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Abstract—Name lookup is an essential function, but a perfor-
mance bottleneck in both today’s and future network architec-
tures. Variable-length and unbounded names rather than fixed-
length addresses, as well as much larger and more dynamic
forwarding tables call for a careful re-engineering of lookup
structures for fast, memory-efficient, and scalable packet for-
warding.

We propose a novel data structure, called NameTrie, to store
and index forwarding table entries efficiently and to support
fast name lookups and updates. Its novelty lies in the optimized
design and implementation of a character-trie structure. The
nodes of NameTrie are stored compactly, improving cache
efficiency and speeding up packet processing. Its edges are
implemented using a hash table, facilitating fast name lookups
and updates. A new scheme is used to encode control information
without consuming additional memory. Running on conventional
commodity hardware and using large-scale real-world name
datasets, our implementation of NameTrie in software achieves
2.82∼3.56, 3.48∼3.72, and 2.73∼3.25 million name insertions,
lookups, and removals per second, respectively, for various
datasets while requiring a small memory footprint. We have
conducted a comprehensive performance evaluation against the
state-of-the-art of named data networking (NDN) as a typical
use-case. It is shown to require at least 35% less memory and
runs at least 3x faster for name table lookups and updates than
two well-known trie-based schemes in NDN.

I. INTRODUCTION

Numerous emerging applications, such as firewalls, intru-
sion detection systems, load balancers, search engines, peer-to-
peer file-sharing and content distribution networks, rely heav-
ily on name-based services for packet forwarding, filtering,
mapping, etc. Moreover, significant changes in the Internet
usage have led to the rapid development of information-
centric networking (ICN) architectures, such as named data
networking (NDN) [1] and content centric networking (CCN)
[2] (§II.A). NDN/CCN makes a fundamental shift in the
semantics of network service from delivering the packet to
a given destination IP address to fetching data identified by
a given name. Thus, name lookup and update (i.e., insertion
and removal of names) are core functions [3], [4], [5], [6],
[7]. This paper focuses on packet forwarding tables, where
name lookup hinges on longest-prefix matching (LPM), as
it is easily applicable to other name-based services, such as
filtering, mapping, etc.

Unlike IP addresses of fixed length (32 or 128 bits), names
are variable-length with no upper bound, thus making it neces-
sary to solve two main issues in designing packet forwarding
engine: memory usage and name processing speed.

Memory Usage: The size of a name-forwarding table is,
in general, much larger than that of an IP-forwarding table,
because each name prefix is likely to be significantly longer
than an IP prefix. Moreover, the number of name prefixes
is orders-of-magnitude greater than that of IP prefixes [8].
(Taking the domain names as an example, there are already
330 million registered domain names in the Internet as of
September 2017.) These factors together result in the for-
warding tables with a much larger memory footprint than
the current IP-forwarding tables with up to 700K IP prefix
entries. Therefore, a memory-efficient data structure for the
name-forwarding table is essential.

Speed: Since names are of variable and unbounded length,
lookups of and updates to the name-forwarding table may take
longer than those to the IP-forwarding table. More frequent
updates to the name tables due to updates of forwarding
rules or publication and withdrawal of contents also make
name processing a bottleneck in the forwarding engine (§II.A).
To support the service at a global scale, wire-speed lookup,
insertion, and removal of names in large forwarding tables
remains a great challenge.

Trie is an excellent candidate data structure for the LPM and
has been widely used for name lookups and updates [6], [7],
[8], [9], [10], [11], [12], [13] (§II.B). Tries, especially Patricia
tries, improve memory efficiency by removing the redundant
information among name prefixes. If two names1 share a com-
mon sequence of characters (or bits or components depending
on the granularity of trie) starting from the beginning of names,
the common sequence will be stored only once in the trie.
However, traversing a trie can be slow because accessing each
level of the trie requires a memory access that cannot exploit
CPU caches. To make it worse, we cannot always rely on
special hardware, such as TCAM (Ternary Content Address-
able Memory) and GPU (Graphics Processing Unit), to achieve
high speed name-processing for two reasons. First, TCAM
and GPU-based solutions suffer from power consumption and
heating issues. Second, virtual network functions (VNFs) are
now implemented more efficiently and flexibly using general-
purpose CPU and in software [14]. Thus, implementing the
trie structure in software is an attractive option.

1Without loss of generality, we assume the names are hierarchically
structured and composed of multiple components separated by delimiters
(usually slashes ’/’). Flat names are a special case of hierarchical names with
only one component.



We design and implement NameTrie, a novel character-
trie structure that significantly improves both the memory
efficiency and lookup/update speed of forwarding tables. A
character-level implementation incurs less structural overhead
than a bit-level trie [6], and removes more redundant infor-
mation than a component-level trie [9], while providing the
forwarding engine with the higher name-processing speed of
the other two trie granularities (§III). The nodes in NameTrie
are stored compactly to reduce the memory footprint, as
well as to facilitate the use of CPU caches, which will
reduce the number of memory accesses and speed up name
lookups (§IV.B). The edges in NameTrie are stored in a
hash table, and optimized for memory and speed (§IV.B).
NameTrie also uses a new scheme to encode some control
information without requiring additional memory (§IV.A).
NameTrie solves the major problems of conventional trie-
based approaches: deep trie structure, slow child lookup at
each node, and inefficient use of pointers (§III).

In summary, this paper makes the right choice of trie
granularity, proposes a new character encoding scheme, and
optimizes the design and implementation of trie nodes and
edges. We have conducted extensive experiments to evaluate
the performance of NameTrie while comparing it against
the state-of-the-art of NDN (which is an important use-case),
demonstrating its significant benefits (§V). We used three
large-scale datasets containing millions of URL-like names
extracted from Alexa [15], Blacklist [16], and DMOZ [17],
plus a 5-month-long traffic trace from a tier-3 ISP router.
Running on commodity hardware, our software implemen-
tation of NameTrie achieved 2.82∼3.56, 3.48∼3.72, and
2.73∼3.25 million names per second in insertion, lookup,
and removal, respectively, on different datasets while yielding
a small memory footprint. We compared the performance
of NameTrie against two well-known trie-based software
solutions in NDN: Name Prefix Trie (NPT) [9] and Name
Component Encoding (NCE) [10]. The lookup speedup is
11x NPT and 3x NCE, and the memory saving is 87%
of NPT and 35% of NCE. The effect of multi-threading
and URLs parsing for construction of name datasets are
also demonstrated. These results corroborate our design as
a practical solution for high-performance name lookups and
updates, hence demonstrating its potential for broad impact
on many areas beyond NDN/CCN, such as search engines,
content filtering, and intrusion prevention/detection.

