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Abstract— Caching the content closer to the user equipments of backhaul and storage. Furthermore, [6] investigated the
(UEs) in heterogenous cellular networks (HetNets) improves jmpact of caching on the energy-efficiency of video on-
user-perceived Quality-of-Service (QoS) while lowering the op- gemang applications. Utilizing caching in fog radio access

erators backhaul usage/costs. Nevertheless, under the current . .
networking strategy that promotes aggressive densification, it networks (F-RANs) was also shown in [7] to improve D2D

is unclear whether cache-enabled HetNets preserve the claimedCOmmunications efficiency in HetNets.

cost-effectiveness and the potential benefits. This is due to 1) One way to measure caching efficiency is to evaluate the
the collective cost of caching which may inevitably exceed the cache-hit probability (also referred to b# ratio or hit rate).
expensive cost of backhaul in a dense HetNet, and 2) the excessivq—he hit ratio is defined as the probability that the requested
interference which affects the signal reception irrespective of - .

content placement. We analyze these significant, yet overlooked,comem is successfully found/dellvergd from a CaCh?’ ”F’t th?
issues, showing that while densification reduces backhaul load backhaul. The broadcast nature of wireless communications is
and increases spectral efficiency in cache-enabled dense networksexploited in [8] to introduce the optimal randomized caching
it simultaneously reduces cache-hit probability and increases the jn small-cell networks. It is shown in [8] that in many practical
network cost. We then introduce a caching efficiency metric, area cases the hit ratio of randomized contents placement is much

spectral efficiency per unit spent cost, and find it enough to cache | . S .
only about 3% of the content library size in the cache of small- higher than that of the intuitive caching of the most popular

cell base stations. Furthermore, we show that range expansion, COntents everywhere. This is due mainly to the diversity of
which is known to be of substantial value in wireless networks, wireless medium and the fact that in HetNets each UE is

is almost impotent to curb the caching inefficiency. Surprisingly, |ikely to be located in the coverage area of multiple BSs [5].
unlike the conventional wisdom recommending traffic offloading The method in [8] is extended further in [9] to investigate
from macro cells to small cells, in cache-enabled HetNets, it is . . .
generally more beneficial to exclude offloading altogether or to the |mp§1ct qf qontent rgtransm|SS|on |n. .smaII-ceII. networks
do the opposite. on the hit ratio in both high and low mobility scenarios. For a
given number of retransmission attempts, [8] then optimized
. INTRODUCTION the content placement to maximized the hit ratio.
Heterogeneous cellular networks (HetNets) are one of theRandomized content placement is extended further in [10],
key enablers for emerging cellular network systems to mgétl] to K-tier HetNets, where the probability of content
the exponential surge of wireless traffic demand [1], [2]. Bglacement stays the same across the BSs in each tier. The
substantially densifying the network, in particular in loweoptimal probabilistic content placement is shown in [10], [11]
tiers, operators are empowered to sufficiently shrink the coto- resemble a water-filling-type law.
munication distances between base stations (BSs) and useMevertheless, the above studies fail to incorporate the
equipments (UEs), enhancing the coverage performance doitbwing two important practical aspects of the HetNets
spectral efficiency. However, dense HetNets require expensimecaching performance analysisi) (Although the cost of
backhaul links between BSs and the core network (andfostalling caching equipments (memory and the corresponding
among BSs), which may increase the total communicatitrardware) is much lower than that of the backhaul's for
costs. Caching popular contents at the small-cell BSs has beedense/ultra-dense network, such as in 5G [1], the aggre-
suggested to reduce the reliance on backhaul [3]. Cachiggted cost of caching may exceed the backhaul's cdist; (
also improves the Quality-of-Service/Experience (QoS/QoHBgnsification also amplifies the impact of excessive inter-cell
for the UEs as the high-demand contents are placed near ititerference as many UEs might receive interferences from a
UEs and thus accessible with a lower latency [4]. large number of BSs through a line-of-sight (LOS) channel
Content placement is, therefore, important and has bed2], [13].
studied extensively for cellular networks. For a given topology Analysis in [12] shows that by increasing the density of BSs,
of small-cells, the authors of [4] introduced the idea dhe coverage probability in cellular network reduces to zero,
substituting backhaul with caching in the BSs to reduce tliar lower than what the ideal standard-path-loss model [14]
network delay. They then developed an optimal femto-cachiingicates. In such a case, regardless of efficiency of content
scheme for both uncoded and coded caching. Cachingpiacement, the UE cannot receive the content due to the low
also considered to improve energy-efficiency. Reference [S]R. In such a case, the results of the current cellular network
optimized coded caching to minimize the energy consumpticaching with a standard path-loss model, such as [6], [7], [8],



