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Abstract—By overlapping disk accesses with computation-intensive operations,

prefetching can reduce delays in launching an application and in loading significant

amounts of data while the application is running. The key to effective prefetching is

making the tradeoff between the mining accuracy of selecting relevant blocks, and

the time to decide those blocks. To address this problem, we propose a new

prefetcher called ClusterFetch. In its learning mode, ClusterFetch detects periods

of intensive disk accesses by monitoring the speed at which read requests are

queued; it re-organizes these reads and locates the file opened by the application

just before each such period. During subsequent runs of the same application,

ClusterFetch prefetches the data associated with the opening of a “trigger” file.

Our experimental results show that ClusterFetch implemented in Linux can reduce

the application launch time by up to 41.3 percent and the loading time by up to

38.2 percent, while taking up less than 200 KB of main memory.

Index Terms—Disk prefetching, disk read bursts detection, quick application

loading, user-perceived latency improvement

Ç

1 INTRODUCTION

APPLICATION launch times, and the delays when a running applica-
tion has to load additional data from disk, which we call ‘loading
times’, strongly affect the satisfaction of PC users [1], [2], [3], [4],
[5], [6], [7]. Since the secondary storage devices in a PC, hard disk
drives (HDDs) or solid-state disks (SSDs), are much slower than
the main memory and CPU, they become bottlenecks. In particular,
long delays are inevitable during a cold start when an application
runs for the first time after the OS has been rebooted, where all
blocks must be fetched from disk. A cold start also occurs if all the
blocks needed by an application have been evicted from the disk
cache. In the Linux kernel, this cache is in main memory and evic-
tion is performed by the memory management subsystem [8].

Prefetching disk blocks into the disk cache can mitigate disk
access latency so that applications launch more quickly [1], [4]. Ide-
ally, a prefetcher should exactly predict the disk blocks about to be
required, and transfer these blocks from secondary storage to the
disk cachewhile the CPU is processing data frompreviously fetched
blocks. This ideal cannot be realized; nevertheless, efficient prefetch-
ing can arrange for most blocks to be ready for the CPU in the disk
cache, thusmitigating the delay associatedwith accessing a disk.

The accuracy of a prefetching scheme comes at an expense in
processing time and memory. For instance, C-Miner [9] analyzes
frequently occurring block access sequences by employing a data
mining technique based on CloSpan [10]; this technique estimates
disk block correlations conservatively, so that only blocks that are
very likely to be accessed are prefetched. This restricts the extent to
which C-Miner can improve performance, despite its low process-
ing and memory overheads. For example, blocks of library data are

often required by many applications, and the need for these blocks
may well be correlated with different block access sequences in
each application. Such blocks are not identified by C-Miner.

DiskSeen [11] is a prefetching scheme that analyzes the tempo-
ral relationship between accesses to pairs of blocks with adjacent
logical block numbers (LBNs). This is effective, but it requires table
of block correlations that occupies 4 GB of main memory for a 1TB
HDD (assuming each disk block can have up to four correlations),
and this requirement rises linearly with disk size.

There are also very different schemes, such as Prefetch [12],
which was selected for the Google Summer of Code (GSoC) 2007,
and Preload [13]. Both of these schemes are specifically designed to
reduce application launch times, and require a clear signal that an
application is being launched (e.g., a function call for a binary
loader or the creation of an entry in the proc file system for a new
application). These schemes have a low overhead, but they cannot
expedite the loading of blocks after an application has launched.
This is particularly significant for games in which the user moves
through an environment that must be frequently updated. A
comparison of ClusterFetch with existing prefetchers is summa-
rized in Table 1.

