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ABSTRACT
Privacy leakage via malware’s unauthorized audio recording has be-
come an emerging threat to mobile users. To counter this threat, we
propose SafeChat which prevents unauthorized recording with-
out requiring new audio privacy settings in operating systems.
SafeChat utilizes sound masking to differentiate audio information
between authorized and unauthorized recording apps. Specifically,
SafeChat enables authorized recording apps to recover more pri-
vate/secret information than the unauthorized apps even though
both of them record identical audio signals from the same micro-
phone. We have implemented SafeChat as an Android chat app.
Our experiments on several commodity phones have shown that
SafeChat can make an up-to-26dB difference in signal strength
between authorized and unauthorized recording apps. This differ-
ence reduces the accuracy of state-of-the-art speech recognition
engines, like Google Speech API, to less than 0.1% in understanding
the unauthorized recording while comprehending the authorized
recording with high accuracy. Moreover, none of the 317 testing par-
ticipants we recruited online could comprehend the masked speech.
Our usability study shows that only 35% of the participants were
aware of this threat of privacy leakage and 60% of them wanted
to use SafeChat to protect their private/secret information from
unauthorized recording.

CCS CONCEPTS
• Security and privacy → Mobile platform security; Privacy-
preserving protocols; • Networks → Mobile and wireless secu-
rity.
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Alice Eve 

I need to check your social security number 
Please turn your phone to speaker mode and 
say it during the noise played: 

(special noise is played) 

1..2.3..54..3 

what is this? 

1..2.3..54..3 

1..2.3..54..3 

1..2.3..54..3 

Bob 

1..2.3..54..3 

recorded audio 

Figure 1: Private/secret information is protected by sound
masking. Audio malware installed in a user’s phone is un-
able to comprehend the sniffed secret because that message
is obfuscated by the noise generated and added by the in-
tended receiver.

1 INTRODUCTION
Privacy information leakage through phone microphones has be-
come a critical concern to mobile users. Spyware that records con-
versations stealthily in the background is gaining popularity in app
markets [4, 6, 8]. It has also been shown that a malware can easily
recognize the users’ credit card numbers by using state-of-the-art
speech recognition engines [24]. This threat becomes even more
alarming when we consider the possibility of the same exploitation
embedded in numerous apps which have already acquired the audio
access permission from users. To counter this threat, we propose
SafeChat, a novel way of preventing privacy information leakage
via unauthorized audio recording with phone microphones. Specif-
ically, SafeChat focuses on a common threat scenario shown in
Fig. 1, where a user (Alice) is telling her secret information to a
service provider (Bob), over the phone, while the malware (Eve) is
recording and then leaking the recorded information stealthily.

Conventional solutions to this problem feed fake audio data to
apps or block audio access under a fine-grained sensor privacy
policy [13, 16, 17, 22, 29]. These solutions, however, require a major
modification of the phone permission control system and also a
non-trivial effort for users to select the correct permission/privacy
policy. Moreover, the service provider (usually the party requesting
secret information) still has no way to tell whether the user has
such a security function enabled with the expected privacy policy
setting. For example, the service provider cannot determine which
apps on the user’s phone have access to the device’s microphone,
and whether all those apps are trustworthy.

Our solution, SafeChat, prevents the privacy leakage via unau-
thorized recording without requiring any additional audio pri-
vacy/permission control, and lets both the user and the service
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provider invoke this security feature, whenever necessary. SafeChat
utilizes sound masking to achieve the above-mentioned protection.
Fig. 1 shows an example of a bank representative, Bob, request-
ing private information from a customer, Alice, over the phone. In
this case, Bob first asks Alice to change the phone to the speaker
mode and say the requested information while playing the mask-
ing sound/noise (this operation can be handled automatically by
SafeChat as described later). The phone’s microphone will record
the combination of the noise played by Bob and the private informa-
tion spoken by Alice. The private information is thus obfuscated by
this superpositioned noise and can only be recovered by Bob. The
masking sound cannot be removed by unauthorized apps because
only Bob knows how this noise is generated and added.

SafeChat is inspired by (i) the existing solutions’ need for an
additional user-defined policy and (ii) the fact that both authorized
and unauthorized recording apps receive the same copy of recorded
audio and the distinction between secret and normal conversa-
tions is not well-defined in apps. SafeChat solves this problem
by moving privacy protection from a mobile device to the ser-
vice provider (henceforth called the intended receiver). This design
offers two distinct benefits. First, the privacy protection can be
computed remotely, thus making SafeChat backward-compatible
(see Sec. 5 & 7 for the supported devices and system requirements
of SafeChat). Second, the intended receiver can initiate a secure
chatting channel,1 whenever necessary. For example, users can still
use call recording apps to save most of their conversations. But
the intended receiver can enable privacy protection whenever he
asks for private/secret information from users, and only this part
of conversation is obfuscated by SafeChat from the call recording
apps.

There are several challenges to overcome for the realization of
SafeChat. One of them is that the masking sound recorded by
the microphone is not exactly identical to the originally-generated
audio signal due to the multipath and resonant properties of audio
transmissions as well as the device speaker/microphone’s distortion.
Thus, it is necessary to design a proper sound masking (noise)
signal and its removal algorithm that can effectively obfuscate
the private information while enabling the intended receiver to
remove the masking sound. We have implemented SafeChat as
an Android chat app to validate its functionality. We assume the
communication is established via our app, and the secure masking
sound can be played/removed when a specific (soft) button on the
app is pressed. Implementing SafeChat in other forms, such as a
third-party library for existing chat apps or as a system service to
support common telecommunications, is part of our future work.

Our experimental results on several Android devices have shown
that the added masking noise in unauthorized recording can be
up to 26dB higher than the recovered recording at the intended
receiver. Assuming malware can easily identify the recorded secrets
with speech recognition engines or crowdsourcing [24], SafeChat
can lower the word accuracy of an 8-digit sniffed secret from 99% to
0.1% when the state-of-the-art Google Speech API [5] is used for its
recognition. Our signal removal algorithm can restore this recog-
nition accuracy back to 95%, thus creating a significant difference

1Dual-tone multi-frequency (DTMF) signaling is another way to send private informa-
tion via dial tones, but it is also vulnerable to unauthorized recording [26].

of information comprehended by the intended receivers and the
unauthorized recording apps. Moreover, when 317 participants re-
cruited online were asked “to identify numbers hidden in the noise,”
none of them could fully recognize the masked secrets/numbers
while the intended receivers could recover them correctly. The ef-
fect of possible preprocessing/filtering for attackers to remove this
masking sound is also discussed in Sec. 4 and 7.

