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Coverage Performance in MIMO-ZFBF
Dense HetNets with Multiplexing and
LOS/NLOS Path-Loss Attenuation
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Abstract—The performance of multiple-input multiple-output (MIMO) multiplexing heterogenous cellular networks are often analyzed
using a single-exponent path-loss model. Thus, the effect of the expected line-of-sight (LOS) propagation in densified settings is
unaccounted for, leading to inaccurate performance evaluation and/or inefficient system design. This is due to the complexity of LOS/
non-LOS models in the context of MIMO communications. We address this issue by developing an analytical framework based on
stochastic geometry to evaluate the coverage performance. We focus on the zero-forcing beamforming where the maximum signal-to-
interference ratio is used for cell association. We analytically derive the coverage. We then investigate the cross-stream interference
correlation, and develop two approximations of the coverage: Alzer Approximation (A-A) and Gamma Approximation (G-A). The former
is often used in the single antenna and single-stream MIMO. We extend A-A to a MIMO multiplexing system and evaluate its utility. We
show that the inverse interference is well-fitted by a Gamma random variable, where its parameters are directly related to the system
parameters. The accuracy and robustness of G-A is higher than that of A-A. We observe that depending on the multiplexing gain, it is

Index Terms—Area spectral efficiency, coverage probability, densification, heterogenous cellular networks (HetNets),
LOS/NLOS path-loss model, multiple-input multiple-output (MIMO), multiplexing, numerical complexity, Poisson Point Process (PPP),
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possible to attain the best coverage probability by proper densification.
stochastic geometry, zero-forcing beamforming (ZFBF)
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1 INTRODUCTION

ENSIFICATION of heterogenous cellular networks (Het-

Nets) as well as air interface technology based on
multiple-input multiple-output (MIMO) are viable ways
to address the rapid and substantial growth of mobile
data demand. In fact, these two technologies have been
integral parts of the air interface technology in 5G and
beyond [2], [3], thanks to a set of encouraging analytical
results in [4], [5], [6], [7] demonstrating a nearly propor-
tional growth of the area spectral efficiency (ASE) in Het-
Nets by steadily increasing the number of BSs per unit
area (densification) without deteriorating the coverage
probability (scale invariance). These analytical results were
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developed by leveraging tools of stochastic geometry
(e.g., [8], [9], [10], and validated with empirical studies,
e.g., [11], [12].

The scale invariance property of HetNets, however,
depends heavily on the standard path-loss model (SPLM)
L(||=]]) = ||z||"*, where ||z|| is the Euclidean distance
between the source and the destination, and 2 < o < 8 is
the path-loss exponent. Nevertheless, SPLM has intrinsic
disadvantages, such as singularity—where the received
power may increase significantly as ||z|| — 0, which results
from ultra densification [13]. It is shown in [13], [14] that in
contrast to the analysis based on SPLM, the coverage
probability under a bounded path-loss function, e.g.,
L(||z]]) = ||z + 1| %, is decreased by increasing the density
of base stations (BSs). A similar conclusion was drawn in
[15], where the coverage probability in a double-slope path-
loss environment was shown to decrease significantly due
to densification. Such conclusions are in contrast with those
of made in [4], [5], [6], [7] based on SPLM. This is because
SPLM fails to model the propagation in mobile systems
such as small cells, where a combination of line-of-sight
(LOS), and non-LOS (NLOS) links are involved with the
inside/outside of buildings.

The need for an inclusive path-loss attenuation model
which is able to characterize propagation in the cellular net-
works in various environments is also recognized by the
3GPP. In 3GPP TR36.814, Release 9 [16], a practical path-loss
model is described as the one that can distinguish between

1536-1233 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 07,2020 at 00:08:43 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-1607-3875
https://orcid.org/0000-0002-1607-3875
https://orcid.org/0000-0002-1607-3875
https://orcid.org/0000-0002-1607-3875
https://orcid.org/0000-0002-1607-3875
https://orcid.org/0000-0002-4399-6472
https://orcid.org/0000-0002-4399-6472
https://orcid.org/0000-0002-4399-6472
https://orcid.org/0000-0002-4399-6472
https://orcid.org/0000-0002-4399-6472
https://orcid.org/0000-0003-0086-8777
https://orcid.org/0000-0003-0086-8777
https://orcid.org/0000-0003-0086-8777
https://orcid.org/0000-0003-0086-8777
https://orcid.org/0000-0003-0086-8777
https://orcid.org/0000-0003-3529-2640
https://orcid.org/0000-0003-3529-2640
https://orcid.org/0000-0003-3529-2640
https://orcid.org/0000-0003-3529-2640
https://orcid.org/0000-0003-3529-2640
mailto:
mailto:
mailto:
mailto:

KHOSHKHOLGH ET AL.: COVERAGE PERFORMANCE IN MIMO-ZFBF DENSE HETNETS WITH MULTIPLEXING AND LOS/NLOS PATH-LOSS...

Line of Sight, and non-LOS links. Such models will hence-
forth be referred to as LOS/NLOS models. Adopting a 3GPP
LOS/NLOS path-loss model [16], scale invariancy is shown
to be not preserved in ultra-dense cellular networks [17],
[18]. This is due to the fact that closer BSs show higher ten-
dency to exhibit the LOS effect—with a smaller path-loss
exponent—while farther BSs are most likely to demonstrate
NLOS path-loss attenuation. Therefore, the inter-cell inter-
ference (ICI) eventually dominates the received signal
power.

Hence, the analytical results obtained based on the SPLM
are only reliable in cases where the network is, at most,
moderately densified. In such a case, signals from most of
the BSs, both serving and interfering, close to the user
equipment (UE) are propagating through a NLOS link.
However, this might not be a valid assumption for heavily
densified HetNets [19], [20], where it is most likely for a UE
to have LOS signals, both from the interferers and the serv-
ing BS. Therefore, there is an urgent need to re-visit the per-
formance evaluation of HetNets while considering the
LOS/NLOS path-loss model.

Several models have been proposed to characterize
the path-loss attenuation in dense HetNets. A multi-ball
path-loss model was proposed, and then the spectral effi-
ciency and coverage performance of a single-tier cellular
network was investigated in [21]. The analysis was
then validated using empirical data collected in various
cities [21].

The effect of NLOS link propagation on the outage prob-
ability was also studied in [22], where the authors con-
structed a new analytical path-loss model, formulating the
probability of realizing the LOS propagation with distance,
average size and density of the buildings per area. The Bool-
ean blockage model [22] was further utilized in [23] to incor-
porate the effect of the size and density of buildings as well
as the wall penetration on the performance evaluation of a
two-tier HetNet. Their work distinguishes between indoor
small cell BSs and outdoor Macro BSs, and also takes into
account the signal propagation characteristics of LOS,
NLOS, and blocked modes.

Similarly, the area spectral efficiency is closely related to
the path-loss model. The authors of [24] studied the funda-
mental limits of ultra-dense networks according to fading
distribution, shadowing, and multi-slope path-loss attenua-
tion. Adopting the tools of stochastic geometry along with
the extreme value theory, the authors of [24] obtained scal-
ing laws governing the downlink SINR, coverage probabil-
ity, and spectral efficiency. It is also shown in [25] that the
spectral efficiency may be reduced substantially by densifi-
cation if the LOS path-loss exponent becomes very small.
The same behavior was reported for the uplink in an ultra-
dense single-tier cellular network with multi-slope path-
loss attenuation [26].

