
Physical-State-Aware Dynamic Slack Management for
Mixed-Criticality Systems

Hoon Sung Chwa and Kang G. Shin
Electrical Engineering and Computer Science

The University of Michigan, Ann Arbor, Michigan, U.S.A.
{hchwa, kgshin}@umich.edu

Hyeongboo Baek and Jinkyu Lee
Department of Computer Science and Engineering

Sungkyunkwan University (SKKU), Republic of Korea
{hbbaek, jinkyu.lee}@skku.edu

Abstract—Safety-critical cyber-physical systems like au-
tonomous cars require not only different levels of assurance,
but also close interactions with dynamically-changing physical
environments. While the former has been studied extensively by
exploiting the notion of mixed-criticality (MC) systems, the latter
has not, especially in conjunction with MC systems. To fill this
important gap, we conduct an in-depth case study, demonstrating
the importance of capturing current physical states, and intro-
duce the problem of achieving efficient utilization of computing
resources under varying physical states in MC systems. To solve
this problem, we first develop a physical-state-aware MC task
model, which is a generalization of the existing basic MC task
model. We then propose new slack concepts tailored to the
new task model, which enable efficient utilization of computing
resources for MC systems. Finally, we develop a physical-state-
aware dynamic slack management framework and demonstrate
how to utilize the new MC task model and slack concepts towards
efficient system utilization. We show, via a case study and in-depth
evaluation, that the proposed framework makes 20x less low-
criticality jobs dropped over a popular MC scheduling algorithm
without compromising the MC-schedulability requirements.

I. INTRODUCTION

Safety-critical cyber-physical systems are increasingly re-
alized as mixed-criticality (MC) systems, where multiple func-
tions with different safety-criticality levels are integrated on a
shared computing platform. At the same time, cyber-physical
systems are becoming highly dynamic and closely interacting
with their physical environments.

Advanced driver assistance system (ADAS) and au-
tonomous cars are prototypical examples that combine both
mixed-criticality and dependency on physical environments.
An ADAS implementation requires to meet the safety standard,
ISO 26262, specifying different levels of safety assurance,
which corresponds to the MC requirement. Our case study
of adaptive cruise control (ACC), a typical ADAS feature,
reveals that the computation time of control signals is strongly
correlated with a physical state of the car, such as the distance
to the car ahead and its relative speed. We have also found it
taking less computation time to update a control signal if the
preceding car is far away and the host/follower car travels at
the speed set by the driver (i.e., in a steady state). On the
other hand, the amount of computation is increased by up
to 20x when the distance to the preceding car is too close
to the follower car. Moreover, the actual execution time is
found to change widely over time within the same physical
state and show a considerable difference in the WCET (worst-
case execution time) estimates (to be detailed in Section II).
These distinct features pose significant challenges in achieving

efficient resource utilization under varying physical states
while assuring the safety associated with tasks of different
criticality levels in MC systems.

Vestal [1] proposed the classic MC task model for 2 criti-
cality levels, where a high-criticality (HC) task has 2 WCET
estimates with different levels of confidence (criticality). Based
on the MC task model, a vast amount of work has been
done on MC scheduling to ensure the satisfaction of MC
tasks’ deadlines. A MC system is usually seen to be in two
different execution modes at runtime: LC (low-criticality) and
HC modes. The system starts in LC mode during which all
tasks are assigned resources based on their low-confidence
WCET estimates and scheduled together. Once any HC task
executes more than its low-confidence WCET estimate, the
system switches to HC mode during which only HC tasks
can execute up to their high-confidence WCET estimates and
no deadlines of LC tasks are required to be met. Although
these approaches ensure the execution of critical tasks, they
do not capture dynamically changing resource demands as
the physical state changes. The underlying assumption of the
classic MC task model is that the two WCET estimates do not
change during runtime. Those WCET estimates are derived in-
dependently of physical states under pessimistic assumptions.
Thus, existing approaches under the classic MC task model use
static resource allocation without considering the underlying
physical state. As a result, they under-utilize resources by
triggering a mode-switch unnecessarily and penalizing all LC
tasks indiscriminately.

Some recent studies [2–6] support dynamic resource al-
location exploiting slack (spare capacity) in order to reduce
the pessimism of the traditional static approaches, but all of
them have at least one of the following limitations. First, they
consider only a statically available slack by using an offline
schedulability analysis, although the amount of slack can vary
with time. Second, they assume that the WCET budget is
statically assigned. They cannot capture WCET variations with
the physical state when calculating a dynamic slack. Third,
they do not provide any slack tailored to MC systems, failing to
adaptively switch to different modes; for example, there is no
dynamic slack available for use by LC tasks in HC mode. Such
limitations make it impossible/difficult to take varying physical
states into account when dealing with a dynamic slack, leading
to dropping LC tasks unnecessarily.

Our approach. We propose a physical-state-aware dy-
namic slack management framework for MC systems. It will
be able to capture varying resource demands depending on the

physical state and calculate the corresponding available slack
at runtime. By utilizing a dynamic slack, we can schedule more
LC tasks while still meeting the MC requirement of the entire
system. The main challenge is then how to calculate a tight
lower bound on dynamic slack under varying physical states
and how to schedule the slack so as to minimize the number
of LC job drops without compromising MC-schedulability. To
meet this challenge, we first propose a physical-state-aware
MC task model for characterizing tasks that have dynamically
changing execution times depending on the external physical
events. We extend the static WCET estimates in the classic
MC task model [1] to vary with the physical state.

Second, we extend the notion of slack capturing the MC
requirement, where different sets of deadlines should be met at
different criticality levels, with a novel notion of LC- and HC-
mode slacks. The LC-mode slack can capture the amount of
surplus time available in LC mode, while guaranteeing all tasks
to execute for their low-confidence WCETs by their deadlines.
Likewise, the HC-mode slack can express the amount of
surplus time available in HC mode, while guaranteeing HC
tasks to execute for up to their high-confidence WCETs by
their deadlines. These new slack concepts tailored to MC
systems enable utilization of available resources depending on
the criticality mode.

Third, building upon the new MC task model and the
slack concepts, we develop a physical-state-aware dynamic
slack management framework. It assigns a resource budget to
each task dynamically at runtime by using the WCET estimate
corresponding to the current physical state and updates LC-
and HC-mode slacks accordingly upon change of the physical
state at runtime. Within the allocated resource budget, tasks are
scheduled according to the well-known Earliest Deadline First
with Virtual Deadlines (EDF-VD) MC scheduling policy [7].
If any task tries to execute beyond its resource budget, our
framework allocates additional resources to it according to
the LC-mode (HC-mode) slack in LC mode (HC mode). In
particular, the LC-mode slack can be used for a HC task to
execute beyond its low-confidence WCET without triggering a
mode-switch. After a mode-switch is made, the HC-mode slack
can be used for an LC task to execute without compromising
the execution of HC tasks. We also propose a slack-based
mode-switch mechanism based on the observation that the
amount of available slack can be used to determine a mode-
switch. The proposed framework has been evaluated using
both an ADAS case study and an extensive simulation of
synthetic task sets, showing a 20x reduction of the number
of dropped LC jobs over the case of using EDF-VD alone.
Our framework is shown to become much more effective in
reducing the number of LC job drops for a task set with a
larger number of tasks, each of which has lower utilization,
than the one with a smaller number of tasks, each of which
has higher utilization.

