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Abstract— Caching the content closer to the user equipments
(UEs) in heterogenous cellular networks (HetNets) improves
user-perceived Quality-of-Service (QoS) while lowering the op-
erators backhaul usage/costs. Nevertheless, under the current
networking strategy that promotes aggressive densification, it
is unclear whether cache-enabled HetNets preserve the claimed
cost-effectiveness and the potential benefits. This is due to 1)
the collective cost of caching which may inevitably exceed the
expensive cost of backhaul in a dense HetNet, and 2) the excessive
interference which affects the signal reception irrespective of
content placement. We analyze these significant, yet overlooked,
issues, showing that while densification reduces backhaul load
and increases spectral efficiency in cache-enabled dense networks,
it simultaneously reduces cache-hit probability and increases the
network cost. We then introduce a caching efficiency metric, area
spectral efficiency per unit spent cost, and find it enough to cache
only about 3% of the content library size in the cache of small-
cell base stations. Furthermore, we show that range expansion,
which is known to be of substantial value in wireless networks,
is almost impotent to curb the caching inefficiency. Surprisingly,
unlike the conventional wisdom recommending traffic offloading
from macro cells to small cells, in cache-enabled HetNets, it is
generally more beneficial to exclude offloading altogether or to
do the opposite.

I. I NTRODUCTION

Heterogeneous cellular networks (HetNets) are one of the
key enablers for emerging cellular network systems to meet
the exponential surge of wireless traffic demand [1], [2]. By
substantially densifying the network, in particular in lower
tiers, operators are empowered to sufficiently shrink the com-
munication distances between base stations (BSs) and user
equipments (UEs), enhancing the coverage performance and
spectral efficiency. However, dense HetNets require expensive
backhaul links between BSs and the core network (and/or
among BSs), which may increase the total communication
costs. Caching popular contents at the small-cell BSs has been
suggested to reduce the reliance on backhaul [3]. Caching
also improves the Quality-of-Service/Experience (QoS/QoE)
for the UEs as the high-demand contents are placed near the
UEs and thus accessible with a lower latency [4].

Content placement is, therefore, important and has been
studied extensively for cellular networks. For a given topology
of small-cells, the authors of [4] introduced the idea of
substituting backhaul with caching in the BSs to reduce the
network delay. They then developed an optimal femto-caching
scheme for both uncoded and coded caching. Caching is
also considered to improve energy-efficiency. Reference [5]
optimized coded caching to minimize the energy consumption

of backhaul and storage. Furthermore, [6] investigated the
impact of caching on the energy-efficiency of video on-
demand applications. Utilizing caching in fog radio access
networks (F-RANs) was also shown in [7] to improve D2D
communications efficiency in HetNets.

One way to measure caching efficiency is to evaluate the
cache-hit probability (also referred to ashit ratio or hit rate).
The hit ratio is defined as the probability that the requested
content is successfully found/delivered from a cache, not the
backhaul. The broadcast nature of wireless communications is
exploited in [8] to introduce the optimal randomized caching
in small-cell networks. It is shown in [8] that in many practical
cases the hit ratio of randomized contents placement is much
higher than that of the intuitive caching of the most popular
contents everywhere. This is due mainly to the diversity of
wireless medium and the fact that in HetNets each UE is
likely to be located in the coverage area of multiple BSs [5].
The method in [8] is extended further in [9] to investigate
the impact of content retransmission in small-cell networks
on the hit ratio in both high and low mobility scenarios. For a
given number of retransmission attempts, [8] then optimized
the content placement to maximized the hit ratio.

Randomized content placement is extended further in [10],
[11] to K-tier HetNets, where the probability of content
placement stays the same across the BSs in each tier. The
optimal probabilistic content placement is shown in [10], [11]
to resemble a water-filling-type law.

Nevertheless, the above studies fail to incorporate the
following two important practical aspects of the HetNets
in caching performance analysis: (i) Although the cost of
installing caching equipments (memory and the corresponding
hardware) is much lower than that of the backhaul’s for
a dense/ultra-dense network, such as in 5G [1], the aggre-
gated cost of caching may exceed the backhaul’s cost; (ii )
densification also amplifies the impact of excessive inter-cell
interference as many UEs might receive interferences from a
large number of BSs through a line-of-sight (LOS) channel
[12], [13].

