Tiresias: A GPU Cluster Manager for Distributed Deep Learning

Juncheng Gu!, Mosharaf Chowdhuryl, Kang G. Shin!, Yibo Zhu?-3
Myeongjae Jeon>*, Junjie Qian?, Hongqgiang Liu’, Chuanxiong Guo’

1University of Michigan, 2Microsoft, 3Bytedance, 4UNIST, 5 Alibaba

Abstract

Deep learning (DL) training jobs bring some unique chal-
lenges to existing cluster managers, such as unpredictable
training times, an all-or-nothing execution model, and inflex-
ibility in GPU sharing. Our analysis of a large GPU cluster in
production shows that existing big data schedulers cause long
queueing delays and low overall performance.

We present Tiresias, a GPU cluster manager tailored for
distributed DL training jobs, which efficiently schedules and
places DL jobs to reduce their job completion times (JCTs).
Given that a DL job’s execution time is often unpredictable,
we propose two scheduling algorithms — Discretized Two-
Dimensional Gittins index relies on partial information and
Discretized Two-Dimensional LAS is information-agnostic —
that aim to minimize the average JCT. Additionally, we de-
scribe when the consolidated placement constraint can be re-
laxed, and present a placement algorithm to leverage these
observations without any user input. Experiments on the
Michigan ConFlux cluster with 60 P100 GPUs and large-
scale trace-driven simulations show that Tiresias improves the
average JCT by up to 5.5x over an Apache YARN-based re-
source manager used in production. More importantly, Tire-
sias’s performance is comparable to that of solutions assum-
ing perfect knowledge.

1 Introduction

Deep learning (DL) is gaining rapid popularity in various do-
mains, such as computer vision, speech recognition, etc. DL
training is typically compute-intensive and requires power-
ful and expensive GPUs. To deal with ever-growing train-
ing datasets, it is common to perform distributed DL (DDL)
training to leverage multiple GPUs in parallel. Many platform
providers have built GPU clusters to be shared among many
users to satisfy the rising number of DDL jobs [1, 3, 4, 9]. In-
deed, our analysis of Microsoft traces shows a 10.5 x year-by-
year increase in the number of DL jobs since 2016. Efficient
job scheduling and smart GPU allocation (i.e., job placement)
are the keys to minimizing the cluster-wide average JCT and
maximizing resource (GPU) utilization.

Due to the unique constraints of DDL training, we observe
two primary limitations in current cluster manager designs.

1. Naive scheduling due to unpredictable training time.
Although shortest-job-first (SJF) and shortest-remaining-
time-first (SRTF) algorithms are known to minimize the av-
erage JCT [23, 24], they require a job’s (remaining) execu-
tion time, which is often unknown for DL training jobs. Opti-
mus [34] can predict a DL training job’s remaining execution

time by relying on its repetitive execution pattern and assum-
ing that its loss curve will converge. However, such proposals
make over-simplified assumptions about jobs having smooth
loss curves and running to completion; neither is always true
in production systems (§2.2).

Because of this, state-of-the-art resource managers in pro-
duction are rather naive. For example, the internal solution of
Microsoft is extended from Apache YARN’s Capacity Sched-
uler that was originally built for big data jobs. It only per-
forms basic orchestration, i.e., non-preemptive scheduling of
jobs as they arrive. Consequently, users often experience long
queuing delays when the cluster is over-subscribed — up to
several hours even for small jobs (Appendix A).

2. Over-aggressive consolidation during placement. Ex-
isting cluster managers also attempt to consolidate a DDL job
onto the minimum number of servers that have enough GPUs.
For example, a job with 16 GPUs requires at least four servers
in a 4-GPUs-per-server cluster, and the job may be blocked if
it cannot find four completely free servers. The underlying
assumption is that the network should be avoided as much as
possible because it can become a bottleneck and waste GPU
cycles [31]. However, we find that this assumption is only
partially valid.

In this paper, we propose Tiresias, a shared GPU cluster
manager that aims to address the aforementioned challenges
regarding DDL job scheduling and placement (§3). To ensure
that Tiresias is practical and readily deployable, we rely on
the analysis of production job traces, detailed measurements
of training various DL models, and two simple yet effective
ideas. In addition, we intentionally keep Tiresias transparent
to users, i.e., all existing jobs can run without any additional
user-specified configurations.

Our first idea is a new scheduling framework (2DAS) that
aims to minimize the JCT when a DL job’s execution time
is unpredictable. We propose two scheduling algorithms un-
der this framework: Discretized 2D-LAS and Discretized 2D-
Gittins index. The Gittins index policy [8, 21] is known to be
the optimal in the single-server scenario in minimizing the av-
erage JCT when JCT distributions are known. Similarly, the
classic LAS (Least-Attained Service) algorithm [33] has been
widely applied in many information-agnostic scenarios, such
as network scheduling in datacenters [13, 17]. Both assign
each job a priority — the former uses the Gittins index while
the latter directly applies the service that job has received so
far — that changes over time, and jobs are scheduled in order
of their current priorities.

Adapting these approaches to the DDL scheduling problem
faces two challenges. First, one must consider both the spatial
(how many GPUs) and temporal (for how long) dimensions
of a job when calculating its priorities. We show that sim-
ply considering one is not enough. Specifically, a job’s total
attained service in our algorithms jointly considers both its
spatial and temporal dimensions.

More importantly, because relative priorities continuously
change as some jobs receive service, jobs are continuously
preempted. Although this may be tolerable in networking sce-
narios where starting and stopping a flow is simpler, preempt-
ing a DDL job from its GPUs can be expensive because data
and model must be copied back and forth between the main
memory and GPU memory. To avoid aggressive job preemp-
tions, we apply priority discretization atop the two classic al-
gorithms — a job’s priority changes after fixed intervals.

Overall, when the cluster manager has the distribution of
previous job execution times that may still be valid in the near
future, our scheduling framework chooses the Discretized
2D-Gittins index. If no prior knowledge is available, Dis-
cretized 2D-LAS will be applied.

Our second idea is to use model structure to loosen the
consolidated placement constraint whenever possible. We ob-
serve that only certain types of DL models are sensitive to
whether they are consolidated or not, and their sensitivity is
due to skew in tensor size distributions in their models. We
use this insight to separate jobs into two categories: jobs that
are sensitive to consolidation (high skew) and the rest. We
implement an RDMA network profiling library in Tiresias
that can determine the model structure of DDL jobs through
network-level activities. By leveraging the profiling library
and the iterative nature of DDL training, Tiresias can trans-
parently and intelligently place jobs. Tiresias first runs the
job in a trial environment for a few iterations, and then de-
termines the best placement strategy according to the criteria
summarized from previous measurements.

We have implemented Tiresias' and evaluated using un-
modified TensorFlow DDL jobs on a 15-server GPU cluster
(each server with four P100 GPUs with NVlink) using traces
derived from a Microsoft production cluster. We further eval-
uate Tiresias using large-scale trace-driven simulations. Our
results show that Tiresias improves the average JCT by up to
5.5x w.r.t. current production solutions and 2x w.r.t. Gan-
diva [41], a state-of-the-art DDL cluster scheduler. Moreover,
it performs comparably to solutions using perfect knowledge
of all job characteristics.

In summary, we make the following contributions:

e Tiresias is the first information-agnostic resource man-
ager for GPU clusters. Also, it is the first that applies
two-dimensional extension and priority discretization into
DDL job scheduling. It can efficiently schedule and place
unmodified DDL jobs without any additional information

Uhttps://github.com/SymbioticLab/Tiresias

o Global Model

Pull

E ﬁ ﬁ Local Model
[Eaaul mm mm
Worker; Worker, Worker;

Training Data

Figure 1: Data parallelism & parameter server architecture. This
DDL job has two parameter servers (PS) and three workers.

from the users. When available, Tiresias can leverage par-
tial knowledge about jobs as well.

e Tiresias leverages a simple, externally-observable, model-
specific criteria to determine when to relax worker GPU
collocation constraints.

e Our design is practical and readily deployable, with sig-
nificate performance improvements.

2 Background and Motivation
2.1 Distributed Deep Learning (DDL)

As DL models become more sophisticated and are trained on
larger datasets, distributed training is becoming more preva-
lent (see Appendix A). Here, we focus on data parallelism,
which is the most common option for DDL training in popu-
lar DDL frameworks.? As Figure 1 shows, each worker occu-
pies a GPU and works on its local copy of the DL model. The
training dataset is divided into equal-sized parts to feed the
workers. All jobs are trained in the synchronous mode which
has been observed often to achieve faster convergence than
asynchronous distributed training over GPUs [19].

Periodic iterations. DL training works in an iterative
fashion. In each iteration, workers first perform forward-
backward computation with one chunk of its training data
(minibatch). Workers then aggregate local results to update
the DL model with each other, which is referred to as model
aggregation. Since the computation load and the communica-
tion volume are exactly the same across iterations, the itera-
tion time of a DDL job is highly predictable.

Parameter server architecture. The parameter server (PS)
architecture [30] (Figure 1) is the most popular method for
model aggregation. The parameter server hosts the master
copy of the DL model. It is in charge of updating the model
using the local results from all workers. The workers pull
back the updated model from the parameter server at the be-
ginning of each iteration. There can be multiple parameter
servers in a single DDL job.

Trial-and-error exploration. Training a DL model is not
an one-time effort and often works in a trial-and-error

There are other parallelization architectures, like model parallelism, which is job-
specific and much less popular.