This paper makes the following main contributions:

• An insightful case study that shows dynamic execution
behavior depending on the physical state and the
importance of accounting for such dynamics in MC
scheduling (Section II);

• A new MC task model that enables the characteriza-
tion of tasks with dynamically changing execution be-

(a) Adaptive cruise control system

(b) Autonomous vechicle steering system

Fig. 1. Motivational case study: an ADAS system

haviors according to their physical states (Section III);

• A new slack concept tailored to MC scheduling for
efficient resource utilization (Section IV);

• A runtime dynamic slack management framework that
enables adaptive resource allocation under varying
physical states and efficient slack usage while guar-
anteeing MC-schedulability (Section V); and

• Demonstration of the effectiveness of the proposed
framework, via a case study and in-depth evaluation,
minimizing service degradation in low-criticality tasks
(Section VI).

II. MOTIVATIONAL CASE STUDY AND GOAL

We first present a motivational case study of ADAS to
demonstrate the dynamic execution behavior of each com-
ponent according to the physical state of its corresponding
controlled plant and also introduce other applications. We will

then make an important observation from the case study and
state the goal of our new MC task model and dynamic resource
management thereof.

A case study. An ADAS system consists of two com-
ponents — adaptive cruise control (ACC) and autonomous
vehicle steering (AVS) — which run on a shared computing
platform. The ACC periodically adjusts the vehicle speed to
maintain a safe distance from the front vehicle, and the AVS
affects lateral and steering maneuvers of the vehicle to avoid
any collision.

For experimental evaluation, we implement ACC and
AVS components in Matlab using model predictive control
(MPC) [8], which has recently attracted considerable interest
from the automotive domain.1 We set the driver’s desired speed
to 30m/s while varying the acceleration of a preceding vehicle
and the reference trajectory including occasional double lane
change maneuvers. We set the sampling period of each con-
troller to 0.1 second and simulate the system for 40 seconds.

Figs. 1(a) and (b) show the simulation results. The upper
part of each figure shows the control output along with the
reference trajectory, while the bottom part shows the amount
of computation required to compute each control output at
every sampling interval. Note that MPC operates by repeatedly
solving the iterative online optimization problem on a finite
prediction horizon initialized with the current physical state.
The constraints on control inputs and states may vary with
the current physical state, yielding a different number of
iterations taken to solve the optimization problem at each
sampling interval. Also, note that the number of iterations for
optimization can be translated into the amount of execution
time required for computation.

As shown in the figure, the number of iterations performed
for each component varies dynamically with its control output
and state. For example, in the case of ACC, one iteration was
enough to compute a control output when the preceding vehicle
was far away and the host vehicle traveled at a constant desired
speed (i.e., in a steady interval from 9 to 15 seconds). In
contrast, the number of iterations was increased by up to 20x
when the distance to the preceding vehicle became too close,
needing to maintain a safe distance (i.e., in a transient state
from 15 to 28 seconds). In addition, the change in the number
of iterations in the transient interval was highly dynamic over
a wide range. Note that a similar behavior was also exhibited
in the case of AVS.

Let us provide some high-level ideas of how to derive
different WCET values according to the physical state, al-
though it is beyond the scope of this paper. In case of
MPC, solving the quadratic programming (QP) problem is the
most dominant computation requirement. According to [11],
the computation time is highly dependent on the number of
active constraints in QP. So, in our simulation to be presented
later in Section VI, we divided the physical state of ACC
or AVS into two, depending on whether there is an active
constraint or not. For example, ACC has no active constraint
when the actual distance from the front vehicle is larger than
the safety distance on the prediction horizon. We can then
calculate WCET bounds for two physical states. Vestal [1]

1See [9, 10] for the relevant vehicle dynamics and implementation details.

already provided a good way of determining low- and high-
confidence WCET estimates for each physical state. A low-
confidence WCET estimate can be obtained by the worst-case
time observed during extensive tests, while a high-confidence
WCET estimate can be obtained by some code flow analysis
and worst-case instruction cycle counting under pessimistic
assumptions.

Other applications. There exist other applications — en-
gine control and vision-based object recognition — that show
the dynamic execution behavior depending on the physical
state. According to [12–16], the typical approach for engine
control used in automotive industry is to select different
functions to be executed depending on the speed of the
engine crankshaft’s rotation. The WCET estimates of an engine
control task can thus be expressed as a step function of the
rotational speed. According to [17], the execution time of a
vision-based object recognition task is categorized into two,
depending on whether or not there are a large number of
objects in the camera’s field-of-view.

In addition to MPC, we can also consider a switched
control system that consists of several different controllers and
switches among them to achieve better control performance
under varying physical states. We can derive WCET estimates
for each individual controller and use different WCET esti-
mates whenever the controller changes. Such a control design
is well-known and has numerous applications in the control
of mechanical systems, process control, automotive control,
power systems, aircraft and traffic control, and so on [18].

Motivation and goal. Without considering such dynamic
execution behavior that depends on the physical state, we may
severely under-utilize computing resources or even substan-
tially degrade the service of low-criticality tasks. Suppose
both ACC and AVS tasks can be modeled as the classic
MC task model, under which each task has fixed WCET
estimates (i.e., average- and worst-case execution times during
the entire service time) and is always assigned its resource
based on the WCET estimates. Then, a considerable amount
of computing resources will remain unused throughout all
the sampling intervals where the iteration count is below the
average value. If those unused resources could be reclaimed
and utilized for other tasks properly, we can minimize degra-
dation in servicing low-criticality tasks while guaranteeing
MC-schedulability. The main challenge arises from the fact
that we cannot predict the varying physical states a priori.
This requires a new MC task model that can express WCET
estimates as a function of the physical state, as well as a new
notion of slacks tailored to MC scheduling for a better use.
Building upon the new task model and slack concepts, we want
to develop an online dynamic slack management framework
that assigns resources dynamically under varying the physical
state, reclaims unused resources efficiently, and utilizes them
so as to minimize service degradation in low-criticality tasks
without compromising MC-schedulability.

III. NEW MC TASK MODEL

This section introduces a new physical-state-aware MC
task model, which is a generalization of the existing MC task
model [1].

In this new MC task model, each task τi ∈ τ can be
specified as τi = (Ti, Ci, Di, Li), where Ti is the minimum
separation between successive job releases, Ci is a list of
WCET values, Di (≤ Ti) and Li denote the relative deadline
and the criticality level, respectively. We assume that every task
τi has either low (denote by LC) or high criticality (denoted
by HC). Let τL and τH denote a set of LC and HC tasks in
τ , respectively.

Ci is expressed by {CLi (si), CHi (si)}, where CLi (si) and
CHi (si) denote LC and HC WCET of τi at its physical state
si, respectively. We assume that CLi (si) ≤ CHi (si) for every
HC task, and CLi (si) = CHi (si) for every LC task. Jobs of
τi are released with a minimum separation of Ti time units;
each job Ji,j (the jth job of τi) can execute for no more than
CHi (si,j) time units, and should finish its execution within Di

time units since its release, where si,j denotes the physical
state when job Ji,j of τi is released. Let ri,j and di,j denote
the release time and deadline of Ji,j . For each job Ji,j , its first
execution up to CLi (si,j) is called LC-part execution, while
its next execution up to CHi (si,j)− CLi (si,j), followed by its
LC-part execution amounting to CLi (si,j), is called HC-part
execution.

