
Closing the Gap between Stability and Schedulability:
A New Task Model for Cyber-Physical Systems

Hoon Sung Chwa and Kang G. Shin
Electrical Engineering and Computer Science

The University of Michigan, Ann Arbor, Michigan, U.S.A.
{hchwa,kgshin}@umich.edu

Jinkyu Lee
Department of Computer Science and Engineering

Sungkyunkwan University (SKKU), Republic of Korea
jinkyu.lee@skku.edu

Abstract—A cyber-physical system (CPS) usually contains
multiple control loops, each responsible for controlling different
physical subprocesses, that run simultaneously upon a shared
platform. The foremost design goal for CPSes is to guarantee
system stability and control quality with limited cyber resources.
We show, via an in-depth case study, that two inter-related design
parameters — sampling period and consecutive control update
misses — play a key role in determining stability and control
performance. However, most CPS designs, such as control–
schedule co-design and fault-tolerant scheduling, focus on either
sampling period or control update misses alone, but not both.
To remedy this problem, we propose a new CPS task model
that captures both system stability and control performance in
terms of sampling period and maximum allowable number of
consecutive control update misses. To demonstrate the utility
and power of this model, we develop two new scheduling
mechanisms, offline parameter assignment and online state-aware
scheduling. The former determines the sampling period and the
maximum allowable number of consecutive job deadline misses
for each task while preserving system stability. The latter then
generates a schedule by exploiting the state of each physical
subprocess to manage job deadline misses so as to improve
the overall system performance without compromising system
stability. Our in-depth evaluation results demonstrate that the
proposed task model and the corresponding scheduling algorithm
not only enable the efficient use of computing resource, but also
significantly improve control performance without compromising
system stability.

I. INTRODUCTION

Cyber-physical systems (CPSes) are engineered systems
consisting of physical and cyber/computational components,
where the operation of the former is controlled by the latter.
The main design challenge for CPSes is to provide tight
integration of physical and cyber components for efficient
resource utilization while guaranteeing system stability.

Cyber or physical components are abstracted with well-
known models, based on which numerous design and anal-
ysis techniques have been proposed. For example, based on
the well-known periodic hard real-time task model by Liu
and Layland [1], many real-time scheduling algorithms and
schedulability analyses have been developed to make deadline
guarantees with limited resources. Similarly, based on the
well-known state-space model [2], numerous control designs
and stability analyses have been proposed to make stability
guarantees. However, there exists a significant gap between
guaranteeing physical system stability and guaranteeing task
deadlines. For example, some control update misses may
not compromise the stability of a physical component, and

hence the associated components need not be treated as hard
real-time tasks. They will otherwise result in poor resource
utilization and control performance during runtime; not all
the resources that are needed to guarantee the execution of
an unncessarily “pessimistic” task model are required by its
physical counterpart, and a large fraction of the assigned cyber
resources remain unused during runtime.

We propose to close this gap between the physical and
cyber parts of CPSes by (i) identifying key parameters that
link the control and scheduling domains, (ii) understanding
the relationship between the key parameters and its impact
on control and scheduling performance, and (iii) exploiting
the relationship for system design. As an initial step to solve
this problem, we find, from a case study, that sampling period
and consecutive control update misses are tightly coupled and
play key roles in system stability and control performance for
a physical plant. Specifically, each physical plant has its own
limit on the number of consecutive update misses before losing
stability, and the limit varies with sampling period. In general,
a shorter sampling period allows the plant to tolerate more
consecutive update misses. Moreover, different combinations
of these two parameters yield different quality of control.
We, therefore, identify a trade-off between tuning sampling
period and managing update misses in terms of the amount
of cyber resources required for system stability and control
performance. Thus, the overall control performance can be
improved significantly while using a minimal amount of cyber
resources for system stability by making such a trade-off in
task parameter assignment and scheduling.

Although many researchers have considered either sam-
pling period or control update misses, the relationship between
the two has not yet been fully explored and exploited to
improve control performance under resource constraints. A
majority of existing studies [3–12] in control–schedule co-
design have focused on how to determine task periods and
deadlines so as to maximize control performance. However,
they all assume a strict/hard guarantee of every deadline and
overlook the inherent robustness of physical systems to control
update misses, yielding pessimistic results or resource over-
provisioning. By relaxing such hard real-time guarantees, a
few researchers proposed new task models [13–17] that capture
the tolerance of some deadline misses and the corresponding
scheduling approaches [18–23]. However, they have not yet
exploited the relationship between the task period and the
tolerable number of consecutive deadline misses, and instead
treated the task period as a fixed and unchangeable parameter
although the periods of typical control tasks can be adjusted

without losing system stability.

To fill this gap, we investigate the benefits achieved by con-
sidering both task period and the number of consecutive control
update misses together, and taking their interplay into account
for management of cyber resources. Our goal is to optimize
the overall control performance while guaranteeing system
stability with limited resources. Specifically, we propose a
new CPS task model that can capture possible combinations
of sampling period and the number of consecutive control
update misses without losing stability, and estimate the control
performance for each configuration of the two parameters.
Based on the new CPS task model, we develop new scheduling
mechanisms: optimal parameter assignment and online state-
aware scheduling. The former finds the optimal combination
of the two parameters for each task in a given task set
such that the worst-case control performance is maximized
without losing stability. For a given parameter assignment, the
online state-aware scheduling algorithm takes into account the
current state of each physical plant and adaptively manages job
deadline misses for each task in order to maximize the overall
control performance without compromising stability. Our in-
depth evaluation results show that the proposed approach
outperforms the existing period assignment/adjustment signif-
icantly in terms of schedulability and control performance.
Our approach is shown to make 39% and 54% more control
task sets schedulable without losing stability and also improve
control performance by up to 71% and 197%, respectively,
over the existing static period assignment and dynamic period
adjustment.

This paper makes the following main contributions:

• An in-depth case study that reveals the relationship
between task period and the number of consecutive
control update misses, and its connection to the stabil-
ity and control performance of a physical component
(Section III);

• Development of a new task model that captures the
stability requirement and control performance in terms
of sampling period and the maximum allowable num-
ber of consecutive control update misses (Section IV);

• Development of offline task parameter assignment that
significantly improves the overall system performance
without losing stability (Section V);

• Development of online state-aware scheduling that en-
ables dynamic management of control update misses
for each task by considering the actual states of the
physical components (Section VI); and

• Demonstration of the effectiveness of the proposed
scheduling approaches in terms of resource efficiency
and control performance (Section VII).

II. RELATED WORK

Control–schedule co-design. Considerable efforts have
been made on control–scheduling co-design. The seminal
paper by Seto et al. [3] formulated this co-design as an
optimal task-period assignment problem so as to maximize
control performance while guaranteeing tasks’ schedulability.
Subsequent studies extended the period-assignment problem

by taking control delays [4, 5] and jitters [6] into account
and by determining not only task periods but also dead-
lines [7]. Aminifar et al. [8] considered the effect of delay
and jitter on the stability of physical plants and developed
period assignment and scheduling schemes to ensure stability.
Palopoli et al. [9] proposed the notion of stability radius and
developed an algorithm to determine periods and feedback
gains based on the stability radius. Khatib et al. [24] considered
the problem of synthesizing a set of timing contracts that
guarantee both stability and schedulability. In addition to these
offline resource-allocation schemes, several researchers [10–
12] presented online period-adjustment schemes that dynami-
cally change the periods of control tasks based on their phys-
ical plant states. Although these control–schedule co-design
schemes considered the effects of scheduling parameters on
control performance and system stability, they all focused on
the stringent requirement of meeting all deadlines by following
the traditional notion of schedulability.