Analysis in [12] shows that by increasing the density of BSs,
the coverage probability in cellular network reduces to zero,
far lower than what the ideal standard-path-loss model [14]
indicates. In such a case, regardless of efficiency of content
placement, the UE cannot receive the content due to the low
SIR. In such a case, the results of the current cellular network
caching with a standard path-loss model, such as [6], [7], [8],



[10], [11] are not directly applicable to dense HetNets.
We investigate the caching efficiency of dense HetNets to

address the above two important aspects of HetNets. We adopt
stochastic geometry as an analytical tool to investigate whether
caching is beneficial in dense HetNets or not. To the best
of our knowledge, this has not been investigated before. Our
model incorporates the actual traits of signal propagation in
modern cellular networks, i.e., LOS/NLOS path-loss model
along with Nakagami fading for small-scale fading fluctua-
tions. We also account for the costs of backhaul and caching,
and analytically derive coverage probability, backhaul usage
probability, hit-ratio, and area spectral efficiency (ASE), to
provide quantitative insights on the impact of various system
and design parameters.

Our analysis shows that while densification is beneficial in
reducing the backhaul-usage probability and increasing ASE,
it reduces cache-hit probability and increases the network
cost. To provide a comprehensive performance evaluation of
caching systems, we introduce caching efficiency as the ASE
per cost. Our analysis indicates that in general caching is
not beneficial in densified networks. We further observe that
it is enough to cache only about3% of the global content
library size in lower tiers. Furthermore, a common networking
mechanism such as range expansion, which is shown to be
of substantial value in conventional (no caching) networking
via off-loading, could not alter this phenomenon. In a sharp
contrast with the conventional HetNets in which off-loading to
the small cells is suggested [1], [2], our analysis shows that in
cache-enabled networks, only traffic offloading from the small
cells to the micro cells improves the caching performance.

II. SYSTEM MODEL

A. Network Model

We consider a dense HetNets with universal frequency
reuse, complying with the interference-limited regime. Our
focus is on the downlink of a cache-enabledK-tier HetNet,
where K tiers (classes/technologies) of BSs are randomly
located in a 2-D plane [14], [10]. Tieri is specified by a
tuple, (λi, Pi, βi, Si, φi ∈ [0, 1]), whereλi is the BSs’ spatial
density,Pi is their maximum transmission power,βi is the
prescribed SIR threshold,Si is each BS’s maximum cache
storage, andφi ∈ [0, 1] is an indicator of the adopted caching
strategy (which will be elaborated further in Section IV).

In tier i, the spatial distribution of the BSs is modeled
with a homogenous Poisson point process (HPPP),Φi ∈ R2,
with a spatial density ofλi ≥ 0, where Φi and Φj are
mutually independent, for∀i, j, i 6= j. In our model, the UEs
are single-antenna and distributed according to a HPPP,ΦU ,
independent ofΦi, with a spatial density ofλU . We further
assume thatλU ≥ ∑

i λi, i.e., all the BSs are assumed to be
active. Without loss of generality we investigate atypical UE,
which is positioned at the origin and associated with BSxi.
This model can be easily extended to the users with multiple
antennas as in [13].

B. Caching Strategy

We consider a content library,F = {f1, f2, . . . , fF } with
the size ofF = |F|, where the files in this library are indexed
based on their popularity, e.g.,fc is thec-th most popular file.
For simplicity, as in [8], [9], we also assume files of the same
same size. BSs in tieri are able to cacheSi ≤ F distinctive
files.

A file can be either cached based on their popularity,si =
pop, or randomlysi = rnd. In the former case, the firstSi

most popular contents (MPCs) are cached. In the latter case, or
random content selection (RCS), each BS randomly draws an
indexc ∈ [1, F −Si +1], with probability 1

F−Si+1 and caches
contents with indices in[c, c + Si]. We further assume that
BSs of tieri randomly and independently choose their caching
strategiessi ∈ {pop, rnd}, whereφi = P{si = pop} ∈ [0, 1].