The main focus in the above-mentioned studies, e.g., [13],
[14], [15], however, is on single-tier networks with SISO-
based air interface. Despite its relevance and importance, to
the best of our knowledge, the coverage performance of
MIMO multiplexing in a multi-tier HetNet with LOS/
NLOS path-loss attenuation has not been fully investigated.
An instance for practical applications of such systems is in
sub-6 GHz spectrum [2], [16].
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The importance of an accurate path-loss model is also
witnessed in the emerging literature. For instance, the
authors of [27] demonstrated the feasibility of MIMO com-
munications in wireless energy harvesting applications, and
highlighted further the crucial role of LOS component in
enhancing the rate of harvesting energy and decoding prob-
ability. Moreover, [28] studied the coverage probability and
spectral efficiency of multi-tier mmWave communications
for both noise- and interference-limited scenarios, in the
presence of practical beamforming alignment error, LOS/
NLOS and blockage model. The results were then extended
in [29] to investigate the potential of cellular systems for
simultaneous information and wireless power transfer. The
antenna’s directionality was shown instrumental to (par-
tially) cancel out the severe effect of LOS interference as a
result of network densification. Understanding the impact
of LOS/NLOS on the coverage and ASE of MIMO multi-
plexing systems, however, has not yet been considered.

We consider a link-level coverage performance analysis
in which successful reception of all data steams is consid-
ered as a successful transmission. This is different from the
conventional approach, stream-level analysis, which defines
a successful transmission as the successful reception of a
single data stream. In fact, our previous results [30], [31],
[32], [33] indicate that the coverage performance of MIMO
multiplexing HetNets with SPLM is best represented by
their link-level analysis. Thus, part of this paper could be
considered as an extension of our previous results to sys-
tems with LOS/NLOS path-loss attenuation.

The coverage probability as a function of different system
parameters is often incorporated in adaptive HetNet
resource allocations, as well as system design problems
[34], [35], [36]. Therefore, a quick and accurate estimation of
the coverage probability is important to the optimization of
the system operating parameters on-the-go. Adopting the
LOS/NLOS propagation model makes it challenging to ana-
lyze coverage performance in such systems. In this paper,
we derive closed-form analytical results and then propose
quick and accurate approximations.

We leverage stochastic geometry to obtain a closed-form
expression for the coverage probability. Calculating the cover-
age probability based on derived closed-form, however,
requires substantial numerical calculations. The complexity
of the problem has its root in the intrinsic correlation in the
inter-cell interference across streams. This is due to the packed
geometry of MIMO dense networks in which the interferers to
each data stream are not independent. To address this issue,
we analytically investigate the cross-stream ICI correlation in
a MIMO HetNet setting with multiplexing. Our analysis indi-
cates a very high correlation in ICI across stream. This justifies
the construction of ‘full-correlation” (FC) approximation,
where the ICI across all streams on a given communication
link is considered fully correlated.

The FC assumption is then used in our proposed Alzer
Approximation (A-A) of the coverage probability. We fur-
ther propose a new approximation based on a novel way of
modeling the inverse ICI using a fitted Gamma distribution,
i.e., Gamma Approximation (G-A). We then obtain the
parameters of the fitted Gamma distribution as functions of
main system and path-loss parameters. This approximation
is presented for the first time.
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Both A-A and G-A need significantly lower numerical
computations than that of the originally obtained closed-
form. Our extensive simulation and numerical results indi-
cate that the G-A outperforms the A-A in terms of accuracy
while its corresponding computational complexity is
slightly higher. Our simulation results also reveal that G-A
demonstrates a higher level of robustness to a wide range of
system parameters, including density of BSs, multiplexing
gains, and LOS path-loss exponent. As its practical impor-
tance, the proposed G-A, unlike A-A, pinpoints the optimal
density for which the best coverage performance is
achieved. Our results suggest that G-A is a much better
choice than that of the A-A for MIMO communications
(including mmWave communications), and also single-
antenna system under Nakagami fading.

We further utilize the results in this paper to approxi-
mate the coverage performance of diversity-only MIMO
system in HetNet systems with homogeneous/nonhomoge-
neous SPLM. Our results show that compared to multiplex-
ing systems, diversity-only systems provide a higher
coverage performance without degrading ASE. Interest-
ingly, in a 2-tier HetNet, when densification in Tier 2
improves the coverage probability, it can counterproduc-
tively acts in an environment with LOS/NLOS path-loss
attenuation.

Our numerical studies further provide quantitative
insights into the impacts of densification, multiplexing, and
the propagation environment on the coverage probability and
ASE. Our results also show that by careful selection of BS den-
sity in each tier, one can exploit the existence of the LOS prop-
agation to improve ASE. In such a setting, the ASE gain is
higher for cases with smaller LOS path-loss exponents.

Note that the focus of the earlier conference version [1] of
this paper was on a single-tier network, where only a spe-
cific LOS/NLOS model was considered. Here the results in
[1] are extended to a K-tier HetNet with the generic LOS/
NLOS, where we also develop A-A and G-A. Furthermore,
this paper incorporates the cross-stream ICI correlation,
which was absent in [1].

The rest of this paper is organized as follows. Section 2
reviews the literature of performance evaluation of MIMO
communications under the stochastic geometry. Section 3
presents the system model which is followed by the defini-
tion of the the coverage probability in multiplexing systems
in Section 4. Section 5 considers ICI correlation, introduces
FC assumption, and develops the A-A and G-A methods.
Section 6 utilizes our analytical results to evaluate the cover-
age performance in MIMO diversity only systems, ZFBF
with nonhomogenous and homogenous SPLM, and systems
with available CSI at the transmitter (CSIT). Numerical and
simulation results are then presented in Section 7, followed
by conclusions in Section 8.

2 RELATED WORK

The main focus of this paper is on the MIMO multiplexing
systems where stochastic geometry tools are used in our
analysis. Using SPLM assumption, the authors of [37] inves-
tigate the coverage probability of several prominent MIMO
techniques in ad hoc networks. Furthermore, in [38] the
impact of inaccurate channel state information on the
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coverage probability is investigated in a clustered MIMO ad
hoc network. It is shown in [38] that in interference-limited
scenarios using single-user MIMO communications can
improve the coverage performance. Coverage performance
and ASE of multiple-user spatial-division multiple access
(SDMA) in multiple-input single-output (MISO) HetNets is
also investigated in [7], [39] and [40] for cases where cell
association (CA) is based on range expansion, i.e., UEs are
associated with BSs with the smallest path-loss scaled by a
range extension parameter. A novel technique was devel-
oped in [41] that can be used for the evaluation of function-
als of Poisson point processes and the SIR distribution of
wireless systems under Nakagami fading. Further, a
moment-generating method for approximating the SIR dis-
tribution of SISO systems under Nakagami fading was
developed in [42]. The authors of [43] and [44] focused on
maximum ratio combining (MRC) and optimal combining
in downlink and uplink of cellular networks, respectively.
The Gil-Pelaez inversion theorem [45] is found instrumental
in analyzing the symbol error probability (SEP) of MIMO
multiplexing systems [46].