For the ease of presentation, we introduce the following
notation:

CL,max
i = max

si
CLi (si), CH,max

i = max
si

CHi (si). (1)

We express the utilization of each task with given current
physical state and criticality as:

uLi (si) =
CLi (si)

Ti
, uHi (si) =

CHi (si)

Ti
. (2)

Also, for notational convenience, we define the following
utilization:

ux,max
i = max

si
uxi (si), Uxy =

∑
τi∈y

ux,max
i , (3)

where x ∈ {L,H} and y ∈ {τL, τH}.

In this paper, we focus on implicit-deadline task systems
in which relative deadline Di is equal to Ti for every task
τi ∈ τ , and consider the problem of scheduling n such tasks
τ = {τ1, . . . , τn} on a uniprocessor platform.

Like the Vestal’s task model [1], we can then define
schedulability under the proposed MC task model as follows.

Definition 1 (MC-Schedulable): A system τ in the
physical-state-aware task model is defined to be MC-
Schedulable by a scheduling algorithm if the following two
conditions hold:

1) If there does not exist any job (invoked by a task in
τ) that executes for more than its LC WCET, every
job (invoked by a task in τ) finishes its execution (for
at most its LC WCET) before its deadline.

2) If such a job exists, every HC job (invoked by a
task in τH) finishes its execution (for at most its HC
WCET) before its deadline.

The physical-state-aware MC task model is more general
than the Vestal’s task model, as stated in the following lemma.

Lemma 1: The physical-state-aware MC task model sub-
sumes the Vestal’s MC task model [1].

Proof: If we assign CLi (si) = CL,max
i and CHi (si) =

CH,max
i for every pair of (τi, si), the physical-state-aware MC

task model becomes the usual MC task model.

Since the proposed physical-state-aware MC task model
can express multiple WCETs according to different physical
states in conjunction with different criticality levels, the model
together with the concepts to be introduced in Section IV
provides an interface for efficient resource reservation, which
will be realized in Section V.

IV. NEW SLACK CONCEPT

Since real-time systems provide timing guarantees based
on the worst-case behaviors, they severely under-utilize com-
puting resources. The notion of slack has been widely used
in non-MC task models [19, 20] to utilize reserved-but-unused
(surplus) resources [21–23]. In this section, we generalize the
concept of slack in non-MC task models, to the proposed
physical-state-aware MC task model (which is also applicable
to the Vestal’s MC task model [1]).

As shown in Definition 1, the amount of resources re-
served/guaranteed for each job depends on the system critical-
ity levels—whether 1) or 2) in the definition. This necessitates
the notion of different slacks for different system criticality
levels (two levels in this paper).

Definition 2 (LC-mode slack): Suppose that under a
work-conserving scheduling algorithm, every job in [t1, t2)
performs its LC-part execution (for at most its LC WCET)
and does not perform its HC-part execution, and there is
no job deadline miss in [t1, t2). In this case, we define a
LC-mode slack in [t1, t2) under the scheduling algorithm,
denoted by SLC(t1, t2), as the amount of idle time in [t1, t2).

Definition 3 (HC-mode slack): Suppose that under a
work-conserving scheduling algorithm, every LC and HC job
in [t1, t2) executes for zero and at most its HC WCET time
units, respectively, and there is no HC job deadline miss in
[t1, t2). In this case, we define an HC-mode slack in [t1, t2)
under the scheduling algorithm, denoted by SHC(t1, t2), as
the amount of idle time in [t1, t2).

Note that Definitions 2 and 3 are new concepts not only
for the proposed physical-state-aware MC task model, but also
for the classic MC task model [1].

Once we calculate LC- and HC-mode slacks, we can
utilize those slacks for efficient system utilization. That is, the
LC-mode slack implies the amount of HC-part execution of
an HC job without triggering a mode-switch, while the HC-
mode one does the amount of LC-part execution of an LC job
without compromising other HC jobs’ execution, as stated in
the following lemmas.

Lemma 2: Let Ji,j denote an HC job, which is active at t1
and whose deadline is t2 (> t1). Suppose that under a work-
conserving scheduling algorithm, every job in [t1, t2) performs
its LC-part execution (for at most its LC WCET) and does not

perform its HC-part execution, and there is no job deadline
miss in [t1, t2); in addition, SLC(t1, t2) ≥ 0 holds. Then,
there is a schedule that an increase of the execution of Ji,j
up to CLi (si,j)+SLC(t1, t2) does not cause any other jobs to
miss their deadlines within [t1, t2).

Proof: If we assign the lowest priority to the HC-part
execution of Ji,j , there is no schedule change of other jobs in
[t1, t2), implying that none of other jobs misses its deadline in
[t1, t2). Note that it is possible to design different scheduling
policies to avoid deadline misses, by considering the property
of the target scheduling algorithm.

Lemma 3: Let Ji,j denote an LC job, which is active at t1
and whose deadline is t2 (> t1). Suppose that under a work-
conserving scheduling algorithm, every LC and HC job in
[t1, t2) executes for zero and at most its HC WCET time
units, respectively, and there is no HC job deadline miss in
[t1, t2); in addition, SHC(t1, t2) ≥ 0 holds. Then, there is a
schedule that an increase of execution of Ji,j up to SHC(t1, t2)
does not cause any other HC jobs to miss their deadlines in
[t1, t2).

Proof: The proof is similar to that of Lemma 2; assigning
the lowest priority to the LC-part execution of Ji,j does not
change the schedule of other HC jobs in [t1, t2).

An example of illustrating the usage of Lemmas 2 and 3
is provided in Appendix A (see Fig. 3) of the supplement
file [24].

While Definitions 2 and 3, and Lemmas 2 and 3 offer
concepts and principles necessary for utilizing observed slack
values for the MC system under any target scheduling algo-
rithm, they do not specify how to calculate the slacks no later
than the beginning of the interval of interest. In Section V,
we will show how to calculate lower-bounds of slacks under
a given target scheduling algorithm at the beginning of the
interval of interest. This calculation enables to i) delay a mode-
switch by executing HC jobs’ HC-part execution without
triggering a mode-switch (by Lemma 2) and ii) reduce the
number of LC job drops by executing LC jobs’ LC-part
execution without compromising other HC jobs’ execution (by
Lemma 3), both to be discussed in Section V.

V. PHYSICAL-STATE-AWARE DYNAMIC SLACK
MANAGEMENT

Sections III and IV proposed two tools that can be utilized
for efficient resource usage by considering varying physical
states and MC systems. Based on the two tools, we will
propose a physical-state-aware dynamic slack management
framework, which not only captures how slack values dy-
namically change at runtime, but also achieves high resource-
efficiency by utilizing the runtime slack dynamics analysis. To
this end, we present when and how to update/calculate slacks
at runtime and how to use the calculated slacks for efficient
resource utilization.

A. Target Scheduling Algorithm

Here we focus on EDF-VD [7] scheduling. Basically,
all jobs are scheduled by the Earliest Deadline First (EDF)
policy [19]. Under EDF-VD, HC jobs are assigned virtual
deadlines shorter than their original deadlines in LC-mode.

These virtual deadlines ensure that when a mode-switch oc-
curs, there is a sufficient time for HC jobs to complete
any additional execution before their original deadlines. Let
V Di = x ·Ti, where x ∈ [0, 1], denote the virtual deadline for
each task τi ∈ τH . Then, EDF-VD operates as follows:

• In LC mode, a job of HC task τi ∈ τH is assigned a
scheduling deadline equal to its release time plus its
virtual deadline V Di, while a job of LC task τj ∈ τL
is assigned a scheduling deadline equal to its release
time plus its original deadline Dj ; and

• In HC mode, the scheduling deadline of an HC job
of τi ∈ τH that is active at a mode-switch is changed
to its release time plus its original deadline Di. A
future HC job of τi is assigned a scheduling deadline
equal to its release time plus its original deadline Di.
LC jobs will not receive any execution.