[10], [11] are not directly applicable to dense HetNets. B. Caching Strategy

We investigate the caching efficiency of dense HetNets towe consider a content libraryF = {f1, f2,..., fr} with
address the above two important aspects of HetNets. We adgjet size ofF” = | 7|, where the files in this library are indexed
stochastic geometry as an analytical tool to investigate whethgysed on their popularity, e.gf, is thec-th most popular file.
caching is beneficial in dense HetNets or not. To the bgsyr simplicity, as in [8], [9], we also assume files of the same
of our knowledge, this has not been investigated before. O3ime size. BSs in tierare able to cachs; < F distinctive
model incorporates the actual traits of signal propagation fifes.
modern cellular networks, i.e., LOS/NLOS path-loss model A file can be either cached based on their populasity:=
along with Nakagami fading for small-scale fading fluctua;op, or randomlys; = rnd. In the former case, the firss;
tions. We also account for the costs of backhaul and cachifigst popular contents (MPCs) are cached. In the latter case, or
and analytically derive coverage probability, backhaul usaggndom content selection (RCS), each BS randomly draws an
probability, hit-ratio, and area spectral efficiency (ASE), tfdexc € [1, F — S, + 1], with probability ;—— and caches
provide quantitative insights on the impact of various systegbntents with indices ific,c + S;]. We further assume that
and design parameters. BSs of tieri randomly and independently choose their caching

Our analysis shows that while densification is beneficial &trategiess; € {pop, rnd}, where¢; = P{s; = pop} € [0, 1].
reducing the backhaul-usage probability and increasing ASE,One way to evaluate the efficiency of the caching strategy
it reduces cache-hit probability and increases the netwdgkthe hit ratio, or the probability that the requested content
cost. To provide a comprehensive performance evaluationiof available in the cache and successfully delivered. Note
caching systems, we introduce caching efficiency as the Affat RCS may seem counterproductive since one expects the
per cost. Our analysis indicates that in general caching dsntents with higher popularity to be requested more often.
not beneficial in densified networké/e further observe that It is, however, shown in [8], [11] that in order to maximize
it is enough to cache only abouats of the global content the hit ratio, it is not necessarily optimal to adopt the MPC
library size in lower tiers. Furthermore, a common networkingcheme, particularly in HetNets that the typical UE is likely
mechanism such as range expansion, which is shown totbebe located in the coverage of several adjacent BSs.
of substantial value in conventional (no caching) networking The set of BSs in tier which cachef., ®;[c], is also a
via off-loading, could not alter this phenomenon. In a shatPPP with densityy;[c|\;, whereg;[c] is the probability that
contrast with the conventional HetNets in which off-loading tg,. is cached at each BS in tigr
the small cells is suggested [1], [2], our analysis shows that in

F—-S;+1
cache-enabled networks, only traffic offloading from the small Lin<e<mys;
. ! . il =P{c e S, } = dilecs, +(1—; U U
cells to the micro cells improves the caching performance.a(J g { b= dilegsi +(1-¢0) mZ:1 F-5+1

lfti)i C
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= F,SZ+117 S’i <CSF_51+17 (1)

A. Network Model Pfl__s‘z’ﬁl (F—c+1), ¢c>F—-S5+1.

We consider a dense HetNets with universal frequenghe content popularity is characterized with a Zipf distribution
reuse, complying with the interference-limited regime. Ouis in [9]. So, the probability of. being requesteds,. is
focus is on the downlink of a cache-enabl&dtier HetNet,

where K tiers (classes/technologies) of BSs are randomly ac = — ,
located in a 2-D plane [14], [10]. Tief is specified by a S
tuple, (\;, P, Bi, Si, &; € [0,1]), where); is the BSs’ spatial n=1