An equivalent-in-distribution (EiD) technique was sug-
gested in [47] to understand the SEP of MIMO communica-
tions. A unified method for studying the SEP in MIMO
communications was proposed in [48] by adopting the EiD
method. Moreover, the impact of interference-driven corre-
lation on receiver arrays in ad-hoc network as well as the
downlink of a single-tier cellular network was investigated
in [49] and [50]. The authors of [51], [52], [53] demonstrated
the importance of theoretical results developed in [7], [40],
[42] for the optimization of MIMO ellular systems. For
instance, in [52], the coverage probability, spectral effi-
ciency, and load balancing in MIMO systems were consid-
ered. Further, [51] optimized ASE and energy-efficiency in
uplink/downlink multi-user MIMO system. For managing
inter-cell interference, [54] investigated the coupled opti-
mized offloading and coordinated MIMO communications.
Energy-efficiency of MIMO downlink was also the subject
of [55] the authors which attempted to highlight the signifi-
cance of beamforming schemes.

Although significant in their own rights, all of the above
efforts rely on the restricted path-loss model of SPLM and
often consider single-stream MIMO communication. For a
more practical path-loss model, researchers often adopted
Alzer’s Theorem to derive the coverage probability of a SISO
system under Nakagami fading and single-stream multi-user
MIMO systems [17], [23], [56], [57]. The coverage probability
of a heterogenous device-to-device mmWave systems was
studied in [58], confirming the utility and accuracy of the
Alzer method. The authors further introduced a mixed
inverse-gamma log-normal distribution to approximate the
interference distribution under LOS/NLOS path-loss model.

In this paper we extend the Alzer method to the case of
MIMO multiplexing systems to investigate its accuracy and
use as a benchmark for comparison with G-A approxima-
tion. For MIMO-ZFBF and under LOS/NLOS path-loss
model in [59], [60], the transmission delay of a single-tier
wireless ad hoc network was investigated. The importance
of LOS/NLOS path-loss model for achievable optimization
of the network was highlighted. Further, importance of
spatially-coded MIMO configuration, packet retransmission,
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Fig. 1. A schematic of the system model for K = 1. A BS located closer
to the origin has a higher chance of LOS propagation. Because of the
NLOS path-loss, the signals received from farther BSs are substantially
weaker. Nevertheless, the typical UE can still be associated with a BS in
NLOS mode due to, for example, fast fading fluctuations.

Interfering BS
LOS link

and advanced hybrid repeat request protocols were demon-
strated. However, their analyses are applicable only to sin-
gle-tier ad hoc networks, and may not be extensible to the
multi-tier cellular systems under max-SIR CA rule.

3 SysTEM MODEL

We investigate the downlink communication in a multi-tier
cellular network. The network is comprised of K > 1 tiers
of randomly located base stations, where the BSs of tier 4,
i e K={1,..., K}, are spatially distributed according to a
homogenous Poisson point process (PPP), ®;, with spatial
density, \; (the number of BSs per unit area), A; > 0. PPPs,
®;, ®;, Vi, j € K,i # j are mutually independent. A HetNet
consists of &;, i € IC, i.e., {®;},, is referred to as P.

UEs are randomly positioned across the network and
form a PPP, @y, independent of ®, with given density, \y.
According to Slivnayak’s Theorem [61], [62] and due to the
stationarity of the point processes, the spatial performance
of the network can be obtained from the perspective of a
typical UE positioned at the origin. We also assume that
UEs are equipped with N antennas.

Tier i is fully characterized by the corresponding spatial
density of BSs, \;, their transmission power, P;, the mini-
mum required received SIR for the UEs in Tier ¢, ; > 1, the
number of the transmit antennas at the BSs, N}, and the
number of scheduled streams S; < min{N/,N"} also
referred to as multiplexing gain [30], [63], [64]. Fig. 1 shows a
schematic model of the network for K = 1.

3.1 Generic LOS/NLOS Path-Loss Model

A block fading wireless channel is considered, where at the
beginning of each time slot, an independent realization of
the fading is generated and stays fixed throughout that time
slot. The typical UE is associated with BS z;, transmitting S;
data streams. The received signal, Y, € V™1 s

Y. = VEL(wil) Heyso + > >

jex 1']€(D‘7'\J;i

LI(”‘TIH)HLJ‘S‘M

1)
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where Vz;,i € K, s; = [s51-.- ij‘si}T e Co%ix1, Syt ~ CN
(0, P;/S;) is the transmitted signal corresponding to stream
l; in Tier i, H,, € CN"™% s the fading channel matrix
between BS z; and the typical UE, with entries indepen-
dently drawn from CA/(0,1). Transmitted signals across dif-
ferent BSs are also assumed to be mutually independent,
and also independent of the channel matrices. In (1),
L;(]|xi]|) is a generic distance-dependent path-loss function,
where ||z;|| is the euclidean distance between BS z; and the
origin, which is random.

As shown in Fig. 1, a BS experiences LOS or NLOS prop-
agation, depending on its relative distance to the UE, den-
sity of buildings, type of the clutter, etc. To model LOS/
NLOS pathloss, we adopt the path-loss model recom-
mended in the 3rd Generation Partnership Project (3GPP)
[16], [17], [18], where the path-loss attenuation in Tier i is

B L (JJ: )
Li([lz:ll) = {L;H%H)

with probability of pi (||z]|),
with probability of p&(||z:]])-
(2)

For n; € {L, N}, function L;,(||:vl||) can adopt any feasible
path-loss function, e.g., L;, (|i||) = ¢>f,” i | %, L (lzll) =
@), (L+ [laall) ™, or L, (|lai])) = ¢, max{L, || "}, where
op, (ef) is the path-loss exponent associated with the LOS
(NLOS) link, ¢! (¢%) is a constant, characterizing the LOS
(NLOS) wireless propagation environment, and is related to
various factors, e.g., the height of transceivers, antenna’s
beam-width, weather, etc.

In (2), for a BS located at position x; the probability in
LOS mode is p;, (||z:[|]), where >, i/ vy oy, (llzi]]) = 1. For
instance, ITU-R UMi model is [16], [17]

i

, | D - 1
pr(lzi) = mm{HCC?H , 1}(1 —e M)4+e M1, 3)

where, parameters D'f), and Di characteriize the near-field
(LOS), and far-field (NLOS) critical distances, respectively.
Therefore, if ||z;]| < Di, BS xz; is in LOS mode. For
|lzi|| > Dj, the probability of LOS mode declines exponen-
tially with the distance, and for ||z;|| > Di, it decreases
quickly to 0.

A similar approach was also adopted in [22], [23], [57] to
characterize pi (||z;]|). Note that the model in (3) and similar
approaches in [21], [22], [57] all have a certain level of adjust-
ability to the communication environment (urban, dense
urban, or suburban) or the clutter city (flat, scattered, hill-
sided, etc.). The critical parameters of these mathematical
models, such as D and D; in (3), are often obtained using
experimental measurements complemented by data analysis
techniques, see, e.g., [57]. Therefore, some of the hidden
aspects of channel modeling, such as the correlation in LOS
mode—caused by large obstacles/buildings in an area which
similarly affect the transmitted signals of adjacent BSs—are
eventually represented in the path-loss model. (It is straight-
forward to confirm that the SPLM abides by (2).)

For the simulation and numerical studies we consider the

path-loss attenuation function, lei (l:]) = %f (1 +||; ||)_°‘l"z',
along with the LOS probability, (3), unless otherwise stated.
Although our main focus is on the generic path-loss model,
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(2), with an arbitrary LOS probability, it is straightforward
to extend our analysis to other models, such as multi-slope
path-loss [15], and multi-ball path-loss [21].

