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ABSTRACT
Thanks to their great success as a green urban transportation means
of first/last-mile connectivity, bike sharing service (BSS) networks
has been proliferating all over the globe. Their station (re)placement
and dock resizing has thus become an increasingly important prob-
lem for bike sharing service providers.

In contrast to the use of conventional labor-intensive user sur-
veys, we propose a novel optimization framework called CBikes,
(re)configuring the BSS network with crowdsourced station sug-
gestions from online websites. Based on comprehensive real data
analyses, we identify and utilize important global trip patterns
to (re)configure the BSS network while balancing the local biases
of individual feedbacks. Specifically, crowdsourced feedbacks, sta-
tion usage history, cost and other constraints are fused into a joint
optimization of BSS network configuration. We further design a
semidefinite programming transformation to solve the bike sta-
tion (re)placement problem efficiently and effectively. Our evalu-
ation has demonstrated the effectiveness and accuracy of CBikes
in (re)placing stations and resizing docks based on 3 large BSS sys-
tems (with more than 900 stations) in Chicago, Twin Cities, and
Los Angeles, as well as related crowdsourced feedbacks.
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1 INTRODUCTION
With the advent of smart cities/communities and Internet of Things
(IoTs), the urban sharing economy has been evolving very rapidly.
In particular, bike sharing service (BSS) has emerged as one of the
most popular and revolutionary powers that change the people’s
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urban life/health. Bike sharing enables the first/last-mile urban
travel to be more economic, greener and healthier than traditional
gasoline-engine-powered vehicle riding. City transportation also
benefits from additional network of bike stations with less hassle
of traffic planning.

Experiencing deployment successes and receiving positive feed-
backs, many BSS providers have begun expanding their BSS net-
works. For example, Divvy bicycle sharing program in Chicago, IL
is adding another 40 stations and 400 new bicycles in 2017. Mean-
while, Citi Bike in New York City is embracing another 2,000 bikes
and 140 stations starting from September, 2017. On the other hand,
there exist BSS network shrinkages (at a micro or macro scale) for
financial, event, seasonal or meteorological reasons. With dynamic
bike usage and complexity of urban environments, how to expand
and shrink, or (re)configure the existing network of BSS stations be-
comes increasingly important for the service providers. As stations
and bicycles are dynamically added/deleted/resized during the BSS
(re)configuration, the station relocation, or “station (re)placement”
(i.e., add, move or remove a station), as well as their dock resizing
becomes challenging, involving more thorough site investigation
and labor-intensive user surveys.

To leverage the collective knowledge from the BSS users [15, 33],
service providers have attempted to crowdsource various station
placement comments via their own websites. Interested users can
easily pinpoint, comment and vote for various potential station
locations on an interactive map. This way, the BSS systems can
easily and timelily obtain many online feedbacks for their next stage
expansion or shrinkage, while reducing their traditional survey and
investigation costs significantly.

Despite its importance, however, how to (re)configure the BSS
network based on the aforementioned crowdsourced comments
is still very challenging and remains an open problem. From the
data perspective, the first challenge lies in the heterogeneity of
information inputs. Crowdsourced feedbacks usually provide local,
fragmented suggestions due to each individual’s limited geographic
scope, while network (re)configuration needs global knowledge of
user mobility and station-to-station dynamics. How to incorporate
the local suggestions/comments together is important and should
thus be considered carefully. As all stations are “linked” by users’
trips, from the user’s perspective, the second challenge stems from
their trip tendency. Overcrowded or inadequate network placement
and ignorance of popular station-station pairs for users’ commute
may discourage cyclists, thus lowering usage. From the platform’s
perspective, since web crowds are enabled with large freedom to
label locations they want, addressing such naturally-noisy/biased
crowdsourced inputs becomes the third challenge, which should be
considered by a joint fusion formulation.
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To address above challenges, we propose CBikes, a Crowd-
sourced Bike sharing Station network (re)configuration frame-
work using information fusion and joint optimization. Specifically,
CBikes converts BSS network (re)configuration into a graph match-
ing problem. CBikes is a centralized framework and integrates local
crowdsourced suggestions with global historical bike usage data
upon a geographical map. Each vertex (station) of the graph (net-
work) is matched against this spatially and temporally-varying map
of fused knowledge, subject to edges (links) or trips from others.
We then formulate a joint optimization problem to balance among
crowd satisfaction, platform utility, and (re)configuration cost.

CBikes makes the following major contributions:
• Comprehensive (re)configuration analysis & data-driven designs:
We analyze extensive real data of several BSS (re)configuration
cases. We derive important and practical data-driven designs,
including user trip tendencies and inter-station distance con-
straints, and integrate them in CBikes.

• Information fusion & joint optimization for BSS (re)-configuration:
We propose a novel optimization framework which jointly con-
siders multi-modal data from crowdsourcing and platform-usage
statistics for BSS (re)configuration. We first formulate a grid-
based candidate selection and graph matching problem, then
transform it into a novel semidefinite programming (SDP) form,
and finally solve it efficiently and effectively.

• Extensive experimental evaluation: Our CBikes prototype has
been evaluated with significant amounts of real data (of more
than 900 stations) from 3 premium BSS systems in Chicago, IL,
Twin Cities, MN and Los Angeles, CA. These comprehensive
studies validate the effectiveness and accuracy of CBikes in
optimizing station (re)configuration given crowdsourced inputs.

Despite focus on BSS systems, CBikes can be extended to other shar-
ing/connected vehicle network (re)configuration, including parking
lot decisions for car-sharing [35], gas station redeployment [30]
and charging station expansion for electric vehicles [17].

This paper is organized as follows. After reviewing related work
in Sec. 2, we overview the system framework and important con-
cepts for our problem in Sec. 3. Then, Sec. 4 presents (re)configuration
analysis and data-driven designs, followed by the core problem
formulation and novel optimization framework in Sec. 5. Sec. 6
provides experimental evaluations, while Sec. 7 discusses some
deployment limitations. The paper finally concludes with Sec. 8.

2 RELATEDWORK
We briefly review the related work in the areas of urban computing,
station placement and bike sharing systems.

Urban computing & information fusion: Urban computing [35]
aims to improve social life quality under the trend of speedy ur-
banization. With faster computing, smarter IoTs and more sens-
ing data, many urban transportation problems have been rede-
fined intelligently and efficiently. CBikes serves as a novel cross-
domain knowledge fusion technique [34], unleashing the data-
driven and crowdsourcing power [9, 16, 33] to look at traditional
site (re)configuration for emerging bike sharing [10, 11].