ClusterFetch is a prefetcher which expedites both launching
and subsequent loading without the need for a large table of corre-
lations: this makes it suitable for applications like games which
run on a PC but which also need to load significant amounts of
data after the launch. The design of ClusterFetch is based on the
observation that data is usually loaded in bursts, and each burst
is associated with the opening of many different files. Therefore
ClusterFetch is designed to recognize bursts of I/O and not to
search for individual block correlations. It detects these bursts by
counting the frequency of read operations by logging them in a cir-
cular queue. This approach has a low CPU and memory overhead.
And we identify each burst of input by linking it to a trigger file,
which is opened just before that burst occurs. ClusterFetch then
prefetches the same blocks when the same file is opened in a subse-
quent run. An example sequence of bursts and the trigger files
associated with them for the Savage 2 game can be seen in Fig. 1.

ClusterFetch tries to identify the file opening event that is best
correlated with a particular burst of input, and no others. We there-
fore determine what types of files are commonly opened during
many I/O bursts, and prevent them from becoming trigger files.
The remaining types of files are eligible for trigger files, and the
four eligible files which are opened most immediately preceding a
burst of input can be considered for the trigger files associated with
that burst. If a file is associated with another burst, then it is dis-
carded and the next candidate is considered.

ClusterFetch runs within the Linux kernel and requires only
200 KB of memory to store correlations between disk blocks. It
reduces application launch times by up to 41.3 percent and applica-
tion loading times by up to 38.2 percent.

The rest of this paper is organized as follows. In Section 2 we
discuss trigger file selection and the recognition of bursts of I/O.
Section 3 describes the overall framework of ClusterFetch and its
major components: the I/O miner, the prefetcher, and the I/O pri-
oritizer. In Section 4 we evaluate the performance of ClusterFetch
with 15 launch and loading scenarios on a Linux desktop equipped
with HDDs or SSDs, and we conclude the paper in Section 5.

2 BLOCK MINING

2.1 Trigger File Candidates
The ClusterFetch algorithm relies on the selection of suitable trig-
ger files. Unsuitable files include those regularly opened by the
Linux daemon, even when the system is idle, and those used by
several different programs. We empirically examined file opening
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patterns for 15 scenarios involving nine applications, with the
results summarized in Table 2. Here, the column “unique files”
represents the number of files uniquely opened in each scenario.

We can group files that are unlikely to be of use as trigger files
into three categories as follows. Special files (e.g., device files and
pseudo files) are unlikely to be related to a specific application.
These files tend to be opened by the Linux kernel or daemon.
For instance, /proc/interrupts and /proc/irq/<CPU #>/

smp_affinity files are opened periodically by the interrupt load
balancing daemon. We found that these files were opened by all
the applications in our test (several times in some scenarios) and
might also be accessed when the system is idle. ClusterFetch there-
fore ignores file paths with /proc/ or /sys/ prefixes.

Files opened by the windows manager occur when an application
runs on X-Windows. Typical examples include icon and font files:
ClusterFetch detects these files by checking whether their path con-
tains a reference to ‘icons’ (e.g., /opt/Savage2/s2icon.png and
/usr/share/icons/hicolor/16x16/apps/evince.png),
‘desktop’ (e.g., /usr/share/applications/gnubg.desktop),
or ‘font’ (e.g., /opt/Savage2/game/core/fonts/system.ttf
and /usr/share/fonts/DejaVuSans.ttf).

Shared library files are used bymany applications. In the 15 test sce-
narios, a total of 535 shared library files were opened, among which
327 were opened by more than two scenarios and 125 were opened
by more than five. This is shown in Fig. 2. ClusterFetch excludes this
type of file by checking whether a file path contains .so. or ends
with the .so extension. However, /etc/ld.so.cache file, which
provides a reference from the name of a shared object to its full path,
is not a shared library file, although it has .so. in its name. It was
opened in all of the test scenarios, and thus should not be regarded as
a trigger file candidate.

2.2 Log Management
The core data structure of ClusterFetch, as shown in Fig. 3, is a cir-
cular queue which is used to log all disk I/Os and file openings.
When a disk I/O occurs or a file opens, ClusterFetch calls the
add_log function described in Algorithm 1 to create a new entry
in the log. This function first tries to merge the new log entry with
the previous entry (Line 2), if they both refer to disk I/O for the
same file and their block chunks are adjacent. If it succeeds, then

add_log returns immediately. This was successful for an average
of 37 percent of disk I/O entries in the 15 benchmark scenarios.