Fault-tolerant scheduling. A few researchers considered
relaxation of the strict hard real-time guarantees. Palopoli et
al. [25] showed via a case study that considering control tasks
as soft real-time threads, as opposed to enforcing hard real-
time constraints, can improve control performance. Others [18–
21] proposed fault-tolerant controller designs that allow oc-
casional control signal drops for distributed control systems.
Majumdar et al. [22] derived bounds of the fraction of control
signal drops to guarantee plant stability, and this work was
later extended in [26] to account for network packet losses
and develop a dynamic scheduler. Yoshimoto and Ushio [23]
introduced a job skipping mechanism to minimize control
performance while guaranteeing stability under overloaded
situations. However, all these fault-tolerant scheduling schemes
are based on the assumption that scheduling parameters includ-
ing task periods are fixed or given.

Our proposal. Although researchers have shown that either
adjusting task periods or allowing some deadline misses can
improve control performance without compromising stability,
the interaction between task periods and deadline misses —
despite its importance in CPSes — has not been considered
before. To fill this gap, we first conduct an in-depth case study
to examine the relationship between task periods and deadline
misses in terms of stability and control performance. We then
propose a new general task model capable of expressing the
relation, and develop a new scheduling mechanism that (i)
jointly determines task periods and manages deadline misses
to improve control performance without losing stability and
(ii) utilizes limited cyber resources efficiently.

III. MOTIVATION AND GOAL

We first present a case study to demonstrate the relation
between period and control update misses in terms of stability
and control performance, and then provide our motivation and
goal for our new task model and scheduling schemes thereof.

A. The System

We consider a typical CPS composed of multiple inde-
pendent physical plants controlled by cyber components (or
feedback controllers). Their sampling periods may be different
from each other. Each controller is implemented as a periodic

(a) Adaptive cruise control system (b) Lane keeping system (c) DC-servo control system

Fig. 1. Stability region of each physical plant as a function of sampling period and the number of maximum consecutive control update misses.

control task whose period equals its sampling period and runs
upon a shared uniprocessor platform. Basically, each control
task samples the state of its plant at every sampling instant,
computes a control input, and applies it to the plant; this
process is repeated periodically. Scheduling control tasks on
the platform will update the control input with some delays and
jitters. If the control input is computed within a sampling pe-
riod [tk, tk+1), the update is made at the next sampling instant
tk+1. On the other hand, if the computation is not completed
within a sampling period, the uncompleted computation will be
abandoned, thus leading to a control update miss. In case of a
control update miss, the most recent past update will be used
instead, as commonly done in existing control designs [18–
23]. In case of one update miss, the control input is held
constant between two consecutive sampling periods using a
zero-order hold. We assume that the algorithm used in each
control task is designed to account for the time delay between
control updates. We also assume that the relative deadline of
a task equals its period and all tasks are preemptive.

We consider an autonomous vehicle system — a prototyp-
ical CPS — consisting of three types of physical plants, in-
cluding adaptive cruise control [27], lane keeping control [28],
and DC-servo control [29] loops. The adaptive cruise control
loop periodically adjusts the vehicle speed to maintain a safety
distance from the vehicle in front. The lane keeping control
loop affects lateral position and steering angle of the vehicle.
The DC-servo control loop modifies the acceleration of a
rotating servo motor. The details of these plants’ dynamics
and design parameters are provided in Appendix B of the
supplement file [30].

B. Motivation

Via this case study, we investigate the effects of task period
and control update misses on a physical plant. In particular, we
gain the following physical intuitions that motivate the need
for a new task model and its applications.

M1. The stability region of a physical plant is determined
with respect to its sampling period and the number of
consecutive control update misses, and there exists a
relationship between these two parameters. In particu-
lar, as the sampling period becomes shorter, the plant
can tolerate more consecutive control update misses.
This relationship can be exploited to achieve stability

with much less resources by assigning a short period
and then allowing more deadlines misses.

M2. Control performance also depends on both the sam-
pling period and the number of consecutive control
update misses. In some cases, we can improve control
performance by decreasing the sampling period and
allowing a few update misses, as long as the two
parameters are within the stability region.

Next, we take a closer look at these two observations and
provide the rationale behind our new task model and associated
scheduling mechanisms.

M1. We derive the stability region of a physical plant as a
function of sampling period T and the number of maximum
consecutive control update misses m. The dynamics of a
physical plant can be described by a general linear discrete-
time model [2]. We then use a well-known stability analysis [2]
to calculate the relationship between T and m.1 Fig. 1 shows
the stability region in (m,T)-plane for each physical plant.
The stability region is plotted by incrementally increasing m
and T and performing the stability analysis. If the plant is
stable, a point is marked at the corresponding location of the
stability region. One can see from the stability region that a
shorter sampling period (i.e., a higher sampling rate) allows
the plant to tolerate more consecutive update misses. On the
other hand, as the sampling period gets longer, less consecutive
update misses or even stricter control updates are required for
stability. For example, in case of the adaptive cruise control,
when T = 100ms, the plant can tolerate up to 3 consecutive
control update misses, while it can tolerate up to 10 update
misses when T = 40ms. Note that when T > 140ms, the
plant even with one update miss becomes unstable.

It is important to observe that stability can be achieved with
much less resources by allowing more deadline misses with a
shorter period. We define an effective control update period
as the time interval between two consecutive control updates
in the presence of control update misses. If up to m control
updates are missed for a given sampling period T , the effective
control update period is (m+1)·T . For example, in case of the
adaptive cruise control as shown in Fig. 1(a), when m = 0,
the maximum effective control update period without losing
stability is 171ms, while when m = 1, the maximum effective

1Due to space limitation, the details of the physical plant dynamics and
stability analysis are provided in Appendix A of the supplement file [30].

(a) Adaptive cruise control system (b) Lane keeping system (c) DC-servo control system

Fig. 2. Control performance index calculated by Eq. (1) as a function of sampling period and the number of consecutive control update misses.

control update period is 280ms ((1 + 1) · 140 = 280). When
m = 10, it becomes even larger, i.e., 451ms ((10 + 1) · 41 =
451). This indicates that the physical plant can tolerate a longer
effective control update period by assigning a short period and
then allowing more deadline misses as opposed to allowing no
deadline miss. Therefore, stability can be achieved with much
less resources by exploiting such a relationship for scheduling.

M2. The control performance of a physical plant can be
captured by a standard quadratic performance index [31]:

J =

N∑
k=0

1

T

∫ (k+1)T

kT

y(t)2dt. (1)

where N is the total number of sampling intervals each of
which is T seconds, and y(t) is the control output.2 The
performance index J represents an accumulated state error,
i.e., a deviation from the desired state. A larger J indicates
a larger deviation from the desired states, or worse control
performance.