II. BACKGROUND AND RELATED WORK

A. NDN and Applications

As a prominent design under the ICN paradigm, NDN [1]
has gained significant momentum with participation from
academia and industry. Companies including Huawei [18],
[19] and Cisco [20], [21], [22] have made substantial R&D
efforts on different aspects of NDN in recent years. Last
year, Cisco acquired the PARC’s CCN2 (NDN’s predecessor)

2NDN and CCN are two very similar ICN architectures whose differences
do not affect the description and the considerations of this paper, so they will
be used interchangeably in the paper.
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Fig. 1: Looking up /ndn/ua/cs/conf in hash-table-based FIB. Since
hash tables only support exact matches, they incur high overheads
(both in memory usage and number of memory accesses) to find the
LPM.

platform to accelerate ICN insertion in 5G. The research
community has also demonstrated its effectiveness for many
real-world applications: IoT [23], [24], Hadoop and data
centers [25], [26], sensor networks [27], and autonomous
vehicles [28], [29], etc. The NDN community maintains a
global testbed [30] to facilitate the development of NDN
applications.

NDN uses content names rather than host addresses as the
identifier at the network layer. Each request packet, called
Interest, carries the name of the content that the application
wishes to retrieve. The response packet, called Data, carries
the content and its associated name. Neither type of packets
contain the source or destination address, and thus the network
is free to retrieve the content from anywhere, be it a cache,
a server replica, or a mobile node passing by, as long as the
content is what the user wants, i.e., Interest name matches
Data name. While NDN brings many benefits such as mo-
bility support [31], data-centric security [32], [33], in-network
caching and multicast [34], there remain many challenges, one
of which is name-based packet forwarding.

Nodes in NDN forward packets based on their names.
(NDN design assumes hierarchically-structured names, akin
to URLs composed of multiple components delimited by
’/’.) By running a routing protocol [35], [36] or a flooding-
based self-learning [37], each node populates its forwarding
table (FIB) with rules consisting of name prefixes (e.g., /ndn
and /ndn/ua/cs) and next hops. When an Interest packet
needs to be forwarded, the node uses the Interest name
(e.g., /ndn/ua/cs/conf ) as the key to look up FIB to find the
longest-prefix match (LPM) (e.g., /ndn/ua/cs), and forwards
the packet to the corresponding next hop. The NDN packet
forwarding process needs to store/insert a large number of
names in FIB, look them up, and remove expired records. The
forwarding table needs to be updated much more frequently
than that of today’s Internet. Unlike in IP networks, the
FIB in NDN is under the control of a smart and adaptive
forwarding engine which frequently updates the forwarding
entries not only by consulting the routing plane, but also
through continuous performance monitoring of the interfaces
of each node. Furthermore, when contents are published (or
deleted), name prefixes may need to be inserted into (or deleted
from) FIBs. To deploy NDN at a global scale, the key problem
is how to perform name-based LPMs fast and with a small
memory footprint.
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Fig. 2: On the granularity of trie-based structures. We use the
performance of the bit-level trie as the baseline for the comparison.
According to our evaluation results, we choose the character-level trie
as the basis of NameTrie since it provides a more balanced trade-off
than the other two alternatives.
B. Related Work

Initial work on name lookups used data structures based on
hash tables [3], [4], [5], [38]. Fig. 1 shows a simple example
of using a hash-table-based approach. The FIB is stored in a
hash table whose key is the hash of the name prefixes. Since
the hash table only supports exact matching, it needs multiple
lookups to find the LPM—this problem is often referred to as
“prefix seeking.” For example, for an incoming Interest with
name /ndn/ua/cs/conf, the LPM process can start from the
shortest prefix (i.e., /ndn) and increment by one component
at a time, start from the longest (i.e., /ndn/ua/cs/conf ) and
decrement by one component at a time, start from a particular
length and then continue to shorter prefixes or restart at a larger
prefix [39], or even start from the middle and do a binary
search for the longest matching prefix [40]. Besides the prefix
seeking, another problem of the hash-table-based approach is
its large memory footprint. Since hash tables need to store
the name strings for the purpose of collision resolution and
verification, the names often need to be stored in their entirety.
Even when multiple names share the same prefixes, these
shared prefixes are still stored multiple times, thus consuming
more memory. Several schemes [41], [42], [43] used bloom
filters along with hash tables to improve the lookup speed
and memory usage. Their benefit of reduced memory usage
often comes at the expense of key verification and collision
resolution. False positives will prevent the packets from being
forwarded to the right destination. Any possibility of hash
collision will undermine the integrity of the basic functions
of the NDN routers. [44]. Finally, it is unattractive to incur
such overheads (both in memory usage and number of memory
accesses) to the system in order to use an exact matching
structure for LPM. This inherent mismatch causes structural
complexity for higher performance.

Trie, especially Patricia trie, is widely used in forwarding
table implementation for its memory efficiency. Using this
structure, searching for names that share the same prefix
only needs to save one copy of the shared part. It also
naturally supports both exact match and LPM. The traditional
LPM designed for IP cannot be directly applied to name-
based forwarding due to its unique characteristics and require-
ments. There are several existing proposals that implement
name-based FIBs using trie structures. Parallel Name Lookup