Site placement & expansion: Due to the recent boom of intelligent
transportation, site placement, including gas stations [30], ambu-
lance points [35], and electric vehicle charging docks [17] has been
investigated to improve their social and business values.

Note that our work is different from the problems of placing
stores [27], gas or electric charging stations [17], since we are given
crowdsourced comments and usage statistics from already-deployed
stations to (re)configure the BSS network, thus making their initial
station placement not directly applicable to our problem. Our joint
optimization and crowdsourced fusion are also complementary to
emerging urban dynamics [29] and functional zone inference [20],
and their studies can be integrated with ours for further refinement
of results. Unlike others estimating geographical dependencies
of real estate [12], CBikes considers users’ trip tendency (pick-
up/drop-off) between the bike stations.

Bike sharing systems & services: Recent popularity of BSS has trig-
gered many interesting studies, such as mobility and demand pre-
diction [20, 28, 31], station re-balancing [19], lane planning [5], trip
recommendation and station deployment [18, 20]. However, few of
state-of-the-art studies considered optimizing the (re)configuration
of existing BSS network with crowdsourced knowledge. Orthogonal
to the important spatial-temporal modeling for real-time bike de-
mand prediction (including dynamic geographical, meteorological
or seasonal factors) [19, 20, 28], CBikes focuses on fusing long-
term batched station usage [25, 36] with aggregated crowdsourced
feedbacks, for periodic network (re)configurations. Note that our
(re)configuration can be done monthly, seasonally or annually
subject to the urbanization process, profit, cost and the service
provider’s own customization.

Many factors may influence the success of (re)configuration [31,
36], including human-built facilities (quality/availability), natural
environments (like topography, season or weather [28]), socio-
economic or psychological considerations (say, social norms or
habits), and utility (cost and travel time). Though it is very challeng-
ing to design a complete model, incorporating historical spatial-
temporal usages, large-scale crowdsourced preferences and refined
cost metric would be a good way to accommodate these factors.

In contrast to recent approaches to BSS deployment [20, 32],
we propose a generic optimization framework that accommodates
both network expansion and reduction using data-driven designs
and novel semidefinite programming [7]. CBikes adopts a flexible
formulation fusing crowdsourced knowledge with historical usage
statistics jointly, and accounts for interactions of users and stations,
thus adapting much better to complex station correlations.

Our study is also orthogonal to emerging station-free BSS sys-
tems [5]. CBikes can be used for station-free BSS if each parked
bike is considered a “dock-less station”. However, as unregulated
parking may still prevent its wide acceptance by social-norm, we
will not consider it any further in this paper.
3 SYSTEM & CONCEPTS
We present the basic CBikes framework (Sec. 3.1) and introduce
important definitions of CBikes (Sec. 3.2).
3.1 System Framework
Fig. 1 shows the components and layers of CBikes. Specifically,
CBikes consists of 4 consecutive layers for computing bike station
(re)configuration: input, design, core and action layers. At the input
layer (Sec. 4.1), historical station-usages, crowdsourced feedback
of station expansion/shrinkage suggestions, as well as predefined
costs are collected and delivered to a central server, pre-processed
and then stored into databases. Note that other practical geographic
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Figure 1: The system framework flow of CBikes.
design concerns or constraints, including the number of service
bikes and accessible station deployment areas, are also inputted
by the service provider, processed and stored. Our focus here is to
develop a generic optimization framework, given the above primary
and secondary information.

At design layer (Sec. 4), we then form the joint objective functions,
and integrate map information and station geographic distances
into constraints. Finally, we formulate a joint optimization frame-
work, transform and solve it at core layer (Sec. 5), optimizing station
sites with respect to predefined map grids. Guided by the results of
the action layer, the service provider may (re)place stations and re-
size their docks. In case results are not satisfactory, the parameters
can be tuned interactively for another optimization trial.
3.2 Important Concepts
We elaborate on the important terms, concepts or definitions for
our mathematical formulation. Formally, we have
Definition 1. Bike station network (BSN): Each station i is repre-
sented bySi = (lati , loni ,κi ) (i ∈ {1, . . . ,M}), where tuple [lati , loni ]
denotes its geographic coordinates and κi is its capacity (κi ≥ 0). De-
note the location of each Si as a 2×1 vector li = [lati , loni ]

T , and
let L = [l1, l2, . . . , lM ]T be theM×2 coordinate matrix of all stations
on the map. Given a set of M geographical nodes L and their links
E ⊆ L × L connecting them, a network of BSS stations is represented
by a graph G = (L,E).

Given an already-deployed BSN, after a certain period we obtain
Definition 2. Historical bike trip data: Each trip corresponds to a
user’s bike ride which happens at a certain time from a station to
another. Specifically, a set of bike trips from a start station Si to an
end Sj can be represented as τ (i, j) = {i, j, (ti , tj )

′s}, where (ti , tj )′s
are the set of pick-up/drop-off timestamps of each trip in τ (i, j). Note
that τ (i, j) is symmetric if and only if riders return their bikes at the
same station as they were rented, i.e., τ (i, j) = τ (j, i) iff i = j.

Based on the deployment results the service provider may initiate
Definition 3. Bike station network (re)configuration (BSNR): A phase
of BSNR basically consists of station (re)placement and dock resizing.
At each BSNR, the service provider can place new stations, remove
or move existing ones, or just keep them, and resize the docks. We
consider two consecutive stages of a BSNR, i.e., two sets of station

status before and after a (re)configuration. For ease of description,
denote the M̃ stations before BSNR as S̃i ’s, and let the old (prior to
the (re)configuration) network be G̃ = (̃L, Ẽ). Each S̃i ’s location be-
fore BSNR is denoted as l̃i = [l̃at i , l̃oni ], with the pre-(re)configured
capacity κ̃i . At each BSNR, we consider (re)placing M stations and
resizing the dock capacity to accommodate a total of K bikes.

BSNR decisions should also involve public engagement and cater
to users’ demand. Before a BSNR, via certain media/platform (like
a website) interested users may easily suggest station sites, i.e.,
Definition 4. Crowdsourced station feedbacks: Each feedback in-
dexed by n on the interactive map is represented as fn = (latn , lonn ,
tn , textn ), where the pair (latn , lonn ) is the location/site coordinate,
tn is its timestamp, and textn is the related posted comment, if any.