Fig. 2 (with only stable points plotted) illustrates the
performance index as a function of the sampling period and the
number of consecutive control update misses. The figure shows
that the control performance degrades as both the sampling
period and the number of consecutive update misses increase.

Note that allowing more update misses with a shorter
period tends to yield better control performance than a longer
period with less update misses. For example, in case of the
adaptive cruise control as shown in Fig. 2(a), when m = 0
and T = 120ms, the performance index is 1.0, while it is
0.58 when m = 5 and T = 20ms. Note that the effective
control update periods of both cases are the same as, and
equal to 120ms. To understand such a tendency, let us consider
two example cases when (i) the sampling period is T and the
number of consecutive update misses is 2 (see Fig. 7(a) in
Appendix of the supplement file [30]), and (ii) the sampling
period is extended by 3x and no update is missed (see
Fig. 7(b)). As shown in Fig. 7, the effective control update
periods of both (i) and (ii) would be the same as, and equal
to 3 · T . However, the accuracy of each control update is
different because cases (i) and (ii) use T and 3·T time-units old
states, respectively. For example, the first updates in Figs. 7(a)
and 7(b) are made with States 3 and 1, respectively, while they

2The detailed derivation of the performance index can be found in Appendix
A of the supplement file [30].

are applied at the same time. This difference yields different
effects of adjusting periods and controlling update misses on
control performance. Likewise, the observation in M1 can be
reasoned about. It is worth noting that M1 and M2 also hold for
other types of physical plants, i.e., the lane keeping system and
DC-servo control systems, although specific relations between
periods and tolerable update misses slightly differ from each
other.

C. Goal

Ideally, for each individual control task, a shorter period
with no update miss guarantee provides better control per-
formance as confirmed in the above case study. However,
when multiple control tasks share and hence compete for
limited computational resources as in typical CPSes, it may
not possible to let each individual task run with the best
configuration. Moreover, without a proper scheduling decision,
it may cause significant performance degradation or even
system instability since the execution of a task is affected by
the execution of the other tasks. Thus, it is essential to capture
the effect of task parameters on system stability and control
performance and then schedule control tasks to achieve high
control performance while guaranteeing stability.

Our case study has shown that both period and the number
of maximum consecutive update misses are the primary task
parameters affecting stability and control performance, and are
also related to each other. Specifically, each physical plant
has a limit on the number of consecutive update misses to
preserve its stability, and the limit varies with the period of its
corresponding control task. The control performance of each
plant is affected by these two parameters. More importantly,
there exists a trade-off between adjusting period and allowing
consecutive update misses in terms of the amount of resources
required for ensuring stability (M1) and control quality (M2).
Thus, it is possible to improve the overall control performance
while using resources efficiently to guarantee stability by
making such a trade-off.

Our goal is, therefore, to achieve optimal control per-
formance while guaranteeing system stability with limited
resources by considering the relationship between period and
consecutive update misses for the parameter assignment and
scheduling of control tasks. To meet this goal, we propose
a new task model that captures the relationship between
sampling period and control update misses in terms of stability

and control performance, and then develop a new scheduling
mechanism associated with the new task model.

IV. NEW CPS TASK MODEL

We now introduce a new CPS task model and elaborate on
its benefits in comparison with existing task models. Then, we
present the overview of our approach to address the scheduling
problems associated with the new task model.

A. The New CPS Task Model

We propose a new task model that captures the number
of maximum tolerable consecutive control update misses and
its relationship with the sampling period in terms of stability
and control performance. Each control task τi is specified by
control- and scheduling-related parts:

• The control-related part of τi is characterized by a
set of stable pairs {(mi, [T

min
i (mi), T

max
i (mi)])},

where each pair represents the maximum number of
tolerable consecutive deadline misses (mi), mmin

i ≤
mi ≤ mmax

i , and its corresponding minimum and
maximum periods (Tmini (mi) and Tmaxi (mi)) as a
function of mi without losing stability. Each con-
trol task is also specified by the performance in-
dex function Ji(mi, Ti) in Eq. (1), where Ti ∈
[Tmini (mi), T

max
i (mi)]; and

• The scheduling-related part of τi is characterized by
(Ti, Ci, Di, mi), where Ti is the actual period, Ci is
the worst-case execution time, and Di is the relative
deadline equal to Ti.

The set of stable pairs and the parameters in each pair for
τi are known a priori via the stability region shown in Fig. 1,
whereas Ti and mi are the design parameters to be determined.
Ci is also assumed known. Each task τi is assumed to generate
a potentially infinite sequence of jobs every Ti time-units.
Once each job is released and put into the ready queue, we
consider it as active, and such an active job needs to complete
Ci units of work within a relative deadline of Di time-units.
If an active job cannot finish its execution by its deadline, a
deadline miss3 occurs. Note that the CPS task model is more
general than the classical real-time task model [1]. In fact, a
task having mi = 0 and Tmini (mi) = Tmaxi (mi) = Ti is
equivalent to a hard real-time task with a fixed period.

B. Why not existing task models?

Several existing task models allow some job deadline
misses, such as (m, k)-firm deadline model [14], skip-over
model [15], weakly-hard task model [16], dropout task
model [32], and periodic CPS task model [17]. For example,
in the (m, k)-firm deadline model, a task allows up to k −m
deadlines to be missed during any k consecutive job intervals.
The periodic CPS task model specifies a number of tolerable
consecutive job deadline misses and its corresponding cost of
missed deadlines for each task. Although these task models
are designed to capture the tolerance to missed deadlines,
they assume a fixed task period and hence cannot capture the

3It refers to the same situation as a control update miss.

interplay between period and tolerable deadline misses with
respect to stability and control performance.

Besides such fault-tolerant models, there are other task
models proposed to accommodate more general task param-
eters, such as elastic task parameters [33], imprecise compu-
tation workload [34], period-deadline selection [35], control-
driven execution rules [36]. Since these task models do not
allow any deadline miss, they cannot capture the relationship
between period and tolerable deadline misses in terms of
stability and control performance.

Unlike the above existing models, our task model can
capture all possible combinations of period and the number of
tolerable consecutive deadline misses without losing stability
and estimate the control performance for each configuration.
This provides more flexibility in task scheduling and system-
wide optimization in parameter assignment while considering
individual control task requirements. Thus, our model facili-
tates more cost-effective system design that makes better use of
the available resources to improve control performance while
guaranteeing system stability, as demonstrated in Section VII.

Note that one may argue that a task with period Ti and
consecutive deadline misses mi is equivalent to a hard real-
time task with period (mi + 1) · Ti and relative deadline
Ti, which is not true. The former samples the plant state
once every Ti time-units and can try a control update at
every Ti before missing mi deadlines consecutively, potentially
resulting in a higher control update frequency than the latter
which can only update its control every (mi+1)·Ti. Therefore,
our model represents control loops more accurately and offers
a more general form of control updates.

C. Problem Statement and Approach Overview

We want to maximize the overall control performance
without compromising stability for each control task with
limited resources. Building upon our new CPS task model,
we consider the following two problems:

P1. The optimal parameter assignment problem that de-
termines the period and the number of maximum
allowable consecutive deadline misses for each control
task such that the worst-case control performance is
maximized while guaranteeing stability; and

P2. The online state-aware scheduling problem that gener-
ates an actual schedule by considering the current state
of each physical plant and dynamically controlling
job deadline misses based on the plant state so as
to maximize the overall system performance without
compromising stability.

