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ABSTRACT

A smart shelving system can visualize stock data in real time
by leveraging item-level RFID tagging so that we can min-
imize out-of-stock and reduce warehousing and labor costs.
The key issue of smart shelving is to locate RFID tags at any
time, especially after misplacing tags. The detection of mis-
placed tags on stationary shelved items is very challenging
due to position ambiguity, phase wrapping, device diversi-
ty, and phase ambiguity. Using a combination of theoretical
analysis, simulation-based prediction and experimental veri-
fication, we propose an effective way of detecting misplaced
tags, called FINDS, that integrates Particle Swarm Optimiza-
tion (PSO), Synthetic Minority Over-sampling TEchnique
(SMOTE) and Density-based Spatial Clustering of Applica-
tions with Noise (DBSCAN) algorithms to make theoretical
and measured phases consistent with each other, and observe
the phase shifts caused by misplaced tags. FINDS requires
neither antenna movement nor external disturbances. We
have implemented a prototype of FINDS with 20 tags and
evaluated its performance, demonstrating FINDS’s accuracy
to be higher than 0.92 in the case of 2 stationary antennas.
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1 INTRODUCTION

When implemented at the item level, RFID technology can
help ensure the availability of the right product, on the
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right shelf, and at the right place, essentially all the time.
If a product is not on the shelf, customers often give up
the purchase and shop it somewhere else. It is also more
expensive to win back customers than keeping loyal customers
in the store happy. Analysts estimate that the US retail
industry loses approximately US$30 billion annually due to
products not being on the shelves [10]. Stock data feeds from
a smart shelving system can help deliver more personalized,
convenient customer service. Inventory replenishment can
be managed based on real-time transactions data instead of
forecasts based on previous sales during a similar period.

Smart shelving replaces visual checks by the store staff,
and enables consistent shelf-space allocation compliance by
automating shelf-level management of items placement and
leveraging item-level tagging to ensure adherence to supplier
shelf-space allocation. For example, tooth-brushes should
always be placed adjacent to tooth-pastes to maximize cross-
selling opportunities.

The main challenge of smart shelving is to locate, in real
time, passive tags. Prior work on locating tags — that in-
cludes determination of their relative and absolute positions
— is either dynamic or static. The former requires to move
RFID tags or reader antennas in order to monitor/acquire
RF changes as a time series. On the other hand, the latter
requires high-density reference tags for a priori collection of
RSS distributions or an expensive infrastructure (i.e., consist-
ing of multiple reader antennas or synthetic aperture radar)
to analyze the tags’ phase differences. Unfortunately, both
of these approaches have practical limitations when used for
the detection of misplaced tags in smart shelves. First, tags
usually do not move, as items on shelves remain stationary for
most of the time [20]. Second, it is very time-consuming and
tedious to move reader antennas, since the scanning process
usually needs to be continuous and stable [13, 17]. Third,
the requirement of a complex and expensive infrastructure is
unattractive/unsuitable for large-scale deployment and limits
the horizontal expansion of shelves.

To overcome these limitations, we introduce a new cost-
effective and real-time detection scheme for tags in smart
shelves, called FINDS (Find Items on Department store Shelves).
We assume that tags are placed at fixed/predetermined posi-
tions on the shelves as is the case for garment racks or smart
shelves, where the positions of hanging holes and shelving
units are determined and fixed a priori. Although this as-
sumption may limit application scenarios, it covers a large
number of common use-cases and also facilitates FINDS’s
implementation and scalability. Our idea is to make the mea-
sured phase coincide with the theoretical phase, and identify
the phase shifts caused by misplacement of tags. However,
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this is still challenging due to: (i) position ambiguity —
the phase is periodic such that different positions may yield
the same measured phase; (ii) phase wrapping — the mea-
sured phase may contain one or more 2𝜋 jumps in order not
to exceed its normal range [0, 2𝜋); (iii) device diversity —
the antennas may have different unknown initial phases even
though they are of the same model; (iv) phase ambiguity —
the ImpinJ reader introduces a 𝜋 jump such that the reported
phase can be the true phase or the true phase plus 𝜋.

We take three main steps to overcome these challenges:
deployment optimization, phase unwrapping, and outlier de-
tection. The deployment optimization maximizes the phase
discrimination between any two positions by determining
the optimal antenna positions, while the phase unwrapping
provides an effective way of eliminating the effect of 2𝜋 jumps
by comparing the measured phase with the theoretical phase.
Finally, the outlier detection estimates the systemic error to
calibrate the measured phase, and detects abnormal phase
deviations to identify misplaced tags.

FINDS has four salient features: (i) convenience — the
setting of its parameters mainly depends on numerical cal-
culations, facilitating easy deployment and management; (ii)
scalability — it requires neither pre-collection of RF sig-
nals nor movement of tags/antennas; (iii) flexibility — it
can dynamically adjust the number of antennas according to
the number of tags; (iv) timeliness — it works stably and
reliably even when the sampling time is small.

In summary, we make the following main contributions:

∙ Conducting a series of experiments to explore the chal-
lenges in detecting misplaced tags on stationary items;

∙ Development of an effective scheme for identifying mis-
placed tags, called FINDS, for smart shelving, with
respect to position ambiguity, phase wrapping, device
diversity, and phase ambiguity;

∙ Implementation a prototype of FINDS using ImpinJ
R420 reader and Alien AZ-9346 tags; and

∙ Extensive evaluation of FINDS, demonstrating high ac-
curacy (>0.85 for 1 antenna and >0.92 for 2 antennas).

The rest of this paper is organized as follows. Section
2 discusses the related work, while Section 3 provides an
overview of FINDS. Section 4 details FINDS and Section 5
evaluates FINDS’s performance via extensive experimentation.
Section 6 discusses the remaining issues and finally, the paper
concludes with Section 7.

2 RELATED WORK

A considerable amount of research has been done on RFID-
based indoor localization. Existing related work can be clas-
sified as dynamic tracking or static positioning.

2.1 Dynamic Tracking

Dynamic tracking collects time-varying RF signals by moving
tags or antennas. Zhang et al. [23] presented a model of
RSS dynamics to track transceiver-free objects. STPP [17]
recognizes the relative positions of tags by observing sudden
phase changes from different tags when the reader antenna

is moved along a known direction. RF-Scanner [13] installs a
RFID reader on a moving robot to detect misplaced or laid-
down books. OTrack [18] establishes a probabilistic model to
recognize transient critical regions and monitors the order of
tagged goods on an airport baggage carousel. Tagoram [22]
leverages the phase of the backscattered signal, provided by
a COTS RFID reader, for real-time tracking of mobile RFID
tags. Wang et al. [19] proposed active and passive tracking
of mobile antennas and tags, respectively. Both schemes
were based on the Nelder-Mead nonlinear optimization that
minimizes the error. Tagspin [6] emulates a circular antenna
array by uniformly spinning on the edge of a rotating disk and
designs a SAR-based method to pinpoint the target antenna.
CBID [8] estimates Doppler shifts and RSS to detect and track
tag movements and then infer the corresponding customer
behaviors. TagBooth [14] uses RSS to exploit the motion of
tagged commodities and utilizes phase to distinguish subtle
customer actions. Tagwins [5] makes sense of mechanical
rotation using dual tags’ backscatter signals. It leveraged the
relative signal of dual RFID tags to handle system shaking
and proposed a compressive reading technique to recover
the signal. RF-Dial [2] attaches a tag array to the surface of
a specified object, and continuously tracks the translation
and rotation of a tagged object. Katabi et al. [21] extracted
multi-path profiles by the mobile antenna and adapted DTW
to pinpoint a tag’s location.