=]

SR S® =

Norm. Loss Value
(= — A —

S N A N =

Norm. Loss Value

1 6 11 16 21 26
Epoch

-

51 101 151 201 251
Epoch

Figure 2: The training loss of two production jobs from Microsoft.

manner. DL model exposes many hyperparameters that ex-
press the high-level properties of the model. To get a high-
quality model, the combinations of hyperparameters need to
be explored in a very large search space; this is known as
hyperparameter-tuning [41, 44]. Users can use AutoML [2]
to perform this exploration efficiently and automatically by
using some searching tools [14]. In AutoML, many DL jobs
with different hyperparameter configurations are generated to
train the same job. Most of those jobs will be killed because
of random errors, or low quality of improvement. With the
feedbacks from early trials, AutoML can search new config-
urations and spawn new jobs. Only a very small portion of
those jobs with good qualities can run to completion.

2.2 Challenges

We highlight three primary challenges faced by DDL cluster
managers in production. These challenges originate from the
nature of DDL training and are not specific to the Microsoft
cluster. See Appendix A for more details about the Microsoft
cluster and its workload.

Unpredictable job duration. Current solutions that predict
DL job training times [34] all assume DL jobs to (1) have
smooth loss curves and (2) reach their training targets and
complete. However, for many poor models during a trial-and-
error exploration, their loss curves are not as smooth as the
curves of the best model ultimately picked at the end of explo-
ration. We show two representative examples from Microsoft
in Figure 2. The spikes in the first example and the non-
decreasing curve in the second example make it challenging
to predict when the target will be hit. In addition to these pro-
prietary models, popular public models sometimes also show
non-smooth curves [25]. Additionally, the termination condi-
tions of DL jobs are non-deterministic. In AutoML, most of
the trials are killed because of quality issues which are deter-
mined by the searching mechanism. Usually, users also spec-
ify a maximum epoch number to train for cases when the job
cannot achieve the training target. Therefore, a practical re-
source manager design should not rely on the accuracy/loss
curve for predicting eventual job completion time.

Over-aggressive job consolidation. Trying to minimize
network communication during model aggregation is a com-
mon optimization in distributed training because the network
can be a performance bottleneck and waste GPU cycles [31].
Hence, many existing GPU cluster managers blindly follow
a consolidation constraint when placing DDL jobs — specif-

= Random @ Consolidation

8§1'2
g-gl.()
ggo.s
=2
5206
i)
£ 04
‘5:-
Z B

Figure 3: 4 concurrent 8-worker jobs with different placement
schemes. The performance values are normalized by the value of
the consolidation scheme. We use the median value from 10 (20)
runs for consolidation (random) scheme.

ically, they assign all components (parameter servers and
workers) of the job to the same or the minimum number of
servers. A DDL job will often wait when it cannot be con-
solidated, even if there are enough spare resources elsewhere
in the cluster. Although this constraint was originally set for
good performance, it often leads to longer queuing delays and
resource under-utilization in practice.

To understand the importance of this constraint, we run
four concurrent 8-GPU jobs using different placement (ran-
dom and always-consolidate) strategies on eight 4-GPU
servers. Similar to [45], each job uses eight parameter servers
— the same as the number of workers. Figure 3 shows that
the locality of workers mainly impacts the VGG family and
AlexNet. Nevertheless, neither the cluster operator nor the
users can tell which category a job belongs to.

Time overhead of preemption. The current production
cluster does not preempt jobs because of large time over-
head. To show this, we manually test pausing and resuming a
DDL job on our local testbed. Upon pausing, the chief worker
checkpoints the most recent model on a shared storage. The
checkpointed model file will be loaded by all workers when
the job is resumed. Figures 4 and 5 show the detailed num-
bers. Whenever Tiresias preempts a job, we must take this
overhead into account.

2.3 Potential for Benefits
We can achieve large gains by mitigating two common myths.

Myth I: jobs cannot be scheduled well without exact job
duration. Despite the fact that DDL job durations are often
unpredictable, their overall distribution can be learned from
history logs. The Gittins index policy [21], which is widely
used for solving the classic multi-armed bandit problem [21],
can decrease the average JCT as long as the job duration dis-
tribution is given. Even without that information, the LAS al-
gorithm can efficiently schedule jobs based on their attained
service.

Myth II: DDL jobs should always be consolidated.
While it is true that consolidated placement of a job may min-
imize its commuication time, we find that some DDL jobs are
insensitive to placement. We identify that the core factor is the
model structure (§3.3).

70

5 30 263

g 25 5 60
g20 gso
215 g 40
£ =30
=} 20
£ 5127 23 19 =
2 3 E10
3 9 O D & O > > O & 0
2 AU RGN\ SR e

£ L L ST TES

O L Q‘égé FF SIS

Figure 4: Time overhead of pausing a DDL VGGl

mbuild model
mload checkpoint

1-worker
2-worker

= 8-worker

VGG1 Inception4 |Inception3| GoogleNet

job in Tensorflow. Only the chief worker check- Figure 5: Time overhead of resuming a DDL job in Tensorflow. Each model is tested with

points the most updated model.

Placement

Scheduler

GPU Cluster

Figure 6: Tiresias components and their interactions. Job lifecycle
under Tiresias is described in Section 3.1. In this figure, each ma-
chine has four GPUs; shaded ones represent GPUs in use.

In the rest of this paper, we demonstrate that Tiresias —
using smarter job placement and scheduling strategies — can
improve the average total job completion time by more than
5x when running the same set of jobs.

3 Tiresias Design

This section describes Tiresias’s architecture, followed by de-
scriptions of its two key components — scheduler and place-
ment manager — and the profiler that learns the job character-
istics during runtime.

3.1 Opverall Architecture

Tiresias is a bespoke resource manager for GPU clusters,
where the primary workload is DL training. It deals with both
allocating GPUs to individual jobs (i.e., job placement) and
scheduling multiple jobs over time. So, it has two primary
objectives: one user-centric and the other operator-centric.

1. Minimizing the average JCT: Jobs should complete as fast
as possible regardless of their requirements.

2. High GPU utilization: All the GPUs in the cluster should
be utilized as much as possible.

Tiresias has an additional goal to balance between

operator- and user-centric objectives.

3. Starvation freedom: Jobs should not starve for arbitrarily
long periods.

Constraints and assumptions: Tiresias must achieve the
aforementioned objectives under realistic assumptions high-
lighted in prior sections:

different number of workers.

1. Online job arrival: Jobs are submitted by users (trial-and-
error exploration mechanisms such as AutoML) in an on-
line fashion. The resource requirements of a job J (i.e.,
the number of parameter servers PS; and workers W) are
given but unknown prior to its arrival. Model and data
partitions are determined by the DL framework and/or the
user [9, 16, 42]. Tiresias only deals with resource alloca-
tion and scheduling.

2. Unknown job durations: Because of non-smooth loss
curves and non-deterministic termination in practice, a
DL job’s duration cannot be predicted. However, the over-
all distribution of job duration may sometimes be avail-
able via history logs.

3. Unknown job-specific characteristics: A user does not
know and cannot control how the underlying DL frame-
work(s) will assign tensors to parameter servers and the
extent of the corresponding skew.

4. All-or-nothing resource allocation: Unlike traditional big
data jobs where tasks can be scheduled over time [11], DL
training jobs require all parameter servers and workers to
be simultaneously active; i.e., all required resources must
be allocated together.

Job lifecycle: Tiresias is designed to optimize the afore-
mentioned objectives without making any assumptions about
a job’s resource requirements, duration, or its internal charac-
teristics under a specific DL framework.

Figure 6 presents Tiresias’s architecture along with the se-
quence of actions that take place during a job’s lifecycle. As
soon as a job is submitted, its GPU requirements become
known, and it is appended to a WAITQUEUE (@)). The sched-
uler (§3.2) periodically schedules jobs from the WAITQUEUE
and preempts running jobs from the cluster to the WAIT-
QUEUE (@ and @) on events such as job arrival, job com-
pletion, and changes in resource availability. When starting a
job for the first time or resuming a previously preempted job,
the scheduler relies on the placement module (§3.3) to allo-
cate its GPUs (@)). If a job is starting for the first time, the
placement module first profiles it — the profiler identifies job-
specific characteristics such as skew in tensor distribution —
to determine whether to consolidate the job or not (@).

3.2 Scheduling

The core of Tiresias lies in its scheduling algorithm that must
(1) minimize the average JCT and (2) increase cluster utiliza-
tion while (3) avoiding starvation.

We observe that preemptive scheduling is necessary to sat-
isfy these objectives. One must employ preemption to avoid
head-of-line (HOL) blocking of smaller/shorter jobs by the
larger/longer ones — HOL blocking is a known problem of
FIFO scheduling currently used in production [41]. Examples
of preemptive scheduling algorithms include time-sharing,’
SJF, and SRTF. For example, DL jobs in Gandiva [41] are
scheduled by time-sharing. However, time-sharing based al-
gorithms are designed for isolation via fair sharing, not mini-
mizing the average JCT. SJF and SRTF are also inapplicable
because of an even bigger uncertainty: it is difficult, if not im-
possible, to predict how long a DL training job will run. At
the same time, size-based heuristics (i.e., how many GPUs a
job needs) are not sufficient either, because they ignore job
durations.

3.2.1

By reviewing the time- or sized-based heuristics, we believe
that considering only one aspect (spatial or temporal) is not
enough when scheduling DDL jobs on a cluster with lim-
ited GPU resources. In an SRTF scheduler, large jobs with
short remaining time can occupy many GPUs, causing non-
negligible queuing delays for many small but newly submit-
ted jobs. If the scheduler is smallest-first (w.r.t. the number of
GPUs), then large jobs may be blocked by a stream of small
jobs even if they are close to completion.