We briefly introduce the actions of BSNR. Station (re)placement
is to find their appropriate locations. As searching in continuous
geo-space may lead to a computation complexity problem, we dis-
cretize the entire map into multiple grids. This way, we have finite
candidate sets for efficient computation, whose granularity can be
determined via task customization [8, 20]. Formally, we have
Definition 5. Station (re)placement grid: The entire city map is dis-
cretized into a set of R regular grids (rectangle grid in our case), i.e.,
G = [g1, . . . , gR ]T , anR×2matrix where each grid is given by a coor-
dinate (2×1 vector) of its center, gr = [latr , lonr ]

T (r ∈ {1, . . . ,R}).
After station (re)placement, CBikes further resizes their docks.

Definition 6. Dock resizing: The total dock capacity equals (or at
least) the total number of bikes, i.e.,

∑M
i=1 κi = K . CBikes resizes

the dock κi (enlarge, decrease or maintain) at each station i to satisfy
both incoming crowdsourced needs and historical demands.

Note that the cost of dock resizing only considers those stations
staying at the same locations as in G̃. Dock-related costs of other
newly-added/removed stations are included in their subtotals of
creation and removal.

Profit, cost and station usage are critical from the platform per-
spective, while matching request and convenience may matter to
the users. To accommodate both, we study in this paper:
Definition 7. Crowdsourcing-based BSNR (CBSNR): Given histori-
cal bike trip data, crowdsourced feedbacks, cost of actions, and other
practical BSS design constraints, CBSNR problem is to (re)configure
the existing network to jointly match crowds’ feedbacks and station
usage statistics at minimum cost.

4 (RE)CONFIGURATION ANALYSIS & DESIGN
The inherent complexity of CBSNR calls for careful and practical
designs based on usage data and users’ feedback. Via comprehensive
analysis of real data (Sec. 4.1), we present important designs for
CBikes, i.e., historical station usages (Sec. 4.2), inter-station trip
tendency (Sec. 4.3), geographic distance constraint (Sec. 4.4), and
finally crowdsourced feedbacks (Sec. 4.5). For each of these, we
make the important observations from the data (of periods before
(re)configuration), and present a quantitative design formulation.
4.1 Overview of Datasets Studied
We consider the following BSS data (including map information)
for our CBSNR analysis here and evaluation in Sec. 6:
• Divvy at Chicago, IL, which consists of total 582 stations by 2017
(2nd quarter). 3 major expansions with total 282 new stations
were recorded since 2013. Overall, 11,544,750 trips are studied.
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Figure 2: Distribution of to-
tal usage in Chicago 2013.

Figure 3: Distribution of to-
tal usage in Chicago 2015.

Figure 4: Flow directions of
5 stations in Chicago 2014.

Figure 5: Flow directions of 6 sta-
tions in Minneapolis, MN 2016.

• Nice Ride at Twin Cities, MN, which includes a total of 202 sta-
tions in Minneapolis-St. Paul Metropolitan area until 2016. 5
major expansions with 134 new stations are recorded since 2013.
Overall, 2,857,027 trips are analyzed.

• Metro Bike at Los Angeles County, CA, which consists of total 119
stations in Los Angeles (LA) County by 2017 (3rd quarter). 2 ma-
jor network expansions with total 56 new stations are recorded
since 2016. Overall, 277,195 trips are evaluated.
This massive trip data includes start/destination stations, related

pick-up/drop-off timestamps (or trip durations), user type (say, day-
pass holders or annual subscribers) or even age/gender/birthday
information. We further scrape the crowdsourced feedbacks from
“Suggest a Station” website of each BSS provider [2–4]. For each
CBSNR, we use the 1,100 latest feedbacks fn ’s with [latn , lonn ]’s
(with tn before the BSNR). As most observations are qualitatively
similar, we focus on Divvy and Nice Ride.

4.2 Historical Usage at Each Station
Observation: Intuitively, the more often a station was used at
a certain location, the more likely it is preserved there. We first
briefly summarize the spatial station usage w.r.t. BSNR. Figs. 2 and 3
visualize the spatial distribution of usage in a “heat-map” form. The
warmer the color, the more pick-up/drop-off events are recorded
(log10(usage)). Due to BSNR, clear configuration changes can be
seen between 2013 and 2015. More city areas are covered, and higher
usages can be observed among the points of interests (including the
skyline and lake coast) in Chicago as the network expands. Similar
patterns can be observed from Twin Cities and LA County.

Design: To better differentiate historical usages of different sta-
tions, we design a usage-related measure for each Si w.r.t. each gr .
Let Tr = {τ (i, j)|(Si is at gr )

⋃
(Sj is at gr )} be the aggregated set

of trips starting or ending at grid r . We define the usage importance
of gr for a station location candidate li as

Ui
r ,

exp(λir |Tr |)
1 + exp(λir |Tr |)

, (1)

where λir =
(
l̃i · gr

) / (


̃li 


 · ∥gr ∥) . Here 0 < λir ≤ 1 characterizes
the normalized affinity or closeness of station i with grid r in previ-
ous geographic space, i.e., the closer Si was with gr before BSNR,
the larger λir gets. We consider 0 < Ui

r < 1, the scale of which can
be easily integrated with other formulations, and the exponential
function strengthens the effect of large usage and physical close-
ness. Clearly, the more station i is used at grid r , the largerUi

r is,
and the more likely its location is kept or (re)placed there.

4.3 Inter-station Trip Tendency
Observation: Despite its importance, considering total usage only
may not be sufficient. For example, a BSS user may frequently
commute between a pair of stations (say, her/his home and office
or school). Individually considering each station without inter-
station trip tendency may overlook such frequently commuting
users (which yields a stable platform income) and remove those
stations having strong links E ⊆ L × L with others.

To further illustrate this, Fig. 4 shows an example of trip tendency
among 5 stations in Chicago in 2014. We summarize their pick-
up/drop-off flows w.r.t. each outgoing/incoming direction (i.e., a
vector between start and destination). Dark blue sectors indicate
the volume of outgoing bike flows while light yellow represents
incoming bikes. Volumes in all directions are normalized to [0, 1]
for each Si . The larger radius of a sector, the more proportion of
its bike flows start or end in that direction. We can observe that a
strong north–south trip pattern w.r.t. stations along Lake Michigan
beaches mainly because the tourists’ recreational rides create a
large trip tendency at stations along the lake shore.

Similarly, Fig. 5 shows the trip tendency to/from several stations
in Minneapolis, MN. We can see strong bike flows between west
downtown and university area, indicating bike commutes by stu-
dents, staff and faculty. In particular, we can observe significant
south–west and south-east flows at the station of 6th Ave. SE &
University Ave. (circled), which likely bridges the downtown and
campus. Despite its less total usage (lowerUi

r in Eq. (1)) than others,
CBSNR should also value importance of this station.