2.2 Static Positioning

Static positioning analyzes time-invariant RF signals with
the help of reference tags or external disturbances. RADAR
[1] utilizes the RSS gathered at multiple receiver locations to
triangulate the user’s locations. Triangulation is done with
both empirically-determined and theoretically-computed RSS.
LANDMARC [16] utilizes RSS to find 𝑘 nearest reference tags
of an active target tag, and estimates the target’s position.
Hekimian-Williams et al. [9] exploited the phase difference
between two receiving antennas for localization and tracking.
BackPos [15] infers the differences of distance from the phases
detected by antennas under a triangle constraint and employs
hyperbolic positioning to narrow the tag’s candidate positions.
HMRL [20] leverages the humans’ movements in a region to
explore the order of tags in a 2D space.

Static positioning is much more difficult than dynamic
tracking in which RF signals are a set of points rather than
a group of sequences. Although prior static positioning ap-
proaches are fine-grained, they might be impractical to detect
misplaced tags in smart shelves due to their poor scalability.
Some fundamental issues of static positioning, such as phase
wrapping and antenna diversity, have not yet been addressed.

3 BACKGROUND AND OVERVIEW

We first introduce the technical background of RF phase
and then conduct a series of experiments to explore/identify
challenges in RFID-based positioning with stationary de-
vices. Finally, we present an overview of FINDS, the proposed
detection of misplaced tags.
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3.1 Background

A passive RFID tag communicates via a backscatter radio
link. The tag, without battery, harvests energy from the
reader’s signal. Let 𝑑 be the distance between the reader
antenna and the tag, then the distance traveled by the signal
will be 2𝑑. The theoretical phase Θ can be calculated as:

Θ = 2𝜋
2𝑑

𝜆
− 2𝐾𝜋, (1)

where 𝜆 is the wavelength and 𝐾 an integer. The theoretical
phase is a periodic function with period 2𝜋 radians, which
repeats every 𝜆

2
in the distance between the tag and the

reader antenna [11].
The measured phase 𝜃 includes a systemic error 𝜇, which

is defined as

𝜃 = 2𝜋
2𝑑

𝜆
− 2𝑘𝜋 + 𝜇. (2)

As specified in [11], 𝜃 ranges between 0 and 2𝜋. Let 𝜇 =
(𝜃𝑇𝐴𝐺 + 𝜃𝐴𝑁𝑇 ) mod 2𝜋, where 𝜃𝑇𝐴𝐺 and 𝜃𝐴𝑁𝑇 are the ad-
ditional rotations representing the tag’s reflection charac-
teristics, the reader antenna’s transmit and receive circuits,
respectively.

Tag

Y

Z

X

Misplaced Tag

Antenna

O

Figure 1: 3D shelf space

3.2 Challenges

We conducted a series of experiments with COTS ImpinJ
readers and Alien tags. These experiments were designed
to identify the potential difficulties in positioning tags with
stationary devices. As shown in Fig. 1, we establish a 3D
coordinate system according to the right-hand rule. The
system is oriented counter-clockwise with respect to 𝑧-axis.
Both tags and antennas are parallel to the 𝑥𝑦-plane. For
simplicity, we only deploy tags in the 𝑥𝑦-plane. Note that
the following experimental results are not limited to this
2D deployment of tags, as we observe the effect of the 3D
distances between tag and antenna on the measured phases.
Each tag is interrogated 200 times and the measured phase
is extracted from the tag’s reports. Prior research [15] has

shown that the phase actually exhibits a stable statistical
structure, which is preserved in the presence of frequency
changes. For easy and clear observation, we chose a fixed
frequency 921.875MHZ, whose corresponding wavelength is
0.325m.

3.2.1 Position Ambiguity. Tags placed at different positions
may yield the same measured phase 𝜃 due to the cycle slip
of phase. According to Eq. (2), 𝜃 should repeat from 0 to 2𝜋
every half wavelength (𝜆

2
≈ 0.163). We placed an antenna 𝐴1

at (0, 0, 1.2), and two tags 𝑇1 and 𝑇2 at (-0.037, 0.306, 0) and
(-0.248, 0.681, 0). The distances from 𝐴1 to 𝑇1 and 𝑇2 are

𝑑11 = ‖
−−−→
𝐴1𝑇1‖ = 1.239 and 𝑑12 = ‖

−−−→
𝐴1𝑇2‖ = 1.402, respectively.

The difference of distance ∆𝑑12,1 = 𝑑12−𝑑11 = 0.162 is very close

to 𝜆
2
. Assuming that 𝜃11 and 𝜃12 are 𝑇1’s and 𝑇2’s measured

phases from 𝐴1, Fig. 2 shows that 𝜃11 and 𝜃12 almost overlap.
The means of 𝜃11 and 𝜃12 are 1.782 and 1.777, respectively.

We then placed another antenna 𝐴2 at (0, 0.3, 1.2). Dis-

tances from 𝐴2 to 𝑇1 and 𝑇2 are 𝑑21 = ‖
−−−→
𝐴2𝑇1‖ = 1.284

and 𝑑22 = ‖
−−−→
𝐴2𝑇2‖ = 1.485, respectively. As Fig. 2 shows,

one can distinguish 𝜃21 from 𝜃22. The means of 𝜃21 and 𝜃22
are 0.335 and 2.899, respectively, as the distance difference
∆𝑑22,1 = 𝑑22 − 𝑑21 = 0.201 is not an integer multiple of 𝜆

2
.
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Figure 2: Position ambiguity

3.2.2 Phase Wrapping. Since the theoretical phase Θ has a
normal range [0, 2𝜋), the measured phase 𝜃 = Θ + 𝜇 may
exceed the range [0, 2𝜋) and contain one or more 2𝜋 jumps.
In such a case, 𝜃 will be wrapped around to stay within the
normal range [0, 2𝜋). We placed an antenna 𝐴1 at (0.6, 0.3,
1.386) and 20 tags in a 4× 5 array. [4, 24] suggest tags to be
separated from each other by about 0.1m. If tags are too close
to each other, they will suffer mutual coupling/interference
effects. To reduce these effects, we separate two adjacent tags
by 0.15m. Fig. 3 shows that 𝜃 does not vary with Θ. Taking
𝑇6 and 𝑇8 as examples, 𝜃16 − Θ1

6 = 4.429 − 2.045 = 2.383,
while 𝜃18 − Θ1

8 = 4.786 − 0.455 = 4.331. We calculate the
Pearson correlation coefficient for 𝜃 and Θ to test whether
there is a linear correlation between them. The coefficient of
correlation is 0.429, implying that there is a moderate linear
correlation between 𝜃 and Θ.