One way to evaluate the efficiency of the caching strategy
is the hit ratio, or the probability that the requested content
is available in the cache and successfully delivered. Note
that RCS may seem counterproductive since one expects the
contents with higher popularity to be requested more often.
It is, however, shown in [8], [11] that in order to maximize
the hit ratio, it is not necessarily optimal to adopt the MPC
scheme, particularly in HetNets that the typical UE is likely
to be located in the coverage of several adjacent BSs.

The set of BSs in tieri which cachefc, Φi[c], is also a
HPPP with densityqi[c]λi, whereqi[c] is the probability that
fc is cached at each BS in tieri:

qi[c] = P{c ∈ Sxi} = φi1c≤Si +(1−φi)
F−Si+1∑

m=1

1m≤c≤m+Si

F − Si + 1

=





φi + (1−φi)c
F−Si+1 , 1 ≤ c ≤ Si,

(1−φi)Si

F−Si+1 , Si < c ≤ F − Si + 1,
(1−φi)

F−Si+1 (F − c + 1), c > F − Si + 1.

(1)

The content popularity is characterized with a Zipf distribution
as in [9]. So, the probability offc being requested,ac is

ac =
c−κ

F∑
n=1

n−κ

,

whereκ ≥ 0 is the shape parameter of the distribution, also
referred to as thepopularity exponent. For κ → 0, the content
popularity reduces to the uniform distribution. For a largeκ,
however, the most popular contents have much higher chance
to be requested.

C. Channel Model

We consider a narrow-band, block-fading channel in which
fading evolves randomly according to a specified fading dis-
tribution at the start of each frame and remains unchanged
throughout the frame transmission. The channel model com-
prises of a large-scale path-loss and a small-scale fading
component. The received signal at the typical UE originated
from BS xi undergoes LOS or NLOS path-loss attenuation,
depending on its relative distance to the UE, density of



buildings, etc. To model the path-loss environment, we adopt
the 3GPP path-loss model [15], [13]:

Li(‖xi‖) =





LL
i (‖xi‖) = φL

(1+‖xi‖)αL
i

, ∼ pL
i (‖xi‖),

LN
i (‖xi‖) = φN

(1+‖xi‖)αN
i

, ∼ pN
i (‖xi‖),

(2)

wherepN
i (‖xi‖) = 1−pL

i (‖xi‖) is the probability that the link
between BSxi and the typical UE is in NLOS mode. Here,
we assume that LOS probabilities are independent across BSs.
We consider the ITU-R UMi model in [15], where the LOS
probability is specified as

pL
i (‖xi‖) = min

{
Di

0

‖xi‖ , 1
} (

1− e
− ‖xi‖

Di
1

)
+ e

− ‖xi‖
Di

1 , (3)

and Di
0 and Di

1 characterize the near-field (LOS) and far-
field (NLOS) critical distances, respectively. Therefore, if
‖xi‖ ≤ Di

0, then BSxi is in LOS mode. For‖xi‖ > Di
0,

the probability of LOS mode declines exponentially with the
distance, and for‖xi‖ À Di

1, it converges to 0.
In (2), for ni ∈ {L,N}, αL

i (resp. αN
i ) is the path-

loss exponent associated with the LOS (resp. NLOS) link
where 2 < αL

i < αN
i ≤ 8, φL

i (resp. φN
i ) is a constant,

characterizing the LOS (resp. NLOS) wireless propagation
environment, and is related to various factors, such as the
height of transceivers, antenna’s beam-width, weather, etc.
Small-scale fading is modeled using normalized Nakagami
fading:

Hxi =

{
HL

xi
= Γ(ML

i , 1
ML

i
), ∼ pL

i (‖xi‖),
HN

xi
= Γ(MN

i , 1
MN

i
), ∼ pN

i (‖xi‖),
(4)

where Γ(a, 1/a) is normalized Nakagami distribution with
parametera. Depending on whether the link is LOS or NLOS,
different parameters are considered for the Nakagami fading.
In general, we expectML

i > MN
i , as the LOS links often

fluctuate less severely.