Then ClusterFetch invokes handle_IO_burst at Line 6 to
detect I/O burst when the circular queue is full. (See Algorithm 2.)
When ClusterFetch detects a burst of disk I/O, it logs the disk
blocks that are being read.

Finally, a new entry is appended to the queue (Lines 8 " 30).
However, a disk I/O entry is discarded if there is no preceding
file-opening entry (Lines 15 " 17). ClusterFetch only inserts an
entry for file opening into the queue when the file path meets the
criteria for trigger file candidates. ClusterFetch guarantees that the
IOPS (I/O operations per second) between the first two file open
logs meets a predefined threshold iops_threshold used to
check I/O burstness (Lines 24 " 28). The idea behind this is to pre-
vent a file opened during non-burst periods from being used as a
trigger file for the following I/O burst.

2.3 I/O Burst Detection
add_log function invokes handle_IO_burst function in
Algorithm 2 to detect two kinds of I/O burst when the circular

TABLE 1
Comparison of Alternative Prefetching Schemes

Scheme Scenario Mining

accuracy

I/O

optimization

Memory

overhead

C-Miner [9] All cases Low X Low

DiskSeen [11] All cases Adjustable LBN sorting High

GSoC Prefetch [12] Launch Mid File-level sorting Low

Preload [13] Launch Mid X Low

Application-directed

prefetching [14]

All cases Mid LBN sorting Low

ClusterFetch I/O bursts (launch

and loading)

High LBN sorting

& I/O plugging

Low

Fig. 1. Monitoring bursts of disk I/O for the game savage 2. The y-axis represents the size of I/O requests, and the x-axis is the time at which they are dispatched to the
device driver. Each burst of I/O is labeled with the name of a file that was opened just before that burst took place.

TABLE 2
Analysis of Files Opened During Launch and

Loading of Sample Applications

Applications Unique

files

Special

files

Files opened by

windows manager

Shared

library files

Trigger file

candidates

Eclipse (launch) 980 33 179 140 628

Firefox (launch) 1,065 401 160 162 342

OOWriter (launch) 1,303 52 399 255 597

OOImpress (launch) 645 25 150 247 223

FlightGear (launch) 1,418 93 20 112 1,193

Savage 2 (launch) 210 41 11 84 74

Savage 2 (loading 1) 138 40 5 6 87

Savage 2 (loading 2) 159 39 8 9 103

0 A.D. (launch) 684 68 160 126 330

0 A.D. (loading) 78 12 6 8 52

BFW (launch) 719 32 126 105 456

BFW (loading 1) 427 27 28 3 369

BFW (loading 2) 354 19 28 3 304

TORCS (launch) 220 44 9 95 72

TORCS (loading) 279 26 5 9 239

Fig. 2. Histogram of the number of occurrences of shared library files over different
test scenarios of application launch and loading.
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queue is full: 1) Full I/O burst: whole range of I/O logs in the cir-
cular queue that meets the requirement of iops_threshold, 2)
Partial I/O burst: the longest partial set of I/O logs that meets the
requirements of length_threshold and iops_threshold.
In our experimental settings using HDDs, the minimal number
of I/O logs during 15 benchmark scenarios was 192 (loading of
0 A.D.), and the minimal IOPS was 106 (loading of BFW). Thus
we empirically set these two thresholds to 100. We believe that
an appropriate iops_threshold value depends on the perfor-
mance of CPU and storage, and this value could be guided by an
additional benchmark program that simulates a set of launch and
loading scenarios.