density, P; is their maximum transmission powes; is the \yherer > 0 is the shape parameter of the distribution, also
prescribed SIR thresholds; is each BS's maximum cachereferred to as theopularity exponentFor x — 0, the content
storage, and; € [0, 1] is an indicator of the adopted cachingyopularity reduces to the uniform distribution. For a large
strategy (which will be elaborated further in Section IV).  however, the most popular contents have much higher chance
In tier i, the spatial distribution of the BSs is modeledo be requested.
with a homogenous Poisson point process (HPRR): R?,
with a spatial density of\; > 0, where ®; and ®; are C. Channel Model
mutually independent, fovi, 5,7 # j. In our model, the UEs  We consider a narrow-band, block-fading channel in which
are single-antenna and distributed according to a HR®RR, fading evolves randomly according to a specified fading dis-
independent ofb;, with a spatial density of\;;. We further tribution at the start of each frame and remains unchanged
assume thaty > >, \;, i.e., all the BSs are assumed to béhroughout the frame transmission. The channel model com-
active. Without loss of generality we investigatéypical UE, prises of a large-scale path-loss and a small-scale fading
which is positioned at the origin and associated with . BS component. The received signal at the typical UE originated
This model can be easily extended to the users with multifiem BS z; undergoes LOS or NLOS path-loss attenuation,
antennas as in [13]. depending on its relative distance to the UE, density of



buildings, etc. To model the path-loss environment, we adoptlll. CONTENT-AWARE MAX-SIR CELL ASSOCIATION

the 3GPP path-loss model [15], [13]: Suppose the typical UE requests contgntthe signal-to-
interference ratio (SIR) experienced at the typical UE served
Li(|lzil) = —22— ~ pE(|la; n :
Fllal) = G, ~pEd st c o i

Lileil) = § g gy D™
) = e ~ 2 el IR, [¢] = Ll e, ©)
wherep! (||z;||) = 1—pE(||z;]) is the probability that the link 2=l
between BSr; and the typical UE is in NLOS mode. Herewhere the interference of tier, I, is a shot noise process,
we assume that LOS probabilities are independent across BSs.
We consider the ITU-R UMi model in [15], where the LOSi = > BLlleDHe,+ D PiLy(llayl) He,
probability is specified as z3€®;[c]\zo 25 €25\ ®;c]
i N ERN _ =gl = P;Li(||x;)Hy, (6)
() =min { 22 1 b (1= T @ 2o, bl

4D and D' ch ) h field qf which is independent of the requested file. The typical UE
and D, and D; characterize the near-field (LOS) an arg uccessfully receives the data transmitted by BSif the
orresponding SIR is larger than the SIR threshgld> 0.

field (NLQS) critical distances, respectively. Therefore, |z
=i = Dy, then BSz; is in LOS mode. Forfz;[| > D, e coverage probability is then equal to the complementary

the probability of LOS mode declines exponentially with th%umulative distribution function (CCDF) of the SIR.

distance, and foffz; || > D, it cLonverges t]f[) Oj The UE requesting,. should be associated with a cell with
In (2), for n; € {L,N}, a (resp.a;") is the path- . c5ched in its corresponding BSs. Such an association can be

loss exponent associated with the LOS (resp. NLOS) litage pased on different criteria. We consider Max-SIR cell
where2 < aj < a;' < 8, ¢; (resp.¢;’) is a constant, aeqaciation (CA) which is shown to provide the maximum
cha_racterlzmg the_LOS (resp. NLQS) wireless pmpagat'%verage performance, see, e.g., [14], [16], [13]. Without
enylronment, and_ is related to ,vanous fa(_:tors, such as sidering the availability of., Max-SIR CA associates the

height of transceivers, antenna's 'beam-W|dth, weather, eIVpicaI UE with the BS that provides the highest SIR, regard-
Small-scale fading is modeled using normalized Nakagafks of whetherf, is cached, or retrieved via the backhaul.

fading: To extend Max-SIR CA incorporating the availability of the
g JHE =TI g~ (), cOmentde we detine
T HY =Y, ), ~ Y (), A, = {Hi | dmax  SIR,, [d] > ﬂz}, @)
K z;, €P;[c],Vi

where I'(a,1/a) is normalized Nakagami distribution withas the set of BSs witlf, in their cache providing acceptable
parameter. Depending on whether the link is LOS or NLOS|eye| of SIR for the UE. There is a BS in the network to
different parameters are considered for the Nakagami fading associated with the UE ifl, # @. Content-aware cell
In general, we expecd/ > M}, as the LOS links often association is expected to be effective in reducing the backhaul
fluctuate less severely. usage [3].