This paper makes the following 4 main contributions:

• Design of app-level protection on Android devices to provide
audio privacy based on sound masking [Sec. 3];

• Security analysis of sound masking on mobile devices for
preventing unauthorized recording [Sec. 4];

• Extensive evaluation showing that Google Speech API and
317 testing participants comprehend authorized recordings
with higher than 95% accuracywhile the unauthorized record-
ings were incomprehensible [Sec. 5]; and

• Measuring the usability and demonstrating the real-world
benefits of SafeChat [Sec. 6].

2 RELATEDWORK
Privacy leakage via a phone’s microphone, known as unauthorized
recording, has become an emerging threat to smartphone users be-
cause any installed app with audio access permission can stealthily
record any information at any time. Malware exploiting this leakage
can easily collect users’ credit card information and social security
numbers [24]. Existing defenses against this unauthorized record-
ing are usually designed by feeding fake audio data to apps or by
disabling the recording function according to a pre-defined sensor
privacy policy. For example, some systems [17, 29] suggest always
feeding fabricated audio data to apps when telecommunication is
on, while other systems [22, 31] create a lattice-like privacy ta-
ble to represent conflicts between apps and disabling of the audio
recording function at a proper time. A programmable sensor pri-
vacy policy was proposed in [16] so that a trusted third party may
design a proper policy for mobile users to control the audio record-
ing. In general, however, it is difficult to define a “proper” privacy
policy. For example, how can a policy enable the phone call record-
ing app while preventing private information leakage to the same
app? Moreover, all these solutions require major modifications to
the existing privacy control system, thus making them less likely
deployed in commodity mobile devices.

SafeChat is an app-level solution that preserves audio privacy
with sound masking without requiring any modification to existing
systems. Sound masking is an audio obfuscation to prevent privacy
leakage via wiretapping or nearby devices’ eavesdropping [28]. Tra-
ditional sound masking is designed under the assumption that the
audio recorded in the sniffing devices has lower quality or signal
strength (due to farther distances to, or the distortion of wiretap-
ping equipment), hence generating enough noise in the background
to prevent eavesdroppers from comprehending the spoken informa-
tion while preserving its comprehension by the intended receiver.
Sound masking has recently been used to build a wall-less but
privacy-reserved office by beamforming noise from a speaker array
installed on the ceiling [3, 7]. However, this use-case is not applica-
ble to mobile scenarios because both the installed malware and the
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Figure 2: System overview. Masking sound,m, and secret in-
formation, s, are sent via different paths, Hs (∗) and Hm (∗),
to microphones, so it requires a special signal processing to
remove the masking sound from the recorded audio at the
intended receiver.

intended receiver record an identical signal from the same phone
microphone, and hence adding noise will obfuscate both. SafeChat
solves this problem by generating a special masking sound and then
removing it later at the intended receiver, thus achieving app-level
protection, which is akin to providing differential audio privacy
between unauthorized and authorized apps.

The closest to SafeChat is mSieve [23], which relies on differ-
ential privacy providing more audio information to certain apps
than to others. However, It did not address how to process the
signal to derive the mathematical model, and it also requires sys-
tem modifications for pre-processing audio signals before the app
accesses them. Non-cryptographic security solutions in wireless
networks are also related to SafeChat. For example, transmitters
can generate an artificial noise at the null space of channel state
information (CSI) to the intended receiver [11, 14], so that eaves-
droppers located at different positions from the intended receiver
will be unable to remove the added noise and decode the sniffed
packets correctly. The intended receiver can also broadcast an arti-
ficial noise during the receipt of packets and recover the secret by a
CSI-based signal removal process [27]. Even though the concepts of
these wireless security solutions are similar to SafeChat, they can’t
solve the unauthorized recording problem directly. For example,
human voice is not modulated/precoded as wireless signals, and
hence there is no OFDM preamble that can be used to estimate CSI.
In contrast, SafeChat uses a novel way of estimating the channel
response from the speaker to the microphone by adaptive filtering
and then removing the residual added noise by successive interfer-
ence cancellation (SIC) [25]. Other researchers also explored ways
of utilizing acoustic signals to build secure digital channels, e.g.,
Dhwani [20] and PriWhisper [30]. SafeChat shared similarities
to these systems but aims at a different problem: project sensitive
conversions rather than encoding secret information in the sound.

3 SYSTEM DESIGN
Fig. 2 presents an overview of SafeChat. When it is enabled to
transmit the secret information, s , a masking sound,m, is played

by the device’s speaker. Since the sound is broadcast over the air
and travels through multiple paths, the recorded sound is actually
a combination of multiple delayed and attenuated copies of the
originally-played sound. Suppose this combination is linear, then a
channel response, H (∗), can be used to represent how the sound is
combined at the microphone for recording, i.e., recorded(sound) =
H (played(sound)). We will use Hs (∗) to denote the channel re-
sponse of the secret information spoken by Alice, while the channel
response of the played masking sound is denoted by Hm (∗). Thus,
the audio recorded, r , becomes

recorded(sound) = r = Hs (s) + Hm (m) + n, (1)

where n is a Gaussian environmental noise. SafeChat’s effective-
ness in neutralizing unauthorized recording depends on the selec-
tion of masking sounds. For example, sending the masking sound
as an audio including millions of spoken sentences from different
people should be able to hide the secret effectively because the
listener won’t be able to tell which sentence is the secret. However,
this design will also be problematic to the intended receiver since
the intended receiver doesn’t know how “distorted” the masking
sound is in the recorded audio and how to remove the distortion
source(s). Moreover, if the attacker knows the proper context of
the user’s voice (like pitch), the secret in the chat might still be
extracted by a specially-designed filter. Thus, designing a proper
masking sound and ensuring its removal at the intended receiver
are critical for SafeChat to function effectively.

3.1 Selection of Masking Sound
SafeChat chooses the masking sound as a combination of two
signal components, i.e., m = mi + mn . The first component is
the masking interference,mi , which includes several pre-recorded
human-spoken sentences to confuse and prevent the malware from
extracting the secret information. Since our main goal is to protect
the secret information like credit card or social security numbers, we
choose this interference from a sound database including audio clips
of digits, called TIDIGITS [18]. Note that this masking interference
can be chosen from other sources (can be recorded by Alice as well)
to improve system performance further, which is part of our future
work.