In summary, inter-station trip tendency is highly correlated with
purposes of users’ trip choice (start , end), including commutes
between home and school or recreational sightseeing. Further, its
strength characterizes the volume/tendency of urban flows. There-
fore, we incorporate the tendency in our optimization model.

Design: Recall that τ (i, j) represents the set of bike trips from
Si to Sj (i , j). To focus on the connectivity and trip-tendency, we
adapt the link probability in theories of network embedding [23],
and define a new tendency metric p(i, j) between Si and Sj as

p(i, j) =
(
1 + exp

(
−®a

j
i · ®a

i
j

))−1
, (2)

where the vector ®aji represents the proportion of trips from i to j,
i.e., |τ (i, j)|, as well as that of the remaining trips, i.e.,

®a
j
i =

[
|τ (i, j)|∑M

k=1,k,i |τ (i,k)|
, 1 − |τ (i, j)|∑M

k=1,k,i |τ (i,k)|

]
, (3)
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Figure 6: Trip dist. distributions w.r.t. years
(Divvy), with [0.5km, 2.5km] zoomed in.

Figure 7: Trip dist. distributions w.r.t. years
(Nice Ride), with [0.0km, 3.5km] zoomed in.

Figure 8: Regression parameter b vs. distance to
the nearest station (Divvy & Nice Ride, 2016).

and similarly for ®aij . Note thatp(·, ·) is symmetric, i.e.,p(i, j) = p(j, i).
In other words, the larger proportion of bikes are commuting be-
tween stations i and j , the larger p(i, j) is (0 < p(i, j) < 1), implying
more important connectivity of these two stations. Then, we find∑M
j=1, j,i p(i, j) for each Si , further indicating its overall connectiv-

ity with other stations. This way, we may characterize the complex
network structure efficiently [23], highlighting the connectivity and
trip-tendency between stations. Considering the frequent usage
and travel patterns of bike users, BSNR should preserve interactive
connectivities between these stations.

From the data management’s point of view, the total usage and
the trip tendency of stations are inherently correlated, as the former
is the result of aggregating the latter. To highlight station connec-
tivity and mitigate inherent redundancy, as shown in Eq. (3) we
normalize the usage in the model. Besides, our evaluation (Sec. 6)
shows that inclusion of tendency beyond usage improves the per-
formance, which has not yet been considered in previous siting
studies [8, 18, 20].
4.4 Geographic Inter-station Distance
The BSS is designed to provide first-/last-mile commute, and a user
is allowed to return the bike at any station near her/his destination.
Thus, the density of deployed stations is a critical design considera-
tion, i.e., the network should be neither too dense nor too sparse.

Observation 1: We first overview the histograms of outgoing
trip distances, which characterize the tendency of a user when
deciding on a trip. We do not show round trips as they are included
in single station usage (Sec. 4.2). Figs. 6 and 7 show the outgoing
trip distance distribution w.r.t. years for each BSS system. We can
observe that a clear “last-mile” traffic flow, i.e., more than 65%
outgoing users tend to drop off bikes within 2km (around 1.5miles).

Interestingly, as BSS expands, increasingly more percentage (88%
in 2013→90% in 2016) of users take short-distance (<4km) trips
in Chicago while in Twin Cities, this part is decreasing (97.34%
in 2010→93.3% in 2013→89.81% in 2016). It is likely due to the
difference in network density. With markedly more nearby stations
and available bikes, it is more convenient for Chicagoans to ride
between near stations. For Nice Ride, as average distance to nearest
station is larger (0.47km in Divvy vs. 0.58km), under such nearby
stations of a sparser network may take less usage percentage.

Unlike its peers, Metro Bike in LA County is distributed in LA,
SantaMonica, Pasadena and Long Beach. Distances between nearest
stations are much smaller within each city (often 0.25km∼0.39km),
showing much denser urban networks. Hence, much more short-
distance trips are expected.

Observation 2: We also show the bike usage of each station
versus the distance to its nearest neighbor. This way, we can charac-
terize the impact between stations due to service coverage overlap.

Specifically, we conduct negative binomial regression (NBR) [14]
on single station usage |T| (the number of trips) against different
distances D (m) to the nearest peers. Considering the probability
P (|T| = a |D) = (e−z · za ) /(a!) andmean of |T| is z [14], NBR finds
the set of b’s which maximize the log-likelihood for ln z = b0 +bD.

Fig. 8 shows the regression parameterb versusD.b characterizes
sensitivity of station usage towards network density. Overall, we
observe in both systems a positive effect (b > 0) of the distance to
the nearest neighbor over the station usage, implying that usage
generally increases with distance from the nearest neighbor. A
strong counter-effect upon a station can be inferred within a close
distance from others (say, less than 400 or 500m) which may lower
its usage. It is mainly because of a competitive effect [25] that close-
by stations may serve the same group of users and prevent each
other from being fully utilized. As a short-range effect, it saturates
quickly after a certain range (say, 600m in Divvy and 700m in Nice
Ride), due to discouraged usage of distant sites.

Design: To reflect the above observations, over E ⊆ L × L we
set lower/upper bounds [di j ,di j ] for the distance between two
neighboring stations Si and Sj (in a neighborhood setN), i.e.,

d2i j ≤ ∥li − lj ∥
2 ≤ d

2
i j , ∀i , j, (i, j) ∈ N, (4)

We apply heuristic local search [6] around all Si ’s in G based
on historical usage statistics, crowd feedbacks or their fused map
(Sec. 5.2) to determine a rough neighborhood set ofN. As CBikes
is a general framework, geographic distances other than the Eu-
clidean metric (like the Manhattan distance for metropolitan cities
like New York City [31]) can be easily applied. Note that we con-
sider locally constraining neighboring station candidates in close
grids (say, within 2 to 3 grids), making differences of metrics rather
small in practice. Similar to many state-of-the-art studies [20, 32],
for prototype and illustration purposes we consider the Euclidean
distance here.

For convenience and utility, the upper bound caters to the major-
ity of travel distance preferences, while the lower bound mitigates
conflicts between neighboring stations. We consider distance at the
65-percentile of cumulative usage distributions from Figs. 6 and 7
for di j , and distance at the “knee point” (where the plotted curve
“turns”, or formally where a curve is best approximated by a pair
of lines) in Fig. 8 for di j . Note that all derived parameters for each
test are only based on periods before (re)configuration takes place.
Despite the global bound setting here, one may easily customize
[di j ,di j ] further w.r.t. each station pair.