3.2 SIR of Data Streams

In the analysis we assume the availability of perfect channel
state information at the receiver (CSIR), while CSI at the
transmitter (CSIT) is not available. Each BS z; turns on S;
transmit antennas and equally divides its transmit power,
P;, among them. This transmission scheme is often referred
to as open-loop pre-coding, see, e.g., [63], [64]. At the
receiver, the system employs zero-forcing beamforming
(ZFBF) [30], [63]. To decode the [;th stream, in ZFBF, a typi-
cal UE uses the available CSIR, H,,, to mitigate the inter-
stream interference. The typical UE also obtains matrix
(H' H m,./)le 1, where () is the conjugate transpose opera-
tor, and then fnultiplies the conjugate of the /;th column by
the received signal in (1). In an interference-limited regime,
i.e., ignoring noise, the post-processing SINR associated
with the [;th stream is

Pv
SIR,,; = *7 1)
where
A P
=y > SLillsiDGE, (5)

jex J.]E(b]\.zl J

is the inter-cell interference stream [; experienced.

As shown in [63], [64], the intended channel power gains
associated with the /;th data stream, H¥; , and the ICI caused
by x; # z; on data stream ;, Gfﬁli, are chi-squared random
variables with 2(N" — S; + 1), and 25, degrees of freedom
(DoB), respectively. For each [;, H!; and G77 are indepen-
dent random variables. For for I # l;, HZ, (G%Eli) and HZ',
(Gfi,) are independent and identically distributed (i.i.d.). In
(4), for a given communication link, SIREEW are identical, but
not independent across streams, see Section 5.1.

4 COVERAGE PROBABILITY IN MULTI-STREAM
MIMO HETNETS

The coverage probability is defined as the probability that the
SIR stays above a given SIR threshold. The coverage proba-
bility in a cellular network is often related to the comple-
mentary cumulative distribution function (CCDF) of the
received SIR [9], [10], [62]. The same definition is also used
in SISO and single-stream MIMO communication systems,
e.g., diversity systems and space division multiple access
[6], [7]. In multiple stream MIMO, we consider the coverage
probability as the probability that all of a typical UE’s
streams are successfully decoded at the receiver. Such a
notion of coverage probability is also referred to as all-cover-
age probability in isolated scenarios, e.g., [30], [31], [32], [33],
[65], [66].

4.1 Cell Association

To evaluate the coverage probability, we first need to char-
acterize the mechanism used to associate UEs with BSs.
This mechanism is often referred to as cell association.
Depending on the communication scenario, application
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context and signaling structure, two main approaches have
been proposed in the literature, including max-SIR [1], [4],
[6], [32], [33], [34], [67], [68], and range expansion (a.k.a.
closest-BS) [5], [7], [9].

In the closest-BS (max-CIR) CA, the BS located closest
(thus providing the maximum CSI) to the user is considered
as the serving BS. Our previous work [14], [34] showed that
the coverage performance is substantially improved by
adopting max-SIR CA. SIR-based CA is also integrated into
various resource-allocation mechanisms by incorporating
the physical-layer specifications, transmission policies, and
scheduling and coordination across tiers, see, e.g., [36], [69],
[70], [71], [72].

4.2 Coverage Probability

In a system with max-SIR, a BS is selected as the serving BS
for a typical UE, if all SIRs across the streams are larger than
the SIR threshold, g;. Therefore, for a typical UE the cover-
age probability of ZFBF is

FE — PLATT £ ), ©
where
A% {Eli € K:max min SIRZ, > /3,:}~ @
z,€®; 1;=1,...,5; e

The NLOS signals are expected to be, on average, weaker
than that of LOS. In some cases however, the fading fluctua-
tion and the impact of array processing may cause the CA
to select a NLOS BSs.

Evaluating ¢“t, for LOS/NLQOS, is challenging due to the
following issues. First, for each data stream, the fading fluc-
tuation in the intended signal is chi-squared, which often
results in a less tractable analysis than that of Rayleigh fad-
ing. Second, the unconventional LOS/NLOS path-loss
model exacerbates the complexity of analysis. Third, the ICI
correlation across data streams in a communication link fur-
ther interrelates the stream and link coverage probabilities.
The cross-stream ICI correlation is created by the existence
of the same interferers across data streams, see Section 5.1.

Therefore, conditioned on Gfﬁh, Vl;, the interference orig-
inated from BS z;, depends on L;(||z;||), which is a random
variable (r.v.) independent of data stream /;. In [30], [33], we
have already developed analytical tools that enable us to
deal with the first and the third issues above in cases with
SPLM. In what follows, we use this to obtain the coverage
probability in cases with the LOS/NLOS path-loss model,
addressing the above three issues.

Proposition 1. The coverage probability of a multi-stream
MIMO-ZFBF cellular network with LOS/NLOS path-loss, (2),
is

N'—S; N'—S; (_1)m1+~-~+m3,, e
ik mi=0  mg,=0 .M Jo

gmLL L 9ms (Z?LG{L,N} pzl (TZ)@; (7b)>
8t11m1 o Btlsl s,

t, =19
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where for each n € {L,N},

W, (r;) —exp< 2712)‘/ yi(l— ‘I’fl(rhyj))dyj>’

Th y]

-S;
,BLS PL,L (y})t
SJRLH( l) i .

= > ) ﬁ(

n’e{L,N} ;=1

Proof. See Appendix A, which can be found on the Com-
puter Society Digital Library at http://doi.ieeecomputer
society.org/10.1109/TMC.2019.2922614. O

The coverage probability in Proposition 1 is a function of
tiers” BS densities, their SIR thresholds, transmission powers,
and multiplexing gains. The impact of of LOS, and NLOS
path-loss for the intended link are captured by functions
W&(ri), and Wy x(ri), respectively. Furthermore, \I" (r;) and
W;I (r;), are functions of the LOS/NLOS modes of the interfer-
ing links, respectively, through W (r;,y;), and Wi (r;, y;)-

As a key performance parameter, the coverage probabil-
ity is often required to be calculated many times in various
resource-allocation schemes to find the best combination of
the network operational parameters. Calculating the cover-
age probability in Proposition 1 is, however, challenging
due to the requirement of extensive numerical calculations.
Thus, we propose several approximations of the coverage
probability with acceptable accuracy and reasonable
computational complexity.

5 COVERAGE PROBABILITY APPROXIMATION

The link-level coverage probability, as defined in Section 3,
is directly related to the SIR of every single stream in that
link. The SIR values for streams are, however, strongly cor-
related due to cross-stream ICI correlation. Therefore, to
evaluate the coverage probability, we first need to quantify
the cross-stream ICI correlation.

5.1 Cross-Stream ICI Correlation
We use Pearson correlation coefficients to characterize the
ICI correlation between streams I; # [

E[1% 1% — B[IHE[I%
Pyl = [ } ] [/ ] , ®
’ Var(I)Var(I")

where Var(z) is the variance of random variable xz. We fur-
ther note that the ICI is an identical shot-noise process
across streams, so p;,  is'

E[I'T%] — (E[I"])”

Var(Ih) @

Pli,lg =

1. Interference correlation is studied in [50], [62], [73], focusing on
quantifying the impact of interference correlation on the time and
receive-array diversities. Here, we are interested in quantifying the
impact of multiplexing gains and NLOS/NLOS path-loss model on the
interference correlation. We also use this analysis to corroborate the
validity of the full-correlation assumption for approximating the cover-
age probability.