(PNL) [9] established component-level Name Prefix Tree
(NPT) while speeding up lookups by selectively grouping
trie nodes and allocating them to parallel memories. Name
Component Encoding (NCE) [10] improves NPT by encod-
ing name components and then looking up these codes to
find the LPM. It uses the State Transition Arrays (STA) to
implement both the Component Character Trie (CCT) and
Encoded Name Prefix Trie (ENPT), thus effectively reducing
the memory requirement while accelerating lookup speed. He
et al. [11] used ENPT along with an improved version of STA,
called Simplified STA, and a hash-table-based code allocation
function. However, the encoding function is the performance
bottleneck in both designs. Wang et al. [8] dealt with this
bottleneck by leveraging the massive parallel processing power
of GPU to achieve faster table lookups. Quan et al. [13]
proposed an Adaptive Prefix Bloom filter (NLAPB) in which
the first part of a name is matched by a bloom filter, and
the later part is processed by a trie. Recently, Song et al. [6]
proposed a bit-level Patricia trie that can compress the FIB
significantly in order to fit it into high-speed memory modules.
To achieve this, they also utilized “speculative forwarding”,
where instead of storing the names, only their differentiating
bits are recorded. This technique, albeit effective, introduces
false positives in lookups, in which case every packet is always
forwarded to the next-hop, regardless whether the content
name matches a FIB entry or not. Yuan et al. [7] adopted
the main idea of [6] and proposed hash-table-based and trie-
based data structures. However, like the prior paper, some
packets may get wrongly forwarded. Besides, most existing
work focuses on high-speed table lookup without considering
table updates. So, they may suffer from slow name insertion
and removal, which are important to the network performance.

III. DESIGN RATIONALE

Given its memory efficiency and the support of LPM, trie,
especially Patricia trie, is an excellent candidate structure
for name-based packet forwarding. Although the binary trie
implementation is often adopted by IP routing tables, LPM in
name-forwarding tables is usually of component granularity.
However, this should not be translated to using component-
level trie as the best choice since it does not offer the best
performance. Thus, before optimizing its memory usage and
speed, we need to decide which trie granularity—component-,
character-, or bit-level—to use. The factors to be considered
for this decision are compactness, depth, and internal overhead
of the trie structure. Compactness is concerned with how
much of redundant information a data structure should avoid.
For example, to store two name prefixes /ndn and /ndn/ua,
a component-level trie can store the string /ndn only once.
If the name prefixes are /ndn and /ndx, a character-level trie
will be able to store /nd only once, but the component-level
trie needs to store both names in their entirety because the
trie nodes must fall on the boundary of name components.
Therefore, in terms of compactness, bit-level > character-
level > component-level where > means “better than.” Bit-
level tries have the largest depth, which may lead to longer
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(a) Inserting /ndn/ua/cs in a conventional character-level trie, which causes node partitioning.
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(b) Inserting /ndn/ua/cs in an
optimized character-level trie.

Fig. 3: Examples of trie-based FIB structures. A combination of several techniques is necessary to implement the optimized trie structure
(we store nodes compactly in arrays; we implement pointers in branching characters and store them in a hash table; and, we utilize a new
encoding scheme to embed control information in characters). The dotted circles show the branching points.

lookup times as traversing each level usually requires to
access the main memory once. There are internal overheads
including memory and processing. For example, if the trie is
implemented by pointers from parent node to child nodes, then
all the leaf nodes will have null pointers, which is a significant
memory overhead. Another major contributor to the overhead
is the processing required to decide which branch to go to at
each level of the trie. In a bit-level trie, each node has up to 2
children, and checking which child node to go to is a quick,
single bit operation. However, in a component-level trie, the
number of children of each node could be unbounded, thus
figuring out which child to branch to will require more time
and potentially more memory.

In summary, the highest memory compression in the bit-
level trie is achieved at the cost of maximal trie depth, which
can degrade the speed. Moreover, the component-level trie
reduces the trie depth at the cost of potential sparseness. This
can lead to the generation of very fat tries since each node
may be associated with a large number of children, incurring
a higher internal overhead and slowing down the processing
speed. Fig. 2 shows the comparison of non-optimized im-
plementations of bit-, character-, and component-level tries
in terms of memory usage and processing speed. There we
used a dataset of 4M names (§V) and used the performance
of the bit-level trie as the baseline for comparison. One
can see that the bit-level trie consumes much less memory
thanks to its compactness, but is also the slowest due to its
trie depth. Component-and character-level tries are similar
in terms of memory, but the former is slower due to its
internal processing overhead at each tree level. Based on these
findings, we decided to use a character-level trie since it gives
a more balanced trade-off than the other two alternatives. Note
that the absolute performance numbers may change under
different implementations of the structures, but they preserve
the relative merits.

Then, the main challenge lies in the optimization of the
character-level trie. While we cannot change the compactness
of the structure, we can improve its depth and internal over-
head for smaller memory footprint and faster lookup speed.
Fig. 3(a) shows an example character-level trie implemented
using the conventional pointer technique. Inserting a name
into an existing trie would make the trie one-level deeper
and increase the number of nodes, both resulting in higher
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Fig. 4: NameTrie Overview. The main design of NameTrie consists
of the minASCII name encoding and the NameTrie data structure
supporting lookup, insertion, and removal of names.

memory consumption and slower lookups—this problem is
referred to as node partitioning, and is one of the major
drawbacks of the conventional designs. Fig. 3(b) demonstrates
the idea of NameTrie, which avoids partitioning existing
nodes (i.e., /ndn/ucla) in the trie, but adding pointers to
branching characters (i.e., u and c in ucla). In this example, to
store the same set of names, NameTrie has smaller depth
and fewer nodes, meaning less memory usage and faster
lookups. For example, LPM on the name /ndn/ucla needs
three memory accesses to fetch the corresponding nodes in
a conventional trie, but only once in an optimized design.

We reduce the internal overhead in two ways. First, we en-
code the names with a new minASCII encoding, which uses the
unused bits in ASCII characters to encode control information
for our trie structure. Second, instead of including a number
of pointers in each individual node, we use a hash table to
store all the pointers of the trie. Not only does this solve the
conventional implementation’s waste of memory for storing
the pointers of leaf nodes, but also enables fast decisions on
which child node to branch to during lookups (as it pinpoints
the corresponding child by sending a query to the hash table
without iterating through children). The combination of these
techniques makes it possible to implement the idea illustrated
in Fig. 3(b) with minimal overhead.

Next we will discuss the architecture and implementation
of this optimized trie structure.