To quantify the approaches, we ran trace-driven simula-
tions on three different schedulers using the Microsoft pro-
duction trace: (1) smallest-first (SF); (2) SRTF; and (3)
shortest-remaining-service-first (SRSF). Of them, the first
two are single-dimensional schedulers; the last one consid-
ers both spatial and temporal aspects. The remaining service
in SRSF is the multiplication of a job’s remaining time and
the number of GPUs. For this simulation, we assume that job
durations are given when needed.

Table 1 shows that SRSF outperforms the rest in minimiz-
ing the average JCT. SRSF has a much smaller tail JCT than
the single-dimensional counterparts as well. Altogether, we
move forward in building a DDL scheduler that considers
both spatial and temporal aspects of resource usage.

Note that, among the three, SF is not a time-based algo-
rithm; hence, it does not actively attempt to minimize the av-
erage JCT. As for the rest, SRTF is not always worse than
SRSEF, either. For example, large-and-short jobs that have
many GPUs but short service time can mislead the SRSF
scheduler and block many smaller jobs. However, in DL
training, multiple GPUs are typically allocated to the jobs
that have well-tuned hyperparameters and run to completion.

Why Two-Dimensional Scheduling?

3 Also known as processor-sharing.

Table 1: Normalized performance of single-dimensional schedulers
w.r.t. SRSE.

Avg. JCT Med.JCT 95thJCT
Smallest-First (SF) 1.52 1.20 3.45
SRTF 1.03 1.01 1.55

Therefore, the fraction of large-and-short jobs is often small
in practice.

3.2.2 Two-Dimensional Attained Service-Based
Scheduler (2DAS)

We address the aforementioned challenges with the 2DAS
scheduler, which schedules DL jobs without relying on their
exact durations while taking their GPU requirements into
consideration. 2DAS generalizes the classic least-attained
service (LAS) scheduling discipline [33] as well as the Gittins
index policy [21] to DL job scheduling by considering both
the spatial and temporal aspects of such jobs as well as their
all-or-nothing characteristic. At a high-level, 2DAS assigns
each job a priority based on its attained service. The attained
service of a job is calculated based on the number of GPUs it
uses (W) and the amount of time it has been running so far
(ty). The former becomes known upon the job arrival, while
the latter continuously increases.

The priority function in 2DAS can be changed based on
different prior knowledge. When no job duration information
is provided, the priority function applies the LAS algorithm
where a job’s priority is inverse to its attained service. If the
cluster operator provides the distribution of job duration from
previous experience, then a job’s priority equals its Gittins
index value (Pseudocode 1). In the Gittins index-based algo-
rithm, the ratio (Line 11) is between (1) the probability that
the job will complete within the service quantum of A (i.e.,
the possibility of reward when adding up to A overhead on all
subsequent jobs) and (2) the expected service that Job J will
require for completion.

Both LAS and Gittins index take job’s attained service as
their inputs. LAS prefers jobs that received less service. All
jobs start with the highest priority, and their priorities de-
crease as they receive more service. The Gittins index value
of job represents how likely the job that has received some
amount of service can complete within the next service quan-
tum. Higher Gittins index value means higher priority.

Example: Let us consider an example that illustrates both
the algorithms and compares them against SRSF that has
complete information (Figure 7). Three DL jobs arrive at a
two-GPU machine at the same time. The resource require-
ment of each job is represented using (number of GPUs, du-
ration) pairs. Only SRSF has prior knowledge of job duration.
2D-Gittins index knows the distribution, while 2D-LAS has
no related information. The average JCTs in this example are
9.3, 10 and 11.7 units of time for SRSF, 2D-Gittins index,
and 2D-LAS, respectively. In general, algorithms with more
information perform better in minimizing the average JCT.

Pseudocode 1 Priority function in 2DAS
1: procedure PRIORITY(Job J, Distribution D)
2. if Dis @ then > w/o distribution, apply LAS
3 R;y=—-W; xty
4: else > w/ distribution, apply Gittins index
5. Ry =Gittins_Index(J,D)
6
7
8
9

return R;
. end procedure

. procedure GITTINS_INDEX(Job J, Distribution D)
10 ay=Wjyxty
—a;<
1 Gy = s g
12: > P is the probability and E is the mean, both of which are
calculated from D. A is the service quantum.
13: return Gy
14: end procedure

Size

7]
B

IN]
By

N

« 2D-Gittins Indexg,

5
]

Time

2D-LAS
-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16,
Time

Figure 7: Time sequence of three jobs with three different two-
dimensional scheduling algorithms. Job 1 (black) is (2,2), job 2 (or-
ange) is (1,8), and job 3 (blue) is (2,6). The first value in each tuple
is the number of GPUs while the second is duration. The schedul-
ing interval is one unit of time. The 2D-Gittins index values for this
example are shown in Appendix C. Job index is used to break ties.

3.2.3 Priority Discretization

As observed in prior work [17], using continuous priorities
can lead to a sequence of preemptions and subsequent re-
sumptions for all jobs. Unlike preempting a network flow or a
CPU process, preempting and resuming a DL job on GPU(s)
can be time-consuming and expensive (§2.2). The excessive
cost can make 2DAS infeasible. Furthermore, continuous pre-
emption degenerates 2DAS to fair sharing by time-division
multiplexing, which increases the average JCT.

We address these challenges by adopting the priority dis-
cretization framework based on the classic Multi-Level Feed-
back Queue (MLFQ) algorithm [12, 17, 18].

Discretized 2DAS: Instead of using a continuous priority
spectrum, we maintain K logical queues (Q1,Q,...,0k),
with queue priorities decreasing from Q; to Qg (Figure 8).
The i-th queue conta}ins jobs of attained service'(WJtJ) val-
ues within [Q}O,Q?I). Note that Q%O =0, QII}I = oo, and

Q}gl = thl-

Lowest-Priority

Queue [Siarved] Q<
__________ R

|
L .
-‘\ i
-1 HHB Q «---

Highest-Priority
Queue
Figure 8: Discretized 2DAS with K queues. Starving jobs are peri-
odically promoted to the highest priority queue.

y Submit Job

Preempted

Timeout Scheduled

Figure 9: State transition diagram of a job in Tiresias.

Actions taken during four lifecycle events determine a
job’s priority (Figure 9).
e Arrival: If there are available resources, a new job enters
the highest priority queue QO when it starts.

e Activity: A job is demoted to Qji; from Q;, when its
(Wjyty) value crosses queue threshold Q}n.

e Starvation: A job’s priority is reset if it had been pre-
empted for too long.

e Completion: A job is removed from its current queue
upon completion.

The overall structure ensures that jobs with similar (W;z;)
values are kept in the same queue. Jobs with highly different
(Wjyty) values are kept in different priority levels.

When LAS is used, jobs in the same queue are scheduled
in a FIFO order of their start time (i.e., when they were first
scheduled) without any risk of HOL blocking. Because of the
all-or-nothing nature of DDL jobs, high-priority jobs without
enough GPUs must be skipped over to increase utilization; as
such, FIFO ordering on submission time instead of start time
can lead to unnecessary preemptions.

The service quantum A in Gittins index is also discretized.
For jobs in Q;, A; equals thl which is the upper limit of Q;.
When a job consumes all its service quantum, it will be de-
moted to the lower priority queue. For Gittins index, jobs in
the same queue are scheduled according to their Gittins index
values. In the last queue, Qk, Ag is set to oo, In this extreme
case, Gittins index performs similar to that of LAS, and jobs
in the last queue are scheduled in the FIFO order.

Determining K and queue thresholds: While the dis-
cretization framework gives us the flexibility to pick K and

corresponding thresholds, optimally picking them is an open
problem [13, 17]. Instead of frequently solving an integer lin-
ear programming (ILP) [13] formulation or using a heavy-
weight deep learning mechanism [15], we leverage the classic
foreground-background queueing idea [33], which has been
shown to perform well for heavy-tailed distributions. There
are only two queues (K = 2) and only one threshold. Our
sensitivity analysis shows that using K = 2 performs close
to that of larger K values, ignoring preemption overheads. In
practice, K = 2 limits the number of times a job can be pre-
empted, which reduces job completion time.

Avoiding starvation: Using Discretized 2DAS, some jobs
can starve if a continuous stream of small-and-short jobs keep
arriving. This is because jobs in the same queue may be
skipped over due to the lack of free GPUs. Similarly, jobs in
lower priority queues may not receive sufficient GPUs either.

To avoid starvation, we promote a job to the highest-
priority Q; if it has been WAITING for longer than a thresh-
old: STARVELIMIT (Line 6).

This poses a tradeoff: while promotion can mitigate star-
vation, promoting too often can nullify the benefits of dis-
cretization altogether. To this end, we provide a single knob
(PROMOTEKNOB) for the cluster operator to promote a job if
its WAITING time so far (Jy) is PROMOTEKNOB times larger
than its execution time so far (¢y); i.e.,

8; > PROMOTEKNOB * 1

Setting PROMOTEKNOB = oo disables promotion and focuses
on minimizing the average JCT. As PROMOTEKNOB be-
comes smaller, 2DAS becomes more fair, sacrificing the av-
erage JCT for tail JCT.

Note that both #; and 8; are reset to zero to ensure that a
promoted job is not demoted right away.