The second component is the masking noise,mn , which is gener-
ated as a Gaussian noise and filtered out by a 16kHz low-pass filter.
SafeChat only keeps the frequencies of noise below 16kHz because
that frequency range covers most human speech spectrums. Adding
this Gaussian noise helps reduce the SNR of secret information,
which corresponds to the speech intelligence of audio recorded by
malware [10]. Moreover, it also helps the intended receiver recover
the secret and avoid the filter-based separation of masking sounds,
e.g., keeping only the sounds in the user’s pitch range.

Note that in our implementation, a pilot signal, composed of
several 10k–24kHz chirps, is played before the masking sound. This
pilot is designed to help synchronize the time offset between the
device speaker and microphones because there is a delay of a few
hundred milliseconds between a program asking to play a sound
and actually playing that sound (owing to the non-real-time OS of
commodity phones). Without this synchronization, a larger depth
needs to be set in the adaptive filter for characterizing the channel
response, which incurs a 100x more computation time.
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3.2 Removal of Masking Noise and
Interference

The effectiveness of removing the noise and the interference at the
intended receivers is vital to the obfuscation of secret information.
Unlike the CSI-based techniques widely used in wireless systems
to remove the added noise [14, 27], it is non-trivial to remove the
masking sounds in smartphones due to the ignorance of channel
responses, Hs (∗) and Hm (∗).

To solve this problem, SafeChat uses the masking noise compo-
nent to estimate the channel response Hm (∗). Specifically, we treat
the masking interference as part of secret information and use an
existing adaptive filter [15] to separate the masking noise from the
other signals. In our current setting, the depth of this adaptive filter
is set to 500 samples to handle the sound delay spreads on different
devices. This process can determine the best estimation of channel
response, ˆHm (∗), by minimizing:

e( ˆHm (∗)) = r − ˆHm (mn ), (2)

where e( ˆHm (∗)) represents the residual error of adaptive filtering
under the assumption that the added noise has no correlation with
the human-spoken sounds. Note that it is impossible to isolate
the masking interference component with the same adaptive filter
because the added human-spoken sounds have non-zero correlation
with the secret (and also human-spoken) information.

According to the theory of adaptive filtering, the residual er-
ror, e( ˆHm (∗)), represents a combination of secret information, s ,
and the added masking interference, mi . SafeChat then applies
the successive interference cancellation (SIC) to recover the secret
information by removing ˆHm (mi ) from the residual noise:

ŝ = e( ˆHm (∗)) − ˆHm (mi ), (3)

where ŝ is the recovered secret at the intended receivers. Note
that the eavesdropping apps cannot apply the same processing
to extract the secret information because the masking sounds are
generated by, and only known to, the intended receiver. Fig. 3 shows
an example of this noise and interference removal process for the
masked audio recorded by Nexus 6P. In this example, more than
15dB of the masking noise and interference was removed from
the recorded audio, thus generating an enough gap of recorded
information between authorized and unauthorized recordings.

3.3 Sound Masking Metrics
Fig. 4 shows an example of energy envelopes where a 3-digit secret
is masked/recovered by SafeChat, as well as the definition of 4 im-
portant soundmaskingmetrics.Wewill henceforth use theMasking
sound to Noise Ratio (MNR) and Masking sound to Residual noise
Ratio (MRR) to represent the intensity of added masking sound and
the effectiveness of removing this masking sound, respectively. The
former (latter) is defined as ∥r ∥/∥n∥ (∥r ∥/∥ŝnonspeech ∥), where the
noise term, n, represents the background (not the masking) noise
and ŝnonspeech denotes the residual noise in the recovered signals
without the user’s speech.

On the other hand, the Masking sound to Speech Ratio (MSR)
and Speech to Recovered noise Ratio (SRR) represent the amount
of secret information hidden from the malware and recovered
at the intended receiver, respectively. The former is defined as
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Figure 3: Example of masking sound removal. The masking
noise is first removed by an adaptive filter and the masking
interference is then removed via successive interference can-
cellation.

∥m∥/∥ŝspeech ∥, while the latter is defined as ∥ŝspeech ∥/∥ŝnonspeech ∥.
The sections of speech/non-speech signals can be identified by stan-
dard Voice Activity Detection (VAD) algorithms, like G.729 [12]. To
ensure a low processing delay of SafeChat, we only implemented
a simple VAD based on energy thresholding. Specifically, we used
the 80-th and 20-th percentiles of energy envelop of ŝ to represent
∥ŝspeech ∥ and ∥ŝnonspeech ∥, respectively. As shown in Fig. 4, this
simplification makes ŝspeech dominated by the loudest part of the
spoken secret, reflecting the purpose of SafeChat to prevent pri-
vacy leakage of the entire spoken secret. This simplification might
slightly over-estimate MRR in a few cases when there is no speech
information recorded. This issue will not harm our evaluation much
because most measurements include the spoken secrets and the
final performance of SafeChat is characterized by the difference
of recognition accuracy between masked and recovered secrets.
Thus, without loss of generality and to make the threshold settings
consistent, we choose to report MRR based on this setting.

In summary, MNR and MRR describe the device’s hardware
capability of sound masking, i.e., not relevant to ŝspeech , while
MSR and SRR capture the SafeChat’s performance in defending
against unauthorized recording. Ideally, SafeChat achieves the best
performance when the value of these four metrics are as high as
possible. However, these metrics implicate each other. For example,
a high SRR implies a low MSR because the amount of removed
masking sound is limited. The details of our design choices to find
a balance between these metrics will be presented next.

3.4 Device Volume Control
Speech intelligence is shown to correspond to the Signal-to-Noise
Ratio (SNR) of the spoken voice [10], which is negatively related to
the volume of played masking sounds. Thus, the masking sound
should be played loud enough (i.e., high MNR) to lower the speech
intelligence of secret information. However, the masking sound
cannot be played with an infinitely large volume due to hardware
limitation. It is also unwise to play the masking sound too loud
because the assumption of linear channel response becomes invalid
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Figure 4: Explanation of sound masking metrics. MNR and
MRR represent the device capability to play/remove the
masking sound while MSR and SRR indicate how much of
secret information is leaked/received tomalware and the in-
tended receiver.

when the played/recorded sound swings into the non-linear re-
gion of phone speaker/microphone. On the other hand, playing the
masking sound with a low volume not only fails to hide the secret
information, but also leaves more residual noise in our masking
sound removal process due to the inaccurate estimation of channel
response.