The 2𝜋 jumps in the wrapped 𝜃 must be removed in order
to make 𝜃 usable for further processing. The tag’s 𝜃 presents
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Figure 3: Phase wrapping
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Figure 4: Tags of the same model
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Figure 5: Antennas of the same model

a continuous form in the dynamic tracking. The existence
of a wrap can be easily detected by the difference between
two successive 𝜃’s. If the difference is larger than 𝜋, then
subtract 2𝜋. If the difference is smaller than −𝜋, then add 2𝜋.
Unfortunately, this phase unwrapping may not work correctly
in the case of static positioning. Since both tags and antennas
are placed at fixed positions, each tag’s 𝜃 remains constant
during observation. The difference between two successive
𝜃’s will usually not exceed 0.1 radian [15]. So, in most cases,
no phase wrap can be detected. We regard each tag’s 𝜃 as
a point rather than a time-series sequence, and attempt to
unwrap all 𝜃 in a tag array. Let 𝜃′ be the “unwrapped” 𝜃,
then Fig. 3 indicates the non-existence of linear correlation
between 𝜃′ and Θ. The coefficient of correlation is −0.13.
Using the unwrapping process, we can detect a phase wrap at
𝜃16, because 𝜃16 − 𝜃15 = 4.429− 0.208 = 4.221 > 𝜋. To correct

𝜃16, we subtract 2𝜋 and then get 𝜃16
′
= −1.854. However,

we still find that 𝜃16
′
− Θ1

6 = −1.854 − 2.045 = −3.899 ̸=
𝜃18

′
− Θ1

8 = 4.786 − 0.455 = 4.331. The primary reason for
the failure of unwrapping is that 𝜃 may be “under-sample”.
If the separation between two adjacent tags is too large, the
difference between their 𝜃’s may reach 𝜋 (or higher), and
hence regarded incorrectly as a true phase wrap, when there
is actually no real phase wrap. To the best of our knowledge,
there has been no previous attempt to address this challenge
with COTS RFID readers.

3.2.3 Device Diversity. Device diversity includes diversities of
tags and the reader antennas. Prior research has shown device
diversity to have a great effect on the phase measurement,
thus leading to a natural question“can we eliminate this
effect by choosing devices of the same model?” We first place
an antenna at (0, 0.447, 1.2) and 60 Alien AZ-9346 tags at
(0, 0, 0) in turn. The measured phase values are long-term
averages. Fig. 4 shows that 𝜃 follows a Gaussian distribution
with mean 5.85 and standard deviation 0.025. This effect of
the measurement error is negligible.

We deployed three Laird S9025PR antennas 𝐴1, 𝐴2 and 𝐴3

at (−0.3, 0.073, 1.2) in turn, and utilized them to interrogate
tag 𝑇1 placed at (0, 0, 0). These antennas are of the same
model but from different batches. 𝐴1 and 𝐴2’s batch numbers
are 1316 while 𝐴3’s batch number is 1245. Fig. 5 shows 𝜃11

very close to 𝜃21 , while 𝜃31 is very different from the other two.
The means of 𝜃11 and 𝜃31 are shown to be 3.108 and 1.523,
respectively. We can also see that 𝐴3 is more precise than 𝐴1,
since the standard deviation of 𝜃31 is much smaller than that
of 𝜃11. These results indicate that even same-model antennas
do not always yield consistent measurements. In order to
improve system flexibility and scalability, we need to reduce
the effect of antenna diversity.
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Figure 6: Basic FINDS framework

3.3 Overview of FINDS

The problem of detecting misplaced tags can be viewed as a
special type of static positioning. We assume that tags are
placed at a set of fixed positions as in clothing or unmanned
shelves. Our basic idea is to calibrate the measured phases
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and detect the abnormal phase shifts caused by misplaced
tags. FINDS neither collects signal fingerprints (RSS or phase)
a priori nor tracks signal changes to handle a cold start, i.e.,
it does not assume all tags initially placed at the right place.

As shown in Fig. 6, FINDS consists of input, misplacement
detection, and output. The input includes tag IDs, phase
measurements, and tag placement. The misplacement detec-
tion consists of (antennas) deployment optimization, phase
unwrapping, and outlier detection, which are designed to
address the challenges identified in Section 3.2. The output
is the tag IDs and the positions of misplaced tags.

Specifically, FINDS takes several steps to detect misplaced
tags. First, it optimizes the deployment of antennas to reduce
position ambiguities. It later collects tag IDs and phase mea-
surements by interrogating tags. It then obtains the expected
positions of tags from the pre-determined tag placement, fol-
lowed by the calculation of theoretical phases corresponding
to the expected positions. Next, it detects and corrects phase
wraps according to a simple yet effective check, comparing
the measured and the theoretical phases. Finally, it elimi-
nates the effect of systemic errors and detects the anomalous
phase shifts caused by misplaced tags.

4 DETECTION OF MISPLACED TAGS

We first describe how to detect misplaced tags and then
present its technical details.

4.1 Deployment Optimization

Suppose there are 𝑛𝐴𝑁𝑇 antennas and 𝑛𝑇𝐴𝐺 tags, and let Θ𝑠
𝑖

be the theoretical phase of tag 𝑇𝑖 (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) from antenna 𝐴𝑠

(𝑥𝑠, 𝑦𝑠, 𝑧𝑠), where 𝑖 ∈ {1, . . . , 𝑛𝑇𝐴𝐺} and 𝑠 ∈ {1, . . . , 𝑛𝐴𝑁𝑇 }.
According to Eq. (1), Θ𝑠

𝑖 is determined by the distance be-

tween 𝐴𝑠 and 𝑇𝑖, 𝑑
𝑠
𝑖 = ‖

−−→
𝐴𝑠𝑇𝑖‖. Assuming that the anten-

na array topology is pre-fixed, let an arbitrary antenna 𝐴𝑟

(𝑥𝑟, 𝑦𝑟, 𝑧𝑟) be the reference point of the antenna array as

shown in Fig. 7. The position of 𝑇𝑖 relative to 𝐴𝑠,
−−→
𝐴𝑠𝑇𝑖 can

then be written as:

−−→
𝐴𝑠𝑇𝑖 =

−−→
𝑂𝑇𝑖 −

−−→
𝑂𝐴𝑠 =

−−→
𝑂𝑇𝑖 −

−−→
𝑂𝐴𝑟 −

−−−→
𝐴𝑟𝐴𝑠

=

⎡⎣𝑥𝑖

𝑦𝑖
𝑧𝑖

⎤⎦−

⎡⎣𝑥𝑟

𝑦𝑟

𝑧𝑟

⎤⎦−

⎡⎣𝑥𝑠 − 𝑥𝑟

𝑦𝑠 − 𝑦𝑟

𝑧𝑠 − 𝑧𝑟

⎤⎦ , (3)

The position of 𝑇𝑖,
−−→
𝑂𝑇𝑖 [𝑥𝑖, 𝑦𝑖, 𝑧𝑖]

T, relates to the store layout,
and thus usually remains unaltered. The position of 𝐴𝑠 rela-

tive to 𝐴𝑟,
−−−→
𝐴𝑟𝐴𝑠 [𝑥𝑠 − 𝑥𝑟, 𝑦𝑠 − 𝑦𝑟, 𝑧𝑠 − 𝑧𝑟]T, depends on the

relative positions of antennas which also remains unaltered.

Therefore,
−−→
𝐴𝑠𝑇𝑖 [𝑥𝑖 − 𝑥𝑠, 𝑦𝑖 − 𝑦𝑠, 𝑧𝑖 − 𝑧𝑠]T depends only on

−−→
𝑂𝐴𝑟 [𝑥𝑟, 𝑦𝑟, 𝑧𝑟]T. So, Θ𝑠

𝑖 can be viewed as a function of
−−→
𝑂𝐴𝑟,

denoted by Θ𝑠
𝑖 (
−−→
𝑂𝐴𝑟).