The major challenges in addressing P1 and P2 arise from
two facts: i) the stability guarantee depends on both parameter
assignment and schedule generation, and ii) control perfor-
mance also varies with the current state of each physical
plant. For ease of meeting these challenges, we separate the
parameter assignment from schedule generation as follows. We
define the notion of critical job of a control task that makes the
most significant impact on the stability of its physical plant,
i.e., if a critical job misses its deadline, the physical plant
becomes unstable. To solve P1, we assume a static minimal
job schedule where only critical jobs are scheduled excluding

the execution of non-critical jobs. We derive an exact condition
that all critical jobs of a task meet their deadlines under the
static minimal job schedule for a given pair of period and the
number of maximum consecutive deadline misses. Building
upon the exact condition for guaranteeing the stability of each
physical plant, we formulate the parameter assignment as an
optimization problem such that the sum of control performance
indices is minimized under the minimal job schedule. We also
propose a 2-step approach to efficiently reduce the search space
of the optimization problem. To solve P2, building upon the
solution to P1, we relax the assumption of a minimal job
schedule and develop an online scheduling algorithm that takes
the current state of a physical plant into account and selectively
chooses non-critical jobs to execute at runtime by utilizing
slack resources so as to further optimize control performance
without compromising the schedulability of critical jobs. We
provide an efficient analysis scheme to determine the execution
of a non-critical job by using runtime information without
checking all possible future critical job release patterns.

V. OFFLINE PARAMETER ASSIGNMENT

To solve the offline parameter assignment problem, we
need to answer the following two questions. For a given control
task set τ running on a uniprocessor platform,

Q1. How to find a stable parameter assignment of mi and
Ti for every τi ∈ τ such that every corresponding
physical plant πi remains stable when its control task
is scheduled with the assignment of {mi} and {Ti}?

Q2. Among stable parameter assignments, how to find a
performance-optimal parameter assignment of {mi}
and {Ti} such that the sum of control performance
indices

∑
i Ji(mi, Ti) is minimized?

To answer Q1, we introduce necessary conditions for a task
set to be stable from both control and scheduling perspectives.
From an individual control plant perspective, we derived the
stability region of a physical plant πi in the (mi, Ti)-plane by
considering the dynamics of πi as shown in Fig. 1. Therefore,
a pair of (mi, Ti) must be within the stability region of πi
in order for the physical plant to be stable. This requirement
specifies the lower and upper bounds of mi and Ti:

C1: mmin
i ≤ mi ≤ mmax

i , ∀τi
C2: Tmini (mi) ≤ Ti ≤ Tmaxi (mi), ∀τi.

Note that the lower and upper bounds of Ti in C2 depend on
the value of mi.

From a control task scheduling perspective, we need to
consider the meaning of the stability of a physical plant in
terms of its corresponding control task. For a task τi with
parameters mi and Ti satisfying C1 and C2, a job of τi is said
to be critical if it is released after missing mi consecutive
job deadlines of τi (see Fig. 3). Then, the following lemma
describes how the schedule of τi relates to the stability of its
corresponding physical plant πi.

Lemma 1: A physical plant πi is stable if for task τi with
a given pair of mi and Ti and its schedule, every critical job
of τi meets its deadline.

Fig. 3. The notion of a critical job of a task τi and release patterns of critical
jobs when mi = 2.

Proof: If every critical job of τi meets its deadline,
by definition, τi misses no more than mi consecutive job
deadlines any time instant. This implies that its physical plant
πi is stable.

According to Lemma 1, in order to derive the necessary
condition for a physical plant to be stable, we need to decide
if all critical jobs of τi given by a schedule are schedulable.
However, it is difficult to determine whether all critical jobs
are schedulable because, by definition, a critical job changes
dynamically depending on whether a non-critical job misses its
deadline (see Fig. 3). Besides, the amount of interference on a
critical job of τi may vary upon the execution of non-critical
jobs of higher priority tasks. Therefore, it is difficult to find
a critical job that receives the largest amount of interference
among all critical jobs of τi. To meet this challenge effectively,
we assume a static minimal job schedule where only critical
jobs are scheduled. Under the static minimal job schedule, the
release pattern of τi’s critical jobs can be viewed as the one of
a constrained-deadline periodic task with period (m+ 1) · Ti,
the worst-case execution time Ci, and deadline Ti as shown in
Fig. 3(a). Such a view allows the direct use of a well-known
exact schedulability analysis for the constrained-deadline peri-
odic task model, such as response-time analysis and processor-
demand analysis, to check if critical jobs of τi are schedulable.
In this paper, we consider deadline-monotonic (DM) fixed-
priority scheduling,4 where critical jobs are scheduled in non-
decreasing order of relative deadlines. Then, we use the exact
response-time analysis [37] to check whether all critical jobs
are schedulable under the static minimal job schedule. This
analysis becomes a necessary condition for a physical plant to
be stable:

C3: Rx+1
i = Ci +

∑
k∈hp(i)

⌈ Rxi
(mk + 1) · Tk

⌉
Ck ≤ Di, ∀τi

where hp(i) is the set of higher-priority tasks than τi. The left-
hand side of the inequality in C3 is an iterative formula starting
with an initial value R0

i = Ci and ending when Rx+1
i ≤ Rxi

(for schedulable), or Rx+1
i > Rxi (for unschedulable).

It is worth noting that, depending on controller implemen-
tation, every job of τi, including non-critical jobs, may have
the minimum required execution time regardless of the control
update. In such a case, the minimum necessary computation
demand for τi can be modeled as another separate task τ ′i with

4Note that DM is an optimal fixed-priority scheduling algorithm for
constrained-deadline periodic tasks running on a uniprocessor.

period T ′i = Ti, the minimum execution time C ′i, deadline
D′i = Ti, and m′i = 0, and can be included in the static
minimal job schedule. With this view, C3 can be directly
extended to this case.

The following theorem presents the necessary conditions
for system stability.

Theorem 1: Suppose every control task τi in a task set τ is
assigned mi and Ti to satisfy C1, C2, and C3, and scheduled
by the static minimal job schedule with DM scheduling. Then,
its corresponding physical plant πi is stable.

Proof: If every task τi satisfies C1 and C2, a pair of mi

and Ti is within the stability region of πi. If τi also satisfies C3,
every critical job of τi meets its deadline. Then, by Lemma 1,
its corresponding physical plant πi is stable.

To address Q2, we formulate parameter assignment as an
optimization problem subject to the necessary conditions (C1,
C2, and C3) for stability derived in Q1. Thus, the optimization
problem that minimizes the sum of control performance indices
without losing stability is stated as:

Minimize
∑
i

Ji(mi, Ti) (2)

s.t. C1: mmin
i ≤ mi ≤ mmax

i , ∀τi
C2: Tmini (mi) ≤ Ti ≤ Tmaxi (mi), ∀τi

C3: Rx+1
i = Ci +

∑
k∈hp(i)

⌈ Rxi
(mk + 1) · Tk

⌉
Ck ≤ Di, ∀τi.