Using the same line of argument as in [14], the correspond-
ing coverage probabilityp., is upper-bounded as
We adopt the Monte Carlo technique for the simulation and

Oc = P {

D. Simulation Model and Parameters

numerical study. We consider a 2-tier HetN&t,= 2, where

the transmit power of the macro BSs in the first and second
tiers areP; = 40W, and P, = 4W, respectively. The LOS 1% K
(resp. NLOS) path-loss exponentd§’ = af = 2.4 (o} = <SE Y 1SRG 26) =27 alield, ()
ab'=4). The path-loss intercept parameters are set to 1. Also, ‘= T )

we setD{ = 80m, D} = 164m, D§ = 16m, and D3 = 36m.

wi €U, @ilc]

max  SIR,,[c] > 5; }

] z; €P;[c] i=1

oo
The SIR thresholds arg, =2 and 5, = 4. where g;[c] = \; [ 7P {SIR,[c] > B;} dr; and the equality
The size of content library is set t&" = 100 fixed- 0 . )
length files, and cache sizes are fixed &it = 20 and holds for 8; > 1. Using (5), we write
Sy = b5 fixed-length files. The BSs in each tier are randomly 0ild s PyLi(w:) H,
distributed within a disk with radiug0, 000 units according = /miIP’ {ZZKZ“" > ﬁl} dx;
to the corresponding tier densities, where= 10~ BSs per Ai s j=11j
square kilometers. The presented results are based on analysis
of 40,000 simulation snapshots. The other parameters not by . LY (x)HY B
specified above are either design parameters or defined for = /xipil(xi)]P) T > P dx;
each particular experiment. ni€{L.N}{ = !
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where the inequality is due to Alzer's Lemma [17] and=
M (M)A

Noting that the fading is normalized Nakagami, it is straight-  0-4
forward to show
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Y . Fig. 1. Coverage probability versus the SIR threshold of tigs 2Simulation
x
=Eg. H Z Pi ,EH J H) parameters are given in Section II.D.
’ 1 tPi L7 (ll25l1) \arl
z;€®; \ nye{L,N} (1+ ——La—— )"
J
~ oL ) g detrimental to the coverage performance. This phenomenon
i it} J/N— M R . .
R SR I vivy? (v5) (17(1+7MJ’}7‘ ) )d i has been explored extensively in the literature of HetNets, see,
— n 5 ’ J .
=€ ’ e.g., [12], [13], and has been attributed to the LOS component

where in the first step, we note that LOS/NLOS modes afé interfering signals.

independent across the BSs and the fading power gains arl fact, for the dense networks, there is always an un-
i.i.d. In the next step we use the Laplace generation function@nishing interference which is at least as large as the attending
of HPPP [17]. Substituting the above into (9) and setting Signal. Therefore, in some cases, regardless of the distance

Bimig?M{"i between the associated BS and the typical UE, the SIR could
Pil* (zi) ! not improve further. In what follows, we show that this
M A o0 phenomenon remains harmful in cache-enabled HetNets. This
oile] <\ Z Z ( i )(_1)7ru+1 /p?i (z;) (10) has not been discussed before in the related literature.
my;
ni€{L,N}mi=1 0 IV. CACHING PERFORMANCE

s mn.;
=27 [ ying” (y5)
n;e{L,N} 0

wims M B P L™ (g " )
(17(1+ imiMig Py L] (y]))’MJJ)dyj A. Cache Hit vs. Backhaul Usage

i ()M . . - .
xe Piky oM, dz;.  Caching improves the efficiency of content delivery by

reducing the backhaul usage. One way to assess the efficiency

Inserting (10) into (8) and obtaining the summation overthef a caching system is to evaluate the cache-hit probability

content request probability, we obtain the coverage probabilf(fgr hit ratio/rate) and backhaul-usage probability. The cache-

as hit probability is defined as the probability that the required
Q:Zac gilcloilc], (11) content is found in the cache of a BS and successfully
e=1 i=1 delivered. The backhaul-usage probability is the probability