In summary, including links of stations (including inter-station
trip tendency and distance) is important as simple scalar quantifi-
cation and local feedbacks of crowds who have limited scopes may
ignore the actual trip tendency. Their introduction helps assist the



Mobihoc ’18, June 26–29, 2018, Los Angeles, CA, USA Suining He and Kang G. Shin

global optimization, and we will further validate their importance
and effectiveness via evaluation of real data (Sec. 6).

4.5 Crowdsourced Feedbacks
Observation: Crowds are essential to CBSNR, and Fig. 9 visualizes
the spatial distribution (“heat-map”) of aggregated crowd feedbacks
before BSNR. The warmer color means more feedbacks. We also
plot the initial station locations in 2013 (before expansions). From
the spatial distribution of crowdsourced feedbacks, we may ob-
serve that strong sociodemographic factors. For example, many
suggestions are made to the central business district and skyline
(say, Magnificent Mile) of Chicago, matching intensive commuting
needs there. Besides, anticipation also comes from south and west,
probably due to student commuter demands around the university
campus and introduction of metro stations. We also observe similar
patterns in feedbacks of the other two systems. The crowdsourced
feedbacks have potential and power in identifying latent factors
(qualitatively and quantitatively) for network (re)configuration, and
serve as an important supplement to many other GIS databases [36].

Note that the local and dispersed crowds’ feedbacks could not
always directly reveal the overall trip tendency connecting the
start and the destination, mainly because each individual usually
recommends new stations closest to either her/his own work place
or residence. Besides, one may not reveal both the start and end
of each trip due to his privacy and identity concerns. The global
inter-station trip tendency has been modeled in our optimization
to account for the above biases or insufficiency.

Pre-processing the crowdsourced data is essential. For example,
we have noticed and filtered out some hilarious input locations
in Lake Michigan for Divvy. Via comprehensive map boundary
and building constraints, we can easily identify those noisy feed-
backs. As users may vote for more reasonable labels for themselves,
and CBikes jointly considers historical usage and geographic con-
straints, these noisy inputs can be suppressed further.

Design: Given Defs. 4 and 5, we consider crowds’ feedbacks in a
discretized manner, i.e., we aggregate the number of feedbacks fn ’s
falling into each rectangle grid. Intuitively, the more crowdsourced
pin-points go into a grid, the more likely it would be selected. This
way, we consider the aggregated feedbacks Vr for each gr , and
define a measure of vote intensity as a penalty function ϕ(Vr ) for
our optimization input. A larger ϕ(Vr ) due to more votes implies a
heavier “penalty” to be minimized by the solver. Specifically, given
input |Vr | votes at gr , we have
Definition 8. Deadzone-linear penalty (DLP): the DLP functionwith
a deadzone width β ≥ 0 is given by

ϕ(Vr ) =

{
0 : if |Vr | ≤ β ;
|Vr | − β : if |Vr | > β .

(5)

In other words, our DLP de-emphasizes the grids with crowds’ votes
less than β , mitigating outlier effect, and focuses on others with
more support, which is also reasonable in traditional user surveys
for BSS expansion [15, 21, 25]. Using a linear |Vr | − β , CBikes
also mitigates sensitivity towards large but noisy votes than other
higher-order penalty functions [7]. After calculating for all gr ’s,
we normalize each ϕ(Vr ) (r ∈ {1, . . . ,R}) into the range [0, 1].

In summary, as a joint optimization framework, CBikes fuses
heterogeneous sources of information and data-driven designs,
instead of single-point knowledge input, for final joint decisions,

Figure 9: Crowd feedback
distribution, and station
locations in Chicago 2013.

Figure 10: Spatial distribu-
tion of ∆i

r ’s for two se-
lected stations of Divvy.

thus mitigating the noisiness of crowd feedbacks. The effectiveness
of our proposed information fusion will be validated in Sec. 6.

5 CORE FORMULATION & METHODOLOGY
We present the problem formulation to integrate the above designs.
We first present the grid matching basics (Sec. 5.1), and then pro-
vide objective functions (Sec. 5.2). We then discuss the formulation
(Sec. 5.3), followed by semidefinite programming transformation
(Sec. 5.4). We finally give a complexity analysis (Sec. 5.5).
5.1 Station (Re)Placement & Grid Matching
Station (re)placement is more challenging than dock resizing. We
convert the BSS (re)placement problem to the problem of estimating
affinity (closeness) of each station with predefined geographic grids.
Each Si ’s location is considered as the weighted average of grid
coordinates (Def. 5). ConsiderM stations are to be (re)placed. Let
hir be the weight of grid r in determining Si ’s location li , i.e.,

li =
∑R

r=1 h
i
r gr , ∀i ∈ {1, . . . ,M}, (6)

where each hir follows normalization and nonnegative constraints,∑R

r=1 h
i
r = 1, hir ≥ 0, ∀r ∈ {1, . . . ,R}. (7)

For ease of presentation, we define H, anM×R matrix consisting of
all hir ’s. Then, the set of location coordinates of all stations is

LM×2 = HM×RGR×2. (8)
We want to determine the grid weights for station (re)placement.
5.2 Objective Function Design
To incorporate heterogeneous sources of data, we present a novel
information-fusion technique in our joint optimization. Specifically,
we present the joint difference functions fusing crowds and his-
torical usage, and the cost measures for (re)configuration actions.
Combining these leads to our final objective function.

Metric of joint difference: To quantify the matching of knowl-
edge fusion, we further design a generic metric, i.e., joint difference
of grid matching, denoted as ∆ir , for each candidate station i at a
grid r . Specifically, givenV feature metrics Fv (i, r ) ≥ 0 showing the
fitness of matching, we may define ∆ir ,

(∏V
v=1 (1 + Fv (i, r ))

)−1
.

In our prototype, Fv (i, r )’s come from available historical usage
(Secs. 4.2 & 4.3) and crowd feedbacks (Sec. 4.5), i.e.,

∆ir ,
1(

1 +Ui
r
) (
1 +

∑M
j=1, j,i p(i, j)

)
(1 + ϕ(Vr ))

. (9)

The inverse function in Eq. (9) means that the more historical usage
Ui
r , total trip tendency

∑M
j=1, j,i p(i, j) and votes ϕ(Vr ), the smaller

∆ir and the more favored gr for Si . It guarantees 0 < ∆ir ≤ 1,
and adapts to cases of either with little historical usage or few
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crowds’ votes (say, any Fv (i, r ) → 0). For those grids without any
of the above knowledge, one may conduct further spatial-temporal
prediction (or extrapolation) [24] on Fv (i, r ) based on nearby peers.