Algorithm 1. ClusterFetch I/O mining algorithm

1: function add_log (new_log, log_type)
2: if try_to_merge_with_the_last(new_log) ¼ true then
3: return
4: end if
5: if queue_is_full() ¼ true then
6: handle_IO_burst()
7: end if
8: if log_type ¼ TYPE_DISK_IO then
9: if front_idx ¼ rear_idx then
10: return
11: end if
12: rear_idx (rear_idx + 1) mod queue_size
13: insert_io_log_into_queue(new_log)
14: else if log_type = TYPE_FOPEN then
15: if is_trigger_candidate(new_log) ¼ false then
16: return
17: end if
18: rear_idx (rear_idx þ 1) mod queue_size
19: insert_fileopen_log_into_queue(new_log)
20: queue[rear_idx].next_open_idx INVALID
21: if last_open_idx 6¼ INVALID then
22: queue[last_open_idx].next_open_idx ¼ rear_idx
23: end if
24: if last_open_idx ¼ front_idx then
25: ifmeet_iops(front_idx,rear_idx) ¼ false then
26: front_idx rear_idx
27: end if
28: end if
29: last_open_idx rear_idx
30: end if
31: end function
32: functionmeet_iopsstart_idx, end_idx
33: IO_count item_count(start_idx, end_idx)
34: duration queue[end_idx].ts % queue[start_idx].ts
35: if (IO_count = duration) & iops_threshold then
36: return true
37: else
38: return false
39: end if
40: end function
41: function item_countstart_idx, end_idx
42: if end_idx > start_idx then
43: return end_idx % start_idx þ 1
44: else
45: return queue_size % start_idx þ end_idx þ 1
46: end if
47: end function

At Line 10, ClusterFetch checks if the difference between the
times when the first and the last entries in the circular queue were
logged is shorter than the threshold burst_threshold com-
puted at Line 8. If that is the case, ClusterFetch decides that these
entries correspond to a full burst of disk I/O, and invokes
write_full_logs_to_disk function (Line 11) to store the IDs

of the corresponding disk blocks in a prefetch information file that is
later used to prefetch these blocks.

Algorithm 2. I/O Burst Detection Algorithm

1: function handle_IO_burst
2: if handle_full_burst() ¼ false then
3: if handle_partial_burst() ¼ false then
4: front_idx queue[front_idx].next_open_idx
5: end if
6: end if
7: end function
8: burst_threshold queue_size = iops_threshold
9: function handle_full_burst
10: if (queue[rear_idx].ts % queue[front_idx].ts) ' burst_-

threshold then
11: write_full_logs_to_disk()
12: front_idx 0
13: rear_idx 0
14: last_open_idx INVALID
15: return true
16: else
17: return false
18: end if
19: end function
20: function handle_partial_burst
21: start_idx front_idx
22: end_idx queue[start_idx].next_open_idx
23: burst_found false
24: while end_idx 6¼ INVALID do
25: ifmeet_length(start_idx, end_idx) ¼ true then
26: ifmeet_iops(start_idx, end_idx) ¼ true then
27: burst_found true
28: break
29: else
30: start_idx queue[start_idx].next_open_idx
31: continue
32: end if
33: end if
34: end_idx queue[end_idx].next_open_idx
35: end while
36: if burst_found ¼ false then
37: front_idx 0
38: rear_idx 0
39: last_open_idx INVALID
40: return false
41: end if
42: longest_burst_end_idx end_idx
43: end_idx queue[end_idx].next_open_idx
44: while end_idx 6¼ INVALID do
45: ifmeet_iops(start_idx, end_idx) ¼ true then
46: longest_burst_end_idx end_idx
47: end_idx queue[end_idx].next_open_idx
48: else
49: break
50: end if
51: end while
52: write_partial_logs_to_disk_and_reset_idx(start_idx,

longest_burst_end_idx)
53: return true
54: end function
55: functionmeet_lengthstart_idx, end_idx
56: if item_count(start_idx, end_idx) & length_threshold

then
57: return true
58: else
59: return false
60: end if
61: end function
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Analyzing IOPS averaged over the queue might lose intensive
bursts of I/O that occur within a short interval. The seriousness of
this problem depends on the length of the queue. ClusterFetch,
therefore, checks for I/O bursts occurring between adjacent logs of
file openings, using the thresholds mentioned above, and finds the
longest period of block I/O that meets both iops_threshold and
length_threshold. To allow file-opening entries to be traversed
quickly, we use next_open_idx to construct a linked list of these
entries. As described in Algorithm 2, handle_partial_burst
function consists of two steps to detect the partial I/O burst: the first
step is to find the shortest I/O burst that meets both thresholds
(Lines 21 " 35), and the second step is to find the longest duration
that still meets both thresholds (Lines 42" 51).