which is a function of system parameters including the densf#jat the requested data is obtained from the core network via
of the BSs, the library and cache size, popularity exponent, dihg backhaul. In cache-enabled HetNets, a reasonable design
the SIR thresholds. objective is to minimize the latter and maximize the former
Fig. 1 shows the accuracy of the derived upper-bound whigl- We dissect the coverage probability in (11) as
comparing our simulation results with the coverage probability K
in (11). The simulation parameters are given in Section II.D. Z oilc] = Zqi[c]gi [e] + (1 — q1[c])o1]c],
In practical cases for high-capacity HetNets, whgse> 1 i i=1
[14], the upper-bound becomes very tight. Evenfgr= 0.5, iy which py; [ = 32, 3. acqilcei[d] is the cache-hit prob-
the upper-bound closely follows the simulation. Furthermorgpility, and py,p[c] = >, ac(1 — qile])oi[d] is the backhaul-
as shown in both plots, increasing reduces the coverageysage probability. Therefore,
probability. Fig. 1-a also indicates that by increasing the LOS
path-loss exponent, the coverage probability is slightly re- ZQi[C] = pnitlc] + pou[c],
duced. Fig. 1-b, shows that fgk < 3, densification improves @
the coverage performance, whereas for £ 3, increasing as f. is either cached or retrieved from the core via the
Ao reduces the coverage probability, making densificatidrackhaul.
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Fig. 2. (a) Backhaul-usage probability,y,, versus Tier 2 BSs’ density\2; (b) Caching-hit probabilitypy;;, versusis; (c) ASE versus\s; (d) Network
cost, 2, versus)s; (e) Caching efficiencyy, versusis.

Fig. (2)-a plots the backhaul-usage probability verssigor  Backhaul connectivity is often provided through a network of
different values of the popularity exponenrt, The backhaul- optical fibers. In urban area, however, deployment and main-
usage probability is shown to be improved (reduced) by itenance costs of such networks are very high. Furthermore,
creasing the popularity exponent. Also, densification in tier 2ikere is an extra cost associated of caching. In what follows,
shown to reduce the backhaul-usage probability significanthge formulate the cost per unit area.

We further look at the caching performance from the hit- Let Cy;,, and C; denote the generic costs of the backhaul
ratio perspective. As shown in Fig. (2)-b, densification doesd caching, respectively, including installation, maintenance,
not consistently improve the hit ratio. In fact, for a sparseperational costs, etc. Due to the nature of the technology, it is
(A2 < 107%) to a moderately densel{™® < X2 < 1) reasonable to assume th@t < Cy. The aggregated caching
tier 2, the hit ratio improves as the UEs expect to receiwmst per unit area of coverage in a dense HetRetis
their requested conterguccessfullyfrom the cache. Here,
the typical UE can often find the best BS (in terms of
SIR) that also has the requested content. Kgr > 1— Q= Al(F*Sl)Cthanbh[c] +CSZ/\1'S“ (13)
dense configuration—increasing, however, reduces the hit o=t =t
ratio due mainly to excessive LOS interference. In this casghere the first term is the cost of using backhaul which
regardless of how close the contents are located to the UHspends on the backhaul usage (represented by the backhaul-
or how efficient the contents are placed, the negative impardage probability), and the second term is the aggregated cost
of the interference dominates the hit ratio. This shows thaf caching (represented by the caching storage capacity).
many previous studies of cache-enabled systems (e.qg., [4], [B]We investigate the impact of densification on the cost of
[10]) are only applicable to moderately dense networks, wheteverage per unit area. Fig. (2)-d pld®sCyy, vs. Ay, where
standard path-loss model is still valid. we assume&’s = 0.01Cyy,. By increasingh\, (densification of
tier 2), the cost is shown to monotonically increase despite
the fact that the backhaul-usage probability;,, becomes

Another crucial performance metric in HetNets is ASE [14honsiderab|y smaller (F|g (2)-a) In this case, a|though the
[17]. ASE measures the average aggregate data rate provigdesige of backhaul is reduced with an effective caching strat-
per unit area (bps/Hz/fy: egy, the cost kept on increasing because in dense networks,

F K the accumulative cost of caching eventually dominates the
R= Zac <Z gi[cloi[c] ViR + (1 — q1]c)) o1 [c]A1R1> . backhaul cost. From (2)-b one can also see that for such a
=1 i=1 high cost, the hit ratio is also low. Therefore, caching in a

_ _ ) (12)  densified HetNet only cannot be considered as a solution for
In the inner summation of (12), the first and second terms gg, high cost of the backhaul.

attributed to the caching and backhaul performance, respec-
tively.

Fig. (2)-c plots ASE vs.\,. Densification is shown to
substantially increase ASE (almost linearly). Further, ASE is AS shown in Section IV, densification may often have
increased by increasing the popularity exponent. negative impact on the performance of the dense HetNets,

. in terms of coverage probability, hit rate, and the network
C. Cost Per Unit Area cost. So, to provide a clear picture of the impact of caching

In a cache-enabled dense HetNet, content delivery needsniahe dense HetNets, we incorporate the above performance

be planned carefully to keep the costs at an acceptable levaktrics in defining a new caching efficiency measyrayhich

F K

B. Area Spectral Efficiency

V. CACHING IN DENSEHETNETS
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3) Impact of Cache Size Fig. 4 plotsy vs. S, £ % <1
for several values ob; 2 % < 1. For cases of moderately
densified HetNets , i.e), = 107!, there is an optimal caching
size in tier 2 that maximizes the caching efficiency. For a
k > 0.7, the optimal cache size is fairly small compared to
the library size. In fact, Fig. 4-a shows that the optimal cache
size is only 3% of the most popular contents.