D. Simulation Model and Parameters

We adopt the Monte Carlo technique for the simulation and
numerical study. We consider a 2-tier HetNet,K = 2, where
the transmit power of the macro BSs in the first and second
tiers areP1 = 40W, and P2 = 4W, respectively. The LOS
(resp. NLOS) path-loss exponent isαL

1 = αL
2 = 2.4 (αN

1 =
αN

2 =4). The path-loss intercept parameters are set to 1. Also,
we setD0

1 = 80m, D1
1 = 164m, D0

2 = 16m, andD1
2 = 36m.

The SIR thresholds areβ1 = 2 andβ1 = 4.
The size of content library is set toF = 100 fixed-

length files, and cache sizes are fixed atS1 = 20 and
S2 = 5 fixed-length files. The BSs in each tier are randomly
distributed within a disk with radius10, 000 units according
to the corresponding tier densities, whereλ1 = 10−3 BSs per
square kilometers. The presented results are based on analysis
of 40, 000 simulation snapshots. The other parameters not
specified above are either design parameters or defined for
each particular experiment.

III. C ONTENT-AWARE MAX -SIR CELL ASSOCIATION

Suppose the typical UE requests contentfc, the signal-to-
interference ratio (SIR) experienced at the typical UE served
by BS xi ∈ Φi[c] is

SIRxi [c] =
PiLi(‖xi‖)Hxi∑K

j=1 Ij

, (5)

where the interference of tierj, Ij , is a shot noise process,

Ij =
∑

xj∈Φj [c]\x0

PjLj(‖xj‖)Hxj +
∑

xj∈Φj\Φj [c]

PjLj(‖xj‖)Hxj

=
∑

xj∈Φj\x0

PjLj(‖xj‖)Hxj , (6)

which is independent of the requested file. The typical UE
successfully receives the data transmitted by BSxi, if the
corresponding SIR is larger than the SIR threshold,βi > 0.
The coverage probability is then equal to the complementary
cumulative distribution function (CCDF) of the SIR.

The UE requestingfc should be associated with a cell with
fc cached in its corresponding BSs. Such an association can be
made based on different criteria. We consider Max-SIR cell
association (CA) which is shown to provide the maximum
coverage performance, see, e.g., [14], [16], [13]. Without
considering the availability offc, Max-SIR CA associates the
typical UE with the BS that provides the highest SIR, regard-
less of whetherfc is cached, or retrieved via the backhaul.
To extend Max-SIR CA incorporating the availability of the
content,fc, we define

Ac =
{
∃i : max

xi∈Φi[c],∀i
SIRxi [c] ≥ βi

}
, (7)

as the set of BSs withfc in their cache providing acceptable
level of SIR for the UE. There is a BS in the network to
be associated with the UE ifAc 6= ∅. Content-aware cell
association is expected to be effective in reducing the backhaul
usage [3].

Using the same line of argument as in [14], the correspond-
ing coverage probability,%c, is upper-bounded as

%c = P

{
max

xi∈
⋃K

i=1 Φi[c]
SIRxi [c] ≥ βi

}

≤
K∑

i=1

E
∑

xi∈Φi[c]

1 (SIRxi [c] ≥ βi) = 2π

K∑

i=1

qc[i]%i[c], (8)

where%i[c] = λi

∞∫
0

riP {SIRxi [c] ≥ βi}dri and the equality

holds forβi ≥ 1. Using (5), we write

%i[c]
λi

=

∞∫

0

xiP

{
PiLi(xi)Hxi∑K

j=1 Ij

≥ βi

}
dxi

=
∑

ni∈{L,N}

∞∫

0

xip
ni
i (xi)P





Lni
i (xi)Hni

xi∑
j

Ij
≥ βi

Pi





dxi



≤
∑

ni∈{L,N}

∞∫

0

xip
ni
i (xi)E

(
1−

(
1−e

− viM
ni
i

βi

PiL
ni
i

(xi)

∑
j

Ij

)M
ni
i

)
dxi

=
∑

ni∈{L,N}

M
ni
i∑

mi=1

(
Mni

i

mi

)
(−1)mi+1

∞∫

0

pni
i (xi)

K∏

j=1

×EIj
e
− βimiviM

ni
i

PiL
ni
i

(xi)
Ij

dxi, (9)

where the inequality is due to Alzer’s Lemma [17] andvi =
Mni

i (Mni
i !)−1/M

ni
i .