2049

Proposition 2. For a MIMO-ZFBF multiplexing system with
the generic LOS/NLOS pathloss,
Z]EICP )\ ZTLJG{LN} ﬁ] T]Mz,(rj)(L (Tj)) drj
5,05, :
S e PPEEEIEN S ey Sy iy (1) (A (7))

(10)

P =

Proof. See Appendix B, available in the online supplemen-
tal material. O

For a single tier network, K = 1, Proposition 2 results in
the following corollary.

Corollary 1. For a single tier MIMO-ZFBF,

Pt =SS 1) -1
which only depends on the multiplexing gain.
Proposition 3. In a MIMO-ZFBF multiplexing system,
0.5 < L <1
. 1—|—max,5Z pll 1—§—mln,5 1=

52 52
Proof. See Appendix C, available in the online supplemen-
tal material. O

Proposition 3 shows that in the MIMO multiplexing sys-
tem, py,  is larger than 0.5, so ICI is highly correlated across
data streams. In Fig. 2a, we illustrate p; 1 versus S for a
simulated system. ICIs across data streams are shown to be
significantly correlated. Fig. 2a also confirms the validity of
the bound in Proposition 3.

Also, Fig. 2a shows that for 51 > 2 (51 < 2), p;, v is an
increasing (decreasing) function of S, and its maximum
(minimum) occurs at S; =2. Setting the derivative of
Eq.(10) to zero, one can analytically obtain S; = 2

pu, 11 -
a8

> e A S1(51—2)
(Z A A () +1) )2 Sy
jek g

In Fig. 2b, we present Puy i, versus ol P 1, in Fig. 2b is

=0. (13)

shown to vary within the bounds given in Proposition 3.
Fig. 2b shows p; ; to be also hlghly correlated across
streams, and an 1ncreasmg function of &7 . This is also stated
in the following corollary.

Corollary 2. Increasing of results in a higher p;, r for any com-
bination of multiplexing gains for which

3 a4, S“) S

jex ] jex

SQ+1

(14)
Proof. See Appendix D, available in the online supplemen-
tal material. O

The system considered for the simulation in Fig. 2b is a
two-tier system, K = 2. For this system (14) is reduced to
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Fig. 2. Cross-stream ICI correlation coefficient versus S, o7, the simulation results and bounds, in a system with K =2, o} = 3.75, o = 4.75,
P =25W,P,=1W, Nl =16, N, =8, N" =8, D} = 36, D2 = 9, D! = 48, D? = 18 meter, and ¢} = ¢ = L.
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2 > 2 J
Sy S5
which holds if S; > S, > 2% That is, for any S; > Sy > 2,
3 U
!

L

5.2 Full Correlation Assumption

Our analysis in Section 5.1 indicates that the ICI is highly cor-
related across the streams, justifying the construction of “full-
correlation” approximation, where the ICI across all streams
in a given communication link is considered fully correlated,
i.e., p, y = 1. Such an assumption has also been used for ana-
lyzing other aspects of MIMO systems in [32], [33], [43].

Assuming FC, ICI for the typical UE associated with BS
Z; is

P;
=3 3 LLilnieE,

(15)

JEK 2;€®;\x; J
where for [; = 1,2,...,5; we simply replace the interfering
channel power gain, G7", , with GZ" (both chi-squared r.v.s

with 25, DoFs). For data stream [;, the post-processing SIR
is then approximated as
&Li(HfL'iH)Hffzi

ZF-FC _ Si 16
SIRl'iJz‘ - JFC (16)

Therefore, for the max-SIR CA under the FC assumption,
the max-SIR CA rule 7 is rewritten as

P
2L (||| HZE
ZF-FC _ {Hi € K : max 2o o g 4

z;ed; IFC
an

JZ A ming ;g HJZ‘;‘M' This implies that the probability

2;,min

of coverage for the typical UE is ¢?" ¢ = pr{ A% ¢ £ ¢}
Similarly to Appendix A, available in the online supplemen-
tal material, we then use Lemma 1 in [4] to derive the cover-
age probability as

x(x+1)-1

2. This is because g(z) = == 37— is an increasing function of x for for

Tz > 2.

L L (|| | HEE
AFTC —p max R dl ;-‘Q L = Bi
U 1€K.r,;€(b,,j I

b ZF
5 Lilllail ) H
S; 7 x; ,min

e xed;

o0 LLi(r)HPF
_ 227(}\1/ ’I“?j[P{Si (Ilzc r;,min 2 @}dn (18)
0

ek
> ZF

= Z 27\ / TiELz(Ti)~‘1’~{L](HTjH)}\m .‘;’P{Hri,min

iek 0 !

/3" IFC

Evaluating the coverage probability based on (18) is
shown to be a complicated task. To address this difficulty,
we propose two approximations for (18) which enable the

numerical evaluation of the coverage probability as a func-
tion of the main system parameters.

>

@, Li(r) AL (25 e

5.2.1 Alzer Approximation

Alzer’s inequality [56], [57] (see Appendix C Lemma 1,
available in the online supplemental material) has been
used to evaluate the coverage probability under Nakagami-
type fading and multi-user MIMO systems using stochastic
geometry. Here, for the first time we extend Alzer’s inequal-
ity to approximate the coverage probability of a multi-
stream multi-tier MIMO-ZFBF system. We refer to this
method as A-A, where Alzer’s lemma is utilized to approxi-
mate the effective power gain of the attending channel for
each data stream as an exponential random variable. This is
presented in the following Proposition.

Proposition 4. In a multi-stream MIMO-ZFBF cellular
system with LOS/NLOS pathloss model, and S, = ((N"—
1

S; + 1)) =SitD), the coverage probability is approximated as

5, (NT=Si+1)l,
AA = ZQ?T)\i (1 + Z Z (—1)5*
e l;.:] 12/:0
N =S+ 1)\ (S; o
(VTG = mp;Li(ﬁ)‘I’ni(Ti)dn),
i i/ n;eL,N 0
(19)
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where \Tf;l (r;) = exp(—27r PFRY fgo y;(1 — ‘/I\’;/ (ri, yj))dyj)

P, (y5)
>

nje{LN}( _,'_S/l//%n,(f%))s

W, (riy;) =

Proof. See Appendix E, available in the online supplemen-
tal material. 0

The numerical complexity of obtaining ¢*~* in Proposi-
tion 4 is significantly lower than that of Proposition 1 as
there are no concatenated higher-order differentiations. The
impact of LOS/NLOS model parameters on the intended
and interfering links can be seen in i L)/ Wi N(ri), and
v L (ris y) /Wy (ri, y))-

5.2.2 Gamma Approximation

The coverage probability, c2¥~F¢ is

oo
AT N oy, 3 / riph, (ry)
ek 'neL,N‘O
HE'Fmin
XEIFCP{ ]LC > ‘L/?( )‘q) IFC}dr7

(20)

Instead of the intended fading gain, one may approximate
the statistical characteristics of I¥C. Note, however, that in
the max-SIR CA, in some cases the interferers are even
closer to the typical UE than the serving BS. This can hap-
pen, for instance, in LOS mode with a very small LOS path-
loss exponent For LOS path-loss functions, where
Li () o< 27°L, the mean and variance of I"“ could be very
high. Instead, we model .