Example: As shown in Fig. 7, we translate 𝐴𝑟 and 𝐴𝑠

without rotation. Since 𝐴𝑟 and 𝐴𝑠 are treated as a rigid
body, if 𝐴𝑟 moves to 𝐴′

𝑟, then 𝐴𝑠 will be at 𝐴′
𝑠 such that−−→

𝑂𝐴′
𝑠 =

−−→
𝑂𝐴′

𝑟 +
−−−→
𝐴′

𝑟𝐴
′
𝑠 =

−−→
𝑂𝐴′

𝑟 +
−−−→
𝐴𝑟𝐴𝑠. Then, we have

−−→
𝐴′

𝑠𝑇𝑖 =−−→
𝑂𝑇𝑖−

−−→
𝑂𝐴′

𝑠 =
−−→
𝑂𝑇𝑖−

−−→
𝑂𝐴′

𝑟−
−−−→
𝐴𝑟𝐴𝑠. As both

−−→
𝑂𝑇𝑖 and

−−−→
𝐴𝑟𝐴𝑠 are

Ti
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X

Z

O
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?

?

Figure 7: Antenna movement

unaltered, if
−−→
𝑂𝐴′

𝑟 is measured, then Θ𝑠
𝑖 (
−−→
𝑂𝐴′

𝑟) = ( 4𝜋
𝜆
‖
−−→
𝑂𝑇𝑖 −

−−→
𝑂𝐴′

𝑟 −
−−−→
𝐴𝑟𝐴𝑠‖) mod 2𝜋.

For any two arbitrary tags 𝑇𝑖 and 𝑇𝑗 , if we exchange their

positions, the amplitude of phase shift is ∆Θ𝑠
𝑖,𝑗(

−−→
𝑂𝐴𝑟) =

|Θ𝑠
𝑖 (
−−→
𝑂𝐴𝑟)−Θ𝑠

𝑗(
−−→
𝑂𝐴𝑟)| for each of them. Considering 𝑛𝐴𝑁𝑇

antennas, we define the phase shift resulting from the ex-

change of 𝑇𝑖 and 𝑇𝑗 , ∆Θ𝑖,𝑗(
−−→
𝑂𝐴𝑟), as:

∆Θ𝑖,𝑗(
−−→
𝑂𝐴𝑟) = max{∆Θ𝑠

𝑖,𝑗(
−−→
𝑂𝐴𝑟)}, (4)

where 𝑠 ∈ {1, . . . , 𝑛𝐴𝑁𝑇 }. In practice, we can select any two
distinct tags and exchange their positions. There are 𝐶𝑛𝑇𝐴𝐺

2

such combinations. We enumerate ∆Θ𝑖,𝑗(
−−→
𝑂𝐴𝑟) for all pairs

of tags, and define the minimum phase shift due to the tag

misplacement, ∆Θ(
−−→
𝑂𝐴𝑟), as:

∆Θ(
−−→
𝑂𝐴𝑟) = min{∆Θ𝑖,𝑗(

−−→
𝑂𝐴𝑟)}, (5)

where 𝑖, 𝑗 ∈ {1, . . . , 𝑛𝑇𝐴𝐺}. Then, ∆Θ(
−−→
𝑂𝐴𝑟) is maximized

to achieve the max-min fairness and avoid the worst results:
−−→
𝑂𝐴𝑟

*
= argmax

−−−→
𝑂𝐴𝑟

∆Θ(
−−→
𝑂𝐴𝑟). (6)

Finally, we utilize the Particle Swarm Optimization (PSO)
algorithm [12] to find the optimal position of 𝐴𝑟.

Example: To investigate the optimal minimum phase shift

∆Θ(
−−→
𝑂𝐴𝑟

*
), we set the number of tags 𝑛𝑇𝐴𝐺 ranging from

10 to 30 and the number of antennas 𝑛𝐴𝑁𝑇 ranging from
1 to 3. Two adjacent tags are separated by 0.15m and two

adjacent antennas by 0.45m. Fig. 8 shows that ∆Θ(
−−→
𝑂𝐴𝑟

*
)

increases with 𝑛𝐴𝑁𝑇 , but decreases when 𝑛𝑇𝐴𝐺 increases.

For example, ∆Θ(
−−→
𝑂𝐴𝑟

*
) for 𝑛𝑇𝐴𝐺 = 20 increases by 1.34

radians when 𝑛𝐴𝑁𝑇 increases from 1 to 3. On the other hand,

∆Θ(
−−→
𝑂𝐴𝑟

*
) for 𝑛𝐴𝑁𝑇 = 3 decreases from 1.97 to 1.01 when

𝑛𝑇𝐴𝐺 increases from 10 to 30.

4.2 Phase Unwrapping

The phase unwrapping is to restore a wrapped phase to a
“correct” form that is free from 2𝜋 jumps. Let 𝜃𝑠𝑖 be the
measured phase of tag 𝑇𝑖 from antenna 𝐴𝑠 and 𝜇𝑠

𝑖 be the
systemic error caused by both tag 𝑇𝑖 and antenna 𝐴𝑠. We
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Figure 8: Optimal phase shift
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Figure 10: Phase shift

subtract Eq. (1) from Eq. (2) to get:

Θ𝑠
𝑖 − 𝜃𝑠𝑖 = 2𝜋(𝑘 −𝐾)− 𝜇𝑠

𝑖 . (7)

Since Θ𝑠
𝑖 ∈ [0, 2𝜋) and 𝜃𝑠𝑖 ∈ [0, 2𝜋), we have Θ𝑠

𝑖 − 𝜃𝑠𝑖 ∈
(−2𝜋, 2𝜋). Considering the sign of Θ𝑠

𝑖 − 𝜃𝑠𝑖 leads to the fol-
lowing two cases.

Case 1: Assuming Θ𝑠
𝑖 − 𝜃𝑠𝑖 ∈ (−2𝜋, 0], there are two sub-

cases to consider: Θ𝑠
𝑖 − 𝜃𝑠𝑖 > −2𝜋 and Θ𝑠

𝑖 − 𝜃𝑠𝑖 ≤ 0.

−2𝜋 < Θ𝑠
𝑖 − 𝜃𝑠𝑖 ≤ 0 ⇒

{︂
2𝜋(𝑘 −𝐾)− 𝜇𝑠

𝑖 > −2𝜋
2𝜋(𝑘 −𝐾)− 𝜇𝑠

𝑖 ≤ 0

⇒
{︂

2𝜋(𝑘 −𝐾) > 𝜇𝑠
𝑖 − 2𝜋 ≥ −2𝜋

2𝜋(𝑘 −𝐾) ≤ 𝜇𝑠
𝑖 < 2𝜋

⇒
{︂

𝑘 −𝐾 > −1
𝑘 −𝐾 < 1

⇒ 𝑘 = 𝐾 (8)

Case 2: Assuming Θ𝑠
𝑖 − 𝜃𝑠𝑖 ∈ (0, 2𝜋), there are two sub-

cases: Θ𝑠
𝑖 − 𝜃𝑠𝑖 > 0 and Θ𝑠

𝑖 − 𝜃𝑠𝑖 < 2𝜋.