We also illustrate and visualize the spatial distribution of joint
difference ∆ir ’s in Eq. (10), i.e., “heat map” of fused knowledge. Fig 10
shows∆ir ’s of two station candidates in Divvy (dashed circle: id = 1;
solid circle: id = 464). The warmer the color, the smaller the ∆ir ,
indicating a higher matching potential there for that station.

Note that for further grid differentiation, the joint difference
modeling in Eq. (9) is general to be integrated with other external
information (other feature metrics Fv (i, r )’s) if available, including
distance to the central business district, closeness to rail stations and
other interesting sociodemographic factors (estate price, income or
point of interest number) [25, 36] affecting the station functionality.

Given the joint difference for each station, we further look at
the entire network. Let 𝛥 be anM×R matrix consisting of all Si ’s
joint differences. We define an operatorψ (H,𝛥) returning sum of
entry-wise products of elements in matrices H and𝛥, or formally,
the trace (denoted as Tr(·)) of product H𝛥T . Then, the total joint
difference of CBSNR estimates and the map of fused knowledge is

ψ (HM×R ,𝛥M×R ) , Tr(H𝛥T ) ,
∑M

i=1

∑R

r=1 h
i
r∆

i
r . (10)

Specifically, the smaller the ∆ir , the higher hir assigned to gr , and
the more likely Si is (re)placed there (Eq. (6)), i.e.,

hir ≥ hiq , if ∆ir ≤ ∆iq , ∀r , q ∈ {1, . . . ,R}, ∀i . (11)
Cost of station (re)placement: Considering the feasibility of

CBSNR, we integrate the estimates of potential (re)placement cost.
Let c◦ ≥ 0 and c× ≥ 0 be the costs of adding and removing a station,
respectively (customizable w.r.t. each gr and each Si ). The move
action is considered as a removal followed by an add. Then, we
define the costs of all actions for each Si at gr as:

θ ir =


0 : if no action is imposed;
c◦ : if a new station is added;
c× : if an existing station is removed;
c× + c◦ : if a station is moved to other place.

(12)

Recall that we consider li =
∑R
r=1 h

i
r gr , the weighted average

of closely-matched grids. For existing stations, let h̃ir = 1 if S̃i
was at gr and h̃ir = 0 vice versa. For newly-added ones, h̃ir =
0, for ∀r . Increasing or decreasing hir at grid r implies a higher
potential of adding or removing Si . To fit these in our formulation,
we characterize the two changes for each θ ir as(

hir

)
◦
= max

{
hir − h̃ir , 0

}
,

(
hir

)
×
= max

{
h̃ir − hir , 0

}
. (13)

Then, we set the total cost of (re)placing allM stations in R grids as

C∗ ,
M∑
i=1

R∑
r=1

θ ir =
M∑
i=1

R∑
r=1

((
hir

)
◦
· c◦ +

(
hir

)
×
· c×

)
. (14)

Cost of dock resizing: LetM ′ ≤ M be the number of stations
staying at their same locationswithout (re)placement (moved/removed).
Recall in Def. 6, dock resizing considers only the cost of theseM ′

stations, where each resizing action for an Si costs

ηi =


0 : if dock size is unchanged;
c↑ : if dock size is increased by 1;
c↓ : if dock size is decreased by 1.

(15)

If a dock needs to be enlarged, we have κi ≥ κ̃i , and vice versa.
Similar to Eq. (13), we define the changes at each station as

(κi )↑ = max{κi − κ̃i , 0}, (κi )↓ = max{κ̃i − κi , 0}. (16)

We design the cost function to capture the change w.r.t. each sta-
tion’s location weight assignment in (re)configuration. Similarly,
we may set the total cost of dock resizing as

C† ,
M ′∑
i=1

ηi =
M ′∑
i=1

(
(κi )↑ · c↑ + (κi )↓ · c↓

)
. (17)

5.3 Problem Formulation
Station (re)placement problem in CBSNR is formulated as: given
the crowds’ site suggestions and the historical usage, the objective is
to (re)place stations such that total joint difference (in crowdsourced
feedbacks and historical usage), as well as the total cost of station
(re)placement are jointly minimized.

To accommodate both grid matching and (re)placement cost, we
form the final objective asψ (H,𝛥)+αC∗, where α > 0 is a tunable
parameter (we empirically set α = 0.5). Formally, we have

argmin
H

ψ (H,𝛥) + αC∗, (18)

s.t. Constraints in Eqs. (4), (7), (8) & (13).
We further present the formulation of dock resizing. Intu-

itively, more capacity should be assigned to stations with lower
∆i ,

∑R
r=1 h

i
r∆

i
r (i ∈ {1, . . . ,M ′}), i.e., more crowd supports and

historical usage. In other words, κi ≥ κj if ∆i ≤ ∆j . In practice, the
dock size may not be too large due to space constraint in some city
areas. We may pose an upper limit κmax for each dock, and it may
vary with local street environment or customization.

Specifically, the dock resizing is to minimize the dock resizing
cost C† and match the frequently-used and popular stations, i.e.,
argmin
{κi }

C†, (19)

s.t. κi ≥ κj , if ∆i ≤ ∆j , ∀i , j, 0 ≤ κi ≤ κmax,

∆i =
∑R

r=1 h
i
r∆

i
r ,

∑M ′

i=1 κi +
∑M

i=M ′+1 κi = K .

Total capacity K can be slightly larger than actual bike number in
order to be more resilient to bike flow dynamics.
5.4 SDP Transformation
Note that d2i j ≤ ∥li − lj ∥2 in Formulation (18) is a non-convex
constraint [7], making its solving rather difficult. To address this
difficulty, we introduce a novel semidefinite programming (SDP)
technique [7, 13, 22] in order to solve the station (re)placement
problem efficiently. Our basic idea is to introduce interim variables
representing the station candidate locations, and then relax the
lower bound constraints via matrix transformation of SDP [22].