The CDF of 7 is plotted in Fig. 3 for the simulated sys-
tem with the parameters given in the caption. Fig. 3a shows
that for different values of the LOS path-loss exponent, the
CDF closely follows the Gamma distribution. Fig. 3b further
shows that the approximation based on Gamma distribu-
tion remains valid for various multiplexing gains. This has
also been confirmed for a variety of other system parame-
ters which are not reported here due to space limitation.

Based on the above, we approximate the CDF of - by a
Gamma distribution, IF% o Gamma(a, b), where, adopting a
moment-matching technique, parameters ¢ and b are
obtained as

B
a= : TRV (21)
(E (IFC)2 - (EW) )
E-L.
b= (22)
(E s — (B 7))

For a Garnma(a, b) random variable with pdf fx(z) =
Pogiletr, X =¢ and Var(X) . To obtain a and b, we

T'(a)
need to calculate E IF( and E The former is given by

]F(,>2

1 00 ) 00
Ee= E/ e dy = / Y(v)dv
e 0 0

(23)
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1 1

P smnmn
e 4;’.,;5
08 038 e
- e
P o !,5
06 2 06 -
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3 — Gamma fit o®=1.5 S |4 | Gamma fit S =4
0.4 - = =sim. ui=2.09 04 - --sim. =1
/ — Gamma fit o®-2.09 o Gamma fit S,=1
A
0.2+ == =sim. uf:4 02
— Gamma fit =4
0
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(a) (b

FIgSCDFOf r(,(a) )\1_104A2_107 S1=2,5 =2, (XL7209
ak =3.75, o} = 4.75, P1—5()W P, =10 W, Nt =16, N} =8, N" =38,
and ¢i = ¢ =1; (b) Ay = 1074, Xy = 1073 52_2 aL—209 ok = 3.75,
o =15, ok =475, P, =50 W, B, =10 W, N} =16, N} =8, N" =38,
and ¢; = ¢k = 1.

where W(v) is the Laplace transform of IF¢

P;
B(v) = Be " 2ok om0

b 7F
B gLl ) G
=[IBe; I Eowsgpe ™

e 10 i, s 1)

y 5;
jek @€ \a; nje{LN} (1 + U%L%j(l\mjn)) j

—exp< 2712/\ / y;(1 *‘I’ZF(U y]))dy]>

(24)

where

_ P (y;
Wor(v,y,) = ;) (25)

>

5j
nJELN<1 +S L?LJ( ))

Note that in Wzp(v,y;, ;) the first (second) term is associ-
ated with the LOS (NLOS) mode of the BS located at y;. Sim-
ilarly, the second moment of [FLC is

/ / 7(@1+v2 dvldvg
:/ / \T’(vl + vg)dvrdvg :/ U\T’(v)dv
o Jo 0

Using the above, in the following we approximate the cov-
erage probability using Gamma distribution, which will
henceforth be called G-A.

IF(‘

(26)

Proposition 5. We define

Dot
ik

_]< ) 25 NV )
k0+k2+.“+k:\rr 91*‘5]‘, k() k e 7k Si

and §,;(k) £} -Si+1+ Zg{s’ lk;. An approximation,
namely G-A, of the coverage probability in a multi-stream
MIMO-ZFBF cellular network with an LOS/NLOS attenua-
tion, (2),is
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27T\ S;
G-A _
¢ _;—(N

> X

nle{L N}

X )1 =Sih ﬁ
7pn T_S. 3 a7b .Z dridhy
/ / ' HN ar ELi (ro)h

(27)

where y(a, bx) is the CDF of random variable Gamma(a, b).

Proof. See Appendix F, available in the online supplemental
material. ]

Compared to Proposition 1, in Proposition 4 the numeri-
cal complexity of obtaining an approximation of the cover-
age probability is substantially reduced. Nevertheless, the
numerical complexity of obtaining c®~* is higher than that
of ¢* 4, because in G-A, a and b should also be obtained
as in (21) and (22), respectively. G-A further requires the
calculation of double integration which is not required in
A-A, see (46).

In G-A, a and b are tier-independent—once they are
obtained for a given setting (density of BSs, transmission
powers, multiplexing gains, and LOS/NLOS parameters),
they are valid regardless of the tier that the typical UE is
associated with. This substantially reduces the computa-
tional cost of evaluating (52).

The simulation results in Section 7 reveal that the extra
complexity of G-A brings a higher accuracy and robustness
over a wide range of system parameters. Compared to A-
A, G-A also captures the actual behavior of the coverage
probability against densification more precisely. Further, as
shown in Section 7, G-A enables accurate evaluation of
BSs’ density for which the maximum coverage perfor-
mance is achieved.

6 SPECIAL CASES

We use the results derived for open-loop ZFBF MIMO mul-
tiplexing system to evaluate the coverage performance in
MIMO diversity only, ZFBF with nonhomogeneous and
homogenous SPLM, and systems with available CSIT (full
CSIT and quantized CSIT). The main objective is to demon-
strate how one can derive the coverage probability of vari-
ous MIMO system settings using the analytical framework
developed in this paper. The analytical results here are sup-
ported further by the simulations and numerical results in
Section 7.

6.1 Diversity Only Systems
In this type of systems, S; = 1, Vi, i.e., single-stream MIMO

or single-input multiple-output (SIMO) systems.
A-A Method: Proposition 4 is reduced to

el l” 0

o0
3 / npili(n)‘l’ili(m)dm)
n;e{LN} /0

(SIMO-A-A 2277)‘ (1+S Z <l//>(_ i+

(28)
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where @’7‘% (r;) is defined as

P, (yj)

Wi (riy;) =

>

€ (w)) 5’
n;e{L.N N1 Ly, (3
JE{ ' } (]‘ ( r') N li’ PLz J( )J )

G-A Method: Using Proposition 5, G-A approximation
implies that

\ 27\
SIMO-G-A _ —
; (N" = 1) (a) me{%N}
oo N1 —h Bi .
X/O /O T1pn (rl)h, ((1 bPL‘ ( )h,)dhdh’
(29)
where
E )
o= 1( IF(.) —, (30)
(B iz — (E o))
E-L.
b:E : ]FCE1 - 31)
( ([FC)Z - T) )
and
1
EIF—C:/O exp(—?ﬂZA / Yj 1—\PD(U yj))dy]>d
(32)

1 00
EW:A UeXp( 2712)\/ Yj 1—\IfD( ,y‘,-))dy])dv,
(33)

where Wy (v, y;) is defined similarly to (25), where S; = 1.