Figs. 4-b-d also indicate that the optimal cache size is
independent of the popularity exponert For a small«,
Fig. 4-a further suggests that increasing the cache size in tier
2 improvesn. However, one can afford increasing the cache
size in tier 1, and the cache size of tier 2 can then be reduced
to 3% of the size of the content library.

We further oberve that the cache size in tier 1 has a
substantial impact on the caching efficiency, especially:fer
1.2, where increasing; to up to 80% of the content library
is shown to improve the caching efficiency considerably. For a
where R is the ASE as in (12), an€ is the cost per unit largers, however, (see Fig. 4-d), itis sufficient to merely cache
area as in (13). An ideal design is to maximize the spectil’ of most popular contents in tier 1. In either case, Fig. 4
efficiency while lowering the costs, i.e., maximizing suggests that for a given, caching efficiency is improved by

1) Caching is Beneficial in Moderately Dense HetNets carefully selecting the caching size.
Fig. (2)-e plots; vs. \, for several values of content popularity In a dense HetNet whera, = 102, the optimal cache
exponent,. For A\, > 1, densification is shown to reduce thesize in tier 2 is almost @ of the size of the content library,
caching efficiency due mainly to the high cost of caching ané¢gardless of the parameter The caching efficiency is not
weak coverage performance. Nevertheless, moderate densifieated to the cache size in tier 1 either. This is in sharp contrast
tion of a sparse network (from, < 1073 t0 1072 < Xy < 1)  with the case of moderately dense HetNets, while the caching
improves the caching efficiency. In such a case, the high A$Erformance is also substantially lower than that of moderately
compensates for the negative impact of the high caching cdsinse HetNets.

and low hit ratio. 4) Impact of Traffic Offloading In our analysis, we

2) Caching Contents across TiersThe best caching strat- adopted content-aware Max-SIR CA rule as it is shown to be
egy is obtained via the following optimization: effective in reducing the backhaul usage as one of the main
objectives of caching [3]. The above results, however, suggest
that caching is not beneficial in dense HetNets. Therefore,

. . there seems to be a gap in the literature on how to enhance
Note that if¢; = 1, then BSs of tieri only cache the most the caching efficiency in dense HetNets.

popular contents, whilg; = 0 means the BSs cache randomly. . . A . . .

Fig. 3 plotsy for different content popularity exponent and we nvestigate this Important issue by introducing range
& While Fig. 3 shows that MPC always outperforms reEXpansion into our analysis. We consider the range expansion
saggesting Ljse of MPC across all tiers. Parametersp; € (0,1], where}_ p; = 1. We then substitute

{
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Fig. 3.

Impact of probabilitiegy; and ¢2 on caching efficiencyy.

indicates the ASE per cost:

2l =

max
$:€[0,1]Vi
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Fig. 5. Impact of range expansion parameigr(p; = 1 — p2) on .

the SIR thresholds{/3;}, with their scaled versions’: > densified networksWe further observed that it is enough to
B;. Using a smaller value op;, a user is less likely 'to be cache only about% of the library size in tier 2. Furthermore,
associated with tiet. Note that using this modified version ofa common networking mechanism such as range expansion,
the CA, for the typical UE associated with a tjeBS, the data which is shown to be of substantial value in conventional
transmission rate is not affected and is equalog{1 + 3;,)  (no caching) networking, could not alter this phenomenon.

To investigate the impact of range expansion on th&e also showed that in sharp contrast with the conventional
caching efficiency we denotgp1, ps, . - ., pic) @s the caching networks, in cache-enabled HetNets one should offload the
efficiency for given set of range expansion parametet@ffic from small cells to macro cells. Our results also suggest
(p1,p2,---,pK)- In our formulation, n(1,1,...,1) is the that enabling caching benefits in dense HetNets needs further
caching efficiency under the content-aware Max-SIR CA padRhvestigation of the impact of content placement as well as
icy as in (7). interference management.

To study the impact of range expansion on the caching
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