3.3 Placement

Given a job J that needs PS; parameter servers and W; work-
ers, if there are enough resources in the cluster, Tiresias must
determine how to allocate them. More specifically, it must
determine whether to consolidate the job’s GPUs in as few
machines as possible or to distribute them. The former is cur-
rently enforced in Microsoft production clusters; as a result, a
job may be placed in the WAITQUEUE even if there are GPUs
available across the cluster.

Taking this viewpoint to its logical extreme, we created an
ILP formulation to optimally allocate resources in the cluster
to minimize and balance network transfers among machines
(see Appendix D). The high-level takeaways from such a so-
lution are as follows. First and foremost, it is extremely slow
to solve the ILP for a large-scale cluster with many DDL jobs.
Second, from small-scale experiments, we found that explic-
itly minimizing and balancing the load of the network does
not necessarily improve DL training performance.

Pseudocode 2 2DAS Scheduler
1: procedure 2D-LAS(Jobs J, Queues Qg ...Qg, Distribution
D) >§3.2

2 P={} > Tracks jobs to preempt
3: for all JobJ € J do

4: if J is RUNNING then

5: ry = PRIORITY(J, D) > calculate job’s priority
6: if J is WAITING longer than STARVELIMIT then

7: Reset #;

8: Enqueue J to Q; > Promote if J is STARVING
9:

while Cluster has available GPUs do
10. foralli e [1,K]do > Prioritize across queues
if Disnot @ and i € [1,K — 1] then

12: Sort_Gittins_Index(Q;) > Sort jobs in Q;
13: for all Job J € Q, do > From the first J in Q; to the end
14: if Available GPUs > W; then > J can run
15: Mark Wy GPUs as unavailable

16: else > J cannot run
17: P=PuUJ

18: Preempt J if it is already RUNNING

19: for all JobJ € Jand J ¢ P do

20: if J is not already RUNNING then

21: if J was not profiled before then

22: Profile J >§3.3.1
23: Store J’s start time > Used for FIFO in Discretized 2D-LAS
24: Assign GPUs by comparing S; to PACKLIMIT >§3.3

25: end procedure

How important is consolidation? Given the infeasibility
of an ILP-based formulation, we focused on developing a
faster solution by asking a simple question: which jobs benefit
from consolidation?

We found that the skew of the model structure (S;) can
be a good predictor. The DL models whose performance are
sensitive to consolidated placement (Figure 3) have huge ten-
sor(s); their largest tensor size dominates the whole model
(Table 6). This is because messages sizes in model aggre-
gation are closely related to the structure of the model. For
example, a model in TensorFlow consists of many tensors.
Each tensor is wrapped as a single communication message.*
Therefore, the message size distribution in DDL depends on
the tensor size distribution of the model. The tensor sizes are
often unevenly distributed; sometimes there is a huge tensor
which holds most of the parameters in those models. Hence,
aggregating larger tensors suffers from network contention
more severely, while transmissions of smaller tensors tend to
interleave better with each other.

Leveraging this insight, we design Tiresias profiler that
finds out the skew level of each model, which is then used
by the Tiresias placement algorithm.

3.3.1 Profiler

For a given job J, Tiresias’s profiler identifies the amount
of skew in tensor distributions across parameter servers (Sy)

4Other frameworks may split each tensor into multiple messages, but still, these
messages are sent out in clear batches for each tensor.

Table 2: Comparison of DL cluster managers.

YARN-CS Gandiva [41] | Optimus [34] | Tiresias(Gittins index) | Tiresias(LAS)
Prior Knowledge None None JCT prediction JCT distribution None
Scheduling Algorithm FIFO Time-sharing | Remaining-time-driven Gittins index LAS
Scheduling Input Arrival time N/A Remaining time Attained service Attained service
Schedule Dimensions Temporal None Temporal Spatial & temporal Spatial & temporal
Job Priority Continuous Continuous Continuous Discretized queues Discretized queues
Job Preemption N/A Context switch Model checkpoint Model checkpoint Model checkpoint
Minimizing Average JCT No No Yes Yes Yes
Starvation Avoidance N/A N/A Dynamic resource Promote to Q Promote to Q;
Job Placement Consolidation | Trial-and-error Capacity-based Profile-based Profile-based

without user input and in a framework-agnostic manner. The
skew is a function of the tensor size distribution of the DL job
and tensor-to-parameter server mapping of the DL framework
(e.g., TensorFlow assigns tensors in a round-robin fashion).
Instead of forcing users to design DL models with equal-sized
tensors or making assumptions about the tensor assignment
algorithm of a given DL framework, we aim to automatically
identify the skew via profiling.

Because each parameter server periodically sends out its
portion of the updated model to each worker (§2.1), observ-
ing these network communications can inform us of the skew.
Given that most production DL jobs use RDMA (e.g., Infini-
Band in Microsoft) for parameter server-worker communica-
tion, and to the best of our knowledge, there exists no RDMA-
level traffic monitoring tool, we have built one for Tiresias.

Tiresias’s profiler intercepts communication APIs — includ-
ing the low-level networking APIs like RDMA ibverbs —in
each machine to collect process-level communication traces.
Whether a DDL job uses RDMA directly or through GPUD:i-
rect, Tiresias can capture detailed meta-data (e.g., message
sizes) about all RDMA communications.

During the profiling run of a job, Tiresias aggregates infor-
mation across all relevant machines to determine S; for job J.
Because each iteration is exactly the same from a communi-
cation perspective, we do not have to profile for too many
iterations. This predictability also enables us to identify a
job’s iteration boundaries, model size, and skew character-
istics. Tiresias’s placement algorithm uses this information to
determine whether the GPU allocation of a job should be con-
solidated or not.

3.3.2 The Placement Algorithm

Tiresias’s placement algorithm compares S; with a threshold
(PACKLIMIT); if Sy is larger than PACKLIMIT, Tiresias at-
tempts to consolidate the job in as few machines as possible.
As explained above, a job with a large skew performs worse
due to a skewed communication pattern if it is not consol-
idated. For the rest, Tiresias allocates GPUs in machines to
decrease fragmentation. Albeit simple, this algorithm is very
effective in practice (§5). It performs even better than the pre-

vious ILP-based design because the ILP cannot capture the
different effects of consolidation on different models.

Determining PACKLIMIT: We rely on job history to peri-
odically update PACKLIMIT. Currently, we use a simple lin-
ear classifier to periodically determine the PACKLIMIT value
using a job’s placement and corresponding performance as
features. More sophisticated mechanism to dynamically de-
termine PACKLIMIT can be an interesting future work.

3.4 Summary

Compared to Apache YARN’s Capacity Scheduler (YARN-
CS) and Gandiva, Tiresias aims to minimize the average JCT.
Unlike Optimus, Tiresias can efficiently schedule jobs with-
out or with partial prior knowledge (Table 2). Additionally,
Tiresias can smartly place DDL jobs based on the model
structure automatically captured by the Tiresias profiler.

4 Implementation

We have implemented Tiresias as a centralized resource man-
ager. The Discretized 2DAS scheduler, the placement algo-
rithm, and the profiler are integrated into the central master,
and they work together to appropriately schedule and place
DDL jobs. Similar to using current DDL clusters, users sub-
mit their DDL jobs with the resource requirements, primar-
ily the number of parameter servers (PS;) and the number
of GPUs/workers (W). The resource manager then handles
everything, from resource allocation when a job starts to re-
source reclamation when it completes.

As mentioned earlier, Tiresias makes job placement de-
cisions based on profiling via a network monitoring library.
This library is present in every server of the cluster and com-
municates with the central profiler so that Tiresias can deter-
mine the skew of each new DDL job.

Central master: In addition to starting new jobs and com-
pleting existing ones, a major function of the master is to pre-
empt running jobs when their (GPU) resources are assigned to
other jobs by the scheduler. Because of the iterative nature of
DL jobs, we do not need to save all the data in GPU and main
memory for job preemption. Currently, we use the checkpoint
function provided by almost every DL framework and just

Table 3: DL jobs are put into bins by their number of GPUs (Small
and Large) and their training time (Short and Long)

Bin 1 (SS)
% of Jobs 63.5%

2 (SL)
12.5%

3 (LS)
16.5%

4 (LL)
7.5%

save the most updated model for the preempted job. When a
preemption is triggered, the job is first paused; then its chief
worker checkpoints its model to a cluster-wide shared file sys-
tem. When a paused job is resumed again by the scheduler, its
most recent checkpoint will be loaded before it is restarted.
The central master also determines a job’s placement using
the placement algorithm and the profiler.

Distributed RDMA monitoring: Because RDMA is
widely used in GPU clusters for DDL jobs, we implement the
profiler as a loadable library that intercepts RDMA ibverbs
APIs. Therefore, it can record all the RDMA activities on
each server, such as building connections, sending and receiv-
ing data. The RDMA-level information of all relevant work-
ers and parameter servers are then aggregated at the central
profiler. Based on the aggregated information (e.g., message
size and the total amount of traffic), Tiresias can resolve the
detailed model information of a given DDL job, including its
skew. Though implemented for RDMA networks, the profiler
can easily be extended to support TCP/IP networks by inter-
cepting socket APIs.

5 Evaluation

We have deployed Tiresias on a 60-GPU cluster and evalu-
ated it using experiments and large-scale simulations using
production traces from Microsoft. The highlights are:

e In testbed experiments, Tiresias improves the average
JCT by up to 5.5x and the makespan by 1.21x com-
pared to YARN-CS. It also performs comparably to
SRTF, which uses complete prior information (§5.2).
Tiresias’s benefits are due to job placement benefits for
skewed DDL jobs and reduction in queueing delays dur-
ing scheduling.

e Tiresias’s benefits hold for large-scale simulation of the
production trace from Microsoft (§5.3).

e Tiresias is robust to various configuration parameters and
workload variations (§5.4).