We can use the schedulability test [7] for EDF-VD and
the classic MC task model to find a feasible virtual deadline
assignment for EDF-VD and the physical-state-aware MC task
model, as stated in the following lemma.

Lemma 4: A task set τ is MC-schedulable by EDF-VD
on a uniprocessor platform if there exists a virtual deadline
scaling parameter x such that

ULτH
1.0− ULτL

≤ x ≤
1.0− UHτH

ULτL
. (4)

Proof: By definition, ULτL , ULτH , and UHτH are
upper-bounds on

∑
τi∈τL u

L
i (si),

∑
τi∈τH u

L
i (si), and∑

τi∈τH u
H
i (si), respectively. Then, using Theorems 1 and 2

in [7], it trivially holds that τ is MC-Schedulable by EDF-VD
on a uniprocessor platform with the virtual deadline scaling
parameter x, if Eq. (4) holds, thus proving the lemma.

Note that Lemma 4 assumes that every job of each task τi
is assigned its LC and HC WCET as CL,max

i and CH,max
i ,

respectively, regardless of the physical state. We can make
a dynamic virtual deadline assignment while considering the
physical state, but it is out of scope of this paper. Instead, we
focus on dynamic resource allocation and slack management
while considering the physical state for a given feasible virtual
deadline assignment. We assume that any value of the virtual
deadline scaling parameter x satisfying Eq. (4) can be used.

B. Runtime Behavior of Dynamic Slack Management

Our physical-state-aware dynamic slack management
framework employs the prioritization policy of EDF-VD as is,
implying that our framework does not change the priority or-
dering of jobs determined by EDF-VD. Instead, our framework
determines the portion of each job’s execution to be scheduled
when the priority of each job becomes the highest, i.e., it is
possible for an LC job to execute in HC mode, and for an
HC job to execute for more than its LC WCET in LC mode.
On the other hand, EDF-VD without our framework restricts
each job’s execution to at most its LC WCET in LC mode
and each HC and LC job’s execution, respectively, to at most
HC WCET and zero in HC mode.

Now, let’s describe how our physical-state-aware dynamic
slack management framework works under EDF-VD.

Runtime slack update. Our dynamic slack management
determines when to update LC-mode and HC-mode slacks
based on the following two observations.

O1. Upon release of a job Ji,j of HC task τi ∈ τH , it is
sufficient to assign CLi (si,j) and CHi (si,j) of resource
in LC and HC modes (not CL,max

i and CH,max
i),

respectively, in order to meet Ji,j’s deadline. At the
release time of a job Jp,q of LC task τp, it is sufficient
to assign at least CLp (sp,q) of resource in LC-mode
in order to meet Jp,q’s deadline in LC mode (not
CL,max
p).

O2. Upon completion of Ji,j’s execution of any task, we
can compare the actual execution time with its worst-
case time allotment and reclaim any unused resources
that were alloted to Ji,j .

Since we cannot know the physical state of a job until it
is released, we need to assume that the resource demand for
each future job of task τi is up to CL,max

i and CH,max
i in LC

and HC modes, respectively to guarantee no deadline miss.
However, with O1, upon release of a job, we can allocate a
smaller amount of resource according to its physical state and
reclaim the remaining portion of pre-allocated resources. Then,
due to the sustainability property [25], it can still guarantee
the MC-Schedulability with a reduced resource allocation for
the released job. In addition, with O2, upon completion of a
job, we can further reclaim the unused portion of assigned
resources.

Based on the above two observations, LC-mode and HC-
mode slacks are updated (i) when a new job is released
(JOB RELEASE), or (ii) when a job is completed (JOB
COMPLETION) as shown in Algorithm 1 (Lines 2–11). We
keep track of the worst-case remaining execution time, RCi,
for the active job Ji,j of τi. This is set to CMi (si,j) on JOB
RELEASE (Line 6), where M ∈ {LC,HC}, decremented
as the job executes (Lines 15, 27, and 30), and set to 0 on
JOB COMPLETION (Line 10). Upon JOB RELEASE event
of Ji,j , the amount of resource reclaimed in [ri,j , di,j) during
LC mode is CL,max

i − CLi (si,j) (CH,max
i − CHi (si,j) during

HC mode). Upon JOB COMPLETION event of Ji,j , the
amount of resource reclaimed in [ri,j , di,j) during LC mode
is CLi (si,j) − ACi,j (CHi (si,j) − ACi,j during HC mode),
where ACi,j is the actual execution time of Ji,j . Upon each
event, we update LC-mode or HC-mode slack for the interval
of [tcur, d1(tcur)), where tcur is the current time instant and
d1(tcur) is the earliest absolute deadline among all tasks’ jobs
whose deadline is after tcur (Lines 8 and 11).2 This way, it is
possible to efficiently manage resource by updating available
slacks according to the physical state. We will describe how
to derive a safe lower-bound on the slacks in the following
subsection.

Runtime slack scheduling. Now, let’s describe how to
utilize slacks in each mode. Under the classic MC scheduling
model [1], a mode-switch from LC to HC occurs when a
single HC job executes beyond its LC-part execution, and

2Note that if the corresponding job is an HC job in LC mode, the virtual
deadline is applied to its absolute deadline; otherwise, the plain deadline is
applied.

then all LC jobs will be immediately dropped upon a mode-
switch even though there is a way to postpone a mode-
switch and/or reduce LC job drops. With our dynamic slack
management, the mode-switch can be postponed by assigning
LC-mode slack to the HC task that executes more than its
LC-part execution. In addition, the number of dropped LC
jobs can be significantly reduced by assigning HC-mode slack
to LC jobs after the mode-switch.

We present our slack-based mode-switch mechanism in
Algorithm 1 (Lines 12–37); the basic idea is to utilize LC-
and HC-mode slacks, inspired by Lemmas 2 and 3.

• In LC mode:
1) If an HC job Ji,j executes for CLi (si,j)

time units in total but does not complete,
then use SLC(tcur, di,j) to execute Ji,j until
SLC(tcur, di,j) becomes zero (Line 18).

2) If SLC(tcur, di,j) = 0 but Ji,j does not
complete after its LC-part execution, then
trigger a mode-switch to HC mode (Lines 20
and 21).

• In HC mode:
1) If an LC job Ji,j is the highest priority

job at the current time instant tcur, then
use SHC(tcur, di,j) to execute Ji,j until
SHC(tcur, di,j) becomes zero (Line 30).

2) If SHC(tcur, di,j) = 0 but Ji,j does not
complete, then drop the job (Line 32).

3) After an idle instant, reset the mode to LC
(Line 35).

In Section V-D, we will prove an significant property of
Algorithm 1: its guarantee on no job deadline miss.

C. Slack Calculation

Now, let’s consider how to calculate LC-mode and HC-
mode slacks. Our goal is to find the maximum amount
of slack time, which may be available during the interval
[tcur, d1(tcur)) in each mode, while guaranteeing all future
deadlines (≥ tcur) to be met based on Definition 1. By doing
so, in LC mode, a currently executing HC job (having the
earliest deadline) can use as much LC-mode slack as possible
when it executes beyond its LC-part execution so that a
mode-switch can be delayed to the maximum possible extent.
Likewise, in HC mode, HC-mode slack can be used for LC
jobs so that LC job drops can be postponed as late as possible
and be reduced.