Noting that the fading is normalized Nakagami, it is straight-
forward to show

EIj
[e−tIj ] =

(
Ee

−t
∑

xj∈Φj\x PjLj(‖xj‖)Hxj

)

= EΦj

∏

xj∈Φj




∑

nj∈{L,N}

p
nj

j (‖xj‖)
(1 +

tPjL
nj
j (‖xj‖)
M

nj
j

)M
nj
j




= e
−2πλj

∑
nj∈{L,N}

∞∫
0

yjp
nj
j (yj)

(
1−(1+

tPjL
nj
j

(yj)

M
nj
j

)
−M

nj
j

)
dyj

,

where in the first step, we note that LOS/NLOS modes are
independent across the BSs and the fading power gains are
i.i.d. In the next step we use the Laplace generation functional
of HPPP [17]. Substituting the above into (9) and settingt =
βimiviM

ni
i

PiL
ni
i (xi)

,

%i[c] ≤ λi

∑

ni∈{L,N}

M
ni
i∑

mi=1

(
Mni

i

mi

)
(−1)mi+1

∞∫

0

pni
i (xi) (10)

×e
−2πλj

∑
nj∈{L,N}

∞∫
0

yjp
nj
j (yj)

(
1−(1+

vimiM
ni
i

βiPjL
nj
j

(yj)

PiL
ni
i

(xi)M
nj
j

)
−M

nj
j

)
dyj

dxi.

Inserting (10) into (8) and obtaining the summation over the
content request probability, we obtain the coverage probability
as

% =
F∑

c=1

ac

K∑

i=1

qi[c]%i[c], (11)

which is a function of system parameters including the density
of the BSs, the library and cache size, popularity exponent, and
the SIR thresholds.

Fig. 1 shows the accuracy of the derived upper-bound while
comparing our simulation results with the coverage probability
in (11). The simulation parameters are given in Section II.D.

In practical cases for high-capacity HetNets, whereβ2 ≥ 1
[14], the upper-bound becomes very tight. Even forβ2 = 0.5,
the upper-bound closely follows the simulation. Furthermore,
as shown in both plots, increasingβ2 reduces the coverage
probability. Fig. 1-a also indicates that by increasing the LOS
path-loss exponent, the coverage probability is slightly re-
duced. Fig. 1-b, shows that forβ2 / 3, densification improves
the coverage performance, whereas forβ2 ' 3, increasing
λ2 reduces the coverage probability, making densification
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Fig. 1. Coverage probability versus the SIR threshold of tier 2β2. Simulation
parameters are given in Section II.D.

detrimental to the coverage performance. This phenomenon
has been explored extensively in the literature of HetNets, see,
e.g., [12], [13], and has been attributed to the LOS component
of interfering signals.

In fact, for the dense networks, there is always an un-
vanishing interference which is at least as large as the attending
signal. Therefore, in some cases, regardless of the distance
between the associated BS and the typical UE, the SIR could
not improve further. In what follows, we show that this
phenomenon remains harmful in cache-enabled HetNets. This
has not been discussed before in the related literature.