0 < Θ𝑠
𝑖 − 𝜃𝑠𝑖 < 2𝜋 ⇒

{︂
2𝜋(𝑘 −𝐾)− 𝜇𝑠

𝑖 > 0
2𝜋(𝑘 −𝐾)− 𝜇𝑠

𝑖 < 2𝜋

⇒
{︂

2𝜋(𝑘 −𝐾) > 𝜇𝑠
𝑖 ≥ 0

2𝜋(𝑘 −𝐾) < 𝜇𝑠
𝑖 + 2𝜋 < 4𝜋

⇒
{︂

𝑘 −𝐾 > 0
𝑘 −𝐾 < 2

⇒ 𝑘 = 𝐾 + 1 (9)

We can substitute for 𝑘 in Eq. (7) using Eqs. (8) and (9),
yielding:

Θ𝑠
𝑖 =

{︂
𝜃𝑠𝑖 − 𝜇𝑠

𝑖 Θ𝑠
𝑖 ≤ 𝜃𝑠𝑖

𝜃𝑠𝑖 + 2𝜋 − 𝜇𝑠
𝑖 Θ𝑠

𝑖 > 𝜃𝑠𝑖
(10)

We define the unwrapped 𝜃𝑠𝑖 , 𝜃
𝑠
𝑖

′
, as:

𝜃𝑠𝑖
′
=

{︂
𝜃𝑠𝑖 Θ𝑠

𝑖 ≤ 𝜃𝑠𝑖
𝜃𝑠𝑖 + 2𝜋 Θ𝑠

𝑖 > 𝜃𝑠𝑖 .
(11)

According to Eq. (11), we unwrap 𝜃𝑠𝑖 as shown in Fig. 3.

From Fig. 9, the change of 𝜃𝑠𝑖
′
is consistent with that of Θ𝑠

𝑖 .
The relation coefficient increases to 0.988, implying a strong

linear correlation between 𝜃𝑠𝑖
′
and Θ𝑠

𝑖 . As 𝜃𝑠𝑖
′
= Θ𝑠

𝑖 +𝜇𝑠
𝑖 , this

result also indicates that 𝜇𝑠
𝑖 is relatively stable.

Example: Let us consider 𝑇6 and 𝑇8 as an example. From

Fig. 3, Θ1
8 = 4.786 > 𝜃18 = 0.455. By Eq. (11), we add 2𝜋 and

get 𝜃18
′
= 6.739 and then we have 𝜃16

′
−Θ1

6 = 4.429− 2.045 =

2.384 ≈ 𝜃18
′
−Θ1

8 = 6.739− 4.786 = 1.953.

4.3 Outlier Detection

Our experimental results in Fig. 5 show that the antennas of
the same model may have different initial phase rotations. Let
us extend that to the more general case where different types
of antennas are used. Before detecting misplaced tags, we
estimate 𝜇𝑠

𝑖 to calibrate 𝜃𝑠𝑖 . We re-write Eq. (11) to calculate
𝜇𝑠
𝑖 as:

𝜇𝑠
𝑖 = 𝜃𝑠𝑖

′
−Θ𝑠

𝑖 =

{︂
𝜃𝑠𝑖 −Θ𝑠

𝑖 Θ𝑠
𝑖 ≤ 𝜃𝑠𝑖

𝜃𝑠𝑖 + 2𝜋 −Θ𝑠
𝑖 Θ𝑠

𝑖 > 𝜃𝑠𝑖 .
(12)

As we have already shown that 𝜇𝑠
𝑖 , albeit with some fluctua-

tions, is stable, we can simplify the operation by deploying
𝑛𝑅𝐸𝐹 reference tags and define the estimated systemic error,
𝜇𝑠, as:

𝜇𝑠 =
1

𝑛𝑅𝐸𝐹

𝑛𝑅𝐸𝐹∑︁
𝑗=1

𝜇𝑠
𝑗 , (13)

where 𝑗 ∈ {1, . . . , 𝑛𝑅𝐸𝐹 } and 𝑛𝑅𝐸𝐹 ≪ 𝑛𝑇𝐴𝐺. We replace 𝜇𝑠
𝑖

with 𝜇𝑠 and calibrate 𝜃𝑠𝑖 to approximate Θ𝑠
𝑖 . The calibrated

𝜃𝑠𝑖 , 𝜃
𝑠
𝑖
”, can be defined as:

𝜃𝑠𝑖
” =

{︂
𝜃𝑠𝑖 − 𝜇𝑠 𝜃𝑠𝑖 ≥ 𝜇𝑠

𝜃𝑠𝑖 + 2𝜋 − 𝜇𝑠 𝜃𝑠𝑖 < 𝜇𝑠.
(14)

Fig. 9 shows that 𝜃𝑠𝑖
” coincides with Θ𝑠

𝑖 .
Suppose 𝐴𝑟 is at the optimal position and 𝜇𝑠 is the real

value. We consider two cases of 𝑇𝑖: Case 1 – if 𝑇𝑖 is at the
right position then 𝜃𝑠𝑖

” −Θ𝑠
𝑖 = Θ𝑠

𝑖 −Θ𝑠
𝑖 = 0; Case 2 – if 𝑇𝑖 is

at 𝑇𝑗 ’s position then 𝜃𝑠𝑖
” −Θ𝑠

𝑖 = Θ𝑠
𝑗 −Θ𝑠

𝑖 ≥ ∆Θ(
−−→
𝑂𝐴𝑟

*
). We

then define the estimated phase shift of 𝑇𝑖, ˆ∆Θ𝑖, as:

ˆ∆Θ𝑖 = max{|𝜃𝑠𝑖 ” −Θ𝑠
𝑖 |}, (15)

where 𝑠 ∈ {1, . . . , 𝑛𝐴𝑁𝑇 }. Then, we detect the misplacement
of 𝑇𝑖 by:

ˆ∆Θ𝑖 ≥ 𝛼∆Θ(
−−→
𝑂𝐴𝑟

*
), (16)
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Figure 11: Coefficient

where 𝛼∆Θ(
−−→
𝑂𝐴𝑟

*
) is the threshold for detecting misplaced

tags, and 𝛼 is the coefficient to control the false detection
rate.
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Figure 12: Coefficient vs. tags

4.4 Parameter Setting

We utilize both false positive rate, 𝑓𝑝, and false negative
rate, 𝑓𝑛, to evaluate the detection accuracy. 𝑓𝑝 (𝑓𝑛) is the
number of false positives (negatives) divided by the total
number of detections. The accuracy rate, 𝑝, can be calculated

as 1 − 𝑓𝑝 − 𝑓𝑛. Either 𝑓𝑝 or 𝑓𝑛 is caused by the error in
estimating 𝜇𝑠

𝑖 , denoted as 𝜀𝑠𝑖 , which can be defined as 𝜇𝑠
𝑖 −𝜇𝑠.

Such an error is difficult to predict due to its many causes such
as sampling, measurement, and modeling errors. It is essential
to choose an appropriate 𝛼 to tolerate the uncertainty caused
by 𝜀𝑠𝑖 .

Theoretically, we should set 𝛼 within (0, 1] in order to cover

the worst-case condition. In practice, ∆Θ(
−−→
𝑂𝐴𝑟

*
) is very small

when 𝑛𝑇𝐴𝐺 is large or 𝑛𝐴𝑁𝑇 is small. In such a case, we may
need a larger 𝛼 to balance between 𝑓𝑝 and 𝑓𝑛. Fig. 8 shows

that ∆Θ(
−−→
𝑂𝐴𝑟

*
) is only 0.15 for 𝑛𝐴𝑁𝑇 = 1 and 𝑛𝑇𝐴𝐺 = 20.