Functions write_full_logs_to_disk (Line 11) and
write_partial_logs_to_disk_and_reset_idx (Line 52)
record I/O bursts to the corresponding prefetch information files.
The latter function additionally adjust front_idx, rear_idx,
and last_open_idx to meet the iops_threshold requirement
between the first two file open logs in the queue. At the same time,
ClusterFetch selects a trigger file (the first file opened in the circular
queue) and three alternatives (three files opened next to the trigger
file). When that trigger file is opened again, ClusterFetch prefetches
the same disk blocks into the disk cache.

By limiting the accuracy with which it analyzes the correlations
among disk blocks, we limit the space required by ClusterFetch. It
only requires 144 KB of main memory to store a circular queue with
6,000 entries, and its total memory requirement is less than 200 KB.

2.4 Discussion
The correlation of chosen trigger files with subsequent disk reads
determines the effectiveness of ClusterFetch. ClusterFetch basically
considers four trigger file candidates explained in Section 2.1 and
selects one among them that is the most likely to be the trigger file
associated with the burst.

In a PC environment, the input log of ClusterFetch can be cor-
rupted by data relating to multiple applications. To address this
issue, ClusterFetch waits 10 seconds after prefetching disk blocks,
and checks if the prefetched blocks are actually read by any appli-
cation. If the proportion of the prefetched blocks which are
accessed after this period is less than 90 percent, ClusterFetch dele-
tes a corresponding prefetch information file. This can be easily
done because the Linux kernel traces the reference state of disk
cache pages. The time required to check this state was 132 ms for
the Eclipse launch, during which 3,812 I/Os were performed.

As mentioned earlier, games are one of the primary target
applications of ClusterFetch. During a game play, we believe that
the aforementioned issue rarely occurs: users may not run a game

concurrently with other applications, or those applications would
be mostly in idle states even if they do.

Oftentimes, the I/O pattern of an application could be random.
For example, the Linux copy program (cp) and the file search pro-
gram (find) issue disk reads to read from a source file, which varies
from run to run. However, checking the access of prefetched blocks
after 10 seconds cannot be a fundamental solution in this case. A
possible workaround for this could be an adoption of the black-
list [12] that specifies applications where monitoring and prefetch-
ing of disk I/Os should be disabled.

3 CLUSTERFETCH FRAMEWORK

ClusterFetch consists of three main components: an I/O miner, a
prefetch optimizer, and a prefetcher. Fig. 4 shows how Cluster-
Fetch is interfaced with the Linux kernel.

As discussed in the previous section, ClusterFetch monitors
bursts of reads and logs the corresponding disk blocks. Then, it
traces files that were opened before the burst. When the same file is
opened again, ClusterFetch prefetches the associated disk blocks
into the disk cache to reduce access times.

ClusterFetch logs disk reads when misses occur in either of two
distinct disk caches used by the Linux kernel.1 ClusterFetch is cur-
rently implemented with the Ext4 file-system [15], in which the
buffer cache contains metadata blocks such as inode table blocks
and extent blocks. The disk blocks involved in intense periods of
reading can be identified using ext4_readpage(s) for regular
files and submit_bh for metadata blocks [8], [15].

When a burst of I/O is identified, ClusterFetch links the trigger
file to the entries in the prefetch information file, and sets the sticky
permission bit of the trigger file. In current versions of Linux, the
sticky permission bit is onlymeaningful in directory files, allowing it
to be used to label regular files as trigger files. This avoids the need
for lookup. Thesys_open system call ismodified to check the sticky
permission bit of each file being opened. Thus, when the Linux ker-
nel opens a trigger file, the corresponding disk blocks recorded in
the prefetch information file are brought into the disk cache.