Note that {mi} and {Ti} for every τi ∈ τ are variables to
be determined, where mi is an integer variable. The optimiza-
tion problem in Eq. (2) involves integers and complex func-
tions, such as iteration and ceiling operators, making it difficult
to solve. Hence, we use well-known optimization techniques,
such as genetic algorithms [38] and simulated annealing [39],
both of which have been shown to be effective in solving
numerous optimization problems. However, a main difficulty
in applying these techniques is that the time required to solve
the problem increases rapidly with the number of variables and
constraints. To reduce the search space efficiently, we use the
following observation:

Observation 1: i) The upper bound of period (Tmaxi (mi))
is a monotonically decreasing function of the number of
consecutive deadline misses mi, meaning that Tmaxi (ma

i) ≥
Tmaxi (mb

i) for mmin
i ≤ ma

i < mb
i ≤ mmax

i . ii) Increasing
period Ti for a given mi only worsens control performance.

Based on this observation, we propose a two-step approach:

1) Limit the number of consecutive deadline misses to
0, i.e., mi = 0, for all tasks (instead of C1) and find
{Ti} that minimizes the sum of performance indices
while satisfying C2 and C3, using the optimization
techniques.

2) Set the upper bound of Ti in C2 as derived in the
previous step, relax the assumption mi = 0 (consider
C1), and find both {mi} and {Ti} by setting the
initial solution as derived in the previous step and
applying the optimization techniques again.

VI. ONLINE STATE-AWARE SCHEDULING

So far, we have discussed how to determine period and
the maximum number of consecutive deadline misses for each
task τi when executed on a shared platform. We now consider
how to schedule the tasks and control their job deadline
misses online in order to enhance control performance while
guaranteeing stability. Specifically, upon every task invocation,
we need to decide whether or not to schedule its job for
execution. If the current job of τi is not critical then we may
or may not execute it, else we have no option but to insert it
into the ready queue.

One simple way is to run only critical jobs as was
done in the offline parameter assignment. Although such a
deterministic scheduling algorithm guarantees stability and
control performance, there still remains room for performance
improvement by executing non-critical jobs as well, because
executing non-critical jobs only decreases the state errors of
their physical plants with more frequent control updates using
the latest (accurate) state samples instead of old (inaccurate)
ones. To this end, we develop an online state-aware scheduling
algorithm that selectively chooses non-critical jobs to execute
at runtime in order to improve control performance while
meeting the deadlines of all critical jobs. In particular, the
control performance improvement by executing non-critical
jobs was found to depend on the current physical plant state.
So, we take the runtime state of each physical plant into
account and want to answer the following questions.

I1. How many and which non-critical jobs to execute so
as to maximize control performance?

I2. How to ensure that the execution of non-critical jobs
will not compromise the deadline guarantees of all
critical jobs?

We present below a state-aware scheduling algorithm that
addresses the above questions.

Algorithm 1 (State-aware scheduling algorithm): The
scheduler is invoked upon (i) release of a new job (JOB
RELEASE), or (ii) completion of a job (JOB COMPLETION).
The scheduler maintains two types of queue; one for active
jobs released and determined to be scheduled according to
priority (ready queue), and the other for non-critical jobs
released but not scheduled (wait queue). In case of a JOB
RELEASE event, if the newly released job is critical, then
it is directly placed into the ready queue, else it goes to
the wait queue and waits there to be moved to the ready
queue. Upon each invocation (either JOB RELEASE or JOB
COMPLETION), our scheduling algorithm checks whether
some jobs in the wait queue can be moved to the ready
queue and scheduled by using available slack resources. In
particular, if there exists a job in the wait queue satisfying
Lemmas 2 and 3, we move the job to the ready queue. If
there are multiple jobs in the wait queue, they are ordered
according to the current state errors of their corresponding
physical plants (i.e., deviations from the desired state). We
choose a job in decreasing order of the amount of error, i.e.,
the job with the largest error first. Then, the jobs in the ready
queue are scheduled under the DM scheduling policy.

In order to check the possibility of executing a non-critical
job, we need to address I1 and I2. Let Jci denote a candidate

Fig. 4. Upper-bounds on the amount of execution of critical jobs of τk
released after t.

non-critical job of τi to be moved to the ready queue Qr at
time t. Regarding I1, putting Jci into Qr is beneficial only
if its execution is completed before its deadline. Otherwise,
the computed control input cannot be applied to its physical
plant, thus wasting resources. Let Qr(t) be the set of active
jobs in Qr at time t. Regarding I2, all jobs in Qr(t) and all
critical jobs not in Qr(t) but to be released in future must meet
their deadlines even if Jci is added to Qr(t). We first derive a
sufficient condition for any job Jpj in Qr(t) to be schedulable.
Suppose no non-critical job will be added to Qr after time t.
The execution of Jpj will be blocked by either the remaining
execution of higher priority jobs in Qr(t) or the execution of
higher priority critical jobs to be released in the future. Let
Ck(t) be the remaining execution time of an active job of τk
at time t, and WCk(l) denote an upper-bound on the amount
of execution of critical jobs of τk in an interval of length l
such that the interval starts at one of the release times of τk’s
critical jobs. Fig. 4 illustrates the scenario of WCk(l), where
critical jobs of τk are released every (mk + 1) · Tk time-units
starting at the beginning of the interval. By considering the
jobs fully executing for Ck and the last job executing for at
most Ck, we can calculate the WCk(l) as:

WCk(l) =
⌊ l

(mk + 1) · Tk

⌋
· Ck +min(Ck, l mod (mk + 1) · Tk).

(3)

Using Ck(t) and WCk(l), the following lemma can guar-
antee the schedulability of every job in Qr(t) ∪ {Jci } under
fixed-priority scheduling.

Lemma 2: Suppose every job Jpj in Qr(t)∪{Jci } satisfies
the following condition. Then, Jci and all jobs in Qr(t) are
schedulable under fixed-priority scheduling unless any non-
critical job is added to Qr after t.

∑
τk∈hp(j)

(
Ck(t) +WCk(max(dpj − rk(t), 0))

)
+ Cj(t) ≤ dpj − t,

(4)

where hp(j) is a set of higher priority tasks than τj , d
p
j is the

absolute deadline of Jpj , and rk(t) is the earliest possible next
release time of a critical job of τk at time t.5

5Note that rk(t) can be calculated as the time at which τk was last released
plus (mk + 1) · Tk .

Proof: We will prove that the execution of Jpj will be
completed by dpj if Inequality (4) holds. In order for Jpj to
finish its execution by dpj , the sum of its remaining execution
time Cj(t) and the interference imposed by higher priority
jobs during [t, dpj) must be less than or equal to dpj − t.
We consider two sources of the interference: (a) one by the
execution of higher-priority jobs in Qr(t) and (b) the other by
the execution of higher-priority critical jobs released after t.
In case (a), the execution of higher-priority jobs in Qr(t) in
[t, dpj) is upper-bounded by

∑
τk∈hp(j) Ck(t). In case (b), if

dpj < rk(t), no critical job of τk will be executed in [t, dpj),
leading to WCk(min(dpj − rk(t), 0)) = 0. Otherwise, by
definition, WCk(dpj−rk(t)) is an upper-bound of the execution
of critical jobs of τk in [rk(t), dpj), and no critical job of τk
released after t is executed in [t, rk(t)) as shown in Fig. 4(a).
This implies that Jpj will finish its execution by dpj if Inequality
(4) holds, thus proving the lemma.