Fortunately, the majority of ∆Θ𝑖,𝑗(
−−→
𝑂𝐴𝑟

*
) is much larger than

∆Θ(
−−→
𝑂𝐴𝑟

*
). From Fig. 10, ∆Θ𝑖,𝑗(

−−→
𝑂𝐴𝑟

*
) has the mean of 1.99

(95% CI: 1.81-2.18) for 𝑛𝐴𝑁𝑇 = 1 and 𝑛𝑇𝐴𝐺 = 20. In other

words, the mean of ∆Θ𝑖,𝑗(
−−→
𝑂𝐴𝑟

*
), denoted as ∆Θ𝑖,𝑗(

−−→
𝑂𝐴𝑟

*
),

is 13× larger than ∆Θ(
−−→
𝑂𝐴𝑟

*
), indicating the existence of

room for adjusting 𝛼.
Since 𝜀𝑠𝑖 is unpredictable, we utilize the Synthetic Minority

Over-sampling TEchnique (SMOTE) algorithm [3] to create
“synthetic” 𝜀𝑠𝑖 , and conduct simulations to predict the effect of
𝛼 on 𝑝. In particular, we generate the synthetic 𝜀𝑠𝑖 as follows:
(i) compute the error in each reference tag; (ii) compute the
difference between errors under consideration and the nearest
neighbors; (iii) randomly select a reference tag 𝑇𝑟 and choose
one of its 𝑘 nearest neighbors, 𝑇𝑛𝑛. Let 𝜀𝑠𝑟 and 𝜀𝑠𝑛𝑛 be the
errors in 𝑇𝑟 and 𝑇𝑛𝑛, then the synthetic 𝜀𝑠𝑖 can be generated
by:

𝜀𝑠𝑖 = 𝜀𝑠𝑟 + 𝜁|𝜀𝑠𝑛𝑛 − 𝜀𝑠𝑟|, (17)

where 𝜁 is a random number within [0, 1]. With the synthetic

𝜀𝑠𝑖 , we can further generate synthetic 𝜃𝑠𝑖
”. If 𝑇𝑖 is placed at
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the right position, then 𝜃𝑠𝑖
” = Θ𝑠

𝑖 +𝜀𝑠𝑖 . If 𝑇𝑖 is at 𝑇𝑗 ’s position,

then 𝜃𝑠𝑖
” = Θ𝑠

𝑗 + 𝜀𝑠𝑖 .

Figure 13: Experimental setup

In our simulation, we randomize the order of tags and
define the misplacement ratio, 𝑟. This ratio is the number of
misplaced tags divided by the total number of tags. The range

of 𝛼 is (0,

⌊︂
ΔΘ𝑖,𝑗(

−−−→
𝑂𝐴𝑟

*
)

ΔΘ(
−−−→
𝑂𝐴𝑟

*
)

⌋︂
]. At each step, 𝛼 is incremented

by 0.1. The observation interval of the misplacement ratio,
∆𝑟, is 0.2. Figs. 11a–11c show that 𝑓𝑝 decreases and 𝑓𝑛
increases as 𝛼 increases. 𝑓𝑝 is observed to decrease from 0.537
to 0.152 while 𝑓𝑛 increases from 0.008 to 0.048 for 𝑟 = 0.4
and 𝑛𝐴𝑁𝑇 = 1, when 𝛼 increases from 1 to 6. We also observe
that the increase of 𝑛𝐴𝑁𝑇 helps reduce 𝑓𝑝. For 𝛼 = 1 and
𝑟 = 0.2, 𝑓𝑝 decreases from 0.27 to 0 when 𝑛𝐴𝑁𝑇 increases
from 2 to 3. Another interesting observation is the existence
of a balancing point where 𝑝 is insensitive to 𝑟. Such a point
is 0.75, 0.91 and 0.92 for 𝑛𝐴𝑁𝑇 =1, 2 and 3, respectively.
The corresponding 𝛼 is 6, 1.5 and 0.9, respectively. Based on
this observation, we calculate the variance of 𝑝 for different
𝑟 values. For given 𝑛𝐴𝑁𝑇 and 𝑛𝑇𝐴𝐺, 𝑝 is determined by 𝛼,

denoted by 𝑝(𝛼). Let 𝑝(𝛼) be the expected value of 𝑝(𝛼),
then the optimal 𝛼, 𝛼*, is defined as:

𝛼* = argmin
𝛼

{︂
∆𝑟

1
Δ𝑟∑︁
𝑖=1

(︂
𝑝𝑖(𝛼)− 𝑝(𝛼)

)︂2}︂
. (18)

We ran simulations to find 𝛼* and its corresponding 𝑝(𝛼*).

Fig. 12 shows that 𝛼* contributes to the stability of 𝑝(𝛼*). As

𝑛𝑇𝐴𝐺 increases, 𝑝(𝛼*) stays above 0.9 (0.75–0.83 for 𝑛𝐴𝑁𝑇 =
1, 0.91–0.93 for 𝑛𝐴𝑁𝑇 = 2 and 0.91–0.99 for 𝑛𝐴𝑁𝑇 = 3),
although it decreases sightly. We have also observed that 𝛼*

increases dramatically from 1.8 to 10.9 when 𝑛𝑇𝐴𝐺 increases

from 10 to 30. The reason for this is that ∆Θ(
−−→
𝑂𝐴𝑟

*
) becomes

very small, as shown in Fig. 8. If 𝑛𝑇𝐴𝐺 keeps increasing, 𝛼
will reach its maximum. In such a case, only larger 𝑛𝐴𝑁𝑇 can
maintain the performance. We will in Section 5 verify the
setting of 𝛼 and compare the measured and the simulated
results.

T2 T3 T4 T5

T7 T9 T10

T11 T12 T14

T16 T18 T20T19T17

T13 T15

T8T6

T1

Figure 14: Tag placement

Because of the complexity of the environment, we recom-
mend the adjustment of system parameters (𝛼 and 𝑛𝐴𝑁𝑇 )
to improve the noise tolerance of FINDS. For example, the
setting of 𝛼 considers all possible cases of the misplacement (𝑟
ranges from 0 to 1). However, in real situations, 𝑟 is unlikely
to be greater than 0.5. We can further increase 𝑝 or reduce
𝑓𝑝 by omitting rare cases.
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Figure 15: CDF

5 EXPERIMENTAL EVALUATION

We now describe the implementation and evaluation of a
FINDS prototype.

5.1 Implementation

We implemented a prototype of FINDS using an ImpinJ reader
in model R420, three Laird antennas in models A9028L30NF
and S9025PR, and 20 Alien tags in model AZ-9346. The
reader operates at 921.875MHz by default, and hence the
wavelength is 0.325m. To account for device diversity, we
choose a Laird A9028L30NF antenna and two Laird S9025PR
antennas from different batches 1245 and 1316. During the
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Figure 16: Calibration for 1—3 antennas

measurement, the antennas and tags are viewed as the points
located at their geometric centers.