Each entry for the I/O log contains the following data: a device
number (4 bytes), an inode number (8 bytes), an offset (8 bytes),
and the amount of I/O (4 bytes). The inode number of a metadata
block is set to 0. The size of each entry in the prefetching table is
24 bytes (on a 64-bit machine). Each entry in the file-open log con-
tains a pointer to the next entry (8 bytes), a timestamp for the entry
(8 bytes), a pointer (8 bytes) to additional information that includes
the file name (dynamically allocated), and the inode number

Fig. 3. Data structure for I/O burst detection based on I/O intensiveness.

Fig. 4. Interface between ClusterFetch and the Linux kernel.

1. The page cache contains data blocks for regular files, and the buffer cache con-
tains disk blocks for block devices.
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(8 bytes) of the opened file. The use of pointers allows the static
allocation of memory space for the log regardless of the types of
files that will be logged. In addition, a prefetch entry in the prefetch
information file stores information for prefetching disk blocks.

3.1 Prefetch Optimizer

3.1.1 Optimization on HDDs

When writing logs of an I/O burst into disks, ClusterFetch opti-
mizes the order in which block numbers are recorded to reduce the
head movement required from an HDD. Reads are sorted by
device number and LBN, and adjacent reads are merged. Reorder-
ing processes of this sort are not unusual: existing file-level pre-
fetchers [12], [16] for HDDs use file IDs and offsets as sort keys.
However, file-level ordering is not ideal for prefetching because
the result is not identical to the LBN order [17]. Further, in Linux,
metadata blocks in Linux are not related to a file ID (represented as
an inode number), so file-level I/O sorting cannot order metadata
blocks correctly at the same time as file blocks (also known as data
blocks). To address this issue, ClusterFetch extracts the LBNs from
read requests, and sorts the requests by LBN. In our experiments,
LBN sorting outperformed file-level sorting by 14.2 percent in
terms of prefetching time.

Merging also reduces the log size, and can allow a prefetcher to
issue more efficient read requests. In our experiments, we found
numerous periods during which there were multiple independent
reads with sequential LBNs, but they were often wrongly ordered
and mixed up with other blocks. To handle this issue, ClusterFetch
merges reads with adjacent LBNs after they have been sorted by
LBN. This reduced the size of the log by 11.5 percent on average,
over 15 test scenarios. After scheduling, the entries in the log file are
stored as a prefetch information (.pf) file in the /clusterfetch

directory; the filename includes both the device and inode number,
making it uniquewithin the system.

3.1.2 Optimization on SSDs

ClusterFetch does not perform I/O sorting on SSDs, where I/O
sorting has little impact on throughput, thus preserving original
sequence of I/O logs. When logging each disk I/O to the mining
queue, ClusterFetch tries to merge the I/O log with the previous
one. This reduced the size of the log by 2.8 percent and prefetching
time by 0.3 percent on average.

3.2 Prefetcher
The native command queue (NCQ) was introduced in the Serial
ATA (SATA) II interface specification to improve I/O through-
put [18], [19], [20], [21]. NCQ allows HDDs to accept up to 32 com-
mands in advance, and to reorder them to reduce disk head
movements. In SSDs, NCQ enables the controller to parallelize
commands [18], [19]. ClusterFetch uses the NCQ for asynchronous
prefetching of both metadata and data blocks, by filling NCQ with-
out waiting for the completion of previous reads. In the 15 bench-
marks on HDDs, using NCQ reduced the launching/loading times
by 4.7 percent on average.

In Linux, each metadata block is separately dispatched to the
device driver without explicit I/O plugging [22]. However, Clus-
terFetch uses I/O plugging to merge contiguous metadata requests
into a single request that is then delivered to the dispatch queue.
This reduced launching/loading times further by 2.7 percent on
average in the 15 test scenarios. To prevent a burst of I/O which
occurs during the prefetching process itself from being detected as
a burst of application I/O, ClusterFetch does not monitor disk I/O
while it is actually prefetching blocks.