Fig. 5(a) shows the average sound intensity when the masking
sound is played with different speaker volumes and then removed
on Nexus 6P. In this example, audio is recorded in a quiet environ-
ment without including any spoken speech, and thus the residual
sound intensity shown in Fig. 5(a) represents the residual errors
of our noise and interference removal algorithm. As shown in this
figure, when the sound is played with larger than 90% of the maxi-
mum volume, the residual error of the adaptive filter surges due to
the non-linear distortion, thus hindering the recovery process in
the presence of such a high-volume masking sound.

Besides the selection of an optimal speaker volume to play the
entire masking sound, we also need to find the balance of shar-
ing this finite volume budget to mask noise and interference. It is
meaningless to play a masking interference with a lower volume
than that of recorded secret information. However, using too high a
volume to play the masking interference increases the residual error
of its removal with SIC, thus making it difficult for the intended
receiver to comprehend the recovered audio. This is a common
issue of removing signals with SIC, where the system achieves the
optimal performance when the signals removed first (i.e., masking
noise) have a greater signal strength than those to be removed
later (i.e., masking interference) [25]. Fig. 5(b) shows an example of
fixing the device speaker volume at 90% of the maximum volume
while varying the ratio of volume to play the masking interference.
As shown in this figure, a high ratio of volume to play the mask-
ing interference not only leaves more residual energy of adaptive
filtering but also increases the residual error of SIC due to the inac-
curate estimation of channel responses. In our current design, the
energy ratio of masking interference is always fixed at 10dB lower
than the volume of masking noise no matter how large the speaker
volume is. This selection is based on our experimental findings
and the assumption that the energy of secret speech is 13dB lower
than the played masking sound. The performance of this masking
interference setting will be detailed in Section 5.
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Figure 5: Effectiveness of soundmasking. Larger the volume,
more accurate the estimation of channel response. However,
the channel response becomes non-linear when the mask-
ing sound is played with maximum volume, thus leaving
large residual errors.

Algorithm 1 Device Calibration
Input: recorded audio: r (vol, ch) and a MRR threshold: thrMRR
Output: microphone channel and speaker volume: chcal ib, volcal ib
1: n = est imate_backдround_noise(r)
2: ŝ(vol, ch) = r emove_maskinд_sound (r (vol, ch))
3: MNR(vol, ch) = 20loд10( ∥r (vol, ch) ∥/∥n ∥)
4: MRR(vol, ch) = 20loд10( ∥r (vol, ch) ∥/∥ŝnonspeech (vol, ch) ∥)
5: minMNR = inf andmaxMRR = −inf
6: for ch for all microphone channels do
7: meanMNR =mean(MNR(:, ch))
8: if minMNR >meanMNR then
9: chcal ib = ch
10: minMNR =meanMNR
11: for vol for all volumes do
12: if maxMRR < MRR(vol, chcal ib ) then
13: volcal ib = vol
14: maxMRR = MRR(vol, chcal ib )
15: if maxMRR < thrMRR then
16: return fail
17: for vol from the largest volume to the smallest volume do
18: if |maxMRR −MRR(vol, chcal ib ) | < 1dB then
19: volcal ib = vol
20: break
21: return chcal ib & volcal ib

3.5 Device Calibration
As mentioned earlier, SafeChat needs to find a reasonable vol-
ume to play masking sound and a proper ratio of volume to play
the masking interference. It is also necessary to find a proper mi-
crophone as a reference to recover the secret information. In our
experiments, due to different microphones’ positions, the recorded
signal strength of masking sound in one microphone could be 20dB
higher than the other microphone. Thus, SafeChatmakes one-time
calibration to search for the best microphone as a reference and
also the best speaker volume to play masking sound as shown in
Algorithm 1.

In this one-time calibration, SafeChat automatically plays the
masking sound with different speaker volumes, vol , and records
it by different device microphones, ch. The recorded signals with



AsiaCCS ’19, July 9–12, 2019, Auckland, New Zealand Yu-Chih Tung and Kang G. Shin

different volume settings, r (vol , ch), are first processed by our mask-
ing sound removal algorithm to recover the secret information,
ŝ(vol , ch). We then estimate both MNR and MRR for all volume
and channel settings. In the calibration process, the reference mi-
crophone used to recover the secret is selected based on MNR.
Specifically, SafeChat always chooses the microphone with the
lowest MNR as the reference, because the low MNR implies that
the microphone receives less masking sounds (due to the position
farther away from the speaker or different microphone gain set-
tings). It is necessary for SafeChat to ensure the protection of this
“weakest” microphone by receiving strong enough masking sounds.
In our experiments, when the masking sound volume is tuned prop-
erly to protect this reference microphone, it naturally saturates the
other microphone on the mobile device.

Once the microphone channel, chclib , to the reference is deter-
mined, SafeChat will look for a volume with the highest MRR,
which represents SafeChat’s capability of removing the masking
sound effectively. SafeChat sets a threshold for this maximumMRR
to pass. This threshold is set to 18dB based on our current testing
of devices. The calibration fails if it is unable to find any masking
sound volume that meets this condition. Note that the volume selec-
tion based on the highest MRR is to ensure the recovery of secret.
However, the main goal of SafeChat is still to prevent unautho-
rized recording, so our calibration process aggressively searches
for a higher volume, if any, with a similar MRR (i.e., 1dB less than
the maximum MRR), and sets that volume as the calibrated volume
volcalib . The results of this calibration process for different devices
will be presented in Section 5.

3.6 Speech Volume Check
Besides the device’s capability of playing and removing masking
sounds, the user’s speaking volume is also critical to the system
performance. If the secret is spoken too loudly, the selected masking
sound might not be able to obfuscate the secret effectively. On the
other hand, too low a speaking volume might make the intended
receiver unable to comprehend the recovered secret.

One possible way to solve this problem is to dynamically adapt
the masking sound volume to the user’s speaking volume. However,
as explained above, the masking sound should not be too loud in
order not to sway into the non-linear range of microphone/speaker
hardware. Moreover, based on our preliminary experimental results,
users tend to increase their sound volume when the volume of
masking sound is raised, thus canceling the effect of adapting the
masking sound volume dynamically. Currently, SafeChat fixes the
masking sound volume via one-time device calibration and adds a
user training phase before the secret is spoken. The purpose of this
training phase is to ensure a proper speaking volume that splits the
limited MRR budget to guarantee a high masking sound to speech
ratio (MSR) and a high speech to recovered noise ratio (SRR).