In addition to Lemma 2, we must guarantee the schedu-
lability of all critical jobs released in future. However, there
exist an infinite number of such critical jobs, and it is non-
trivial to find a critical job that receives the largest amount
of interference among all critical jobs released after time t.
This is because the synchronous arrival sequence becomes no
longer the critical instant due to the execution of non-critical
jobs. Instead, we prove that at time t, it is sufficient to check
only the schedulability of the critical job of τj that will be
released earliest, denoted as Jqj (see Lemma 4).

The following lemma guarantees the schedulability of Jqj .

Lemma 3: Suppose Jqj satisfies the following condition at
time t. Then, Jqj are schedulable under fixed-priority schedul-
ing unless any non-critical job is added to Qr after t.

max
(∑
τk∈hp(j)

Ck(t)− (rj(t)− t), 0
)

+
∑

τk∈hp(j)

WCk(max(rj(t) + Tj − rk(t), 0)) + Cj ≤ Tj . (5)

Proof: This lemma can be proved similarly as Lemma 2.
See the details in Appendix C of the supplement file [30].

The following lemma guarantees the schedulability of all
other critical jobs of τj released after Jqj .

Lemma 4: Suppose a task τj satisfies Lemma 3 at time t
and C3 presented in Section V. Then, all critical jobs of τj
that will be released after t are schedulable under fixed-priority
scheduling unless any non-critical job is added to Qr after t.

Proof: By definition, Lemma 3 guarantees the schedu-
lability of the critical job Jqj of τj that will be released the
earliest after t. C3 presented in Section V calculates the worst-
case response time of τj (denoted as R∗j), where only critical
jobs are scheduled. We will prove that for every critical job
Jrj of τj that will be released after Jqj , its response time
should be less than, or equal to R∗j . Otherwise, Jqj misses
its deadline, which contradicts our assumption. We consider
two scenarios where the response time of Jrj is greater than
R∗j : (a) the execution of non-critical jobs in Qr(t) ∪ {Jci }
directly delays the execution of Jrj (direct interference), and
(b) the execution of non-critical jobs in Qr(t) ∪ {Jci } delays

TABLE I. CONTROL TASK PARAMETERS

The number of Period (Ti)
deadline misses (mi) (ms)

Adaptive cruise
{1, 2, 4, 8, 12}

{20 : 20 : 160}
Lane keeping {10 : 10 : 80}

DC-servo {10 : 10 : 90}

the execution of critical jobs of higher priority than Jrj , which
in turn delays the execution of Jrj (indirect interference). Case
(a) is possible only if there exists any remaining execution of
higher-priority non-critical jobs in Qr(t)∪{Jci } at the release
time of Jrj , denoted as rrj . This implies that there is no idle time
instant in [t, rrj), and thus the job Jqj released earlier than rrj
could not finish its execution by its deadline. This contradicts
our assumption. In case (b), if Jqj meets its deadline by the
assumption, then there exist at least Cj time-units where no
higher-priority jobs will be executed during [rj(t), rj(t)+Tj).
This implies that the execution of every higher-priority critical
job released after rj(t) +Tj cannot be deferred further by the
execution of non-critical jobs in Qr(t) ∪ {Jci }, meaning that
the response time of Jrj cannot be greater than R∗j .

Based on Lemmas 2, 3, and 4, the following theorem de-
rives an important property of our online state-aware schedul-
ing algorithm.

Theorem 2: Our online state-aware scheduling algorithm 1
guarantees to schedule not only all critical jobs of each task
but also all non-critical jobs placed into the ready queue.

Proof: Trivially, the theorem holds at time 0. Suppose the
theorem holds at time t. Upon next invocation of either JOB
RELEASE or JOB COMPLETION, our scheduling algorithm
checks Lemmas 2 and 3 to see if the wait queue is not
empty. A non-critical job can put into the ready queue only
if the following conditions are satisfied: (a) the job itself is
schedulable (by Lemma 2), (b) all non-critical jobs already in
the ready queue are schedulable (by Lemma 2), and (c) all
critical jobs are schedulable (by Lemmas 3 and 4). Otherwise,
it cannot put into the ready queue.

Time complexity. Let nc denote the number of control
tasks in a task set. At each invocation (either JOB RELEASE
or JOB COMPLETION), Algorithm 1 checks Lemmas 2 and 3
for each job in the wait queue. In Lemma 2, it checks Eq. (4)
for every job in the ready queue that requires O(n2

c). The same
holds for Lemma 3. There exist at most nc jobs in the wait
queue. Thus, the complexity of Algorithm 1 is O(n3

c).

VII. EVALUATION

We now demonstrate the capability of the proposed task
model and scheduling approaches making a significant im-
provement of control performance and resource-efficiency. We
use two metrics: schedulability ratio and control performance
index. The schedulability ratio is defined as the percentage of
schedulable task sets of the total number of generated task
sets by using an algorithm. The control performance index is
defined in Eq. (1), which represents the difference between
actual and desired states. The larger the performance index,
the worse the control performance.

A. Simulation Setup

Task set generation. In our simulation, we consider the
autonomous vehicle control system shown in our case study
(Section III). There are three control tasks — adaptive cruise
control (denoted by τ1), lane keeping control (denoted by τ2),
and DC-servo control (denoted by τ3) tasks — which run with
hard real-time tasks on a uniprocessor platform. According to
the stability region shown in Fig. 1, the set of possible values
for the number of consecutive deadline misses (mi) and period
Ti are specified in Table I. For example, for the adaptive cruise
control task τ1, m1 is chosen among 1, 2, 4, 8, and 12, and
T1 is chosen from 20ms to 160ms with increments of 20ms.
Note that for each value of mi, the upper bound of Ti, i.e.,
Tmaxi (mi) is set, corresponding to the stability region in Fig. 1.
Also, note that all values shown in Table I are derived from
the real vehicle dynamics and the setting shown in Appendix
B of the supplement file [30]. We set the worst-case execution
times to C1 = C2 = C3 = 15ms.

In addition to the control tasks, we generate hard real-time
tasks by using the UUniFast algorithm [40], which has been
widely used for the generation of uniprocessor synthetic task
sets. We generate 910 hard real-time task sets in total while
varying their total utilization of tasks from 0.1 to 1.0 with
an incremental step of 0.1. The details of hard real-time task
set generation are provided in Appendix D of the supplement
file [30]. For each generated hard real-time task set ΓH , we
add the above three control tasks ΓC and complete the task
set generation (Γ = ΓC ∪ ΓH).