Notably, duplicate I/O bursts can be detected by the prefetcher,
and therefore trigger files can also conflict. In order to prevent this,
ClusterFetch do not log file openings and disk I/Os during its
prefetching operations.

3.3 I/O Control
To reduce the impact of ClusterFetch on other system I/O, the I/O
control processes shown in Fig. 4 balance the priority of prefetch-
ing against other disk block requests. It is possible to preset an
upper limit on the proportion of the disk bandwidth that Cluster-
Fetch is allowed use for prefetching, thus preventing significant
delays to the disk I/O of other processes.

As long as general disk I/O is not hindered, ClusterFetch need
not delay prefetching. The I/O control process examines the depth
of the NCQ to see if there is room for prefetching. If the queue is
short, ClusterFetch can perform prefetching immediately without
impacting other I/O.

The I/O control process is based on the CFQ (Completely Fair
Queuing) I/O scheduler [23] and also employs the Linux blkio controller,
which controls the time-slots allocated to disk I/O using weights
attached to user-defined process groups of processes (cgroups).
Basically, disk I/O requests related to prefetching byClusterFetch are
held in an I/O scheduling queue in the block layer; this is different
from the queue of general disk I/O requests, as shown in Fig. 4.
However, if the disk load from normal processes is low, the disk I/O
requests related to prefetching can be queued together with other
disk I/O requests to maximize throughput. The I/O control process
eliminates prefetching requests from the queue after a timeout period,
since there is no point in ‘prefetching’ blocks that have already been
read directly by the application in response to a cachemiss.

4 EXPERIMENTAL RESULTS

4.1 Evaluation on HDDs
We evaluated ClusterFetch on a desktop computer with an Intel
Core i3-2100 CPU, 4 GB of RAM, and a Seagate 3.5-inch, 500 GB,
7200 RPM HDD, running Fedora 17 64-bit Linux, with an Ext4 file-
system.

No prefetching method can outperform a warm start, when all
the disk blocks required by an application already reside in the
disk cache. Conversely, any prefetcher should be able to speed up
a cold start, when all the disk blocks have to be accessed directly
from the disk.

We compared the application launch and loading times of nine
popular free applications: Eclipse (development tool), Firefox (web
browser), OOWriter (LibreOffice word processor), OOImpress
(LibreOffice presentation tool), FlightGear (flight simulator), Sav-
age 2 (game), 0 A.D. (game), Battle for Wesnoth (game), and The
Open Racing Car Simulator (motorsport simulator).

Table 3 shows the effect of ClusterFetch on the launch and load-
ing times of these applications, relative to a cold start with no pre-
fetcher: the greatest reductions were 41.3 percent for launching
and 38.2 percent for loading Battle for Wesnoth. Overall, the per-
formance of ClusterFetch is around the midpoint between a warm
start and a cold start with no prefetching.

Fig. 5 shows how the number of commands in the NCQ varies
during the launch of FlightGear, without and with ClusterFetch,
which reduces the cold-start launch time of 27.5 to 23.3 seconds.
We can see from this figure that ClusterFetch is making a signifi-
cant use of the NCQ: 1) there are more outstanding commands in
the NCQ because read requests have been issued asynchronously;
and 2) the total amount of data represented by the commands in
the NCQ has been increased significantly by merging adjacent I/O
requests into a single large request.

Fig. 6 shows the amount of data requested during the same
launch: without a prefetcher, the sum of outstanding data requests
never exceeds 500 KB; when ClusterFetch merges I/O requests,
this rises to 10 MB. ClusterFetch detected three partial I/O bursts
during the launch of FlightGear, consisting of 1624, 683, and 1029
read requests; these figures drop to 744, 221, and 644 after merging.