In the training phase, users are asked to speak a 3-digit number
for checking their speaking volume. Users are considered to have
succeeded in this trainingwhen theMSR of this training recording is
higher than 13dB and SRR is higher than 3dB. This setting ensures
the energy of human’s speech is 13dB lower than the masking
sound. In our usability study, users needed only an average of
1.6 rounds to pass the training criteria. This number decreases to

1.3 when users are asked to try the same training task again 5
minutes later. Considering each training takes about 5–6 seconds,
the whole training time would be less than 10 seconds. Most testing
participants said that it is easy to keep their voice compatible with
our current setting. The details of this usability study, like how
users can keep their voice in the safe range after the training, will
be presented in Section 6.

4 SECURITY ANALYSIS
While SafeChat is designed as an app-level prevention of audio
privacy leakage, there still exist several requirements to make
SafeChat work in a realistic setting. This section will introduce
those requirements, the targeting threat model, and also a potential
attack on SafeChat.

4.1 Threat Model
The purpose of SafeChat is to prevent audio privacy leakage
through malware’s unauthorized recording. Even though the sound
masking may prevent the privacy leakage through other channels
(e.g., wiretapping), they are beyond the scope of this paper, and
hence not the focus of our current SafeChat design.

SafeChat assumes the malware and our installed app have the
same capability and permissions to access device microphones
and speakers. While SafeChat need not modify the device OS, it
requires the user’s device not to be rooted nor compromised. This
requirement is necessary because a compromised OS could help the
malware extract the masking sound through the speaker’s audio
chain and then remove it easily by the removal process introduced
earlier. This is a reasonable assumption because other existing audio
privacy systems [13, 16, 17, 22, 29] will also be breached easily when
the device OS is compromised.

After recording the audio stealthily, we assume malware can
easily recognize secret by the speech recognition engines or crowd-
sourcing like the malware Soundcomber [24]. We also assume that
the speech recognition engines used by malware are equipped with
noise-handling mechanisms and malware has the knowledge of
common audio pre-processing, such as source separation, to facil-
itate their attack on the masked secret. The security provided by
SafeChat is characterized as the probability of the masked secret
being recovered by malware under the above assumptions.

4.2 Security Guarantee
Unlike other cryptography-based security systems which can pro-
vide an exact security guarantee like the estimated time to break
the system, it is less likely for SafeChat to provide such a guar-
antee. This is nonetheless a common issue for non-cryptographic
systems, such as Wyner’s wiretap channel [28] or other physical
security wireless systems. For example, most wireless security sys-
tems that “mask” packets by sending artificial noise [11, 14] model
their security guarantee by ensuring the SNR of packets received at
eavesdroppers is less than the code/modulation capacity of packets,
and hence it is information-theoretically impossible for eavesdrop-
pers to recover the packets received with masking noise.

We follow the same line of analysis to estimate the security
guarantee SafeChat can provide. Specifically, we evaluate the SNR
difference of private/secret information between the authorized and
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unauthorized recordings, i.e., MSR in our measurements. However,
no “code/modulation capacity” guarantee exists for SafeChat be-
cause human speech is not modulated in the same way as wireless
packets. For example, there usually exists redundant information
in the speech signals so that machines can comprehend human’s
speech by just analyzing statistical features like MFCC or polyno-
mial residual error. Thus, we still don’t know how large the MSR
should be.

In this paper, we evaluate SafeChat’s privacy/secret protection
based on the fact that the probability of guessing a secret x is not
different from knowing its encrypted secret y, i.e., P(x |y) = P(x).
Assuming SafeChat knows the most powerful speech engines or
crowdsourcing resources that malware can use to recover secrets,
we can define the security of SafeChat by answering the follow-
ing question: “What is the difference between the probability of
malware recognizing the masked secret from that of a pure random
guess?” SafeChat achieves the secrecy if the malware is shown
unable to use the assumed methodology to make a better guess of
masked secrets than a random guess. Note that SafeChat delegates
the noise handling to the speech recognition engines and crowd-
sourcing. We will also discuss a few other potential pre-processing
methods that might help attackers uncover secrets, but SafeChat
is resilient to them as well, as discussed below and in Section 7.

5 EVALUATION
We have implemented SafeChat as a chat app in Android and a
remote sound masking server in Matlab. Implementing SafeChat
as an app helps automatically turn the device to speaker mode
and calibrate the device and speech volume, if needed. Note that
this design doesn’t sacrifice SafeChat’s benefits much. A bank
representative (Bob) can still talk securely to their customers (Alice)
via the installed chat app, not via the normal telecommunication.
Asking customers to install a chat app is also much easier than
asking the phone manufacturer to update the latest audio privacy
security feature, if any, with a new system patch.

We have conducted experiments to assess the effectiveness of
SafeChat. Our evaluation is designed to determine if SafeChat
can reduce the speech intelligence of unauthorized recording to the
extent that the malware has no better way to recover the masked
secret than making a random guess. As the threat model discussed
in Section 4, we focus on the scenario in which the malware has
the knowledge/resource of utilizing the human’s mind or machine
learning to recover the secret. Without loss of generality, we chose
the masked secret in the following evaluation to be an 8-digit num-
ber, and the speech intelligence is measured by the accuracy in
identifying this 8-digit secret. This 8-digit number is chosen mainly
because it is the longest corpus in TIDIGITS dataset. Our evaluation
result should be applicable to other lengths of information, such as
6-digit iPhone passcodes or 9-digit security numbers.

5.1 Experimental Settings
Two recording datasets are collected in our experiments, where the
recorded speech (secret information) was either played by a laptop
speaker near the testing device or was spoken by a participant at
a similar location as shown in Fig. 6. The laptop-played speech is
chosen randomly from any 8-digit recording in the TIDIGITS sound

(a) Speech by laptop speakers (b) Human speech 

Figure 6: Experimental setting. Spoken audios from TIDIG-
ITS were played by a laptop next to the phone running
SafeChat. Testing participants are asked to read a randomly-
generated 8-digit number.

dataset [18] while a random 8-digit number was read by testing
participants.

We recruited 27 participants (17 males and 10 females) to build
the human voice dataset. Six participants helped record multiple
times/rounds while the others only recorded 6 speeches with the
final setting of SafeChat. For example, we asked these 6 partici-
pants to intentionally vary their speaking volume even when it is
outside of SafeChat’s operation range. The laptop dataset eases
the automation of testing SafeChat under different scenarios, such
as varying masking volume, interference gain, or microphone chan-
nels, while the human dataset helps us understand the real-world
performance of SafeChat. By the end of our experiment and user
study, we had collected more than 1600 recordings spanning more
than 3.5 hours. These recordings were later recognized by state-of-
the-art Google Speech API [5] or by 317 real users recruited via
Amazon Mechanical Turk [1].