In this section, Tiresias-G (Tiresias-L) represents Tiresias
using the Discretized 2D-Gittins index (Discretized 2D-LAS).

5.1 Experimental Setup

Testbed. Our testbed consists of 15 4-GPU PowerNV
8335-GTB machines from IBM in the Michigan ConFlux
cluster. Each machine has 4 NVIDIA Tesla P100 GPUs
with 16 GB GPU memory, two 10-core (8 threads per core)
POWERS CPUs, 256 GB DDR4 memory, and a 100 Gbps
EDR Mellanox InfiniBand adapter. There is also a high-
performance cluster file system, GPFS [35], shared among
those machines. In Tiresias, the checkpoint files used in job

preemptions are written to and read from GPFS. The read and
write throughput of GPES from each machine is 1.2 GB/s.

Simulator. We developed a discrete-time simulator to eval-
uate Tiresias at large scale using a real job trace from Mi-
crosoft. It simulates all job events in Tiresias, including job
arrival, completion, demotion, promotion, and preemption.
However, it cannot determine job training time with the dy-
namic cluster environment; instead, it uses actual job comple-
tion times.

Workload. Given the scale of our GPU cluster, we gener-
ate our experimental workload of 480 DL/DDL jobs by scal-
ing down the original job trace. Job requirements (number of
GPUs, and training time) in our workload follow the distribu-
tions of the real trace. Half of these jobs are single-GPU DL
jobs; the rest are DDL ones (40 2-GPU jobs, 80 4-GPU jobs,
90 8-GPU jobs, 25 16-GPU jobs, and 5 32-GPU jobs). The
number of parameter servers in each DDL job is the same as
its GPU number. Each model in Table 6 has 48 jobs. Each
job has a fixed number of iterations to run. The training time
of jobs varies from 2 mins to 2 hours. Jobs arrive follow-
ing a Poisson process with an average inter-arrival time of
30 seconds. We run the jobs in synchronous data parallelism
mode using TensorFlow 1.3.1 with RDMA extension and us-
ing model files from the TensorFlow benchmark [5].

Job Bins. We category our jobs based on both their spatial
(number of GPUs) and temporal (job training time) character-
istics (Table 3). For the original trace, we consider a job to be
small if it does not need more than 8 GPUs (Microsoft uses
8-GPU machines) and short if its training time is less than 4
hours. After scaling down, we consider a job to be small if it
needs at most 4 GPUs (we are using 4-GPU machines) and
short if it trains for less than 800 seconds.

Baselines. We compare Tiresias to an Apache YARNSs ca-
pacity scheduler (YARN-CS) used in Microsoft (Appendix
A). For comparison, we also implement an SRTF scheduler
that has complete information, i.e., the eventual training time
that in practice, cannot be obtained before running the job.
Note that job durations are unknown to both Tiresias and
YARN-CS. SRTF uses Tiresias’s placement mechanism. We
also comapre Tiresias with the time-sharing scheduler in Gan-
diva [41] in the large-scale simulation.

Metric. Our key metric is the improvement in the average
JCT (i.e., time from submission to completion):

Duration of an Approach
Duration of Tiresias-L

Factor of Improvement =

To clearly present the performance of Tiresias, unless
otherwise specified, the results of all schedulers (including
Tiresias-G) are normalized by that of Tiresias-L. Factor of
improvement (FOI) greater than 1 means Tiresias-L is per-
forming better, and vice versa.

10 |-~ YARN-CS

8 277
208 SRTF 25 w54
[©] . . Q
206 —Tiresias-G K £6
" | - - Tiresias-L ’ 2 5
204] 4
S / E3
& 00 == 50
10 100 1000 10000 100000 <
JCT (second) 5

(a) Individual job completion times

Figure 10: Improvements in the average JCT using Tiresias w.r.t. YARN-CS and SRTF.

5.2 Tiresias in Testbed Experiments

In testbed experiments, we compare the performance of
YARN-CS, SRTF, Tiresias-G and Tiresias-L. For Tiresias,
there are two priority queues with a threshold of 3200 GPU
seconds. The PROMOTEKNOB for avoiding starvation is dis-
abled in Testbed experiments.

5.2.1 JCT Improvements

Tiresias-L achieves 5.5 x improvement in terms of the aver-
age JCT w.rt. to YARN-CS (Figure 10). If we look at the
median JCT, then Tiresias-L is 27 x better than YARN-CS.
Tiresias-G has almost the same performance as Tiresias-L
(1.06x in average, 1.05x in median). Its negligible perfor-
mance loss is due to more job preemptions (§5.2.4). Half of
all jobs avoid severe queueing delays using Tiresias. More-
over, Tiresias is not far from SRTF either.

The key idea of Tiresias’s scheduler is avoiding queueing
delays to small or short jobs, thus saving them from large or
long jobs. When using Tiresias-L (Tiresias-G), the average
JCT of jobs in Binl (SS) is just 300 (330) seconds, which is
27.6x (25.2x) better than that using YARN-CS. On the other
hand, jobs in Bin4 (LL) have almost the same average JCT in
both Tiresias and YARN-CS.

5.2.2 Cluster-Wide GPU Utilization

Figure 11 shows the averaged GPU utilizations of our cluster
over time. While there are some small variations, overall uti-
lizations across solutions look similar. However, Tiresias re-
duces the makespan compared to YARN-CS. The makespan
of Tiresias-L (27400 seconds) was 1.21 x smaller than that of
YARN-CS (33270 seconds), and it was similar to Tiresias-G
(27510 seconds) and SRTF (28070 seconds).

5.2.3 Sources of Improvements

Smaller queueing delays. Tiresias’s scheduler can reduce
the average queueing delay of all jobs (Table 4), especially
for small and short jobs. The average queueing delay is re-
duced from over 8000 seconds to around 1000 seconds when
comparing YARN-CS and Tiresias. More importantly, half of
the jobs are just delayed for less than or equal to 13 (39) sec-
onds in Tiresias-L (Tiresias-G), which is negligible compared
to the median delay in YARN-CS. Note that while Tiresias’s
average queueing delay is higher than SRTF, smaller jobs ac-
tually experience similar or shorter delays.

® YARN-CS u SRTF m Tiresias-G

(b) Summarized results

10 _ yARN-CS J
0.8 SRTF
0.6 ——Tiresias-G

[0}

E

F

L'g 04 — — Tiresias-L

202

g 00 =

— . . ==

=0 50 100

10s-averaged GPU utilization (%)
Figure 11: Cluster-wide GPU utilization.

Fraction of
DDL Jobs

08 1 12 14 16 18
Ratio of Job Training Time

Figure 12: Performance improvement from job placement in
Tiresias-L. We pick all the DDL jobs and compare their training
times when Tiresias-L is running with and without placement.

Table 4: Queueing delays for DDL jobs for different solutions.

Average Median 95th
YARN-CS 8146s 7464s 15327s
SRTF 593s 32s 3133s
Tiresias-G 1005s 39s 7933s
Tiresias-L 963s 13s 7755s

Faster training. Albeit smaller, another source of perfor-
mance improvement is Tiresias’s job placement algorithm. To
illustrate this, we rerun the experiment using Tiresias-L but
without its profiler; i.e., jobs are randomly placed on the clus-
ter. We compare the training time of DDL jobs in Tiresias-L
without job profiling versus in the original Tiresias-L. We use
the ratio of training time in random placement to Tiresias-
L as the factor of improvement. In Figure 12, large ratio
means random placement slows down the training, and vice
versa, single-GPU jobs are excluded from the figure. Tiresias-
L achieves up to 1.67x improvement w.r.t. random place-
ment, because it can identify sensitive jobs and place them on
minimal number of machines for better performance. Fewer
than 30% of DDL jobs experience limited performance loss.

Because of the highly-skewed job distribution and the va-
riety of model types, the major improvement comes from the
job scheduling by avoiding HOL blocking of small/short jobs
by the large/long ones.

5.2.4 Overheads

Because Tiresias uses preemption in its scheduling algorithm,
its major overhead comes from preempting DDL jobs. The
Discretized 2DAS scheduler in Tiresias provides discretized
priority levels to jobs. Hence, two cases trigger job pre-
emptions in Tiresias: job arrivals/promotions and demotions
that change the priority queue of a job. In our experiments,

10

208 - - YARN-CS
S 0.
- - Best-effort
0.6 SRTF
[= —&—Gandiva
204 —Tiresias-G
S 02 - - Tiresias-L
E ..
0.0 o
100 1000 10000 100000 1000000 10000000
JCT(second)

Figure 13: JCT distributions using different solutions in the trace-
driven simulation. The x-axis is in logarithmic scale.

Table 5: Improvements in JCT using Tiresias in simulation. Num-
bers are normalized by that of Tiresias-L.

Average Median 95th
YARN-CS 2.41x 30.85x 1.25x
Best-effort 1.50x 9.03x 1.08x
SRTF 1.00x 1.00x 0.84x
Gandiva 2.00x 2.59x 2.08x
Tiresias-G 0.97x 1.00x 0.85x

Tiresias-L spent 13724 seconds performing 221 preemptions;
Tiresias-G triggered 297 preemptions with 17425 seconds
overhead in total. There are more preemptions in Tiresias-
G because jobs in the same queue are sorted based on their
Gittins index value at every event. In Tiresias-L, jobs will not
be re-sorted because of FIFO ordering.