IV. DESIGN OF NAMETRIE

The main design of NameTrie consists of (i) the mi-
nASCII name encoding and (ii) the NameTrie data structure.
As illustrated in Fig. 4, the input to minASCII is a standard
NDN/CCN name or name prefix, and the output is a sequence
of bytes (minASCII codes). These minASCII codes are stored
in the NameTrie data structure, facilitating the lookup,
insertion, and removal of names.
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A. minASCII Encoding

An NDN/CCN name is a URL-like hierarchical name con-
taining a sequence of components delimited by /. The current
de facto NDN URI adopts the percent-encoding method, so
NDN names include US-ASCII upper- and lower-case letters
(A-Z and a-z), digits (0-9), and four special characters: PLUS
(+), PERIOD (.), UNDERSCORE ( ), and HYPHEN (-), as
well as the PERCENT (%) symbol [45].

The Most Significant Bit (MSB) of all characters in the
NDN URI scheme is found unused, as the ASCII code range
of printable characters is 32–126. So, codes outside of this
range (i.e., 0–31 & 128–255) can be used to facilitate the
NameTrie data structure. As shown in Fig. 5, minASCII
divides possible codes in NameTrie into four categories:

• Ordinary codes are in the range 32–126 for US-ASCII
printable characters.

• Codes in the range of 4–31 can be assigned to frequently
occurring group of characters (e.g., ndn, edu, etc.) to
improve memory usage. Utilizing this opportunity could
consume only a single byte for each group of characters,
instead of a sequence of bytes. However, to simplify the
presentation, we leave this optimization of encoding as
our future work.

• The range 0–3 is reserved for End Of Piece (EOP) and
delimiter (/).

• Codes greater than 128 are a simple repetition of the
previous ones, but with their MSB set to 1 to indicate
that this byte is also a branching point. A branching point
is a character such as u and c in Fig. 3(b) as shown by
dotted circles.

A node in NameTrie is also called a name piece, e.g.,
/ndn/ucla, sd/ece, and a/cs in Fig. 3(b), each of which is
stored as a sequence of bytes in an array. Unlike a name
component, which is delimited by the special character /, a
name piece can be any continuous sequence of bytes from
a name. Fig. 6 shows NameTrie for a set of input names.
Note that NameTrie is a general data structure in which the
names do not necessarily share the same starting character.
Thus, a dummy node can be used to connect multiple tries,
each of which starts with a different character. However, in
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NDN, the root node of the trie contains byte /, which is a
name piece shared by all NDN names.

Since we neither maintain name component boundaries
nor partition nodes during insertion, to perform name lookup
on NameTrie, we need to know (1) whether a byte is a
branching point, i.e., the start of a trie edge; (2) whether a byte
is a forwarding point, i.e., it marks the end of a prefix that has
a corresponding entry in FIB; and (3) whether a byte is the
end of a name piece (EOP). Using minASCII, we encode all
this information without any memory overhead. For branching
points, we set their MSB to 1. A forwarding point has to be
either EOP or a component delimiter /. We use ASCII code 0
for EOP if it is not a forwarding point, and ASCII code 1 if
it is a forwarding point. Similarly, we use ASCII code 2 for
/ if it is not a forwarding point, and ASCII code 3 if it is a
forwarding point. For example, assuming a FIB has only two
names: /ndn/ua/cs and /ndn/ua, we will use ASCII code 3 for
the third slash, and add a byte of ASCII code 1 to the end as
EOP. The first two slashes will use ASCII code 0.

B. NameTrie Data Structure

For a name, the characters of each piece are stored ad-
jacently in an array, but the memory for different pieces
are dynamically allocated when needed, so they may not be
adjacent in memory. We call the memory space occupied by
all NameTrie nodes collectively NameNodes. Fig. 7 shows
how NameNodes store the trie nodes in memory. Note that to
simplify the figure(s), we fill the NameNodes with characters,
not their associated minASCII codes. As shown in this figure,
/ndn/ucla is the first inserted name and is stored as a whole in
a single piece. A later inserted name, /ndn/ua/cs, which shares
the same prefix, is broken up and a new piece a/cs is inserted
into the structure.



Avoiding node partitioning yields important benefits, such
as less off-chip memory accesses, a higher CPU cache hit
ratio, and a smaller memory footprint. The remaining problem
is then how to implement the edges in the trie. NameTrie
has many “edges,” which connect a branching point in a
parent node to the first byte of a child node. For example,
we need an edge to point from u in ndn/ucla to a in a/cs.
Following these edges, we can traverse the trie to look up
a name. In a conventional trie implementation, these edges
are implemented as pointers inside each node. For example,
the node ndn/ucla will need to have a pointer to the node
a/cs, and will need to record that this pointer starts from
the letter u. Each name piece may have multiple branching
points (e.g., u and c in ndn/ucla), and at each branching
point, there can be multiple edges (e.g., u in ndn/ucla can be
followed by pieces mich or a/cs in the next level of the trie)
up to 128. Therefore, implementing these edges as in-node
pointers would be complicated. In addition, if they are pre-
allocated, they can waste memory, especially for leaf nodes.
Furthermore, searching through multiple pointers within a
single node can be slow.

Our idea is to collect all the edges of NameTrie and
store them in a hash table, EdgeHT. The keys of this hash
table are the tuples of <parent node, offset, next byte> to
uniquely identify an edge in the trie. The parent node is the
memory address of the node from which the edge originates,
i.e., the address of the parent node. Within this node, the offset
identifies the byte in the name piece where the edge starts. The
next byte is the first character of the child node of this edge.
Thus, this 3-tuple uniquely identifies an edge and serves as
the key of EdgeHT. The return value of EdgeHT is the child
node’s address.

Fig. 8 shows two main components of NameTrie: (1)
NameNodes which stores the trie’s nodes, and (2) EdgeHT
which implements the trie’s edges. The processing functions
are executed iteratively between these two components. By
accessing NameNodes, the bytes of a name piece are fetched
into the CPU cache for comparison with the encoded input
name. As soon as a byte-mismatch is found, a query will be
sent to EdgeHT to resolve the next piece, if available, and
continue the name processing. EdgeHT plays an important role
in speeding up NameTrie, as it directs the search towards
the next name piece, if available. This is very different from
conventional tries which must search the children of each
matched node at a different level during the trie traversal. For
example, in Fig. 3(a), if we search for the name /ndn/umich,
both the children of /ndn/u will be checked to find the LPM.
Instead, NameTrie can determine this by sending a single
query to EdgeHT, which returns NULL, and will find LPM as
/ndn.