Algorithm 2 presents our slack calculation method, which
is called by Lines 8, 11 and 21 of Algorithm 1. At time tcur, we
look at the interval until the earliest absolute deadline d1(tcur)
among all tasks, try to defer as much execution as possible be-
yond d1(tcur), and compute the minimum amount of execution
p that must execute before d1(tcur) in order to meet all future
deadlines. Then, the slack is set to the remaining time slots
except for p over the interval [tcur, d1(tcur)). To calculate p,
we use the similar approach as proposed for RT-DVS [26].
The underlying principle behind our slack calculation method
is that the EDF algorithm will determine a feasible schedule
if the utilization is less than or equal to 1.0 at any time [27].

Algorithm 1 Dynamic Slack Management Framework
1: Input: tcur, M ∈ {LC,HC}
2: Upon JOB RELEASE (Ji,j):
3: if M = HC and Ji,j is an LC job then
4: set RCi = 0
5: else
6: set RCi = CMi (si,j)
7: end if
8: Update-slack(SM (tcur, d1(tcur)))
9: Upon JOB COMPLETION (Ji,j):

10: set RCi = 0
11: Update-slack(SM (tcur, d1(tcur)))
12: During JOB EXECUTION (Ji,j):
13: if M = LC then
14: if RCi > 0 then
15: decrement RCi
16: else
17: if SLC(tcur, d1(tcur)) > 0 then
18: decrement SLC(tcur, d1(tcur))
19: else
20: Mode-switch(HC)
21: Update-slack(SM (tcur, d1(tcur)))
22: end if
23: end if
24: end if
25: if M = HC then
26: if Ji,j is an HC job then
27: decrement RCi
28: else if Ji,j is an LC job then
29: if SHC(tcur, d1(tcur)) > 0 then
30: decrement SHC(tcur, d1(tcur)) and RCi
31: else
32: drop Ji,j
33: end if
34: else if Idle then
35: Mode-switch(LC)
36: end if
37: end if

For LC-mode slack SLC(tcur, d1(tcur)), we examine all
tasks in reverse EDF order, i.e., latest deadline first (Line 4).
Note that tasks are indexed in EDF order (i.e., for τi and τk
where i < k, di(tcur) ≤ dk(tcur)). We assume that future
job invocations of all tasks require the worst-case utilization
under EDF-VD, which is ULτL +

UL
τH

x (Line 2). Under the
assumption, we allocate τi’s remaining execution RCi between
the earliest deadline d1(tcur) and its own deadline di until the
total utilization in the interval no greater than 1, and compute
the minimum amount of execution (denoted as qi) that must be
allocated before d1(tcur) in order to finish by its own deadline
(Line 12). A cumulative utilization U is adjusted to reflect the
actual utilization of τi after d1(tcur) (Line 13). This step is
repeated for all tasks. p is simply the sum of the qi values for
all tasks, and therefore reflects the total amount of execution
that must be done by d1(tcur) in order to meet their deadlines.
Then, we can calculate a lower bound of SLC(tcur, d1(tcur))
(denoted by S∗LC(tcur, d1(tcur))), by subtracting p from the

Algorithm 2 Update-slack function
1: Updating LC-mode slack:
2: U = ULτL + 1

x · U
L
τH

3: p = 0
4: for i = n to 1, τi ∈ {τ1, ..., τn|d1(tcur) ≤ · · · ≤

dn(tcur)} do
5: {In reverse EDF order of tasks}
6: if τi ∈ τL then
7: U = U − uL,max

i
8: end if
9: if τi ∈ τH then

10: U = U − uL,max
i

x
11: end if
12: qi = max

(
0, RCi − (1− U) · (di(tcur)− d1(tcur))

)
13: U = min

(
1.0, U + RCi−qi

di(tcur)−d1(tcur)
)

14: p = p+ qi
15: end for
16: S∗LC(tcur, d1(tcur)) = d1(tcur)− tcur − p
17: Updating HC-mode slack:
18: U = x · ULτL + UHτH
19: p = 0
20: for i = n to 1, τi ∈ {τ1, ..., τn|d1(tcur) ≤ · · · ≤

dn(tcur)} do
21: {In reverse EDF order of tasks}
22: if τi ∈ τH then
23: U = U − uH,max

i
24: qi = max

(
0, RCi−(1−U) ·(di(tcur)−d1(tcur))

)
25: U = min

(
1.0, U + RCi−qi

di(tcur)−d1(tcur)
)

26: p = p+ qi
27: end if
28: end for
29: S∗HC(tcur, d1(tcur)) = d1(tcur)− tcur − p

total interval length (Line 16).3

For HC-mode slack SHC(tcur, d1(tcur)), only HC tasks
contribute to p under the assumption that future job invocations
of HC tasks require the worst-case utilization of UHτH . Then, a
lower bound of HC-mode slack SHC(tcur, d1(tcur)) (denoted
by S∗HC(tcur, d1(tcur))) can be calculated in accordance with
the same procedure as shown above.

Note that LC- and HC-mode slacks are updated upon
either JOB RELEASE or JOB COMPLETION to reflect any
change of physical state or early completion. When a new job
Ji,j is released and becomes active, its remaining execution
time is assigned according to its physical state si,j , and the
slack values are updated to reflect this. Therefore, our dynamic
slack management enables to capture how the change in the
physical state of each task affects LC- and HC-mode slacks
and efficiently utilize available slacks at each criticality mode
to delay a mode-switch or LC job drops.

D. Analysis of Dynamic Slack Management

In this subsection, we will prove an important property of
Algorithm 1, which guarantees MC-schedulability.

3An example of illustrating slack calculation presented in Algorithm 2 is
provided in Appendix B (see Fig. 4) of the supplement file [24].

First, the following two lemmas state that Algorithm 1
does not cause any deadline miss in LC and HC modes,
respectively.

Lemma 5: Suppose that τ is scheduled by Algorithm 1
with EDF-VD. Also, suppose that Eq. (4) holds, MC-
schedulability is guaranteed until tcur, and the system is in
LC mode at tcur. Let J1 (if any) denote a job which performs
its HC-part execution for at most S∗LC(tcur, d1(tcur)) > 0 in
[tcur, d1(tcur)). If every job except J1 performs its LC-part
execution (and does not perform its HC-part execution) after
tcur, there is no job deadline miss.

Proof: We apply the fact that there is no job deadline miss
under EDF if the total utilization at any time is not greater than
1.0 [27], to the first inequality in Eq. (4) (originally from [7]).
Then, what we need to prove is that Algorithm 1 with EDF-
VD satisfies ULτL(t) +

1
x · U

L
τH (t) ≤ 1.0 for every t, where

ULτL(t) and ULτH (t) denote the sum of run-time LC utilization
of LC tasks and HC tasks, respectively, each of whose release
time is before t and deadline is after t.

Starting with setting the total static utilization of ULτL +
1
x · U

L
τH in Line 2 of Algorithm 2, the algorithm updates the

run-time utilization by Line 7 or 10, and Lines 12-13, and
calculates the largest qi that does not compromise ULτL(t) +
1
x · U

L
τH (t) ≤ 1.0 in Line 12, implying that the lemma holds.