In contrast, job priorities in SRTF are continuous. When-
ever short jobs come in, jobs that with longer remaining time
(lower priorities) may be preempted due to lack of resources.
Overall, SRTF spent 18057 seconds for 316 preemptions.

Note that the exact overhead of each preemption depends
on the specific job and cluster conditions.

5.3 Tiresias in Trace-Driven Simulations

Here we evaluate Tiresias’s performance on the Microsoft
job trace. We compare it against YARN-CS, SRTF, and Best-
effort, where Best-effort is defined as YARN-CS but without
HOL blocking — i.e., it allows small jobs to jump in front of
large jobs that do not have enough available GPUs.

5.3.1 Simulator Fidelity

We replayed the workload used in our testbed experiments
in the simulator to verify the fidelity of our simulator. We
found the simulation results to be similar to that of our testbed
results — 5.11x (1.50x) average (95th percentile) improve-
ment w.r.t. YARN-CS, 0.74x (0.55x) w.r.t. SRTF, and 1.01 x
(1.13x) w.r.t. Tiresias-G. Because the simulator cannot cap-
ture overheads of preemption, the impact of placement, or
cluster dynamics, the results are slightly different.

5.3.2 JCT Improvements

We then simulated the job trace from Microsoft to identify
large-scale benefits of Tiresias. Tiresias-L improves the aver-
age JCT by 2.4 x, 1.5%, and 2x over YARN-CS, Best-effort,
and Gandiva, respectively (Table 5). In addition, Tiresias-

L reduces the median JCT by 30.8x (9x) w.r.t. YARN-CS
(Best-effort). This means half of the Microsoft jobs would ex-
perience significantly shorter queueing delays using Tiresias.
Compared to Tiresias-L, Tiresias-G has almost the same (me-
dian JCT) or slightly better (average and 95th percentile JCT)
performance. More importantly, Tiresias performs similar to
SRTF that uses complete knowledge.

5.4 Sensitivity Analysis

Here we explore Tiresias’s sensitivity to K (number of pri-
ority queues), queue thresholds (server quantum A), and
PROMOTEKNOB. By applying the Discretized 2D-LAS al-
gorithm, Tiresias relies on K and corresponding thresholds
to differentiate between jobs. In this section, we use (K,
thresholdl, threshold2, ...) to represent different settings in
Tiresias. For example, (2, 1h) means Tiresias has 2 priority
queues and the threshold between them is 1 hour GPU time.

5.4.1 Impact of Queue Thresholds

We use Tiresias with K=2 and increase the threshold between
the two priority queues (Figure 14a and 15a). We observe that
(2, 0.5h) is slightly worse than others who have larger thresh-
olds in terms of the average JCT in Tiresias-L. When the
threshold is larger than or equal to 1 hour, Tiresias-L’s per-
formance almost does not change. For Tiresias-G, different A
values have almost the same performance. These are because
1h GPU time can cover more than 60% of all the jobs.

5.4.2 Impact of K (number of priority queues)

Next, we examine Tiresias’s sensitivity to K. We evaluate
Tiresias with K set to 2, 3 and 4, and pick the best thresh-
olds in each of them. The number of priority queues does not
significantly affect Tiresias (Figure 14b and 15b). The 3- and
4-queue Tiresias only improves the average JCT by 1% in
comparison to the 2-queue Tiresias-L.

5.4.3 Impact of PROMOTEKNOB

This simulation is based on (2, 1h). We pick the initial
PROMOTEKNOB as 1, and increase it by the power of 2.
When PROMOTEKNOB is infinite, Tiresias does not promote.
Smaller PROMOTEKNOB means more frequent promotions
of long-delayed jobs back to the highest priority queue. For
Tiresias-G, the maximal JCT is cut down by PROMOTEKNOB
(Figure 15¢). However this trace is not sensitive to the differ-
ent value of PROMOTEKNOB. In Figure 14c, the 95th JCT
minutely changes when we use smaller PROMOTEKNOB in
Tiresias-L — the key reason PROMOTEKNOB has little impact
for this trace is due to its heavy-tailed nature [33].

6 Discussion and Future Work

Formal analysis. Although Discretized 2DAS has advan-
tages in minimizing the average JCT of DL jobs, formal anal-
yses are still needed to precisely present its applicable bound-
aries (in terms of cluster resources and DL jobs’ require-
ments). This will simplify Tiresias configuration in practice.

g, i% 103 100 100 100 F {% 100 099 0% T }% 1,000 0,652 0.947 0,943 0.936
5508 =208 ELo

%06 2% 06 gz 08

2204 9= 0.4 £ 04

t20.2 <202 %202

Edi0.0 Eci 00 ES 00

2 0sh 1h 2h 4n 5 2 3 4 g= mf 8 4 2 1

Number of queues

Threshold

(a) (b) (©
Figure 14: Sensitivity analysis of Tiresias-L. The queue settings in (b) Figure 15: Sensitivity analysis of Tiresias-G. The queue settings in (b)

PromoteKnob

are (2, 1h), (3, 1h, 2h), and (4, 1h, 2h, 4h) for each bar.

Lightweight preemption. Existing preemption primitives
for DL jobs are time-consuming. To reduce the number
of preemptions, Tiresias adopts priority discretization using
MLFQ (§3.2.3). A better way of preempting DL jobs has been
proposed in Gandiva [41]. However, that approach requires
DL framework modifications. At the same time, its overhead
is still non-negligible. With lightweight preemption mecha-
nisms, many classic and efficient algorithms in network flow
and CPU scheduling can be applied for DDL scheduling.

Fine-grained job placement. Tiresias’s profile-based
placement scheme coarsely tries to avoid network transfers
when necessary. However, there can be interferences within
the server (e.g., on the PCle bus) when too many workers
and parameter servers are collocated. Further investigations
on how placement can affect job performance are required.
To this end, possible approaches include topology-aware
schemes [10] and fine-grained placement of computational
graphs in DL jobs [32].

7 Related Work

Cluster Managers and Schedulers. There are numerous
existing resource managers and schedulers for CPU-based
clusters for heterogenous workloads [20, 22-24, 26, 29, 38—
40, 46] or for traditional machine learning jobs [27, 37, 44].
As explained in Section 1, these frameworks are not designed
to handle the unique characteristics of DDL jobs —e.g., all-or-
nothing task scheduling, and unpredictable job duration and
resource requirements — running on GPU clusters.

Resource Management in DDL Clusters. Optimus [34] is
an online resource scheduler for DDL jobs on GPU clusters.
It builds resource-performance model on the fly and dynam-
ically adjusts resource allocation and job placement for min-
imizing the JCT. It is complementary to Tiresias in terms of
job placement, because the latter focuses on the efficiency of
the initial job placement based on job characteristics, while
the former performs online adjustment according to a job’s
realtime status. However, Optimus assumes that the remain-
ing time of a DL job is predictable, which is not always true in
practice (§2.2). Tiresias can schedule jobs without any or with
partial prior knowledge, and it does not rely on such assump-
tions. Gandiva [41] is a resource manager for GPU clusters
that gets rid of the HOL blocking via GPU time sharing. How-
ever, the time-slicing scheduling approach in Gandiva brings
limited improvement in terms of the average JCT.

1.00 1.00 1.00

1.00 1.00 1.00 1.00

Inf

0.65 0.65 0.65 0.65

Svrxoiv
Coooo =
Sivhonxoiv
OO0~
[SESFSCN-CEN Y

(2, 1h) Tiresias-G
OO0 ==
PromoteKnob

05h 1h 2h 4h
Service quantum A

2 3 4
Number of queues

Inf 8 4 2 1
PromoteKnob

(a) (b) (©)

Norm. Avg. JCT w.rt.
Norm. Avg. JCT w.rt.
(2, 1h) Tiresias-G
Norm. Max JCT w.r.t.

are (2, 1h), (3, 1h, 2h), and (4, 1h, 2h, 4h) for each bar.

Resource Management with Partial or No Information.
To the best of our knowledge, Tiresias is the first cluster
scheduler for DDL training jobs that minimizes the average
JCT with partial or no information. While similar ideas exist
in networking [13, 17] and CPU scheduling [12, 18], GPU
clusters and DDL jobs provide unique challenges with high
preemption overheads and all-or-nothing scheduling. There
exist all-or-nothing gang schedulers for CPU, but they are not
information-agnostic. While fair schedulers do not require
prior knowledge [6, 7, 43], they cannot minimize the average
JCT. Similar to the Gittins index policy, shortest-expected-
remaining-processing-time (SERPT) [36] just needs partial
knowledge of job durations. However, the Gittins index pol-
icy is proven to be better because it prioritizes a larger number
of potentially shorter jobs [36].

8 Conclusion

Tiresias is a GPU cluster resource manager that minimizes
distributed deep learning (DDL) jobs’ completion times with
partial or no a priori knowledge. It does not rely on any in-
termediate DL algorithm states (e.g., training loss values) or
framework specifics (e.g., tensors-to-parameter server map-
ping). The key idea in Tiresias is the 2DAS scheduling frame-
work that has two scheduling algorithms (Discretized 2D-
LAS and Discretized 2D-Gittins index). They can respec-
tively minimize the average JCT with no and partial prior
knowledge. Additionally, Tiresias’s profile-based job place-
ment scheme can maintain the resource (GPU) utilization of
cluster without hurting job performance. Compared to a pro-
duction solution (Apache YARN’s Capacity Scheduler) and
a state-of-the-art DDL cluster scheduler (Gandiva), Tiresias
shows significant improvements in the average JCT.