Hash table optimization: An important advantage of using
a hash table is the high lookup speed for the entire key
(a “fixed-length” entry substituting for the original variable-
length string), using a hash function to compute its index in
an array of buckets. However, HT lookup may face collisions.
To solve the collision problem, we implement chaining in a
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Fig. 8: Components of NameTrie data structure: NameNodes stores
the trie’s nodes, and EdgeHT implements the trie’s edges. The
processing functions are performed iteratively between these two
components.

cache-friendly way with embedded arrays instead of linked
lists, i.e., each bucket is associated with an embedded array.
The embedded array maintains the keys and their associated
values in the form <key, next piece>. In case of a collision, the
colliding item is added to the embedded array of the related
bucket. Utilizing this array yields two main benefits. First,
the collision is resolved, since the key of each item is also
saved with its value in embedded array. Second, using this
cache-friendly structure for collision resolution, frequent off-
chip memory accesses are avoided. So, only a single memory
access is required to retrieve an array of possible next name
pieces. Note that EdgeHT’s load factor (i.e., n/m) is kept
constant, where n and m are the total number of items and
buckets in HT, respectively. Searching and removing an item,
therefore, take a constant time.

C. Processing Functions

Name Lookup is the key to the forwarding engine, which
finds LMP for a given name. The names also need to be
inserted in or removed from the forwarding tables frequently
due to the updates of forwarding rules or the publishing and
withdrawal of contents [8]. We present examples to clarify
how NameTrie performs these processing functions.

Lookup: Fig. 7 shows the sequential steps in looking up the
name /ndn/ua/ece in NameTrie. We start from the root of the
trie, which contains the character /, followed by EOP. At each
node, we try to match as many characters as possible before
encountering a mismatching byte or EOP. (In this lookup, we
encounter the EOP.) By checking the MSB (=1) of /, we find
edges to a lower level of the trie. So, we look up the tuple
<root node, 0, n> in EdgeHT, which returns the next node’s
address, ndn/ucla. We then continue for a match between the
input name and the name pieces in the trie node. We stop at the
letter c, where a mismatch occurs. Again, we check the MSB
of the last matching byte, u, to see if it is a branching point
(these points are marked by dotted circle). u is shown to be a
branching point from which some edges originate. Therefore,
we look in EdgeHT to find the next node a/cs. For this name
piece, the match will stop at letter c. The last matching byte /
has 0 in its MSB, meaning that there is no edge from that byte,
thus terminating the lookup process. To determine the result
of the lookup, we need to find the LPM along the lookup
path. In other words, we need to check all the matching / to
determine if any of them is a forwarding point (i.e., code 3).
In this case, the / in a/cs denotes the end of a FIB entry name



and is the longest match, and hence the final result of this
lookup is /ndn/ua. Note that the LPM information is recorded
as we go down the trie, so it is readily available when the
lookup terminates. When the LPM is found, we look up the
tuple <node, offset, EOP> in EdgeHT to obtain the pointer
to the actual FIB entry. The pointer to the FIB entry is treated
as another edge from a NameTrie node to a FIB entry.

Insert: is similar to lookup. Once the lookup terminates,
instead of returning the LPM, we allocate a new node to
store the remaining unmatched bytes as a new name piece.
For example, to insert the name /ndn/ua/ece, we need to
allocate memory to create a new node to store /ece, and insert
an edge in EdgeHT to connect from a/cs to /ece. Besides,
while inserting names into our structure, forwarding points will
also be marked. For example, consider insertion of the name
/ndn/ua/cs into our structure in Fig. 7, while we know the FIB
table has two records for prefixes /ndn/ua and /ndn/ua/cs. After
performing LPM and finding the last matched character (i.e.,
c in /ndn/ucla), we add a new piece (i.e., a/cs) to the structure.
However, there is some forwarding information about prefix
/ndn/ua in the FIB table, so that the last / is encoded with
ASCII code 3, instead of code 2 to indicate that FIB knows
how to forward the packets with this prefix. Similarly, as we
have a FIB record for /ndn/ua/cs, EOP is encoded with ASCII
code 1, instead of code 0. These two bytes are marked with *
in Fig. 7.

Remove: is the reverse process of insertion. It starts by
looking up the name. Once an exact match is found, we delete
the node and the edge from its parent node while single child
nodes, if any, will be merged with their parents. This will
continue recursively from lower to upper levels in the trie,
as long as the name piece being deleted is not shared with
other names. If the name piece is shared, for example, when
removing /ndn/ucla in Fig. 7, then we will still keep the node
and the name piece, but will update the encoding of the bytes
so that it does not represent a FIB entry name (i.e., forwarding
point). In such a case, the code of EOP (which is marked by
*) will change from 1 to 0, as the associated FIB record of
this prefix is deleted.

We also analyze both the time and space complexities
of NameTrie for all the processing functions in terms of
the number of off-chip memory accesses and the memory
footprint. Due to the space limit, we omit the details here
and summarize the complexities as well as the notations used
for complexity analysis in Table I.

V. EVALUATION

We have conducted extensive experiments to evaluate the
performance of NameTrie in terms of memory usage and
name insertion, lookup, and removal speed. These results
are then used to compare NameTrie with two well-known
trie-based schemes in NDN/CCN: NPT [9] and NCE [10].
For a fair comparison, our implementation of NameTrie in
software is not compared against those approaches that rely
on massively parallel hardware (e.g., [8]), or do not guarantee
forwarding correctness (e.g., speculative forwarding [6], [7]

TABLE I: Complexity analysis
Definition

N Number of names
d Average number of pieces per name
dr Average number of pieces removed from each name
n Average length of pieces
p Average length of shared prefixes

Time Complexity
Lookup O(2Nd)
Insertion O(2Nd)
Removal O(2N(d+ dr))

Space Complexity
NameTrie O(N((nd− p) + 12d))

and lossy data structures [44], [13]). Although the focus of
this paper is on the trie structures, for the purpose of com-
parison, we have also implemented a HT-based solution using
the same strategy as in NFD (NDN’s Forwarding Daemon)
prototype [46], which is referred to as HT in what follows.
Since to date, no real router hardware is available to run
NameTrie, we have implemented and run NameTrie on
a commodity PC, and compared the performance of different
lookup structures on the same PC platform. This comparison
will preserve the relative merits of different lookup designs.