To avoid any recognition accuracy drops due to the speech ar-
tifacts of our removal algorithm rather than the masking sound,
Google Speech API is only used to identify recordings of adding the
masking sound recorded in the laptop dataset to a random speech
from the TIDIGIT dataset. This setting is beneficial to the attack
performance by assuming that the attacker has knowledge of signal
pre-processing to completely remove speech artifacts. We have also
tried to retrain an open-source speech recognition engine with our
dataset (i.e., the masked speech), but omitted the result since the
attack performance is significantly worse than using the state-of-
the-art Google Speech API. Characterizing the attack performance
of utilizing other speech recognition engines is part of our future
work.

5.2 Effectiveness of Masking Sound and its
Removal

We first evaluate the effectiveness in playing and removing the
masking sound in terms of MNR and MRR. To show the different
devices’ capabilities, we apply our calibration process on 6 different
devices, as shown in Table 1, while changing the device speaker
volume from 50% to 100%. The results of adding/removing masking
sound on 4 of 6 devices are shown in Fig. 7.
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Device
chcal ib volcal ib (%) MNR(dB) MRR(dB)

Galaxy S4 2 70 35 18
Galaxy S5 1 70 32 20
Galaxy Note4 1 50 51 26
Sony Z1 1 60 24 21
Nexus 5X 1 60 38 26
Nexus 6P 1 80 39 26

Table 1: Calibrated settings of SafeChat on different devices
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Figure 7: Effectiveness of masking sound on different de-
vices. Some devices have better masking performance when
the masking sound is played with a high speaker volume
while others are unable to remove the masking sound ef-
fectively if it is played too loud. (Results of Galaxy S4/5 are
omitted for readability.)

During the calibration, we found all tested devices can generate
higher than 30dB MNR with their maximum speaker volumes, indi-
cating that the speaker is loud enough to hide speech under proper
settings. Regarding the effectiveness of masking sound removal,
most devices showed better removal performance in the 50–80%
speaker range, where the 50% speaker volume can usually achieve
more than 20dB MRR among the devices we tested. When the vol-
ume is set based on our calibration algorithm, SafeChat was able
to remove up to 26dB masking sound from the recorded audios.

Note that the calibration behavior varies with device. For exam-
ple, as shown in Fig. 7(a), when the MNR of Note 4, Nexus 5X, and
Sony Z1 stop increasing when the speaker volume increased over
80%, Nexus 6P can still have 10dB higher MNR when the masking
sound is played with a full volume. This phenomenon might have
been caused by different dynamic ranges of microphones and speak-
ers equipped in the device. However, even though Nexus 6P seems
to have a high enough dynamic range to play masking sound with a
full volume, as mentioned before, playing sound with a full volume
causes non-linear distortion and microphone saturations which
prevents SafeChat from removing the masking sound effectively.
For example, as shown in Fig. 7(b), the MRR of Nexus 6P drops
from 26dB to 13dB when the masking sound volume increases from
80% to 100%. The other devices follow the same behavior, so our
calibration algorithm sets their speaker volumes between 50% to
80% for making the best balance between MNR and MSR. In our
experiment with the speech played by a nearby laptop, Nexus 6P

was capable of hiding the highest laptop speaker volume while
Galaxy S4 was the one only capable of hiding speech when it was
played with 70% of the laptop speaker’s volume. The details of our
calibration setting are summarized in Table 1.

5.3 Robustness of Masking Sound Removal
User movements and ambient noise might affect our masking sound
removal process. For example, the MRR of Nexus 6P was found
to drop from 26dB to 23dB when users changed the position from
sitting to walking, but the MRR remained high enough to sup-
port SafeChat. The reason for this is that the estimated sound
response, Hs (∗), is determined by how the played masking sounds
are combined/received at the microphone and a device’s movement
changes the behavior of sound transmissions. For example, shaking
the phone greatly incurs a 10-15dB performance drop, but it is not
a typical phone user’s behavior.

SafeChat is resilient to common ambient noise. For example,
only a 3dB MRR drop was observed when a loud rock music was
played by a laptop in a setting similar to Fig. 6(a). The data from 21
participants were also collected near a cafe of a crowded student
activity center, but no significant performance dropwas observed. A
common ambient noise does not affect the performance of masking
sound removal much because the ambient noise is not correlated
to the masking sound. A loud background noise can actually be
considered helpful to hide spoken secrets.

A specific issue caused by the ambient noise in our experiments is
the under-estimation ofMSR. For example, speech energy envelopes
might surge due to loud laughs of other people near the testing
site, thus decreasing the estimated MSR by using this wrong speech
signal as a reference. In such a case, users fail to pass the training
even when the masking sound is loud enough to hide the secret.
One way to solve this problem is to ask the intended receiver to
check the recovered signal of failed training and determine if it is
due to the spoken secret or the ambient noise.

Even though SafeChat might suffer from some other extreme
cases, one should note that SafeChat is triggered only during a
secret conversation. Users will unlikely have a private/secret con-
versation while moving the phone abruptly, or in a very noisy
environment. The intended receiver is also likely to ask users to
find a quiet environment to say the secret, if need. Our experi-
ments have shown that SafeChat is resilient to typical real-life
environments, like walking and speaking in a typical public area.

5.4 Attack Performance Against Google Speech
API

As mentioned earlier, a threat model we considered is that the
malware can try to identify the masked secret from the masked
recording by using state-of-the-art speech recognition engines.
Specifically, we used the Google Speech API to recognize the lap-
top traces under different masking sound settings. Note that the
recordings fed to Google Speech API are not pre-processed be-
cause the API has already been designed to handle noisy audio and
it is suggested that noise reduction pre-processing will degrade
the recognition accuracy. This built-in noise handling helps the
malware uncover the masked secret.
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Figure 8: Recognition accuracy via Google Speech API. The
large accuracy gap between the masked and the recovered
audios represents the effectiveness of achieved audio pri-
vacy.

We use the standard word recognition accuracy to evaluate the
performance of SafeChat. The word recognition accuracy is de-
fined as (N−D−S−I )/N whereN is digits of numbers in themasked
speech and I and D are the erroneous digits added or missed in
the recognition text. S represents how many digits are substituted
by wrong digits. The results of recognition accuracy for Galaxy S5
under different experimental settings are plotted in Fig. 8.