With the generated task sets, we compare the following
four different scheduling approaches:

• Our-PA-SAS: offline parameter assignment in Eq. (2)
and online state-aware scheduling in Algorithm 1;

• Our-PA: offline parameter assignment under static
critical-job-only scheduling;

• DPA-EDF: dynamic period adjustment under earliest
deadline first (EDF) [11]6; and

• SPA-RM: static period assignment under RM.7

Note that other related techniques for dynamic period
adjustment and static period assignment (mentioned in Sec-
tion II) are not included in this comparison, since they
focus on different directions for performance improvement.
For example, some of them considered different types of
scheduling algorithms or performance indices [10], and others
considered the impact of jitter and delay on the control
performance [4–6, 12]. In contrast, we aim to compare the
performance improvement of our proposed approaches against
period assignment/adjustment under hard deadline constraints
without considering other factors that affect performance.
Our proposed approaches can be extended to consider other
scheduling algorithms, such as EDF, and jitter and delay
effects, but it is left as our future work.

6DPA-EDF dynamically changes task periods at runtime without violating
EDF constraints, i.e., the total utilization must be not greater than 1. In
particular, we use the optimal policy shown in Eq. (17) in [11], where at
any time t, the control task whose physical plant faces the largest state error
is assigned its period as short as possible while assigning longest possible
periods to the other control tasks.

7SPA-RM solves the optimization problem in Eq. (2) by fixing mi = 0.

0%

20%

40%

60%

80%

100%

0 0.2 0.4 0.6 0.8 1

Sc
h

ed
u

la
b

ili
ty

 r
at

io

The utilization of hard tasks

Our-PA-SAS/Our-PA

DPA-EDF

SPA-RM

Fig. 5. Schedulability ratio with different utilizations of hard real-time tasks.

0

10

20

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pe
rf

o
rm

an
ce

 in
d

ex

The utilization of hard tasks

Our-PA-SAS
Our-PA
DPA-EDF
SPA-RM

Fig. 6. Control performance with different utilizations of hard real-time tasks

B. Simulation Results

Our proposed approach is evaluated in terms of schedula-
bility as well as control performance.

Schedulability. Fig. 5 compares the percentage of schedu-
lable task sets by four scheduling approaches while varying the
total utilization of hard real-time tasks UΓH

from 0 to 1. Both
Our-PA-SAS and Our-PA find 39% and 54% more schedulable
task sets than DPA-EDF and SPA-RM, respectively.8 The perfor-
mance gap between Our-PA-SAS/Our-PA and DPA-EDF/SPA-
RM is shown to become larger as UΓH

increases. As UΓH

increases, less resources (1−UΓH
) become available for control

tasks. Note that the minimum possible value of the total utiliza-
tion for control tasks UminΓC

is 15/160+15/80+15/90 ≈ 0.45
when no deadline miss is allowed. Both DPA-EDF and SPA-RM
cannot find any schedulable task set when UminΓC

+ UΓH
> 1

(i.e., UΓH
≥ 0.6), since they assume that no deadline miss

is allowed when assigning control task periods. On the other
hand, using Our-PA-SAS/Our-PA, 83% and 15% of the task
sets are schedulable at UΓH

= 0.7 and 0.8, respectively.
Such an improvement can be interpreted as the benefit of
taking the effect of periods and deadline misses on system
stability into account (by our new task model) when assigning
a pair of period and the number of maximum consecutive
deadline misses (by our offline parameter assignment). As a
result, Our-PA-SAS and Our-PA can accommodate more control
tasks without compromising system stability under limited
computing resources.

Control performance. To evaluate control performance,
for each task set, we simulate the response of each control
plant for 30 seconds, and calculate the performance index
shown in Eq. (1). To emulate set-point changes and external
disturbances for each control plant, random disturbances are
generated at 3-second intervals and added to the input of

8Note that in terms of schedulability, Our-PA-SAS and Our-PA show the
same performance since both are based on the offline parameter assignment
in Eq. (2), but they show differences in control performance due to use of
different scheduling algorithms as shown later.

each control plant.9 Fig. 6 compares the performance index
of four scheduling schemes with different values of UΓH

.
Our-PA-SAS is shown to outperform the existing schemes
for all UΓH

values. Our-PA-SAS and Our-PA are shown to
dominate SPA-RM, because our offline parameter assignment
uses the solution of SPA-RM as an initial input to the opti-
mization process according to the two-step approach presented
in Section V. When there exist only control tasks in the
task set, i.e., UΓH

= 0, the performance improvement by
Our-PA-SAS is relatively marginal, since a sufficiently short
period can be assigned to every control task by fully utilizing
the total processing capacity. However, the performance gap
between Our-PA-SAS and other schemes becomes larger as
less resources become available for control tasks. For example,
when UΓH

= 0.6, Our-PA, DPA-EDF, and SPA-RM show 13%,
71%, and 197% worse performance than Our-PA-SAS. Due to
limited resources available for control tasks, SPA-RM assigns
a longer period to each control task to meet all deadlines, and
DPA-EDF also has a limited range of adjustable periods. On
the other hand, Our-PA-SAS and Our-PA assign a relatively
shorter period and hence allow a few deadline misses. So,
a period assignment along with proper online management
of deadline misses yields better control performance than a
period assignment/adjustment under hard deadline constraints.
The performance improvement of Our-PA-SAS over Our-PA is
also observed to increase as UΓH

increases. As UΓH
increases,

Our-PA determines the parameters of each control task to
allow more deadline misses in order to guarantee stability,
implying that more non-critical jobs wait to be scheduled by
Our-PA-SAS. Meanwhile, it is more likely to have less slack
resources available to non-critical jobs. Nevertheless, Our-PA-
SAS selects proper non-critical jobs to schedule by considering
their current plant states online, and thus yields up to 32%
better performance than Our-PA. Note that our simulation
assumes every job consumes its worst-case execution time.
If we consider the case where each job finishes its execution
earlier than expected, Our-PA-SAS can further improve control
performance by utilizing more slack resources to schedule
more non-critical jobs, whereas Our-PA cannot.

VIII. CONCLUSION

We have found that sampling period and the number of
consecutive job deadline misses must be considered together to
maximize control performance without compromising the sta-
bility of a CPS, and then presented three components that ad-
dress this issue. First, we have developed a new task model that
captures the relation between the two key parameters. Second,
we have derived an optimal static parameter assignment pol-
icy that maximizes the worst-case control performance while
guaranteeing stability. Third, we have developed an online
scheduling algorithm that utilizes the current state of a CPS
and dynamically controls job deadline misses, making control
performance improvement without compromising stability. Our
evaluation results demonstrated that online control update
management along with appropriate parameter assignment by
exploiting the relationship between period and deadline misses
makes a significant improvement of both control performance
and schedulability.

9For real vehicle scenarios, it is possible to apply well-known traffic analysis
tools, such as NGSIM [41] and CarSim [42], to obtain real-world vehicle
trajectory data. We leave it as part of our future work.

ACKNOWLEDGMENT

The work reported in this paper was supported in part
by the Office of Naval Research under Grants N00014-
15-1-2163 and N00014-18-1-2141, and the National Sci-
ence Foundation under Grant CNS-1329702. This work was
also supported in part by the National Research Foun-
dation of Korea (NRF) funded by the Ministry of Sci-
ence and ICT (2017R1A2B2002458, 2017H1D8A2031628,
2017K2A9A1A01092689).

REFERENCES

[1] C. Liu and J. Layland, “Scheduling algorithms for multi-programming
in a hard-real-time environment,” Journal of the ACM, vol. 20, no. 1,
pp. 46–61, 1973.