A. Experimental Setup

We conducted experiments on a PC with an Intel Core
i7 2.1∼2.8 GHz CPU, 6MB cache, and 8GB DRAM. This
CPU consists of 4 real and 4 virtual cores, based on Intel’s
hyper-threading technology. All data structures are multi-
threaded and implemented in C. We utilized real-world URLs,
extracted from ALEXA [15], DMOZ [17], and Blacklist [16],
as well as a 5-month-long traffic trace from a tier-3 ISP
router, to construct three distinct name tables of 4,012,113,
9,347,389, and 12,012,255 entries for our experiments. For
brevity, they will henceforth be referred to as 4M, 9M, and
12M datasets, respectively. Note that feeding the ordered
names to NameTrie enables them to cache name prefixes,
thus enhancing performance. To obtain unbiased results, the
names were randomly shuffled, and therefore do not follow any
particular order while being fed to NameTrie. Table II shows
the specifications of each dataset. To extract more information
from the datasets, the distribution of the number of characters
in each component and the number of components in each
name for each dataset are plotted in Fig. 9. For example, the
9M dataset is shown to have the longest average name size
since most components have 12 characters and most names
are composed of 5 components.

B. Results

We first present the results related to the memory usage and
the speed of different name processing functions. Then, the
effect of multi-threading and URLs parsing for construction
of name datasets are presented.

1) Memory Usage:
Table III shows the memory usage by different data struc-

tures, as well as NameTrie’s improvements over the others
for various datasets. The overall results for the 12M dataset are



TABLE II: Dataset specifications
Dataset 4M 9M 12M
Sources Dmoz(2015) ISP Router Traffic Dmoz(2015), ALEXA(2017), Blacklist(2016)

Number of names 4,012,113 9,347,389 12,012,255
Number of components 18,897,821 48,025,182 55,929,775

Number of components per name 4.74 5.64 4.65
Average component length (Byte) 4.55 6.73 4.56

Average prefix length (Byte) 15.38 8.74 13.21
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Fig. 9: Dataset statistics

also plotted in Fig. 10, as names are inserted gradually (1M-
by-1M names) into the data structures. (For smaller datasets,
we omit the related figures due to space limitation.) The
structures are shown to have a larger memory footprint for
a larger dataset. The growth rate of NameTrie is, however,
shown to be much slower than all the other structures, i.e.,
NameTrie scales well and can thus be used to store a very
large number of names. It outperforms HT, NPT, and NCE by
an average of 84.9%, 88.9%, and 40.9%, respectively. There
are five main reasons for such a significant improvement. First,
it does not use pre-allocated in-node pointers to implement
trie edges, and thus prevents memory waste, especially in leaf
nodes. Second, it employs embedded arrays, instead of linked
lists, to resolve collisions, thus eliminating the need to store
several pointers. Third, it does not store any part of the names
in EdgeHT. Moreover, using fixed-length keys in EdgeHT,
instead of variable-length string keys, it reduces memory
consumption. Fourth, it prevents the insertion of redundant
name prefixes by exploiting the character-level granularity.
Finally, using minASCII code prevents any extra memory
usage for control purposes. Note that NameTrie’s memory
usage could be improved further if minASCII also compresses
the commonly occurring groups of characters, each into a one-
byte code (codes in the range of 4–31 as shown in minASCII
table). However, utilizing the full power of minASCII is a part
of our future work.

Due to longer names and components in the 9M dataset,
as well as the smaller average prefix length, each name
requires more memory to be stored (on average 423.09

9 bytes
per name, as shown in Table III). A longer average prefix
length results in insertion of less redundant characters, and
hence a reduction in memory usage. NameTrie and NCE are
more memory-efficient, especially for the 9M dataset, because
they use the character-level granularity during insertion, which
can exploit the benefit of average prefix length. However,
NPT has the worst/largest memory usage, because it stores
all the components of each name (except for those matched

in the prefix) in addition to several pointers in every node.
Furthermore, to prevent false positives, HT saves a series of
components as keys, resulting in a rapid increase of memory
usage as more names are added to its structure.

2) Speed:
Fig. 11 compares the speeds of NameTrie, HT, NPT,

and NCE for different processing functions when using the
12M dataset. The speed of a function is defined as the
processing rate of input names in terms of millions of names
per second (MNPS). To illustrate the improvements in each
function’s performance, we gradually insert the names into
the structure. To measure lookup performance, the previously-
inserted names are randomly selected, and for each name,
either the whole name, a part of it, or an extended version
of it (e.g., /ndn/../... instead of /ndn) is looked up. As shown
in Fig. 11(a), NPT has the slowest name lookup due to its
high internal processing overheads at each level, leading to
high time complexity. Moreover, partitioning the nodes and
utilizing the pointers result in a cache-unfriendly deep trie
structure, incurring more off-chip memory accesses. NCE
performs faster by using a state transition array (STA) to
implement its modules (ENPT and CCT) for name lookup. It
uses a binary search, reducing internal processing overheads
and thus lookup speed significantly. HT is faster than NCE
and NPT as it incurs less internal processing overheads by
performing exact matches in each round. However, to prevent
false positives, it requires several strings to be matched inside
every bucket, thus limiting its speed.
NameTrie significantly outperforms all other data struc-

tures for several reasons. First, it avoids node partitioning
while storing the name pieces compactly in NameNodes. This
keeps the resulting trie’s height shorter, thus increasing the
speed of name lookups and updates. Second, it uses a hash
table to implement edges, avoiding iteration through multiple
pointers to reach a specific child at each level. Moreover,
using a fixed key for this hash table makes significant speedup
over variable-length string keys, because of its simple hash
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Fig. 11: Name processing speed in different structures for 12M dataset. NameTrie achieved
2.82∼3.56, 3.48∼3.72, and 2.73∼3.25 million names per second in insertion, lookup, and
removal, respectively, while significantly outperforming HT, NPT, and NCE.