6.2 ZFBF Multiplexing with Non-Homogeneous
SPLM
In non-homogeneous SPLM, o} = oy = «; and ¢, = ¢y, Vi.
A-A Method: 1t is straightforward to show that the
approximation of the coverage probability based on A-A is

S; (NT=Si+1)l! "

FONT =S+ D)

Y (S b Gl
iek = =0 i
AW (a; )r’iL

27-[27' ,],,ﬁ,SI )+—j

o (S R -
(fl)lﬁli(l/l)/ rie o B dr,
i/ Jo

where W(a;) = [;*w

(34)
— e ")dw.
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G-A Method: Using Proposition 5,
2\ S, —
G—A _ 1~
=) (N" — 5T (a) Zlk

ek
hS (k)-1 e~ Sil az
] i KT

L e
(35)

where parameters a and b are defined, respectively, in (30)
and (31). To derive these parameters, we should replace
q’ZF (1}, yj) in (25) with WZF—NOHhomogeneous (1), yj) = %571
along with (32) and (33). (1+85,)

6.3 ZFBF Multiplexing with Homogeneous Standard
Path-Loss Model
In Homogeneous SPLM, «; = « Vi.
A-A Method: One may start with (34) and apply a
straightforward integration, to show that the coverage prob-
ability is approximated as

'(P,;)2+5(
AA o Z S
Wia) 225\ P) 2 ()™
(NT=S5;+ 1)
- v (Si\ (N7 = Si + 1IN ora
U+ 112+
(e e () (Ve

This expression is similar to the upper-bound provided in
Proposition 1 in [30]

@ : &

P Nr—s; TG\
- ~/ o S
P (TE+S)\ ™
Ejelc Aj (S_;) (TSJ))

where C(«) = 7T'(1 — &). It is interesting to observe some
resemblance between (36) and ¢~
G-A Method: Proposition 5 yields

_ 27T)\7SL L)
7 = Zmzi,k

i€k
hS ~1o=Sih ( Bir )
b dr;dh,
TSNS, ok k 4 B,
A e G v
37

where parameters a and b are defined in (30) and (31),
respectively. To derive these parameters, we set Wzr (v, ;)
in (25) with q’ZF—Homogeneous(”v yj) = ! Sr along with

(32) and (33). (1+gy;a) ’
6.4 Known CSIT

In the above derivations, we simply assume that the CSIT is
not known to the BSs. However, there are practical scenarios
that CSIT is available to BSs. So, our analysis is shown to
cover such cases as well.

T
ZFS

- , (36)
Cla) iek

6.4.1 Single-Input Single-Output (SISO) Systems
For a SISO system, S; = N} =
yields

N" =1 and Proposition 1
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oo K
S0 =3 oy 3 / rip, (ri)exp(—2m > X

ik ne{L N} /0 J=1

/0 y; (1= W (ri,y5)) dy;)dry,
where
, -1
i .BinLj/(yj)
\If’n(riv y/) = Z p:z,/ (yl) (1 + i”
n’e{LN} HL7L(ri)

Note that for this scenario, both A-A and Proposition 1 yield
the same coverage performance.
G-A Method: Using Proposition 5,

SISO—G-A __ 27N
‘ 2T, 2

iek r n;e{L.N}

X / / r,;p;l (ri)e "y (a,b&Pf,wa (ri)h> dr;dh,
o Jo

(38)

where a, and b are defined in (30), and (31), respectively. To
derive these parameters, one should replace Ve (v,y;) in

(25) with Wgiso(v, ;) = 7,0 along with (32)

anEL,N - 4
and (33). (

1+PjLn,j (?/j))

6.4.2 Multiple-Input Single-Output (MISO) Systems

In a MISO system, N" =1, and S; = 1, Vi. We assume that
available CSIT at the BSs is utilized for eigen-beamforming,
i.e.,, maximum ratio transmission (MRT) [74]. In this system,
the SIR at the typical UE served by BS z; is

PLi(lli | H
2 ek szetbj/.r,; PiL,i(HfL'JH)GERT 7

SIR)M = (39)

where H MRT

and are chi-squared with 2N} DoFs, and
exponentlal random variables, respectively.

A-A Method: Using Proposition 4,

MRT
G\

N"
Cl\'IRT—A—A _ Z 27_[)\7 (1 + Z(_l)]' +1

i€l l;’:O

N o
< 1 ) Z / Tipni (Ti)\l,ni(ri)dri> 5
[ n;€L,N 0

(40)

where Wi (r;) = exp(—27 ;A [y (1 — Wi, (ri, 7)) dy;),
and,
. P, (i)
Wi (r,y5) = Z i 5
n; s ” —L i n;\Y ’
SN <1+(N )y XG >])
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G-A Method: Using Proposition 5,

. 2\

SIMO-G—-A __ i
¢ E e
( a 1)|F( )n i €{L,N}

R

where a and b are obtained by replacing @Zp(v, y;) in (25)

J (o
D njeLN p"'](f/j) , along with (32)
1+PjL{1j(yj))

(41)

with \T’smo(v, yj) =
and (33).

6.4.3 MISO-SDMA Systems

Another instance is when the BSs have access to CSIT in an
MISO-SDMA system. Here N" =1, and S; = 1, Vi. We fur-
ther assume that each cell of tier i serves U; < N/ UEs using
ZFBF at the transmitter, see, e.g., [6], [7] for more details.
Assuming a fixed transmit power, the SIR of the typical UE
associated with BS z; is

G Li([Jas | HEPMA

SDMA _ U;
SIR; ™ = l 5y GSDMA
e eyt Ll )

(42)

where 3P and G3PM* are both chi-squared random varia-
bles with 2(N t_ U, +1)and 2U; DoFs, respectively [6], [14].
A-A Method: Using Prop051t10n 4,

SDMA A-A ZQJT)‘ (1+§

i€k "=0

N s~ 7
( " ) Z / TiPp, (Ti)q,ni (’ri)dri>7
i n;€L,N 0

l+1

(43)
where \Ifii (TL) = exp 27‘[2 Aj fO yJ (Tuyj))dyj)
which,

N ), (y;)
; j
\I,ni (ri?yj) Z BiU; PLn (W) \U
WEEN) (14 Uy

G-A Method: Using Proposition 5, the G-A approximation is
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where parameters a and b are obtained by replacing
= . ST ()
Wzr(v,y;) in (25) with Wspnia (v, y5) = aneL,N%
along with (32) and (33). (1224, 0)
6.5 Imperfect CSIT

In practice, instead of a perfect CIST, often a delayed and/or
quantized version of channel directional information (CDI)

Bi
(a b m) d'f‘idh7
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is available at the BSs. Consider the MISO-SDMA system
discussed above, and assume UEs report CDI using B, feed-
back bits associated with tier i. Following the same line of
argument as in [75], [76], [77], we can obtain the received
channel power and interference statistics. Nevertheless,
based on imperfect CDI, zero-forcing beamforming is
unable to completely eliminate the inter-user interference.
Therefore, assuming quantization cell approximation
(QCA) [75], [77], [78], the SIR of the typical UE associated

SIRQSDI\'IA
P; DM
_ 7 Li(lla ) HZPY™ (1~ ¢;)
~p SDMA P ’
B LillaDGEM b+ X sk 2wy o Ly ([l ) GEPMA

(45)
__Bi

where ¢, = 2 "' and GYPMA is an exponentially distributed
random variable with unit mean and independent of H;"M*
and G5PMA [77], [78]. Note that the SIR expression in 45) isin
fact an approximation derived based on QCA. Therefore,
assuming exponential distribution for random variable,
GEPMA highly relies on QCA and may become inaccurate
if this assumption does not hold. Nevertheless, as our
simulations also suggest, the QCA assumption provides a
high level of accuracy, and therefore (45) is rather a close
approximation.

For a system with imperfect CDIR, we obtain the outage
probability using A-A and G-A methods.