[2] K. J. Astrom and B. Wittenmark, Computer-controlled systems.
Prentice-Hall, Inc., 1997.

[3] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin, “On task schedulability
in real-time control systems,” in RTSS, 1996.

[4] E. Bini and A. Cervin, “Delay-aware period assignment in control
systems,” in RTSS, 2008.

[5] Y. Xu, K.-E. Arzen, A. Cervin, E. Bini, and B. Tanasa, “Exploiting
job response-time information in the co-design of real-time control
systems,” in RTCSA, 2015.

[6] A. Cervin, B. Lincoln, J. Eker, K.-E. Arzen, and G. Buttazzo, “The jitter
margin and its application in the design of real-time control systems,”
in RTCSA, 2004.

[7] Y. Wu, G. Buttazzo, E. Bini, and A. Cervin, “Parameter selection for
real-time controllers in resource-constrained systems,” IEEE Transac-
tions on Industrial Informatics, vol. 6(4), pp. 610–620, 2010.

[8] A. Aminifar, S. Samii, P. Eles, Z. Peng, and A. Cervin, “Designing
high-quality embedded control systems with guaranteed stability,” in
RTSS, 2012.

[9] L. Palopoli, C. Pinello, A. S. Vincentelli, L. Elghaoui, and A. Bicchi,
“Synthesis of robust control systems under resource constraints,” in
Proceedings of Hybrid Systems: computation and control, 2002.

[10] A. Cervin, J. Eker, B. Bernhardsson, and K.-E. Arzen, “Feedback-
feedforward scheduling of control tasks,” Real-Time Systems, vol. 23,
pp. 25–53, 2002.

[11] P. Marti, C. Lin, S. A. Brandt, M. Velasco, and J. M. Fuertes, “Opti-
mal state feedback based resource allocation for resource-constrained
control tasks,” in RTSS, 2004.

[12] R. Castane, P. Marti, M. Velasco, A. Cervin, and D. Henriksson, “Re-
source management for control tasks based on the transient dynamics
of closed-loop systems,” in ECRTS, 2006.

[13] P. Ramanathan, “Overload management in real-time control application
using (m, k)-firm guarantees,” IEEE Transactions on Parallel and
Distributed Systems, vol. 10, no. 6, June 1999.

[14] M. Hamdaoui and P. Ramanathan, “A dynamic priority assignment
technique for streams with (m, k)-firm deadlines,” IEEE Transactions
on Computers, vol. 44, no. 12, pp. 1443–1451, 1995.

[15] G. Koren and D. Shasha, “Skip-over: Algorithms and complexity for
overloaded systems that allow skips,” in RTSS, 1995.

[16] G. Bernat, A. Burns, and A. Llamosi, “Weakly hard real-time systems,”
IEEE Transactions on Computers, vol. 50, no. 4, pp. 308–321, 2001.

[17] J. Lee and K. G. Shin, “Development and use of a new task model for
cyber-physical systems: A real-time scheduling perspective,” Journal of
Systems and Software, vol. 126, pp. 45–56, 2017.

[18] M. S. Branicky, S. M. Phillips, and W. Zhang, “Scheduling and feedback
co-design for networked control systems,” in Proceedings of the 41st
IEEE Conference on Decision and Control, 2002.

[19] M. Kauer, D. Soudbakhsh, D. Goswami, S. Chakraborty, and A. M.
Annaswamy, “Fault-tolerant control synthesis and verification of dis-
tributed embedded systems,” in DATE, 2014.

[20] D. Goswami, R. Schneider, and S. Chakraborty, “Relaxing signal delay
constraints in distributed embedded controllers,” IEEE Transactions on
Control Systems Technology, vol. 22(6), pp. 2337–2345, 2014.

[21] D. Soudbakhsh, L. T. Phan, O. Sokolsky, I. Lee, and A. Annaswamy,
“Co-design of control and platform with dropped signals,” in ICCPS,
2013.

[22] R. Majumdar, I. Saha, and M. Zamani, “Performance-aware scheduler
synthesis for control systems,” in EMSOFT, 2011.

[23] T. Yoshimoto and T. Ushio, “Optimal arbitration of control tasks by job
skipping in cyber-physical systems,” in ICCPS, 2011.

[24] M. A. Khatib, A. Girard, and T. Dang, “Scheduling of embedded
controllers under timing contracts,” in HSCC, 2017.

[25] L. Palopoli, L. Abeni, F. Conticelli, M. D. Natale, and G. Buttazzo,
“Real-time control system analysis: an integrated approach,” in RTSS,
2000.

[26] I. Saha, S. Baruah, and R. Majumdar, “Dynamic scheduling for net-
worked control systems,” in HSCC, 2015.

[27] G. Guo and W. Yue, “Sampled-data cooperative adaptive cruise control
of vehicles with sensor failures,” IEEE Transactions on Intelligent
Transportation Systems, vol. 15(6), pp. 2404–2418, 2014.

[28] D. Soudbakhsh and A. Eskandarian, Handbook of Intelligent Vehicles.
Springer London, 2012.

[29] A. Cervin and P. Alriksson, “Optimal on-line scheduling of multiple
control tasks: A case study,” in ECRTS, 2006.

[30] H. S. Chwa, K. G. Shin, and J. Lee, “Supplement of “closing the gap be-
tween stability and schedulability: A new task model for cyber-physical
systems”,” https://kabru.eecs.umich.edu/wordpress/wp-content/uploads/
CSL18sub.pdf.

[31] A. Cervin and J. Eker, “Control-scheduling codesign of real-time sys-
tems: The control server approach,” Journal of Embedded Computing,
vol. 1(2), pp. 209–224, 2005.

[32] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, and V. Verdugo, “A
scheduling model inspired by control theory,” in RTNS, 2017.

[33] G. Buttazzo, G. Lipari, and L. Abeni, “Elastic task model for adaptive
rate control,” in Proceedings of IEEE Real-Time Systems Symposium,
1998.

[34] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, “Optimal
reward-based scheduling for periodic real-time tasks,” IEEE Transac-
tions on Computers, vol. 50(2), pp. 111–130, 2001.

[35] T. Chantem, X. Wang, M. Lemmon, and X. S. Hu, “Period and deadline
selection for schedulability in real-time systems,” in ECRTS, 2008.

[36] M. Velasco, P. Marti, and E. Bini, “Control-driven tasks: Modeling and
analysis,” in RTSS, 2008.

[37] N. Audsley, A. Burns, M. Richardson, and A. Wellings, “Applying new
scheduling theory to static priority pre-emptive scheduling,” Software
Engineering Journal, vol. 8, no. 5, pp. 284–292, 1993.

[38] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley Longman Publishing Co., Inc.,
1989.

[39] P. J. M. van Laarhoven and E. H. L. Aarts, Simulated annealing: theory
and applications. Kluwer Academic Publishers, 1987.

[40] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-Time Systems, vol. 30(1-2), pp. 129–154, 2005.

[41] Next generation simulation (NGSIM) vehicle trajectories. [Online].
Available: https://catalog.data.gov/dataset/next-generation-simulation-
ngsim-vehicle-trajectories

[42] CarSim mechanical simulation. [Online]. Available: https://www.
carsim.com/