TABLE III: Memory usage and Memory compression

Dataset Memory Usage (MB) Memory Compression
HT NameTrie NPT NCE NameTrie vs. HT NameTrie vs. NPT NameTrie vs. NCE

4M 357.81 143.2 530.84 291.7 85.15% 89.45% 43.87%
9M 2761.23 423.09 3491.62 651.07 84.67% 87.88% 35.02%

12M 3145.1 467.33 4421.42 832.9 85.14% 89.43% 43.89%
TABLE IV: Speed and Speedup

Dataset
Speed (MNPS)

Insert Lookup Remove
HT NameTrie HT NameTrie NPT NCE HT NameTrie

4M 0.73 3.31 0.89 3.62 0.31 1.41 0.71 3.11
9M 1.25 2.82 1.55 3.48 0.16 1.02 1.38 2.73

12M 1.35 3.56 1.57 3.72 0.15 1.03 1.32 3.25

Dataset
Speedup

Insert Lookup Remove
NameTrie vs. HT NameTrie vs. HT NameTrie vs. NPT NameTrie vs. NCE NameTrie vs. HT

4M 2.16x 2.14x 11.67x 2.56x 2.05x
9M 2.25x 2.24x 21.75x 3.41x 1.97x

12M 2.61x 2.36x 24.31x 3.61x 2.46x

computation and key comparison. (The comparison of fixed-
length keys is much faster than that of variable-length keys).
Third, it uses embedded arrays to implement chaining for
collision resolution in a cache-friendly and memory-efficient
manner, reducing the number of off-chip memory accesses.
Fourth, it can effectively leverage multiple threads for parallel
name processing.

As shown in Fig. 11(b-c), the update (insertion and removal)
speed is very slow for NPT and NCE, because NPT needs
to sequentially traverse nodes at each level while modifying
several nodes pointers as well as their properties to insert new
nodes or remove existing ones. Moreover, NCE needs to keep
the STA updated, which requires a group of arrays and their
entities to be resized and rearranged, degrading performance.

Fast updates, comparable to lookups, are an important
benefit of NameTrie. Their operation speeds are lookup >
insertion > removal, where ’>’ means faster. Name lookup is
the initial step of insertion and removal, thus the fastest pro-
cessing function. Name insertion starts in case of a mismatch
during lookup and continues to store the rest of the name,
thus slower. Name removal needs to go all the way down the
trie, find the correct leaf nodes, and then remove the nodes
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Fig. 12: NameTrie: lookup/update speed vs. number of threads.
backward, thus being the slowest.

The overall results and speedup of NameTrie are pro-
vided in Table IV. Since the number of insertions and removals
in NCE and NPT is very low (below 0.01 MNPS for more than
4M names), they were not included in Table IV. For the 12M
dataset, the lookup in NameTrie is 2.36x, 24.31x, 3.61x
faster than HT, NPT, and NCE, respectively. These results
indicate that our new data structure can meet the high-rate
table update requirements of the NDN forwarding engine.

3) Multi-threading:
It is important for a software data structure to utilize the

full capabilities of CPUs, not only caching but also multi-



threading.
As mentioned earlier, NameTrie is a cache-friendly data

structure. To handle the cache stalling problem, we employ
arrays to ensure that more relevant data will be fetched
from memory. In particular, NameTrie uses NameNodes to
preserve the unity of a name and reduce memory stall cycles
during name traversal. Moreover, each bucket is mapped to
an embedded array which contains all the keys hashed to that
bucket. Using the embedded arrays, NameTrie will fetch
more than one record with each memory access. Moreover, to
further help reduce off-chip memory accesses and speed up the
processing functions in NameTrie, we maintain the addresses
of some frequently requested parts of NameNodes (like root’s
children) in L2, and subsequently in L3 caches. This is because
our L3 cache memory is designed to be inclusive, i.e., the
contents of L1 and L2 get replicated in L3.
NameTrie has great potential for multi-threaded imple-

mentation. It does not impose any limit, other than the number
of threads, on parallel name lookups. Moreover, multiple
names can be added to (or removed from) NameTrie in-
dependently if branching into different paths. This is because
the paths in different sub-tries do not overlap with each other,
thus providing opportunities to process names in parallel. This
feature reduces time complexity significantly without increas-
ing memory usage. False sharing is a major performance issue
in symmetric multi-processor systems, which occurs when
threads on different processors modify variables that reside in
the same cache line. It invalidates the cache line and forces an
update, which degrades performance. We reduce the frequency
of false sharing by using local variables instead of global
or dynamically-allocated shared data structures. Besides, false
sharing decreases if the requested names, handled by parallel
threads, are dispersed within the memory. Thus, for a batch of
requested names, NameTrie exploits the locality of piece
addresses as a heuristic for multi-threading, where a larger
difference between two addresses usually implies more disper-
sion. Moreover, to reduce the cache misses for several names
fed to one thread, it tries to find and then pick a name similar
to the one processed most recently (two names are said to be
similar if they share at least a few starting bytes). In this case,
at least the starting and possibly more bytes of the name are
still in cache, so a cache miss is less likely to occur. Otherwise,
a name is selected randomly.

Fig. 12 shows how the speeds of both lookup and insertion
in NameTrie are related to the number of threads. By
employing 8 threads, we can insert and lookup 2.82∼3.56
and 3.48∼3.72 MNPS, respectively, on different data sets. The
speed of each function increases linearly with the number of
threads. In addition, Internet traffic is known to be bursty [47].
To reflect this reality in our experiments, we fed NameTrie
each time with about 500K names simultaneously. NameTrie
is shown to be able to effectively handle bursty requests of
names in parallel, easily managing this basic behavior of the
Internet.

4) Parsing Method and Performance Trade-offs:
Since NDN/CCN has not yet been standardized, a real

TABLE V: Lookup speed vs. memory usage for 12M dataset. The
method of parsing URLs for constructing name datasets makes a
performance trade-off.

Parsing # of Lookup speed Memory usage
Method starter pairs (MNPS) (MB)

Method 1 6 1.13 371
Method 2 13 1.47 402
Method 3 1053 3.72 467

FIB table of name entries is thus unknown. This section
shows how the method of parsing URLs for constructing the
name datasets can affect performance. It virtually changes the
order of inserting input names, making a trade-off between
processing speed and memory usage. The dissimilarity of
consecutive input names has two main advantages. First, it
increases the potential for parallel processing, thus speeding
up insertion, lookup, and removal. Second, it increases the
chance of keeping the name at a shallower level of the trie, so
an entire name can be retrieved with a few memory accesses.
On the other hand, more similarity of input names can reduce
memory usage due to its high potential for aggregation.