Mathematically, we first define an indicator vector (oi j )M×1 with
M elements, among which the i-th element is 1, the j-th is −1 and
all others are 0. Let d2i j = (li − lj )T (li − lj ) be the resultant distance
(squared) from predictions of Si and Sj , and we may further have

d2i j = oTi jLL
T oi j , ∀i , j, (i, j) ∈ N. (20)

We then introduce a transition matrix Z ∈ RM×M as Z = LLT , or
Z − LLT = 0. (21)

Then, we rewrite the aforementioned bound constraint into
d2i j ≤ oTi jZoi j ≤ d

2
i j . (22)

Next we relax Eq. (21) into a semidefinite form [7], i.e.,
Z − LLT ≽ 0. (23)

We aim at transforming Eq. (21) into one with linear matrix in-
equality (LMI) [7, 22] which turns out to be convex and solvable.
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Therefore, we introduce a block matrix form called Schur comple-
ment [7] for transformation, which is formally defined as follows.
Definition 9. Schur Complement: LetA be a matrix which is par-
titioned into four matrix blocks B, C,D and E, i.e.,

A =
[
B C
D E

]
, (24)

whereB andE are symmetric and nonsingular matrices. Then, Schur
complement of block E in matrixA, denoted as A/E, is given by

A/E = B − CE−1D. (25)
According to related theory of matrices [7], we have A ≽ 0 if
A/E ≽ 0. Recall that Z − LI2×2LT = I2×2/Z ≽ 0 (Eq. (23)), where
I2×2 is a 2×2 diagonal unit matrix. We then have its (M+2)×(M+2)
LMI form: [

ZM×M LM×2
(LT )2×M I2×2

]
≽ 0. (26)

This way, a semidefinite programming solver [7, 22] can be applied
upon the LMI, and the non-convex problem can be solved efficiently
and effectively. In summary, the final formulation is given by

argmin
H

ψ (H,𝛥) + αC∗, (27)

s.t. Constraints in Eqs. (7), (8), (13), (22),& (26).
Then, CBikes rounds each station estimation li to its nearest grid.
Service providers may customize and enforce extra constraints
(some inaccessible area, e.g., hir = 0, or region boundary, e.g., A ·

loni + B · lati +C ≥ 0) given geographical areas where a dock is
not supposed to be deployed (say, a building or a river).

In practice, SDP relaxation renders Eq. (23) a slightly flexible
design instead of an over-rigid one, helping adapt to more sophisti-
cated network structures underneath. Other refinements, if needed,
can be applied to fine-tune those relaxed distance bounds. One
may also check on over-relaxed pairs and adjust using the gradient
descent approach [7] to re-satisfy their constraints. We observed
only a very small proportion (say, usually less than 1.85%) out of all
station pairs need a cosmetic refinement, making our SDP design
applicable in most cases.
5.5 Complexity Analysis
We briefly analyze the computational complexity of CBikes. Given
M stations and total Nf feedbacks, finding ∆ir ’s of all R grids takes
O(Nf +MR). WithM stations and R grids, the complexity of SDP is
O(M3R3) [7, 22], and the total sums to O(Nf +M

3R3) for CBikes.
Further computation reductions can be made in several ways. For
example, for each Si , out of all grids we may only consider the
top several location candidates, which have lower ∆ir ’s, and locally
search its potentially-nearby neighbors [6, 20] for fewer mutual
distance constraints in the optimization. Using the above meth-
ods, R and constraints (say, Eqs. (7), (11) and (22)) can be reduced
significantly, thus achieving better computational efficiency.

6 EXPERIMENTAL EVALUATION
We first present the evaluation setups in Sec. 6.1 and then illustrate
the experimental results in Sec. 6.2.
6.1 Evaluation Setups & Schemes Compared
We compare CBikes with the following schemes in BSNR design:
• BSNR-w/o-Cost: which greedily considers crowds and historical
usage, without considering the cost for CBSNR.

• BSNR-w/o-Crow: which focuses on only historical usage [8, 20],
without crowd feedbacks, to (re)place or resize the BSS stations.

• BSNR-w/o-Hist: which greedily considers only crowdsourced
feedbacks without historical usage, to (re)configure the stations.

• BSNR-w/o-Tend: which considers no inter-station trip tendency,
and independently (re)configures each station [18, 32].

• BSNR-w/o-Dist: which does not consider any distance bound
constraint [17].

• HEU : a heuristic scheme, instead of joint optimization, adopted
by some BSS providers (e.g., Capital Bikeshare [1]). Site candi-
dates are first filtered by some heuristic criteria [1] (like utility).
Top-ranked candidates are selected and further fine-grained.

• RAND: which randomly (re)places the BSS stations into grids
and resizes them without using any design metrics in Sec. 4.

We evaluate the above algorithms based on the datasets (i.e., Divvy,
Nice Ride and Metro Bike) described in Sec. 4.1. We compare the
station networks before and after each CBSNR phase, i.e., G̃ and
G, including each station’s status, i.e., S̃i = (l̃at i , l̃oni , κ̃i ) against
Si = (lati , loni ,κi ). We analyze (re)placement of stations and their
capacity change. With the timestamps (tm in Def. 4), crowdsourced
feedbacks before this CBSNR (or between two consecutive expan-
sions, if any) are used as optimization inputs. At each CBSNR phase,
we use the following evaluation metrics:
• Accuracy, precision, f-measure & recall: We compare the differ-
ence with the ground-truth station distribution. Specifically, we
determine accuracy by checking whether each station is matched
with its ground-truth grid. We measure the latter three well-
known metrics of binary prediction w.r.t. the grids, i.e., a value 1
(0) represents that a station is (not) placed inside a grid.

• (Re)configuration cost: we compare the costs of all schemes, i.e.,
station (re)placement (C∗) and dock resizing (C†). For the pur-
pose of reference, we also show the ground-truth (GT) costs de-
rived from the actual (re)configuration done by service providers.

• Mean absolute error (MAE) & mean squared error (MSE): differ-
ences between predicted size {κ̂i } and ground-truth {κi }.
Unless otherwise stated, the default parameter values are set as

follows. For each CBSNR phase, by analyzing trips and stations be-
fore it happens, we set the [di j ,di j ] as described in Sec. 4.4; α = 0.5;
β = 10. To balance computation efficiency and (re)placement gran-
ularity, we set a 90×90 grid mesh (each grid is 0.23×0.40km2) for
Divvy (Chicago), with a bounding box [−87.80◦W ,−87.55◦W ;41.74◦
N , 42.06◦N ]. For Nice Ride (Twin Cities), we use a 60×60 grid
mesh (each is 0.32×0.26km2), within a box [−93.32◦W ,−93.08◦W ;
44.89◦ N , 45.03◦N ]. As LA county is much larger, a 120×120 mesh
(each is 0.29×0.42km2) comes with a box [−118.49◦W , −118.12◦W ;
33.71◦N , 34.17◦N ] for Metro Bike. All computation is done on a
desktop of Intel Core i7-6700 and 32GB RAM. Based on the existing
public market analysis [1], we consider c× = 80, c◦ = 100 (station
(re)placement) and c↑ = c↓ = 10 (dock resizing).

