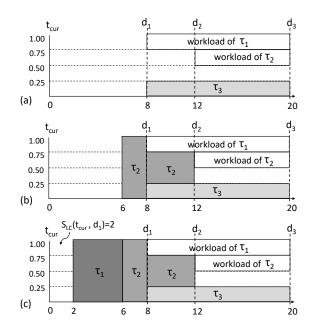


Fig. 4. An example of slack calculation $S_{LC}(0, 8)$.