IV. CACHING PERFORMANCE

A. Cache Hit vs. Backhaul Usage

Caching improves the efficiency of content delivery by
reducing the backhaul usage. One way to assess the efficiency
of a caching system is to evaluate the cache-hit probability
(or hit ratio/rate) and backhaul-usage probability. The cache-
hit probability is defined as the probability that the required
content is found in the cache of a BS and successfully
delivered. The backhaul-usage probability is the probability
that the requested data is obtained from the core network via
the backhaul. In cache-enabled HetNets, a reasonable design
objective is to minimize the latter and maximize the former
[3]. We dissect the coverage probability in (11) as

∑

i

%i[c] =
K∑

i=1

qi[c]%i[c] + (1− q1[c])%1[c],

in which phit[c] =
∑

i

∑
c acqi[c]%i[c] is the cache-hit prob-

ability, and pbh[c] =
∑

c ac(1 − q1[c])%1[c] is the backhaul-
usage probability. Therefore,

∑

i

%i[c] = phit[c] + pbh[c],

as fc is either cached or retrieved from the core via the
backhaul.
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Fig. 2. (a) Backhaul-usage probability,pbh, versus Tier 2 BSs’ density,λ2; (b) Caching-hit probability,phit, versusλ2; (c) ASE versusλ2; (d) Network
cost,Ω, versusλ2; (e) Caching efficiency,η, versusλ2.

Fig. (2)-a plots the backhaul-usage probability versusλ2 for
different values of the popularity exponent,κ. The backhaul-
usage probability is shown to be improved (reduced) by in-
creasing the popularity exponent. Also, densification in tier 2 is
shown to reduce the backhaul-usage probability significantly.

We further look at the caching performance from the hit-
ratio perspective. As shown in Fig. (2)-b, densification does
not consistently improve the hit ratio. In fact, for a sparse
(λ2 < 10−3) to a moderately dense (10−3 < λ2 < 1)
tier 2, the hit ratio improves as the UEs expect to receive
their requested contentsuccessfullyfrom the cache. Here,
the typical UE can often find the best BS (in terms of
SIR) that also has the requested content. Forλ2 > 1—
dense configuration—increasingλ2, however, reduces the hit
ratio due mainly to excessive LOS interference. In this case,
regardless of how close the contents are located to the UEs,
or how efficient the contents are placed, the negative impact
of the interference dominates the hit ratio. This shows that
many previous studies of cache-enabled systems (e.g., [4], [8],
[10]) are only applicable to moderately dense networks, where
standard path-loss model is still valid.

B. Area Spectral Efficiency

Another crucial performance metric in HetNets is ASE [14],
[17]. ASE measures the average aggregate data rate provided
per unit area (bps/Hz/m2):

R =
F∑

c=1

ac

(
K∑

i=1

qi[c]%i[c]λiRi + (1− q1[c])%1[c]λ1R1

)
.

(12)
In the inner summation of (12), the first and second terms are
attributed to the caching and backhaul performance, respec-
tively.

Fig. (2)-c plots ASE vs.λ2. Densification is shown to
substantially increase ASE (almost linearly). Further, ASE is
increased by increasing the popularity exponent.

C. Cost Per Unit Area

In a cache-enabled dense HetNet, content delivery needs to
be planned carefully to keep the costs at an acceptable level.

Backhaul connectivity is often provided through a network of
optical fibers. In urban area, however, deployment and main-
tenance costs of such networks are very high. Furthermore,
there is an extra cost associated of caching. In what follows,
we formulate the cost per unit area.

Let Cbh, andCs denote the generic costs of the backhaul
and caching, respectively, including installation, maintenance,
operational costs, etc. Due to the nature of the technology, it is
reasonable to assume thatCs ¿ Cbh. The aggregated caching
cost per unit area of coverage in a dense HetNet,Ω, is

Ω = λ1(F − S1)Cbh

F∑
c=1

acpbh[c] + Cs

K∑

i=1

λiSi, (13)

where the first term is the cost of using backhaul which
depends on the backhaul usage (represented by the backhaul-
usage probability), and the second term is the aggregated cost
of caching (represented by the caching storage capacity).

We investigate the impact of densification on the cost of
coverage per unit area. Fig. (2)-d plotsΩ/Cbh vs. λ2, where
we assumeCs = 0.01Cbh. By increasingλ2 (densification of
tier 2), the cost is shown to monotonically increase despite
the fact that the backhaul-usage probability,pbh, becomes
considerably smaller (Fig. (2)-a). In this case, although the
usage of backhaul is reduced with an effective caching strat-
egy, the cost kept on increasing because in dense networks,
the accumulative cost of caching eventually dominates the
backhaul cost. From (2)-b one can also see that for such a
high cost, the hit ratio is also low. Therefore, caching in a
densified HetNet only cannot be considered as a solution for
the high cost of the backhaul.