Our parameter settings are based only on historical data of pe-
riods prior to each CBSNR to make the evaluation bias-free. We
have also conducted empirical studies on the selection of other
important system parameters, but omit them due to space limit.
6.2 Evaluation Results
Station (re)placement: We first show the (re)placement perfor-
mance in Figs. 11, 12 and 13. Each bar is provided with the mean
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Figure 11: Station (re)placement for Divvy in
Chicago (for each metric, left to right: (1)-(8)).

Figure 12: Station (re)placement
for Nice Ride in Twin Cities.

Figure 13: Station (re)placement
for Metro Bike in LA County.

Figure 14: Station (re)placement cost (log10(C∗)). Figure 15: Dock resizing at Divvy. Figure 16: Dock resizing at Nice Ride.

and 75-th/25-th percentiles of all CBSNR phases. We also indicate
values with arrows pointing to the means for CBikes. Note that
accuracy is based on station index, while others are for binary grid
mapping. As wrong matches of stations may still cause similar grid
coverage, the accuracy value can in general be stricter and smaller.

Without mutual constraints, BSNR-w/o-Dist may get similar grid
coverage, but lower matching w.r.t. each station. It may hence intro-
duce a much higher moving cost (see Fig. 14). Overall, without sup-
port of historical data and joint fusion-based optimization, BSNR-
w/o-Hist may be easily affected by noisy feedbacks, and achieves
much worse and varied performance. Lacking crowdsourced feed-
backs, BSNR-w/o-Crow cannot determine placement of new stations
well, especially for the case of extensive expansion, causing larger
variations. HEU (heuristic) adjusts stations without joint optimiza-
tion and global pictures, and thus more post-processing is required
before better results can be achieved. In contrast, with joint infor-
mation fusion and optimization CBikes outperforms others.

Due to a much larger volume of trip data and denser network
with more stations, CBikes in Chicago is optimized better and
slightly outperforms those in other two cities. Considering the
coupling of users and stations (trip tendency and distance bounds)
makes CBikes outperformBSNR-w/o-Tend andBSNR-w/o-Dist. Divvy
may witness stronger effect of inter-station trip tendency (more
commute and recreational trips) and there is a slightly larger gap be-
tween CBikes and BSNR-w/o-Tend. Besides, as more CBSNR phases
(total 5) are involved in Twin Cities, all schemes experience more
performance variations than in other cases.

Fig. 14 summarizes the total (re)placement costs. Clearly, one
may expect a huge cost to be incurred by BSNR-w/o-Cost. With
more information fused, CBikes achieves much lower costs and
outperforms others. Besides, its differences with ground-truth (ac-
tual (re)placement costs) are also much smaller.

Dock resizing: Due to space limit and similarity of results, we
focus on dock resizing of Divvy and Nice Ride here. Figs. 15 and 16
compare the different schemes in terms of resizing MAEs and MSEs

w.r.t. ground-truth κi ’s. Large resizing error may lead to underuti-
lization or underprovisioning of docks, causing waste and imbal-
ance of BSS resources. CBikes is shown to achieve much lower
errors (usually more than 20%) than other schemes. Overall, dock
resizing may be easier in Chicago than in Twin Cities due to more
trip data and better optimized (re)placement results.

Compared to Divvy, historical usage at Nice Ride is more im-
portant in dock resizing than crowd popularity. Due to a sparse
network at Nice Ride, most crowds’ feedbacks focus on the issues
of adapting coverage or density, without paying attention to the
resizing of existing stations. Thus, without sufficient historical us-
age information, BSNR-w/o-Hist could not effectively determine the
importance of each station’s capacity, and hence larger error occurs
to it at Nice Ride than BSNR-w/o-Crowd and others.

Fig. 17 summarizes the dock resizing costs (log10(C†)). Note that
similar costs may occur when wrong subsets of docks are resized
at a similar scale. With better accuracy and lower adjustment cost
(often by half an order of magnitude), CBikes helps effectively adapt
to bike demands with better feasibility.

Visualization & computation: We visualize (re)configuration
prediction and ground-truth results in Fig. 18 for Chicago, Twin
Cities and LA County. One can see that the predictions via infor-
mation fusion and joint optimization markedly resemble the actual
values. In terms of computation, the optimization timew.r.t. datasets
of Divvy, Nice Ride and Metro Bike are 93.71s (due to much more
stations), 19.7s and 7.27s, which are suitable for periodic (monthly
or annual) network (re)configuration. Parallelization and GPU can
be easily applied, which is outside the scope of this paper.
7 DISCUSSIONS
Network Shrinkage: As most existing BSS systems are growing in
recent years, our evaluation data in hand mainly contains expan-
sions, and does not include any shrinkage only. However, the data
we studied includes removed/moved stations (say, around 21.25%
of all stations). Our model is general enough to accommodate both
expansion and shrinkage of BSN, and can achieve good accuracy.
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Figure 17: Dock resizing cost (log10(C†)). Figure 18: Matching visualization in (a) Chicago, (b) Twin Cities and (c) Los Angeles County.

Incorporating Other Information: Due to resource limit, a myriad
of other factors, such as demographic distribution and city man-
agement regulation [19, 20, 28], may not be well considered in our
current prototype. Their absence might also account for the dis-
crepancy from actual results. However, as a generic framework,
CBikes can easily integrate them if and when given. Note that we
focused on urban-level BSNR, reducing the initial search scope and
facilitating decision-making on management of BSNs. Given our
results as a reference, secondary fine-grained adjustments of dock
locations inside grids may be made subject to various constraints,
including bike accessibility, user visibility and space compatibility,
which are orthogonal to our focus.

Further Denoising: Large error in using crowds’ feedbacks only
(BSNR-w/o-Hist in Sec. 6) indicates the severity of "noisy" crowd-
sourcing. CBikes can exploit many state-of-the-art approaches [15,
21, 26] to filter the comments or incentivize better suggestions from
the crowds. Besides, service providers periodically conduct formal
panels or seminars [1] where citizen representatives could discuss
BSNR. One may design weighting schemes to assess the quality of
various feedbacks for better accuracy.

8 CONCLUSION
BSS network (re)configuration – i.e., station (re)placement and dock
resizing – has become very important for many BSS providers.
We have proposed a novel optimization framework, CBikes, to
(re)configure bike station networks with crowdsourced station sug-
gestions. A comprehensive data analysis first derives inter-station
trip tendency and distance constraints. Crowds’ feedbacks, histori-
cal usage, costs and designs are then fused into a joint optimization
formulation. We further leverage SDP transformation to solve the
nonconvex (re)placement problem efficiently and effectively. Exten-
sive experiments with 3 premium BSS systems, supported by related
crowds’ feedbacks, have validated the accuracy and effectiveness
of CBikes.
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