Note that one may wonder why there is no scaling factor 1
x

(indicating the virtual deadline) in Lines 12-13 for HC tasks.
This is because, di is defined as the virtual deadline of HC
jobs, so the scaling factor is already reflected in Lines 12-13.

Lemma 6: Suppose that τ is scheduled by Algorithm 1
with EDF-VD. Also, suppose that Eq. (4) holds, MC-
schedulability is guaranteed until tcur, and the system is in HC
mode at tcur. Let J1 (if any) denote an LC job which performs
its LC-part execution for at most S∗HC(tcur, d1(tcur)) > 0 in
[tcur, d1(tcur)). If every HC job executes for at most its HC
WCET and every LC job except J1 does not execute at all
after tcur, there is no HC job deadline miss.

Proof: The proof is similar to that of Lemma 5. We now
prove that Algorithm 1 with EDF-VD satisfies x · ULτL(t) +
UHτH (t) ≤ 1.0 for every t, from [27] and the second inequality
of Eq. (4) (originally from [7]), where ULτL(t) and UHτH (t)
denote the sum of run-time LC utilizations of LC tasks and
that of run-time HC utilizations of HC tasks, respectively,
each of whose release times is before t and deadline is after
t.

Starting with setting the total static utilization of UHτH +
x · ULτL in Line 18 of Algorithm 2, the algorithm updates the
run-time utilization by Lines 23-25, and calculates the largest
qi that does not compromise x ·ULτL(t)+U

H
τH (t) ≤ 1.0 in Line

24, implying the lemma holds.

Combining the above two lemmas, the following theorem
states the MC-schedulability of Algorithm 1 with EDF-VD.

Theorem 1: Suppose that Eq. (4) holds for τ . Then, Algo-
rithm 1 with EDF-VD guarantees no job deadline miss.

Proof: By Lemmas 5 and 6, the theorem holds.

Runtime complexity for dynamic slack management.
For EDF-VD alone, a scheduler is invoked upon ar-
rival/preemption/completion of a job or a mode-switch. For our
proposed framework, the additional operations are summarized
as follows: 1) upon arrival/completion of a job or a mode-
switch, our framework updates the slack by Algorithm 2 with
the complexity of O(n), where n is the number of tasks; 2)
whenever an HC job requests more than its LC-part execution
in LC mode (which is the same instant of a mode-switch event
happened in EDF-VD), our framework allocates the slack to
the job with the complexity of O(1); and 3) whenever LC-
and HC-mode slacks become zero, our framework triggers a
mode-switch. Therefore, our framework requires O(n) runtime
complexity at job arrival/completion and mode-switch instants,
and generate one more event than EDF-VD. Note that EDF-VD
can be implemented with the runtime complexity of O(logn)
upon the same event that our framework works on (i.e.,
arrival/completion of a job or mode-switch). The additional
runtime overhead of our framework beyond EDF-VD comes
from the updating of slacks. We use an approach similar to
[17] for slack calculation. According to [17], the computation
cost of slack calculation is negligible, assuming the scheduler
provides a priority queue. We can also bound the number of
slack updates per job, thus accounting for the overhead of slack
calculation by adding it to the WCET value of each task.

VI. EVALUATION

We now demonstrate a significant improvement of
resource-efficiency by the proposed physical-state-aware dy-
namic slack management framework. We focus on resource-
efficiency in terms of the ratio of dropped LC jobs to all
released LC jobs. Therefore, we will look at how long a
mode-switch can be postponed and the number of LC jobs
that can be executed in HC mode without dropping. Note that
we do not compare the MC-schedulability since our approach
employs the existing virtual deadline assignment and does not
change the priority ordering of jobs determined by EDF-VD,
so we can achieve the same MC-schedulability as EDF-VD
can have.

We first show the experimental results for our case study
of an ADAS system presented in Section II. Then, we show
the extensive simulation results for synthetic task sets with
randomly generated parameters.

We compare the following three different approaches:

• Base: EDF-VD with the classic MC task model [1],

• Base-PHY: EDF-VD with the physical-state-aware
MC task model, and

• Base-PHY-DSM: EDF-VD with the physical-state-
aware dynamic slack management framework.

Under Base, all jobs of each task τi are always assigned
their resources based on CL,max

i and CH,max
i regardless of the

physical state and are scheduled under EDF-VD. Under Base-
PHY, all jobs are scheduled under EDF-VD, and a mode-switch
of each HC job Ji,j is determined based on CLi (si,j) without
slack usage. Under Base-PHY-DSM, all jobs are assigned their
resources according to their physical states and are scheduled
according to the physical-state-aware dynamic slack manage-
ment framework presented in Algorithm 1.

The following metrics are used to evaluate the performance
of the listed approaches above:

• Rdrop: the percentage of dropped LC jobs over all
released LC jobs,

• Nms: the number of mode-switch occurred,

• ILC : the average length of LC-mode interval between
mode-switch, and

• Sused: the amount of slack used for task execution.

A. Case Study: an ADAS system

We consider that both ACC and AVS are HC tasks
and run with other 4 LC tasks together.4 For simplicity,
we assume that the physical state of ACC or AVS can be
divided into two, i.e., either steady or transient states. However,
our physical-state-aware MC task model and dynamic slack
management framework can be applied to multiple physical
states without loss of generality. The physical state of each
component changes independently according to its sensing
data and control output as shown in Fig. 1. The periods of
ACC and AVS are set to 100ms. The LC and HC WCET
estimates at each physical state are set to the average- and
worst-case number of iterations, respectively. We assume that
each iteration requires up to 2ms. The actual execution time
traces for ACC and AVS are obtained from a real driving
scenario where a host vehicle follows a reference trajectory
including occasional double lane change maneuvers when the
preceding vehicle travels at a varying speed. In addition, we
generate 4 LC tasks according to the same procedure presented
in Section VI-B, and their parameters are shown in Table I.

We run a simulation for 80 seconds and compare Rdrop,
Nms, and ILC for Base and Base-PHY-DSM as shown in
Table II.5 Under Base, 13.7% of LC jobs are dropped, while
Base-PHY-DSM drops only 0.6% of LC jobs in HC mode.
Under Base-PHY-DSM, the number of mode-switches occurred
(Nms) is reduced by 16x, and the system operates in LC
mode 17x longer on average between mode-switch (ILC),
by utilizing 1,753 time units of slack as compared to Base.
Consequently, Base-PHY-DSM drops 21x less LC jobs than
Base does while guaranteeing MC-schedulability. Such an
improvement can be interpreted as the benefit of capturing
dynamic execution behavior according to the physical state
(by our physical-state-aware MC task model) when reclaiming
available resources and utilizing them corresponding to the
criticality mode on the fly (by our dynamic slack management).
As a result, Base-PHY-DSM can delay a mode-switch as much
as possible and significantly reduce the number of dropped
LC jobs.

4The task set configuration of our case-study is practical and representative
of ADAS. In an ADAS system, longitudinal and lateral controllers, i.e., ACC
and AVS, are key components, which are usually implemented with other
supporting components, such as monitoring and display tasks, which might
be considered as LC tasks [28].

5Note that Base-PHY is excluded for the case study since the result is
same as Base. This is because the iteration count is alway one in the steady
state for both ACC and AVS cases according to our experiment, so a mode-
switch does not occur in the steady state under either Base or Base-PHY.
Considering the transient state, Base and Base-PHY allocate the same
amount of resources to ACC and AVS tasks. However, the simulation results
of Base-PHY are included for synthetic task sets.