V. CACHING IN DENSEHETNETS

As shown in Section IV, densification may often have
negative impact on the performance of the dense HetNets,
in terms of coverage probability, hit rate, and the network
cost. So, to provide a clear picture of the impact of caching
in the dense HetNets, we incorporate the above performance
metrics in defining a new caching efficiency measure,η, which



0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
2
/F

η

(a):κ=0.3

 

 

S
1
/F=0.1

S
1
/F=0.3

S
1
/F=0.5

S
1
/F=0.8

λ
2
=102

λ
2
=10−1

0 0.2 0.4 0.6
0

0.5

1

1.5

2

2.5

3

3.5
(b):κ=0.7

S
2
/F

η
 

 

S
1
/F=0.1

S
1
/F=0.3

S
1
/F=0.5

S
1
/F=0.8

λ
2
=10−1

λ
2
=102

0 0.2 0.4 0.6
0

1

2

3

4

5

6

7

8

9
(c):κ=1.2

S
2
/F

η

 

 

S
1
/F=0.1

S
1
/F=0.3

S
1
/F=0.5

S
1
/F=0.8

λ
2
=102

λ
2
=10−1

0 0.2 0.4 0.6
0

5

10

15
(d):κ=2

S
2
/F

η

 

 

S
1
/F=0.1

S
1
/F=0.3

S
1
/F=0.5

S
1
/F=0.8

λ
2
=10−1

λ
2
=102

Fig. 4. Impact of cache size onη.

0

0.5

1

0

0.5

1
0

10

20

30

φ
2

(a):κ=2

φ
1

η

0

0.5

1

0

0.5

1
0

5

10

15

φ
2

(b):κ=0.7

φ
1

η

Fig. 3. Impact of probabilitiesφ1 andφ2 on caching efficiency,η.

indicates the ASE per cost:

η =
R

Ω
, (14)

where R is the ASE as in (12), andΩ is the cost per unit
area as in (13). An ideal design is to maximize the spectral
efficiency while lowering the costs, i.e., maximizingη.

1) Caching is Beneficial in Moderately Dense HetNets:
Fig. (2)-e plotsη vs.λ2 for several values of content popularity
exponent,κ. For λ2 > 1, densification is shown to reduce the
caching efficiency due mainly to the high cost of caching and
weak coverage performance. Nevertheless, moderate densifica-
tion of a sparse network (fromλ2 < 10−3 to 10−3 < λ2 < 1)
improves the caching efficiency. In such a case, the high ASE
compensates for the negative impact of the high caching cost
and low hit ratio.

2) Caching Contents across Tiers: The best caching strat-
egy is obtained via the following optimization:

max
φi∈[0,1]∀i

η.

Note that if φi = 1, then BSs of tieri only cache the most
popular contents, whileφi = 0 means the BSs cache randomly.
Fig. 3 plotsη for different content popularity exponent and
φi while Fig. 3 shows that MPC always outperforms RCS,
suggesting use of MPC across all tiers.

3) Impact of Cache Size: Fig. 4 plotsη vs. S2
∆= S2

F ≤ 1
for several values ofS1

∆= S1
F ≤ 1. For cases of moderately

densified HetNets , i.e.,λ2 = 10−1, there is an optimal caching
size in tier 2 that maximizes the caching efficiency. For a
κ ≥ 0.7, the optimal cache size is fairly small compared to
the library size. In fact, Fig. 4-a shows that the optimal cache
size is only 3% of the most popular contents.

Figs. 4-b-d also indicate that the optimal cache size is
independent of the popularity exponentκ. For a smallκ,
Fig. 4-a further suggests that increasing the cache size in tier
2 improvesη. However, one can afford increasing the cache
size in tier 1, and the cache size of tier 2 can then be reduced
to 3% of the size of the content library.