As shown in Fig. 13, three antennas are separated by
0.45m to form an L-shape array. Let 𝐴1 be the reference an-
tenna. Suppose 𝐴1’s coordinate is (𝑥1, 𝑦1, 𝑧1), 𝐴2’s and 𝐴3’s
coordinates are (𝑥1 + 0.45, 𝑦1, 𝑧1) and (𝑥1, 𝑦1 + 0.45, 𝑧1), re-
spectively. The antenna’s transmission power is set to 30mW.
We command the reader to immediately report phases and
EPC numbers after a round of antenna scheduling. Fig. 13
also shows the deployment of 20 tags with spacing of 0.15m
in a 4 × 5 array. For ease of calculation, 𝑇1 is assumed to
be at (0, 0, 0). The row–column layout of tags is shown in
Fig. 14. Although we do not evaluate the performance of
FINDS in the 3D tag deployment, we verify its effectiveness
while varying antenna positions. The movement of antennas
along the 𝑧-axis is equivalent to moving tags along the 𝑧-axis.

The distance between antenna and tag is measured with a
distance laser meter with accuracy of 0.001m. The tag array’s
leveling accuracy is checked by a 2-line laser level.

5.2 Evaluation

Our experiments are designed to measure the false detection
rate of misplaced tags, including deployment, unwrapping
and detection.

5.2.1 Deployment. We optimize the deployment of antennas.
Let 𝐴1 (𝑥1, 𝑦1, 𝑧1) be the reference point of antennas. The
PSO algorithm is used to find the optimal value of the objec-
tive function (Eq. (6)) subject to the constraints 𝑥1 ∈ [0, 0.6],
𝑦1 ∈ [−0.3, 0.3] and 𝑧1 ∈ [1.5, 3]. These constraints need
to account for the range of reader antennas [15]. The op-

timal value
−−→
𝑂𝐴1

*
is affected by the number of antennas

𝑛𝐴𝑁𝑇 .
−−→
𝑂𝐴1

*
is [0.016,−0.084, 1.5]T, [0.532,−0.075, 1.939]T
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Figure 17: Detection

and [0.229, 0.225, 1.585]T for 𝑛𝐴𝑁𝑇 is 1, 2 and 3, respectively.

Thus, ∆Θ(
−−→
𝑂𝐴𝑟

*
) increases from 0.15 to 1.542 when 𝑛𝐴𝑁𝑇

increases from 1 to 3. We plot the CDF of the phase shift

caused by exchanging 𝑇𝑖 and 𝑇𝑗 , ∆Θ𝑖,𝑗(
−−→
𝑂𝐴𝑟

*
), in Fig. 15.

There are 𝐶20
2 = 190 combinations of 2 tags out of 20 tags.

The mean of ∆Θ𝑖,𝑗(
−−→
𝑂𝐴𝑟

*
) is 1.99 (95% CI: 1.81-2.18), 3.05

(95% CI: 2.84-3.27), and 4.02 (95% CI: 3.82-4.22) for 𝑛𝐴𝑁𝑇

is 1, 2 and 3, respectively.

5.2.2 Unwrapping. We unwrap and calibrate the measured
phase. After optimally deploying antennas, we measure the
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Figure 18: Verification with 1–3 antennas

phase of each tag. A tag is interrogated 200 times and the
average is recorded. Then, we unwrap the measured phase
values by using Eq. (11). We randomly select 5 of 20 tags
as reference tags. We use Eqs. (13) and (14) to estimate
the systemic errors and calibrate the measured phase values.
Figs. 16a–16c show that the measured systemic error is rel-
atively stable, albeit with some fluctuations. As described
in Section 4.4, these fluctuations are the main culprit for
false detections. Considering the case of 𝑛𝐴𝑁𝑇 = 2, the max-
imum and minimum values of the measured systemic error
related to 𝐴1 are 𝜇1

16 = 1.68 and 𝜇1
6 = 0.13, respectively.

The possible reason for this error is that 𝑇16 is farther away
from 𝐴1’s geometrical centerline than 𝑇6. The EM may be
emitted from 𝐴1’s edge, instead of its geometrical center,
yielding a larger measurement error [15]. Another interesting
observation is that 𝐴𝑠’s estimated systemic error, 𝜇𝑠, may

vary with the position of 𝐴𝑠. For example, 𝜇1 changes from
0.84 to 1.81 when 𝐴1 moves from (0.532, -0.075, 1.939) to

(0.229, 0.225, 1.585). This observation suggests that 𝜇1 might
not be predictable due to the measurement error.

5.2.3 Detection. We first detect phase outliers. As shown
in Fig. 14, we exchange 4 pairs of tags {𝑇1, 𝑇6}, {𝑇5, 𝑇15},
{𝑇6, 𝑇13} and {𝑇17, 𝑇19}. We detect misplaced tags by In-
equality (16) and set the coefficient 𝛼 to 1. For example,

we can catch 𝑇5 when 𝑛𝐴𝑁𝑇 = 3 because ˆ∆Θ5 = 5.78 >

∆Θ(
−−→
𝑂𝐴𝑟

*
) = 1.54. Fig. 17 shows that all misplaced tags

can be detected when 𝑛𝐴𝑁𝑇 = 3, while missing 𝑇8 when
𝑛𝐴𝑁𝑇 = 2. We also notice that 𝑇16, placed at the right
position, is regarded as misplaced when 𝑛𝐴𝑁𝑇 = 2 due to

ˆ∆Θ16 = 0.85 > ∆Θ(
−−→
𝑂𝐴𝑟

*
) = 0.83, which turns out to be a

false positive. The possibility of false positives may increase

as 𝑛𝐴𝑁𝑇 decreases. There are 4 negatives, 𝑇7, 𝑇9, 𝑇11 and
𝑇20, that yield positive test outcomes when 𝑛𝐴𝑁𝑇 = 1. We
can reduce the false positive rate, 𝑓𝑝, by using 𝛼* obtained
from simulation. As shown in the figure, 𝑓𝑝 decreases to 0
if 𝛼 is set to the optimal value, 6. However, this is achieved
at the cost of increasing the false negative rate 𝑓𝑛 from 0 to
0.15.
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Figure 19: Accuracy vs. # of tags

Let us verify the parameter setting. As suggested in Section
4.4, if 𝑛𝑇𝐴𝐺 = 20, then 𝛼* is 6, 1.5 and 0.9 for 𝑛𝐴𝑁𝑇 =1,
2 and 3, respectively. The misplacement ratio 𝑟 increases
from 0 to 1 with an increment of 0.2. For each increment of
𝑟, we repeat the experiment 10 times and randomly shuffle
tags each time. Figs. 18a–18c show the accuracy ratio 𝑝
under various conditions. Overall, the measured values of
𝑝 adequately fit the expected values of 𝑝. For 𝑛𝐴𝑁𝑇 = 1
and 𝑟 = 0.2, the measured value of 𝑝 achieves 0.89, which
is higher by 0.15 than the expected value. When 𝑛𝐴𝑁𝑇 =2



Detecting Misplaced RFID Tags on Static Shelved Items MobiSys ’19, June 18–20, 2019, Seoul, South Korea

or 3, then 𝑓𝑝 is virtually invisible. Fig. 18c shows 𝑓𝑝 = 0
∀𝑟. The trend of the change of 𝑓𝑛 is opposite to that of 𝑓𝑝.
Fig. 18a shows that 𝑓𝑛 increases from 0.03 to 0.2 when 𝑟
increases from 0.2 to 0.8. We also compare FINDS with the
RSS-based fingerprinting (RSS). Fig. 18a shows FINDS to
outperform RSS in the majority of cases. For 𝑟 = 0.2, 𝑝 of
FINDS is almost twice that of RSS. In fact, RSS might not be
reliable for positioning static tags, if the centimeter precision
is required. Similar results have also been reported in [20].
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Figure 20: Effect of disturbances

We now vary the number of tags. We set 𝑟 to 0.2 and
𝑛𝑇𝐴𝐺 to 10 and 30. As already shown in Fig. 12, when 𝑛𝑇𝐴𝐺

increases from 10 to 30, 𝛼* is 1.8 and 0.7 for 𝑛𝐴𝑁𝑇 = 1; 6
and 0.9 for 𝑛𝐴𝑁𝑇 = 2; and 10.9 and 3 for 𝑛𝐴𝑁𝑇 = 3. We
randomly shuffle tags before each experiment. Fig. 19 shows
that 𝑝 of FINDS is 0.93, 1 and 0.92 for 𝑛𝐴𝑁𝑇 = 2 when 𝑛𝑇𝐴𝐺

increases from 10 to 30, which is almost 3x higher than that
of RSS. These results suggest that the increase of 𝑛𝑇𝐴𝐺 has
little effect on 𝑝 if 𝛼 is selected properly.