TABLE I. LC TASK PARAMETERS

(ms) LC task 1 LC task 2 LC task 3 LC task 4
Period Ti 200 200 80 50
CLi (si) {61, 17} {35, 10} {5, 2} {7, 3}

TABLE II. SIMULATION RESULTS OF A CASE STUDY

Rdrop Nms ILC Sused
Base 13.7 201 388 0

Base-PHY-DSM 0.6 12 6637 1753

B. Extensive simulations

Task set generation. We generate a synthetic task set
similarly in [4, 5], which can be summarized as follows.
The number of tasks is chosen among 4, 6, and 8. Each
task is generated based on the following parameters. Task
τi is an HC task with probability of 0.5 and has two
physical states, i.e., si ∈ {ai, bi}. Period Ti is chosen
in {20, 25, 40, 50, 80, 100, 200, 250, 400} as a representative
setting for automotive and avionics systems [4, 5]. Ci =
{CLi (ai), CHi (ai), C

L
i (bi), C

H
i (bi)} is determined by using the

UUniFast algorithm [29]. In particular, uLi (ai) of each task
τi is randomly generated such that

∑
i u

L
i (ai) = 0.7. Then,

uLi (bi) is uniformly chosen in [1, PF ·uLi (ai)], where PF = 2,
and uHi (si) is set to CF · uLi (si), where CF = 2.

We generate 100 task sets for each configuration of the
number of tasks (4, 6, and 8). Note that we only generate MC-
schedulable task sets under EDF-VD satisfying Eq. (4). For
each task set, we run a simulation for 100,000 time units with
the following runtime configuration. We set the probability of
the physical state change for a task (P (Phy)) to 0.1. At a
job release, we determine the physical state si,j of a job Ji,j
based on P (Phy). We also set the probability of showing HC
behavior for an HC task (P (HC)) to 0.1. If a job Ji,j shows
HC behavior, then the actual execution time of the job is
uniformly chosen in [CLi (si,j), C

H
i (si,j)], else it is uniformly

chosen in [0.7 · CLi (si,j), CLi (si,j)].

Simulation results. Table III shows the simulation results.
When the number of tasks (n) is 4, Base, Base-PHY, and Base-
PHY-DSM drop 5.4%, 8.6%, and 0.6% LC jobs, respectively.
Note that Base-PHY drops more LC jobs than Base does.
Under Base-PHY, a mode-switch of each HC job Ji,j is
triggered based on CLi (si,j), that is less than or equal to
CL,max
i , so a mode-switch is more likely to occur than Base,

where a mode-switch is determined based on CL,max
i . As we

can see in Table III, the number of mode-switches under Base-

TABLE III. SIMULATION RESULTS OF SYNTHETIC TASK SETS

n Rdrop Nms ILC Sused Njob

4
Base 5.4 157 2105 0

7878Base-PHY 8.6 272 971 0
Base-PHY-DSM 0.6 25 15146 894

6
Base 5.3 190 1069 0

11117Base-PHY 8.9 327 521 0
Base-PHY-DSM 0.2 14 21139 944

8
Base 7.1 276 500 0

14743Base-PHY 11.3 459 302 0
Base-PHY-DSM 0.2 10 28561 1045

0

10

20

30

40

50

60

1 2 3

Base Base-PHY Base-PHY-DSM

LC
 jo

b
 d

ro
p

 r
at

e
(%

)

Fig. 2. The percentage of dropped LC jobs over all released LC jobs

PHY is increased by 1.7x compared to Base. This implies
that, without a proper slack reclamation method, using the
physical-state-aware MC task model can result in even worse
performance. However, with our dynamic slack management
framework, Base-PHY-DSM effectively utilizes 894 time units
of LC-mode and HC-mode slacks (0.9% of the total sim-
ulation time) to reduce the number of mode-switches and
the number of dropped LC jobs. Therefore, Base-PHY-DSM
reduces the LC job drop rate by 9x and 14x of Base and
Base-PHY, respectively. A similar trend can be seen for n = 6
and 8.

One interesting observation is that the performance of
Base and Base-PHY is getting worse as the number of tasks
increases, while Base-PHY-DSM shows the opposite trend. For
example, as n increases from 4 to 8, Rdrop of Base is increased
from 5.4% to 7.1%, but Rdrop of Base-PHY-DSM is decreased
from 0.6% to 0.2%. As n increases, the number of total jobs
(Njob) increases as shown in the last column of Table III.
Then, there exist more HC jobs that can potentially show
HC behavior. Therefore, the number of mode-switches (Nms)
under Base and Base-PHY increases from 157 to 276 and
from 272 to 459, respectively, as n increases, leading to more
LC job drops. In contrast, under Base-PHY-DSM, it is more
effective to utilize slack as n increases. Since we generate task
sets to have the same utilization of

∑
i u

L
i (ai) = 0.7 for all

configuration of the number of tasks, each task in a task set
has less utilization as n increases. Therefore, we can execute
more jobs with the same amount of slack, leading to less LC
job drops under Base-PHY-DSM.

The percentage of dropped LC jobs for all cases of n = 4,
6, and 8 are shown in Fig. 2. The box in Fig. 2 represents
the range of values between quartiles (25 and 75 percentiles).
The horizontal line in the middle of the box is the median. The
vertical line shows the 5 and 95 percentiles. The average values
for Base, Base-PHY, and Base-PHY-DSM are 5.9%, 9.6%, and
0.3%, respectively, exhibiting 20x difference between Base
and Base-PHY-DSM.

VII. RELATED WORK

Since Vestal’s pioneering work [1] on MC systems, a large
number of studies have been done on MC real-time schedul-
ing. Many existing solutions [7, 30–32] share the pessimistic
strategy in which all LC jobs will be dropped immediately

once the system switches to HC mode. Other studies provide
a degraded service to LC tasks after a mode-switch, stretching
their periods [33, 34], lowering their priorities [33], or allowing
the execution of some LC jobs [35–37]. All of these studies,
however, use static resource allocation in that once a single
HC task executes beyond its LC-part execution, the system
switches to HC mode regardless of the amount of resources
available.

Some of recent studies [2–6] support dynamic resource
allocation, exploiting slack to reduce the pessimism of the
previous static approaches. Nevertheless, most studies [2–
4] consider a statically available slack derived by offline
schedulability tests. Santy et al. [2] proposed a method to
calculate a slack offline, allowing LC tasks to proceed with
their execution without compromising HC task execution. The
bailout protocol [4] utilizes the offline slack for a timely return
to LC mode in order to reduce the negative impact on LC
tasks. Niz and Phan [3] proposed a slack-based scheduling
algorithm for multi-modal mixed-criticality systems. Although
they considered a multi-mode environment in which some
tasks change their parameters, they assumed system-wide
sequential mode-changes. In contrast, we consider the situation
where each task may show a different execution behavior
according to each physical state, and hence multiple changes
of each task’s execution mode may take place over consecutive
jobs.

There have been a few studies [5, 6] that focus on dynamic
slack at runtime. Hu et al. [5] considered a runtime available
slack to delay a mode-switch. Gu and Easwaran [6] proposed
dynamic budget management that determines the amount of
low-criticality execution budget for each HC task at runtime
by considering the dynamic slack. They assumed that the total
amount of low-criticality execution budgets for all HC tasks
is statically assigned. Although those solutions utilize the dy-
namic slack to delay a mode-switch as much as possible, none
of them considered varying physical states when calculating
the dynamic slack.