Loading produces similar results: during the period in which
Savage 2 is loading its game map, ClusterFetch detected three
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TABLE 3
Cold and Warm Start Application Launch and Loading Times in Comparison with ClusterFetch

Applications
(stage)

Cold start
on HDD (s)

Warm
start (s)

ClusterFetch
on HDD (s)

Reduction
on HDD (%)

Cold start
on SSD (s)

ClusterFetch
on SSD (s)

Reduction
on SSD (%)

Eclipse (launch) 16.5 6.1 11.4 30.9 8.8 6.4 27.3
Firefox (launch) 7.4 1.9 5.3 28.4 2.7 2.2 18.5
OOWriter (launch) 8.2 2.1 5.7 30.5 3.1 2.4 22.6
OOImpress (launch) 7.8 1.5 5.4 30.8 2.8 2.3 17.9
FlightGear (launch) 27.5 18.9 23.3 15.2 22.4 20.2 9.8
Savage 2 (launch) 20.1 13.6 16.4 18.4 16.1 15.2 5.6
Savage 2 (loading 1) 22.0 17.0 18.5 15.9 19.1 18.2 4.7
Savage 2 (loading 2) 16.3 10.2 12.8 21.5 12.5 11.6 7.2
0 A.D. (launch) 6.0 1.6 4.8 19.6 3.0 2.5 16.7
0 A.D. (loading 1) 8.3 3.6 6.2 23.6 4.4 3.8 13.6
0 A.D. (loading 2) 7.8 4.2 6.6 15.4 5.1 4.6 9.8
BFW (launch) 7.6 1.3 4.3 41.3 2.9 2.2 24.1
BFW (loading 1) 5.5 1.5 3.4 38.2 2.3 2.3 0
BFW (loading 2) 6.1 1.6 4.2 31.1 2.2 2.1 4.5
TORCS (launch) 6.2 1.1 5.0 19.4 1.6 1.5 6.2
TORCS (loading) 6.7 2.7 4.8 25.9 3.0 2.9 3.3

Fig. 5. Variation in the number of outstanding commands in the NCQ during the launch of FlightGear. The maximum number of outstanding I/O requests rises from 3 to 31
when ClusterFetch is used. Launch time is reduced from 27.5 to 23.3 seconds.

Fig. 6. Variation in amount of data being requested by FlightGear during launch. Many requests for less than 500 KB are combined into large requests for around 10 MB.
Note that the y-axis in the lower plot is logarithmic.
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partial I/O bursts and generated three trigger files. The loading time
was reduced from 22.0 to 18.5 seconds. Again, disk block requests
were issued asynchronously, which increases the maximum num-
ber of commands in the NCQ from 3 to 31. In addition, by combin-
ing adjacent I/O requests into a single large request, the maximum
amount of data represented by outstanding I/O requests increased
from less than 400 KB to around 10MB. The number of I/O requests
issued during each of the three partial I/O bursts was 381, 257,
and 148; these figures drop to 141, 96, and 49, respectively, after
merging requests.

Remarkably, launch and loading of an application under heavy
CPU and disk I/O loads benefit from disk prefetching [1], [7]. This is
mainly because desktop workload tends to activate only one CPU
core or a single disk I/O command exclusively. In this situation, the
prefetcher thread reduces the CPU time for disk I/O processing, and
it also exploits the parallelism of disk I/Os and reduces prefetching
time by LBN sorting for disk I/Os. We also measured the launch
time of FlightGear while copying a large file, which issues 128 KB
reads and writes during the launch. The cold start without and with
ClusterFetchwas 39.4 seconds and 36.5 seconds, respectively.

4.2 Evaluation on SSDs
We replaced the HDD in our PC with an Intel 520 series 120 GB
SSD, which significantly reduced both launch and loading times,
as shown in Table 3. This leaves little room for optimization
through prefetching. ClusterFetch reduced launch and loading
times on the SSD by 12.0 percent on average; but the average time
saving in time was only 0.7 seconds.

5 CONCLUSION

We have developed a lightweight prefetcher called ClusterFetch
that reduces both application launch and loading times on a Linux
PC. ClusterFetch uses a disk block mining algorithm based on a cir-
cular queue, and only requires 200 KB of memory. Our experi-
ments on HDD with nine popular applications showed reductions
in launch times of between 15.2 percent and 41.3 percent, and in
application loading times of between 15.4 and 38.2 percent.
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