Fig. 8(a) shows the result when a 13dB lower speech is added
to the masking sound, and then recorded on Galaxy S5, i.e., MSR
is fixed at 13dB. The recognition accuracy is shown to decrease as
the volume of played masking sound increases. When the speaker
volume is set higher than 50%, the accuracy of recognizing the
masked speech decreases sharply while the recovered speech still
is recognized by Google Speech API with a high probability. This
large performance gap represents SafeChat’s effectiveness in pro-
viding differential information between authorized and unautho-
rized recordings. The difference between the masking sound with
only masking noise and that with both masking interference and
noise is also shown in this figure, but not very clear because the
machine-learning algorithm usually identifies speech by statistical
properties, such as MFCC or polynomial residual errors, where
adding a structured interference like another human’s voice with
a low volume does not change those features much. The effect
of adding an interference is more pronounced when the sound is
identified by humans.

After learning the performance change with different masking
sound volumes, Fig. 8(b) shows the recognition accuracy when the
masking sound is played with 70% of the speaker’s volume (i.e., the
calibrated setting in Galaxy S5) and a different volume of speech is
added. The purpose of this experiment is to understand the level of
speech volume that can be protected with SafeChat. As shown in
this figure, the best operation range for Galaxy S5 to prevent secret
from being recovered by Google Speech API is when the MSR is
higher than 11dB and lower than 15dB. Under this setting, Google
Speech API can achieve 98% accuracy in recognizing the uncovered
speeches while having less than 0.1% accuracy to understand the
masked speech. Note that this operation range varies with device
but SafeChat generally sets the lower bound of MSR to 12–15dB
to prevent the leakage of secret information. The usability of this
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Figure 9: Recognition accuracy against humans. 75% of re-
covered secrets can be recognized correctly while partic-
ipants (humans) can’t fully identify any of the masked
recordings.

setting, like how easy people can maintain their voice with the
proper volume, will be discussed further in Section 6.

5.5 Attack Performance Against Humans’
Recognition

To evaluate the performance of SafeChat in hiding secrets from
humans’ recognition, we recruited more than 317 users via Amazon
Mechanical Turk to recognize the audios recorded by 6 testing
participants. This user study was ruled by our university to be
IRB nonregulated since it does not interference human behaviors
nor intrude user privacy. We intentionally told the users that (i)
the content to recognize is an 8-digit number and (ii) the number
to identify can be hidden in the noise. The users are allowed to
repeat the recognition of each recorded audio at will and edit their
answers as many times as they want. This setting is designed to
mimic the scenario when the malware tries to recover the secret
with crowdsourcing.

Fig. 9(a) shows the recognition accuracy for the audios recorded
on Nexus 6P while playing the masking sound under its calibrated
setting. As shown in this figure, once MSR is higher than 13dB,
the speech intelligence perceived by the users is found to be no
more than the result of randomly guessing an 8-digit number. The
accuracy of recognizing the masked audios by the participants is
generally higher than that by Google Speech API, because the latter
tends to return a null string in case of recognizing the masked
audios which are not recognizable, while the participants already
know there is a hidden number, and usually return some (even
incorrect) answers.

On the other hand, the secret in the recovered recordings can
be recognized with 95% accuracy. The performance starts to drop
when MSR>17dB, because the residual mask noise may hinder
the users from recognizing some of them with low-volume speech
signals (e.g., SRR<3dB). This large accuracy gap between recogniz-
ing masked and recovered secrets is consistent with the previous
results with Google Speech API, thus demonstrating the effective-
ness of SafeChat in hiding secrets from being recovered by speech
recognition engines and humans. According to these results, we set
the threshold of MSR and SRR for users’ speech to 13dB and 4dB,
respectively.
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Figure 10: User study app interface. After users finished the
self-calibration stage, they were asked to pass the training
phase, recordmultiple audio clips, and thenfilled out survey
questions.

Fig. 9(b) plots the CDF of digits being recognized with our final
setting. More than 75% of recovered recordings are found to be
fully recognized by the intended receiver while none of masked
audios can be recognized by malware. Moreover, more than 95%
of recovered recordings have less than 2 digit errors. Since users
usually have 5% or more word error rate in recognizing telephone
speeches [21], talking via SafeChat shouldn’t impose more burden
on the intended receivers than a normal speech. Most recovered
secrets recognized with 1–2 digit errors are found to have also been
recognized correctly by other users. A majority-vote decision [19]
may further avoid these user errors in evaluating the performance
of SafeChat. This accuracy is adequate to support most use-cases,
considering the fact that the intended receiver usually asks users
to repeat the secret when it is not recognizable (as is the case even
without SafeChat). Assuming that each recording is independent
of others, our result can be interpreted as more than 98% of the
8-digit secrets can be fully recovered within 2 repetitions.

While comparing the effectiveness of masking interference (i.e.,
added spoken sentences from existing databases), users are found
to have a better chance of correctly identifying 7 (of 8) digits on the
recordings that include only masking noise, i.e.,mn . These usually
happen in the corner cases where the user’s speech volume is not
fully masked by a masking noise only. In such a case, the added
interference, i.e.,mi , helps SafeChat prevent this leakage by mak-
ing the malware confused with the co-existence of multiple speech
sources. By adding both masking interference and noise, SafeChat
can ensure the probability of malware guessing the masked secret
not better than just a random guess as shown in Fig. 9(b). Note
that users have a higher probability of correctly recognizing 2 (of 8)
digits in the masked recordings with interference because humans
mis-identify the digit of added interference, and there is no such
interference to identify in the recordings with only masking noise.

6 USABILITY STUDY
The purpose of this usability study is to assess (1) if users can easily
control their speech volume within SafeChat’s operation range, (2)
if users can tolerate the emitted noise while reading private/secret

information, and (3) if users would like to use SafeChat even when
it imposes some usage constraints, considering its purpose of pro-
tecting audio privacy.

To answer these questions, we asked 27 participants to try the
demo app as shown in Fig. 10. Note that this usability study is
done during the first time of using SafeChat (a few participants
are asked later to join the other testing with varying recording
volumes). We first introduced the idea of using noise to protect
their private/secret information on smartphones and let them try
the demo app of SafeChat. The demo app is configured to first
ask users to pass the training phase as described in Section 3 and
then ask users to finish 3 tasks of reading a random 8-digit number
with SafeChat enabled. Whenever the recording goes out of the
operation range of SafeChat, i.e., (MSR < 13dB or SSR < 4dB),
an alert message will pop up, asking the user to repeat the same
task with a louder or quieter voice. After users finish the testing,
i.e., 1 training and 3 recordings, they are asked to fill out a survey
questionnaire. The participants are asked to try the same demo app
again after they fill out the survey. This second time of test is used
to determine if they can meet the requirement of SafeChat more
easily since they now know how to use it.