VIII. CONCLUSION

In this paper, we formulated the problem of efficient utiliza-
tion of cyber resources under dynamically-changing physical
states in MC systems. To solve the problem, we introduced
a new MC task model that captures different physical states,
and then proposed slack concepts for the new MC task model.
Utilizing the model and the slack concepts, we developed a
physical-state-aware dynamic slack management framework
for EDF-VD, and demonstrated its efficiency in achieving
a significant reduction of the number of dropped LC jobs
over EDF-VD, via a case study and in-depth evaluation. In
future, we would like to consider physical-state-aware dynamic
virtual deadline assignment in order to explore the possibility
of enhancing MC-schedulability as well as resource-efficiency.

ACKNOWLEDGMENT

We are grateful to Shige Wang of GM R&D Center
for helpful comments. The work reported in this paper was
supported in part by the Office of Naval Research under
Grants N00014-15-1-2163 and N00014-18-1-2141, and the
National Science Foundation under Grant CNS-1329702. This

work was also supported in part by the National Research
Foundation of Korea (NRF) funded by the Ministry of Sci-
ence and ICT (2017R1A2B2002458, 2017H1D8A2031628,
2017K2A9A1A01092689).

REFERENCES

[1] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in RTSS, 2007.

[2] F. Santy, L. George, P. Thierry, and J. Goossens, “Relaxing mixed-
criticality scheduling strictness for task sets scheduled with FP,” in
ECRTS, 2012.

[3] D. de Niz and L. T. Phan, “Partitioned scheduling of multi-modal
mixed-criticality real-time systems on multiprocessor platforms,” in
RTAS, 2014.

[4] I. Bate, A. Burns, and R. I. Davis, “A bailout protocol for mixed
criticality systems,” in ECRTS, 2015.

[5] B. Hu, K. Huang, P. Huang, L. Thiele, and A. Knoll, “On-the-fly fast
overrun budgeting for mixed-criticality systems,” in EMSOFT, 2016.

[6] X. Gu and A. Easwaran, “Dynamic budget management with service
guarantees for mixed-criticality systems,” in RTSS, 2016.

[7] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
S. van der Ster, and L. Stougie, “The preemptive uniprocessor schedul-
ing of mixed-criticality implicit-deadline sporadic task systems,” in
ECRTS, 2012.

[8] D. Hrovat, S. D. Cairano, H. Tseng, and I. Kolmanovsky, “The devel-
opment of model predictive control in automotive industry: A survey,”
in CCA, 2012.

[9] Adaptive cruise control system using model predictive control. [Online].
Available: https://www.mathworks.com/help/mpc/examples/design-an-
adaptive-cruise-control-system-using-model-predictive-control.html

[10] Autonomous vehicle steering using model predictive control.
[Online]. Available: https://www.mathworks.com/help/mpc/examples/
autonomous-vehicle-steering-using-model-predictive-control.html

[11] M. S. K. Lau, S. P. Yue, K. V. Ling, and J. M. Maciejowski, “A compar-
ison of interior point and active set methods for FPGA implementation
of model predictive control,” in ECC, 2009.

[12] J. Kim, K. Lakshmanan, and R. Rajkumar, “Rhythmic tasks: A new task
model with continually varying periods for cyber-physical systems,” in
ICCPS, 2012.

[13] G. C. Buttazzo, E. Bini, and D. Buttle, “Rate-adaptive tasks: Model,
analysis, and design issues,” in DATE, 2014.

[14] A. Biondi, A. Melani, M. Marinoni, M. D. Natale, and G. Buttazzo,
“Exact interference of adaptive variable-rate tasks under fixed-priority
scheduling,” in ECRTS, 2014.

[15] R. I. Davis, T. Feld, V. Pollex, and F. Slomka, “Schedulability tests
for tasks with variable rate-dependent behaviour under fixed priority
scheduling,” in RTAS, 2014.

[16] Z. Guo and S. K. Baruah, “Uniprocessor edf scheduling of avr task
systems,” in ICCPS, 2015.

[17] D. de Niz, L. Wrage, N. Storer, A. Rowe, and R. Rajkumar, “On
resource overbooking in an unmanned aerial vehicle,” in ICCPS, 2012.

[18] D. Liberzon and A. S. Morse, “Basic problems in stability and design
of switched systems,” IEEE Control Systems Magazine, vol. 19(5), pp.
59–70, 1999.

[19] C. Liu and J. Layland, “Scheduling algorithms for multi-programming
in a hard-real-time environment,” Journal of the ACM, vol. 20, no. 1,
pp. 46–61, 1973.

[20] A. Mok, “Fundamental design problems of distributed systems for the
hard-real-time environment,” Ph.D. dissertation, Massachusetts Institute
of Technology, 1983.

[21] J. P. Lehoczky and S. Ramos-Thuel, “An optimal algorithm for schedul-
ing soft-aperiodic tasks in fixed-priority preemptive systems,” in RTSS,
1992.

[22] R.I.Davis, K.W.Tindell, and A. Burns, “Scheduling slack time in fixed
priority preemptive systems,” in RTSS, 1993.

[23] R. Jejurikar and R. Gupta, “Dynamic slack reclamation with procrasti-
nation scheduling in real-time embedded systems,” in DAC, 2005.

[24] H. S. Chwa, K. G. Shin, H. Baek, and J. Lee, “Supplement of
“physical-state-aware dynamic slack management for mixed-criticality
systems”,” https://kabru.eecs.umich.edu/wordpress/wp-content/uploads/
CSB18sub.pdf.

[25] S. Baruah and A. Burns, “Sustainable scheduling analysis,” in RTSS,
2006.

[26] P. Pillai and K. Shin, “Real-time dynamic voltage scaling for low-power
embedded operating systems,” in Proceedings of ACM Symposium on
Operating Systems Principles, 2001, pp. 89–102.

[27] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson, “Dynamic
integrated scheduling of hard real-time, soft real-time and non-real-time
processes,” in RTSS, 2003.

[28] L. Vlacic, M. Parent, and F. Harashima, Intelligent Vehicle Technolo-
gies: Theory and Applications. Butterworth-Heinemann, 2001.

[29] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-Time Systems, vol. 30(1-2), pp. 129–154, 2005.

[30] P. Ekberg and W. Yi, “Bounding and shaping the demand of mixed-
criticality sporadic tasks,” in ECRTS, 2012.

[31] S. Baruah, A. Burns, and R. Davis, “Response-time analysis for mixed
criticality systems,” in RTSS, 2011.

[32] A. Easwaran, “Demand-based scheduling of mixed-criticality sporadic
tasks on one processor,” in RTSS, 2013.

[33] A. Burns and S. Baruah, “Towards a more practical model for mixed
criticality systems,” in WMC, RTSS, 2013.

[34] H. Su and D. Zhu, “An elastic mixed-criticality task model and its
scheduling algorithm,” in DATE, 2013.

[35] J. Lee, H. S. Chwa, L. T. Phan, I. Shin, and I. Lee, “MC-ADAPT:
Adaptive task dropping with task-level mode switch in mixed-criticality
scheduling,” in EMSOFT, 2017.

[36] X. Gu, A. Easwaran, K.-M. Phan, and I. Shin, “Resource efficient
isolation mechanisms in mixed-criticality scheduling,” in ECRTS, 2015.

[37] J. Ren and L. T. X. Phan, “Mixed-criticality scheduling on multipro-
cessors using task grouping,” in ECRTS, 2015.