There are three possible ways to parse a name. We can
start parsing from: (1) protocol portion of URLs (http, ftp,
https, etc.), (2) TLD of URLs (e.g., com, net, edu, etc.), and
(3) domain name of URLs (e.g., google, youtube, etc.). For
example, parsing www.google.com/new using the third method
outputs /google/www.com/new. Table V shows the number of
starting-byte pairs, where more different pairs create higher
dissimilarity. The probability of having a batch of similar
input names is pretty high using the first method, so we
virtually face a sorted dataset, even if it is a random one.
For the second method, since the number of starting bytes for
TLDs is very limited, the probability of inserting consecutive
similar names is still high. Having the maximum diversity of
its starting-byte pairs, the third method makes an unsorted
dataset of names. Table V also shows the trade-off between
memory usage and processing speed. Using the third method
results in a larger memory footprint, but makes more than 2x
performance improvement over the others in terms of lookup
speed. NameTrie can thus look up 3.72 MNPS while using
467MB of memory to store 12M different names. As each
name is associated with a packet and assuming each packet is
256 bytes long [7], this lookup speed is translated to 7 Gbps
using our software solution. Clearly, this throughput can be
improved further on hardware-accelerated platforms.

VI. CONCLUSION

In this paper, we have designed and implemented
NameTrie, a novel character-trie structure for fast and
memory-efficient name lookups and updates. A right choice
of trie granularity, a new character encoding scheme, and an
optimized design and implementation of trie nodes & edges
have come together to solve the major problems of conven-
tional trie-based approaches. Our extensive experimentation
with various large-scale real-world domain sets has shown
NameTrie to achieve 2.82∼3.56, 3.48∼3.72, and 2.73∼3.25
million names per second in insertion, lookup, and removal,



respectively, while consuming a small memory footprint.
Moreover, it requires at least 35% less memory and runs at
least 3x faster in name lookups and updates than the state-of-
the-art trie-based schemes in NDN/CCN, demonstrating the
significant potential of NameTrie.

In conclusion, NameTrie is efficient and scalable, and
hence applicable to contexts beyond NDN/CCN, such as
search engines, content filtering, and intrusion detection.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grant No. CNS-1629009 and a
Huawei grant. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the
sponsors.

REFERENCES

[1] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, k. claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp. 66–73,
2014.

[2] “CCNx Project,” http://www.ccnx.org/, 2017, [Online].
[3] B. Michel, K. Nikoloudakis, P. Reiher, and L. Zhang, “URL forwarding

and compression in adaptive web caching,” in IEEE INFOCOM, vol. 2,
2000, pp. 670–678.

[4] Z. G. Prodanoff and K. J. Christensen, “Managing routing tables for
URL routers in content distribution networks,” International Journal of
Network Management, vol. 14, pp. 177–192, 2004.

[5] Z. Zhou, T. Song, and Y. Jia, “A high-performance URL lookup engine
for URL filtering systems,” in IEEE ICC, 2010, pp. 1–5.

[6] T. Song, H. Yuan, P. Crowley, and B. Zhang, “Scalable name-based
packet forwarding: From millions to billions,” in ACM ICN, 2015, pp.
19–28.

[7] H. Yuan, P. Crowley, and T. Song, “Enhancing scalable name-based
forwarding,” in ACM/IEEE ANCS, 2017, pp. 60–69.

[8] Y. Wang, Y. Zu, T. Zhang, K. Peng, Q. Dong, B. Liu, W. Meng, H. Dai,
X. Tian, Z. Xu, H. Wu, and D. Yang, “Wire speed name lookup: A
GPU-based approach,” in NSDI, 2013, pp. 199–212.

[9] Y. Wang, H. Dai, J. Jiang, K. He, W. Meng, and B. Liu, “Parallel name
lookup for named data networking,” in IEEE GLOBECOM, 2011, pp.
1–5.

[10] Y. Wang, K. He, H. Dai, W. Meng, J. Jiang, B. Liu, and Y. Chen, “Scal-
able name lookup in NDN using effective name component encoding,”
in IEEE ICDCS, 2012, pp. 688–697.

[11] H. Dai, B. Liu, Y. Chen, and Y. Wang, “On pending interest table in
named data networking,” in ACM/IEEE ANCS, 2012, pp. 211–222.

[12] Y. Li, D. Zhang, X. Yu, W. Liang, J. Long, and H. Qiao, “Accelerate
NDN name lookup using FPGA: Challenges and a scalable approach,”
in IEEE FPL, 2014, pp. 1–4.

[13] W. Quan, C. Xu, J. Guan, H. Zhang, and L. A. Grieco, “Scalable name
lookup with adaptive prefix bloom filter for named data networking,”
IEEE Communications Letters, vol. 18, no. 1, pp. 102–105, 2014.

[14] H. Asai and Y. Ohara, “Poptrie: A compressed trie with population count
for fast and scalable software IP routing table lookup,” in SIGCOMM,
2015, pp. 57–70.

[15] “Alexa the Web Information Company,” http://www.alexa.com/, 2017,
[Online].

[16] “Blacklist.” http://www.shallalist.de, 2016, [Online].
[17] “ODP–Open Directory Project ,” http://www.dmoz.org/, 2015, [Online].
[18] R. Ravindran, A. Chakraborti, S. O. Amin, A. Azgin, and G. Wang,

“5G-ICN: Delivering ICN services over 5G using network slicing,” IEEE
Communications Magazine, vol. 55, no. 5, pp. 101–107, 2017.

[19] S. O. Amin, Q. Zheng, R. Ravindran, and G. Wang, “Leveraging ICN
for secure content distribution in IP networks,” in ACM Multimedia
Conference (MM’16), 2016, pp. 765–767.

[20] I. Moiseenko and D. Oran, “Path switching in content centric and named
data networks,” in ACM ICN, 2017, pp. 66–76.

[21] M. Sardara, L. Muscariello, J. Augé, M. Enguehard, A. Compagno,
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