Instructing participants to record in a certain position is found
to have a higher chance to record a speech compatible to SafeChat
than just asking them to be quiet. Based on our preliminary ex-
periments, people usually speak louder than SafeChat expected,
and they tend to put the microphone close to their mouth when
they are told to speak quietly. This human instinct turns out to
make the recorded secret even louder (due to speaking close to the
microphone) when only the “speak quietly” instruction is given.
In contrast, asking users to hold the phone in a certain posture is
easier to follow, especially when a picture of the desired posture
is shown to them. Specifically, we asked all participants in this
usability study to record the voice in a similar posture as shown
in Fig. 6(b). Keeping such a posture reduces not only the recorded
secret volume but also the interference in hearing the masking
sound.

According to the above collection of results, users need 1.6
rounds to pass the initial training phase during their first time
of using SafeChat. Considering the fact that each training takes
about 6 seconds (including the processing time), the overall time
overhead of the training is less than 10 seconds on average. After
passing the training phase, users need only 1.3 rounds to read an
8-digit secret with the volume compatible with SafeChat’s setting.
This reduction of repetitions indicates how effectively the train-
ing can guide users to learn the correct speech volume. Note that
we currently validate the speech criteria only after recording the
entire speech. Considering our planned improvement to monitor
the speech volume in real time and disable the conversation once
the digits are spoken too loudly, the overhead of meeting the re-
quirement can be reduced further. 70% of testing participants would
be able to complete the speech in 1 round and 30% of them need
one more round to complete it. Moreover, the number of rounds
necessary to speak correctly is reduced further as users get famil-
iar with SafeChat. For example, when users perform the second
8-digit recordings, 85% of them can finish it with their first attempt
and users need only 1.3 rounds, on average, to pass the training
again after filling out the survey.
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Recordings in our usability study achieve a similar performance
as shown in the previous section. Accuracy in recognizing the
masked and recovered recordings is 22% and 93%, respectively.
According to the responses to our survey, 18 users think the speech
volume requirement is easy to meet and 24 users can tolerate the
emitted noise (80% volume calibrated for this study). For the purpose
of preventing privacy leakage via unauthorized recording, 22 of
the users are willing to use SafeChat, especially when they are
telling credit card information or business secrets over the phone.
Most participants felt surprised when they learned apps can record
audio in the background. Few participants hope the speech volume
threshold to be higher while most of them can adjust their volume
to meet the current setting. Only 2 participants complained about
the masking sounds. One participant left the comment that this
technology is useful and can actually be applied to a voice message
recording app as well. Considering our current design which needs
users to call via SafeChat, it seems a stronger use-case of SafeChat
to thwart audio privacy leakage when users are recording secret
voice messages (because they need an app to do so anyway).

7 DISCUSSION
Wehave proposed SafeChat to mitigate the emerging audio privacy
leakage via malware’s unauthorized recording. SafeChat protects
the audio privacy in smartphones without requiring any modifica-
tion to phone OSes. Our evaluation has demonstrated the effective-
ness of SafeChat based on the assumed threat models. Specifically,
SafeChat has been shown to be able to effectively hide and recover
secret conversations against the state-of-the-art Google Speech
API and 371 online-recruited users. One frequently asked question
regarding SafeChat is “how about applying a low-pass filter before
recognizing the masked secret?” Our testing results show SafeChat
to be resilient to such a low-pass attack because the added masking
noise covers the entire human speech spectrum. A similar potential
attack based on “blind” source separation, such as the independent
component analysis (ICA), might be theoretically capable of remov-
ing the masking sounds if the number of recording microphones is
larger than that of playing speakers. However, we often notice that,
in reality, SafeChat saturates all microphones except the one cali-
brated to recover the secure message, thus failing ICA to separate
the “independent” sources. Analyzing and evaluating the security
guarantee over other potential attacks, if any, is part of our future
work.

Another potential issue of SafeChat is that the phone’s echo
cancellation might treat the masking signals as the echos and then
cancel them automatically. Note that we have already turned on
the Android’s NoiseSuppressor and AcousticEchoCanceler in
our experiments but have not noticed the occurrence of such a
cancellation. However, after we online-recruited another 78 testing
participants to install SafeChat on their devices, we found a special
case where the masking sound was removed by the device OS or
hardware before apps receive it in LYF Flame 1. Since this case
can be easily identified with our calibration algorithm, SafeChat
can inform/warn the user that it cannot support the user’s de-
vice. After examining the source code of Nexus 6P further, we
found a similar phenomenon might also occur when users enable

SafeChat first and then make/receive a phone call (via telecom-
munication). In this case, the system service, i.e., CallManager,
has a higher privilege than SafeChat to alter the audio chain and
enable the echo cancellation. Note that this echo cancellation is
implemented in the chip level, i.e., Qualcomm’s proprietary Fluence
voice enhancement [9]. In our experiment, a normal app API, like
the AcousticEchoCanceler, is unable to trigger this function suc-
cessfully. Instead, this function can be controlled by modifying the
persist.audio.fluence.voicecall. Unfortunately, SafeChat is
now unable to deactivate this function automatically because it re-
quires the system permission. One possible future direction is to
ask phone manufacturers to provide a proper API to control the
low-level echo cancellation function. This mechanism might be
necessary for other purposes than SafeChat since echo cancella-
tion can be triggered erroneously in many use-cases. See the forum
discussions to disable the echo cancellation in Android [2]. Another
short-term solution we are working on is to block telecommuni-
cation while using SafeChat or implement SafeChat as a system
service.

8 CONCLUSION
In this paper, we have shown the plausibility of using sound mask-
ing to thwart privacy leakage through malware’s unauthorized
recording.We have designed, implemented and evaluated SafeChat,
a novel combination of Android chat app and a remote sound mask-
ing server, which can provide audio privacy on mobile devices
without modifying audio privacy/permission scheme in existing
OSes. Our extensive experimental evaluation has shown SafeChat
to be able to make an up-to-26dB signal strength difference be-
tween authorized and unauthorized recordings. With a proper set-
ting, this signal difference could prevent people or state-of-the-art
speech recognition algorithms from comprehending the masked
sound while the authorized app can understand most of the hidden
speeches by our masking sound removing algorithm. Our usability
study participants supported the above findings and most of them
wanted to use SafeChat to protect their private information such
as credit card numbers or passwords.
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