We further oberve that the cache size in tier 1 has a
substantial impact on the caching efficiency, especially forκ ≤
1.2, where increasingS1 to up to 80% of the content library
is shown to improve the caching efficiency considerably. For a
largerκ, however, (see Fig. 4-d), it is sufficient to merely cache
10% of most popular contents in tier 1. In either case, Fig. 4
suggests that for a givenκ, caching efficiency is improved by
carefully selecting the caching size.

In a dense HetNet whereλ2 = 102, the optimal cache
size in tier 2 is almost 3% of the size of the content library,
regardless of the parameterκ. The caching efficiency is not
related to the cache size in tier 1 either. This is in sharp contrast
with the case of moderately dense HetNets, while the caching
performance is also substantially lower than that of moderately
dense HetNets.

4) Impact of Traffic Offloading: In our analysis, we
adopted content-aware Max-SIR CA rule as it is shown to be
effective in reducing the backhaul usage as one of the main
objectives of caching [3]. The above results, however, suggest
that caching is not beneficial in dense HetNets. Therefore,
there seems to be a gap in the literature on how to enhance
the caching efficiency in dense HetNets.

We investigate this important issue by introducing range
expansion into our analysis. We consider the range expansion
parameters,ρi ∈ (0, 1], where

∑
i

ρi = 1. We then substitute
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Fig. 5. Impact of range expansion parameterρ2 (ρ1 = 1− ρ2) on η.

the SIR thresholds,{βi}, with their scaled versions,βi

ρi
≥

βi. Using a smaller value ofρi, a user is less likely to be
associated with tieri. Note that using this modified version of
the CA, for the typical UE associated with a tierj BS, the data
transmission rate is not affected and is equal tolog(1 + βj)

To investigate the impact of range expansion on the
caching efficiency we denoteη(ρ1, ρ2, . . . , ρK) as the caching
efficiency for given set of range expansion parameters
(ρ1, ρ2, . . . , ρK). In our formulation, η(1, 1, . . . , 1) is the
caching efficiency under the content-aware Max-SIR CA pol-
icy as in (7).

To study the impact of range expansion on the caching
efficiency, Fig. 5 showsη(1−ρ2,ρ2)

η(1,1) vs. ρ2, for K = 2,
where Cs = .001Cbh. Fig. 5 shows that for a sparse to
moderately dense HetNet, i.e.,λ2 < 1, one can choose aρ2

that improves the caching efficiency. To improve the caching
efficiency, Fig. 5 counter-intuitively suggests reduction ofρ2,
i.e., offloading traffic from small cells to the macro cells.

Our simulation results also show that offloading improves
the caching efficiency if tier 2 is mildly densified, i.e.,10−3 <
λ2 < 1, see, Figs. 5-c—5-d. Fig. 5 further indicates that for
dense HetNets, i.e.,λ2 > 1, range expansion does not improve
the caching efficiency.

VI. CONCLUSIONS

In this paper we have studied the caching performance in
dense HetNets. Our analysis incorporated the actual traits of
dense cellular networks including the LOS/NLOS path-loss
model, backhaul and caching costs, and provided performance
metrics such as coverage probability, backhaul-usage prob-
ability, caching-hit probability, ASE, and the network cost.
Our analysis showed that while densification is beneficial in
reducing the backhaul-usage probability and increasing ASE,
it reduces cache-hit probability and increases the network
cost. To provide a comprehensive performance evaluation of
caching systems, we then introduced caching efficiency by
incorporating the above-mentioned performance metrics. Our
analysis showed that caching is, in general,not beneficial in

densified networks. We further observed that it is enough to
cache only about3% of the library size in tier 2. Furthermore,
a common networking mechanism such as range expansion,
which is shown to be of substantial value in conventional
(no caching) networking, could not alter this phenomenon.
We also showed that in sharp contrast with the conventional
networks, in cache-enabled HetNets one should offload the
traffic from small cells to macro cells. Our results also suggest
that enabling caching benefits in dense HetNets needs further
investigation of the impact of content placement as well as
interference management.
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