Acknowledgments

Special thanks go to the ConFlux team from the University of
Michigan, especially Karthik Duraisamy and Todd Raeker,
for reserving enough GPU servers to make Tiresias experi-
ments possible. We would also like to thank the anonymous
NSDI reviewers, our shepherd, KyoungSoo Park, and Sym-
bioticLab members, especially Yiwen Zhang, for their con-
structive comments and feedback that helped improve the pa-
per. This work was supported in part by NSF grants CCF-
1629397, CNS-1563095, and CNS-1617773. Computing re-
sources were provided by the NSF via OAC-1531752.

References
[1] Amazon EC2 Elastic GPUs. https://aws.amazon.
com/ec2/elastic-gpus/.

[2] AutoML. http://www.ml4aad.org/automl/.

[3] GPU-Accelerated Microsoft Azure.
//www.nvidia.com/en-us/data-center/
gpu-cloud-computing/microsoft-azure/.

https:

[4] GPU on Google Cloud. https://cloud.google.
com/gpu/.

[5] TensorFlow Benchmark Code.
com/tensorflow/benchmarks.

https://github.

[6] YARN Capacity Scheduler. http://goo.gl/cqwcp5.
[7]1 YARN Fair Scheduler. http://goo.gl/w5edEQ.

[8] S. Aalto, U. Ayesta, and R. Righter. On the gittins in-
dex in the m/g/1 queue. Queueing Systems, 63(1-4):437,
20009.

[9] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,
J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng. TensorFlow: A system
for large-scale machine learning. In OSDI, 2016.

[10] M. Amaral, J. Polo, D. Carrera, S. Seelam, and M. Stein-
der. Topology-aware gpu scheduling for learning work-
loads in cloud environments. In SC, 2017.

[11] G. Ananthanarayanan, A. Ghodsi, A. Wang,
D. Borthakur, S. Kandula, S. Shenker, and I. Sto-
ica. PACMan: Coordinated memory caching for
parallel jobs. In NSDI, 2012.

[12] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau.
Scheduling: The multi-level feedback queue. In Oper-
ating Systems: Three Easy Pieces. 2014.

[13] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and
H. Wang. Information-agnostic flow scheduling for
commodity data centers. In NSDI, 2015.

[14] J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, and
D. D. Cox. Hyperopt: a python library for model selec-
tion and hyperparameter optimization. Computational
Science & Discovery, 8(1):014008, 2015.

[15] L. Chen, J. Lingys, K. Chen, and F. Liu. Auto: scaling
deep reinforcement learning for datacenter-scale auto-
matic traffic optimization. In SIGCOMM, 2018.

[16] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang,
T. Xiao, B. Xu, C. Zhang, and Z. Zhang. MXNet:
A flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint
arXiv:1512.01274, 2015.

[17] M. Chowdhury and I. Stoica. Efficient coflow schedul-
ing without prior knowledge. In SIGCOMM, 2015.

[18] F. J. Corbaté, M. Merwin-Daggett, and R. C. Daley. An
experimental time-sharing system. In Spring Joint Com-
puter Conference, pages 335-344, 1962.

[19] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P.
Xing. Geeps: Scalable deep learning on distributed gpus

with a gpu-specialized parameter server. In EuroSys,
2016.

[20] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant Resource Fairness:
Fair allocation of multiple resource types. In NSDI,
2011.

[21] J. Gittins, K. Glazebrook, and R. Weber. Multi-armed
bandit allocation indices. John Wiley & Sons, 2011.

[22] 1. Gog, M. Schwarzkopf, A. Gleave, R. N. Watson, and
S. Hand. Firmament: Fast, centralized cluster schedul-
ing at scale. In OSDI, 2016.

[23] R. Grandl, M. Chowdhury, A. Akella, and G. Anantha-
narayanan. Altruistic scheduling in multi-resource clus-
ters. In OSDI, 2016.

[24] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulka-
rni. Graphene: Packing and dependency-aware schedul-
ing for data-parallel clusters. In OSDI, 2016.

[25] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In JEEE CVPR, 2016.

[26] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A.D.Joseph, R. Katz, S. Shenker, and I. Stoica. Mesos:
A platform for fine-grained resource sharing in the data
center. In NSDI, 2011.

[27] B. Huang, M. Boehm, Y. Tian, B. Reinwald,
S. Tatikonda, and F. R. Reiss. Resource elasticity for
large-scale machine learning. In SIGMOD, 2015.

[28] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian,
W. Xiao, and F. Yang. Analysis of large-scale multi-
tenant gpu clusters for dnn training workloads. arXiv
preprint arXiv:1901.05758, 2019.

[29] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayana-
murthy, A. Tumanov, J. Yaniv, R. Mavlyutov, I. Goiri,
S. Krishnan, J. Kulkarni, and S. Rao. Morpheus: To-
wards automated slos for enterprise clusters. In OSDI,
2016.

https://aws.amazon.com/ec2/elastic-gpus/
https://aws.amazon.com/ec2/elastic-gpus/
http://www.ml4aad.org/automl/
https://www.nvidia.com/en-us/data-center/gpu-cloud-computing/microsoft-azure/
https://www.nvidia.com/en-us/data-center/gpu-cloud-computing/microsoft-azure/
https://www.nvidia.com/en-us/data-center/gpu-cloud-computing/microsoft-azure/
https://cloud.google.com/gpu/
https://cloud.google.com/gpu/
https://github.com/tensorflow/benchmarks
https://github.com/tensorflow/benchmarks
http://goo.gl/cqwcp5
http://goo.gl/w5edEQ

[30] M. Li, D. G. Andersen, J. W. Park, A. J. Smola,
A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and B.-
Y. Su. Scaling distributed machine learning with the
parameter server. In OSDI, 2014.

[31] L. Luo, J. Nelson, L. Ceze, A. Phanishayee, and A. Kr-
ishnamurthy. Parameter hub: a rack-scale parame-
ter server for distributed deep neural network training.
arXiv preprint arXiv:1805.07891, 2018.

[32] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen,
Y. Zhou, N. Kumar, M. Norouzi, S. Bengio, and
J. Dean. Device placement optimization with reinforce-
ment learning. arXiv preprint arXiv:1706.04972,2017.

[33] M. Nuyens and A. Wierman. The Foreground—
Background queue: A survey. Performance Evaluation,
65(3):286-307, 2008.

[34] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo. Opti-
mus: An efficient dynamic resource scheduler for deep
learning clusters. In EuroSys, 2018.

[35] F. B. Schmuck and R. L. Haskin. GPFS: A shared-disk
file system for large computing clusters. In FAST, 2002.

[36] Z. Scully, M. Harchol-Balter, and A. Scheller-Wolf.
Soap: One clean analysis of all age-based scheduling
policies. In SIGMETRICS, 2014.

[37] P. Sun, Y. Wen, N. B. D. Ta, and S. Yan. To-
wards distributed machine learning in shared clusters: A
dynamically-partitioned approach. In IEEE Smart Com-
puting (SMARTCOMP), 2017.

[38] A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch,
M. Harchol-Balter, and G. R. Ganger. Tetrisched:
Global rescheduling with adaptive plan-ahead in dy-
namic heterogeneous clusters. In EuroSys, 2016.

[39] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agar-
wal, M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah,
S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia,
B. Reed, and E. Baldeschwieler. =~ Apache Hadoop
YARN: Yet another resource negotiator. In SoCC, 2013.

[40] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes. Large-scale cluster management
at Google with Borg. In EuroSys, 2015.

[41] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu,
N. Kwatra, Z. Han, P. Patel, X. Peng, H. Zhao,
Q. Zhang, F. Yang, and L. Zhou. Gandiva: Introspective
cluster scheduling for deep learning. In OSDI, 2018.

[42] D. Yu, A. Eversole, M. Seltzer, K. Yao, O. Kuchaiev,
Y. Zhang, F. Seide, Z. Huang, B. Guenter, H. Wang,

J. Droppo, G. Zweig, C. Rossbach, J. Gao, A. Stol-
cke, J. Currey, M. Slaney, G. Chen, A. Agarwal, C. Ba-
soglu, M. Padmilac, A. Kamenev, V. Ivanov, S. Cypher,
H. Parthasarathi, B. Mitra, B. Peng, and X. Huang. An
introduction to computational networks and the compu-
tational network toolkit. Technical report, Microsoft Re-
search, October 2014.

[43] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and
I. Stoica. Improving MapReduce performance in het-
erogeneous environments. In OSDI, 2008.

[44] H.Zhang, L. Stafman, A. Or, and M. J. Freedman. Slaq:
quality-driven scheduling for distributed machine learn-
ing. In ACM SoCC, 2017.

[45] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang,
Z. Hu, J. Wei, P. Xie, and E. P. Xing. Poseidon: An ef-
ficient communication architecture for distributed deep
learning on gpu clusters. In USENIX ATC, 2017.

[46] Z. Zhang, C. Li, Y. Tao, R. Yang, H. Tang, and J. Xu.
Fuxi: A fault-tolerant resource management and job
scheduling system at internet scale. In VLDB, 2014.