5.3 Improvement

We can improve FINDS further by considering additional
factors, such as human-activity-induced disturbances and
sampling time/duration before detection.

5.3.1 Disturbances. FINDS is always running in the back-
ground, assuming that both tags and antennas are stationary.
We introduce three types of disturbances, which do not in-
clude shoppers’ activities, such as picking up and turning
items: (i) Standing — a person stands about 0.1m behind the
tag array; (ii) Walking-Behind — a person walks back and
forth behind the tag array; (iii) Walking-Front — a person
walks back and forth in front of the tag array. The param-
eters used in this experiment are 𝑛𝐴𝑁𝑇 = 1, 𝑛𝑇𝐴𝐺 = 20
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Figure 21: Resolution of phase ambiguity

and 𝛼 = 𝛼* = 6. The placement of tags is the same as that
in Fig. 14. We randomly select a tag 𝑇9 and examine its
reports in log files. We would like to point out that the re-
ported phase, denoted as ′𝜃19 , is not the same as the measured
phase 𝜃19 [15]. To obtain 𝜃19 , we need to change 𝜃19 = 2𝜋−′ 𝜃19 .
Fig. 20 shows that ′𝜃19 fluctuates wildly under human-activity-
induced disturbances, especially when a person walks nearby
tags. The phase variation is mostly due to phase ambiguity
and frequency shift.

Phase ambiguity is introduced by the device. As described
in the low-level user data support for ImpinJ readers [11],
the reader’s processing of received signal introduces a 𝜋 jump
such that the reported phase can be the true phase or the
true phase plus 𝜋. As shown in Fig. 20, ′𝜃19 for No Disturb
is either 1.7 or 4.8. This figure also illustrates that phase
ambiguity is much more severe under dynamic disturbances
(Walking-Behind and Walking-Front) than under static dis-
turbance (Standing). In practice, we may regard the true
phase not simply as the minimum due to the phase wrapping
described in Section 3.2.2. For example, if the true phase is 𝜋,
we expect to obtain two values 𝜋 and 2𝜋, but there could be
three or more values, because a value near 2𝜋 may flip to 0
due to the effect of thermal noise. It would become even more
complicated if the true phase is close to 2𝜋. In such a case, 2𝜋
is neither minimum nor majority. To eliminate this ambiguity,
we utilize the Density-based Spatial Clustering of Applications
with Noise (DBSCAN) algorithm [7] to find the most common
phase. Such an algorithm contains a pre-processing proce-
dure for unwrapping phases near boundaries. In particular, if
both 0 and 2𝜋 are reported, the minority is wrapped. Fig. 20
shows that DBSCAN is effective in picking the true 𝜃19 . After
resolving the phase ambiguity, FINDS can obtain a relatively
stable 𝜃19. Fig. 21 illustrates that 𝜃19 shifts 0.51 and 0,01 for
non-DBSCAN and DBSCAN, respectively, in the case of
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Figure 22: Robustness to disturbances
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Figure 24: Sampling time

Walking-Front. As shown in the figure, DBSCAN improves
FINDS’s capability of resisting human-activity-induced distur-

bances. The estimated phase shift ˆ∆Θ9 for non-DBSCAN is

higher than the threshold 𝛼*∆Θ(
−−→
𝑂𝐴𝑟

*
) = 6× 0.151 = 0.91

in the presence of disturbance, while that for DBSCAN is
always lower than the threshold in all cases.

The shift of the resonance frequency is caused by nearby
objects. As shown in Fig. 21, in case of Walking-Behind, 𝜃19
still shifts 0.53 even though the phase ambiguity has been
resolved. The effect of frequency shift is difficult to eliminate,
but FINDS can reduce its sensitivity to errors by deploying
more antennas.

Overall, FINDS can work in complex environments. Fig. 22
shows that, although only one antenna is used, 𝑝 of FINDS
with DBSCAN remains above 0.8 in all cases.

5.3.2 Sampling Duration/Time. FINDS is designed to detect
misplaced tags in real time, i.e., it has a very short sampling
time before each detection. We count the number of reports
from each tag within 100 seconds. Fig. 23 shows that the
number of reports increases linearly with the sampling time.
On average, the number of reports increases at the rate of 5
per second. We set the sampling time to 5 and 10 seconds,
and continuously observe 𝑝 within 60 seconds. Fig. 24 shows
the limited effect of sampling time on the mean 𝑝. Under the
same condition of DBSCAN not being used and Walking-
Behind, the mean of 𝑝 increases slightly from 0.67 to 0.68
when the sampling time decreases from 10 to 5 seconds. The
possible reason for this is that 𝜋 jumps appear randomly
during sampling.

Another notable observation is that DBSCAN not only
increases the mean of 𝑝, but also decreases the variance of 𝑝.
Under dynamic disturbances, the standard deviation of 𝑝 for
DBSCAN is a half of that for non-DBSCAN.

6 DISCUSSION

Our motivation for removing the inconsistency between mea-
sured and theoretical phases is to evaluate and optimize the
performance of FINDS through numerical calculations. Some
basic principles and algorithms of FINDS can also be used in
other applications. For instance, we can deploy some reference
tags at known positions, and then estimate systemic errors

by the unwrapping, which could be helpful for positioning or
tracking tags at unknown positions.

There still exist some uncertainties in FINDS (as our exper-
imental results showed) that need to be investigated further:
(i) measurement error — a small angular deviation may result
in a large distance measurement error; (ii) inter-tag interfer-
ence — a phase shift occurs when tags are placed too close to
each other; (iii) reference tags — the number and positions
of reference tags may affect the estimation of systemic errors;
(iv) multi-path effects — shelves made of metal or backed
against a wall may have a strong scattering.

In future, we would like to use a tag grid, which is similar
to the Amsler grid used in eye examinations, for detecting and
calibrating the phase shifts caused by distance measurement
errors.

7 CONCLUSION

In this paper, we have first identified and addressed the
challenges in positioning static tags, and then developed a
simple yet practical approach, FINDS, for detecting misplaced
tags in smart shelves. FINDS is more efficient and scalable
than the state-of-the-art, as it requires only a few stationary
antennas. We have also implemented a prototype of FINDS
with COTS RFID products and conducted comprehensive
experiments. Our evaluation has shown FINDS to achieve >
0.92 accuracy only with 2 antennas. Thus, FINDS has great
potential for various RFID applications.
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