A Characteristics of Production Cluster

We describe Project Philly [28], the cluster manager in one
of Microsoft internal production clusters, referred as P. P is
shared by several production teams that work on projects re-
lated to a search engine. It is managed by an Apache YARN-
like resource manager, which places and schedules DDL
jobs submitted by users via a website/REST API front end.
P supports various framework jobs, including TensorFlow,
Caffe and CNTK. In 2016, P consisted of around 100 4-GPU
servers. In 2017, due to the surging demand of running DDL,
P is expanded by more than 250 8-GPU servers. So, the total
number of GPUs has grown by 5x. Servers in P are intercon-
nected using a 100-Gbps RDMA (InfiniBand) network.

We collect traces from P over a 10-week period from Oct.
2017 to Dec. 2017. This cluster runs Ganglia monitoring sys-
tem, which collects per-minute statistics of hardware usage
on every server. Since some jobs are quickly terminated be-
cause of bugs in user’s job configuration, we only show the
data of jobs that run for at least one minute. Also, we collect
the per-job logs output by the DL framework which include
the time for each iteration and the model accuracy along the
running time. The network-level activities are monitored by
Tiresias profiler which is explained in Section 3.3.1, that logs
every RDMA network operation, e.g., the send and receive
of every message,and their timestamps. In addition, we add
hooks that intercept the important function calls in a DDL
framework, e.g., the start of an iteration or aggregation, and
log their timestamps.

Although we cannot disclose the details of proprietary DL
models in P, we present the results of several public and pop-
ular models, some of which are also run in P.

0.8 0.8 = 0.8 0.8
= 0.6 = 0.6 = 0.6 = 0.6
O 04 O 04 , d O 04 O 04
0.2 L All —— 0.2 ! All Jobs 0.2 0.2 (o All Jobs
0 BT >8 GPUs - - - 0 >8 GPUs Jobs - - - 0 0 >8 GPUs Jobs - - -
10 100 1000 10000 0 100 200 300 400 500 600 1 10 100 1000 10000 0.1 1 10 100 1000
Model Size (MBytes) Iteration Time (Seconds) Jobs Arrival Interval (Seconds) Job Duration (Hours)

Figure 16: The CDF of DL model Figure 17: The CDF of average Figure 18: The CDF of DDL job Figure 19: The CDF of DDL job
sizes being trained. iteration time per job. arrival intervals. duration.

Large and different DL model sizes. As shown in Fig-
ure 16, production DL models range from a few hundreds of
megabytes to a few gigabytes. The model size distribution
is rather independent from the number of GPUs used. Ac-
cording to the cluster users, the number of GPUs used often
depends more on the training data volume and the urgency
of jobs, and less on model sizes. Larger model sizes mean
heavier communication overhead per iteration in distributed
training. The largest one is 7.5GB. It may cause network con-
gestion even with 100 Gbps network and greatly hurt the job-
level performance. > To minimize this overhead, existing job
placement strategy intuitively consolidates DDL jobs as much
as possible.

A staggering increase in the number DDL jobs. We com-
pare the number of DDL jobs (with at least two GPUs) dur-
ing ten weeks from Oct. 2017 to Dec. 2017, and the number
of DDL jobs during the same ten weeks in 2016. The total
number of DDL jobs has grown by 10.5x year over year. We
refer to jobs using more than 8 GPUs as “large jobs,” since
such jobs have to run on multiple servers (8 GPUs per server
in P). Large jobs have grown by 9.4 x. The largest job run on
128 GPUs in 2017, while the number was 32 GPUs in 2016.
We expect this trend to continue as DL jobs are trained on
ever larger data sets.

Long job queuing time in production clusters. We also
observe that the number of DDL jobs is increasing faster than
the speed of cluster expansion. As a result, some jobs have to
wait in a queue when the cluster is overloaded. From the trace,
we see the average queuing delay of all jobs is 4102 seconds!
A brute-force solution is to add GPUs as fast as the demand.
However, this poses significant monetary costs — each 8-GPU
server in P costs around 100K US Dollars based on public
available GPU price. Thus, the DDL cluster service providers
are seeking ways to improve job completion time (including
the queuing time) given limited GPU resources.

Unpredictable job arrivals. Since the cluster is shared by
multiple teams and jobs are submitted on demand, the job
arrival intervals are naturally unpredictable. Figure 18 shows
that the job arrival interval is mostly less than one hour. Many

3Section 3.3 shows that in fact it mostly depends on the model structure.

o
%

o
2

2D-Gittins Index Value
< (=]
IS} kS

(=]

o 1 2 3 4 5 6 7 8 9
Attained service

10 11 12

Figure 20: 2D-Gittins index value in §3.2.2. Jobs have required ser-
vice 4, 8, and 12, each with probability 1/3.

arrival intervals are less than one second, suggesting that they
are generated by AutoML to sweeping hyperparameters.

Various aggregation frequency depending on algorithm
demands. The communication overhead also depends on
how frequently aggregations are performed, which depends
on the minibatch sizes. The size of minibatches is determined
by the model developers — the larger the minibatches, the
larger the learning step, which may help the learning process
avoid local optimas but risk final convergence due to too-large
steps. Thus, it is usually chosen by the users based on the re-
quirements of specific models.

Figure 17 shows that the per iteration time varies signifi-
cantly across jobs. However, the distribution of large jobs is
very close to all jobs. This means that users probably do not
choose minibatch sizes based on how many GPUs are used in
each job.

B Characteristics of Popular DNN models

In Table 6, we pick 10 popular DNN models and present the
details of their model structures for their TensorFlow imple-
mentations [5]. For the VGG family and AlexNet, the size of
each model is dominated by its largest tensor. For the rest,
their tensor size distributions are less skewed.

C 2D-Gittins Index Value in Section 3.2.2

When using 2D-Gittins index scheduling algorithm, the pri-
orities of the jobs is determined by their corresponding 2D-
Gittins index value mapped to their attained service. The three
jobs in Figure 7 follow the same 2D-Gittins index in Fig-
ure 20.

Table 6: Characteristics of 10 popular DNN models in TensorFlow

Model Model size (MB) #Tensors #Large tensors (> IMB) Largest tensor size (MB) Largest tensor ratio
VGG19 548.1 39 15 392.0 71.5%
VGG16 527.8 33 12 392.0 74.3%
VGGI11 506.8 23 9 392.0 77.3%
AlexNet 235.9 17 7 144.0 61.0%

ResNet152 230.2 778 48 9.0 3.9%
ResNet101 170.4 523 35 9.0 5.3%
ResNet50 97.7 268 18 9.0 9.2%
Inception4 162.9 599 81 5.9 3.6%
Inception3 91.0 397 21 7.8 8.6%
GoogleNet 26.7 117 7 3.9 14.6%

D ILP Formula for DDL Placement

When placing a DDL job on to a shared GPU cluster, the
network traffic generated by that job affects not only itself,
but also all the jobs that share the same machines or network
links. The existing network status can affect the newly-placed
DDL job as well. Therefore, the objective of placing a DDL
job is to maximize the overall performance of the entire clus-
ter. To achieve this, we have to minimize the total network
traffic and also balance the network load on individual ma-
chines in the cluster. In our ILP formulation, the objective
function is to minimize the maximal network load of ma-
chines when placing a new DDL job onto the cluster.

By default, we assume all DDL jobs have the same number
of parameter servers (PS) and GPU worker, which is a com-
mon practice [45]. Actually, changing number of parameter
servers does not affect the total amount of data in aggregation
in the parameter server architecture. There are N GPU nodes
in the cluster. N; is the i-th node whose network traffic from
existing DDL jobs is #;. And N; has g; free GPUs before plac-
ing any new jobs. We assume a new DDL job J with model
size M is going to be placed. There are W GPU workers and
K parameter servers in it. The total size of tensors hosted by
the j-th parameter server is s ;. For J, w; is the number of GPU
workers placed on N;. pj; is a binary variable. It will be 1 if
the j-th parameter server is placed on N;, and vice versa.

The total network traffic of N; comes from three parts: (1)
existing traffic, (2) traffic from the workers of J on it, and (3)
traffic from the parameter servers of J on it. For collocated
parameter servers and workers, the traffic between them has
to be deducted. Therefore, the total network traffic 7; is:

Ti=ti+wi-(M=Y pji-sj)+ Y, pji-sj-(W—w)
jeK jeK

The overall objective can then be expressed as:

minimize max{7;}
ieN

The corresponding constraints are the following:

Vienwi < gi)]
Z w; = w (2)
ien

Vjek Y, pji=1 3)
fen

The first one is GPU resource constraints on all nodes. The
second one requires the consistency of total number of GPU
workers in J. The last one means every parameter server must
have exactly one host machine. Of course, more constraints,
such as CPU and host memory limitations, can be added into
this ILP formulation.

	Introduction
	Background and Motivation
	Distributed Deep Learning (DDL)
	Challenges
	Potential for Benefits

	Tiresias Design
	Overall Architecture
	Scheduling
	Why Two-Dimensional Scheduling?
	Two-Dimensional Attained Service-Based Scheduler (2DAS)
	Priority Discretization

	Placement
	Profiler
	The Placement Algorithm

	Summary

	Implementation
	Evaluation
	Experimental Setup
	Tiresias in Testbed Experiments
	JCT Improvements
	Cluster-Wide GPU Utilization
	Sources of Improvements
	Overheads

	Tiresias in Trace-Driven Simulations
	Simulator Fidelity
	JCT Improvements

	Sensitivity Analysis
	Impact of Queue Thresholds
	Impact of K (number of priority queues)
	Impact of PromoteKnob

	Discussion and Future Work
	Related Work
	Conclusion
	Characteristics of Production Cluster
	Characteristics of Popular DNN models
	2D-Gittins Index Value in Section 3.2.2
	ILP Formula for DDL Placement