A-A Method: Using Proposition 4,

NI
(QSDMA-A-A _ Z 2\ (1 + Z(_1)l§-r+1
ik 17=0
N iy, (r) W, (r;
() 5 )
) aixdo 1+ U] 7, Lo (ri)¢i
(46)
Where \/I\fili (Ti) = eXp 2772 )\ j;) y] (Tzvy}))dy/)
which,
P} (y5)
‘I’Zl( i Y)) = Z : Uiy (uj) \U;
vt g ni\dg j
(LN} (1 + Uz’l;’1 % U]Tn’(,)) !

G-A Method: Using Proposition 5, the G-A approximation
is

. ) 27\
QSDMA-G-A _N\~_ 47N
¢ 2 (N" — U,)T(a) 2

iek n; €{L,N}

Jie=h Bi
/ /'X‘szﬂ Tl hv - }}/ a.b 1-¢1)
L+ gL (r) 9, L L (r)h

)dr,dh,

47

where a and b are obtained by replacing Wz (v, y,) in (25)
ZTLJGL,N

—
<1+5L' (JJ)) !

with \T’SDMA('U, yj) =
and (33).

along with (32)
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Coverage Probability

Fig. 4. Coverage probability versus o2, where X\, = 1074, Xy = 1073,
Sy =2, al =2.09, ek = 3.75, and o} = 4.75.

Coverage Probability

Fig. 5. Coverage probability versus S;, where \; =104, )\, = 1073,
af =2.09, o = 3.75, ol = 1.5, and o = 4.75.

From the above analysis, one can see that an im-
perfect CSIT increases the SIR threshold from pg; to 1f/¢,
Imperfect CSIT also creates extra interference—inter-user
interference—but the level of this extra interference is

reduced by increasing B;.

7 SIMULATIONS AND NUMERICAL ANALYSIS

We first evaluate the accuracy of the proposed approxima-
tions of the coverage probability. We then study the effects
of various system parameters on the coverage probability
as well as area spectral efficiency to gain insight on the
effects of densification, multiplexing gains, and propagation
environment.

The simulation results are based on the Monte Carlo
simulation, where 40,000 snap-shots are independently sim-
ulated and averaged. In each snap-shot, we randomly create
BSs based on the given densities in a disk with radius of
10,000 units. The fading matrices are then randomly gener-
ated for each snap-shot based on a Rayleigh fading distribu-
tion. The LOS/NLOS path-loss for each BS is also specified
based on the probabilistic model in (3). System parameters
aresetas: L =25 W, B, =1W, N[ =16, N, =8, N" =38,
B, =5, B, =2.5, D} =36, D3 =9, D} = 48, D} = 18 meters,
and ¢! = ¢k = 1.

7.1 Accuracy of A-A and G-A

Fig. 4 shows the coverage probability versus o7 . The level of
accuracy achieved by ¢“~* is shown to be higher than that
of ¢*~A. The inaccuracy gap induced by ¢*~* is almost twice
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Fig. 6. Coverage probability versus \,, where S} =4, S, =2, oﬂL =2.09,
ak =3.75,0f = 1.5,and o} = 4.75.

as much of ¢“*.2 G-A is also shown to act as an upper-
bound on the actual coverage performance with an almost
fixed inaccuracy gap. A-A, however, results in a varying
inaccuracy gap depending on the value of «;.

Fig. 5 shows the coverage probability versus S; for
Sy = 2. For S; > 4, both ¢ and ¢“# are shown close to
the actual value. The larger the S5, the higher the accuracy
of *A. However, for S; < 4, the A-A becomes less accu-
rate and fails to follow the actual coverage probability.
In contrast, ¢ * preserves a reasonable accuracy for
all ranges of multiplexing gains, and is able to follow the
variations in the actual coverage probability. Furthermore,
G-A is shown to always act as an upper-bound on the
coverage probability, while A-A alternates between being
upper- and lower-bounded.

Fig. 6 shows the coverage probability versus \;, where
(81 =4, 5, =2). The density is measured as the number of
nodes per square meter. We consider two choices of sparse
(M1 =107°) and moderately dense (\; =2.5x 107%). For
M = 2.5 x 1073, both ¢*# and ¢¢ are shown very close to
the actual coverage probability. For A\; = 1075, while acting
as an upper-bound, ¢“~* closely follows the coverage prob-
ability and accurately predicts the best achieved coverage
probability. For A-A, like previous cases, c*~* alternates
between being upper- and lower-bounded, and is also
unable to predict the density for which the highest coverage
probability is achieved. The above results show that ¢~
provides a better approximation than that of ¢ 4.

7.2 Coverage Probability
7.2.1  Impact of &3

Fig. 4 shows that increasing o7 may increase/decrease the cov-
erage probability, depending on the value of multiplexing
gain, ;. For (S; = 1,55 = 2), increasing a2 improves the
coverage probability. In this case, the LOS signals in Tier 2 are

3. Fig. 4 shows that Alzer approximation is neither an upper-bound
nor a lower-bound on the coverage probability, while the Alzer method
basically provides an upper-bound when it is used for SISO systems
under Nakagami-type fading, MISO-SDMA, and SIMO communication
systems, and also in mmWave communication systems with directional
antennas [53], [56], [57]. By Proposition 4, the obtained coverage proba-
bility is in fact a summation over indices of multiplexing gains, where
depending on the multiplexing gains, some terms may adopt a negative
signs. Therefore, although the Alzer’s inequality provides an upper-
bound for each data stream, summing up the upper-bounds results in
an approximation based on the bounds provided by the Alzer method.
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weakened, while the ICI is increased. These make it difficult to
decode S, = 2 transmitted data streams. Thus, the serving BS
will most likely be selected from Tier 1. Similarly, for a large
enough o7, successful decoding of S; = 1 data stream is easier
than that of Sy = 2, and hence the serving BS is most likely
selected from Tier 1. In contrast, for (S} = 4, Sy = 2), increasing
o? degrades the coverage performance, because the serving BS
is most likely selected from Tier 2, as successful decoding of
Sy = 2 data streams is much more likely than that of S} = 4.

7.2.2 Impact of Multiplexing Gains

To study the impact of multiplexing gain, Fig. 5 presents the
coverage probability versus 5. Increasing 5; is shown to
decrease the coverage probability, because the larger the
multiplexing gain, the less probable the typical UE can
simultaneously decode all data streams. Furthermore,
increasing S also increases the power of ICI on each data
stream. In general, system diversity is shown to provide a
higher coverage than that of system multiplexing.

This finding can be substantiated by an analysis. We use
the following upper-bound (see Appendix G, available in the
online supplemental material) on the coverage probability

e (/ q’(v)dv) an )\iI;iLi (NS+ 1 1>’
0 i i

ek

(48)
where L; = [;* B, () [Li(ri)]dr;, and q’(v) is given in (24).

In (48), [,° q’(v)dv represents the effect of interference that
is a decreasing function of multiplexing gain S;.* Moreover,
% — 1 is also related to the effective DoF of each data
stream, which is a decreasing function of S;. Therefore, the
upper-bound (48) of the coverage probability declines by
increasing S;. The derived upper-bound is shown to pro-
vide insights on the impact of multiplexing gain of the cov-
erage performance. However, as it is not the tightest upper-
bound, the actual decline rate of the coverage probability
due to the increase of S; might be slightly different from
that suggested by (48). A more accurate upper-bound can
be obtained via Chebyshev’s inequality. However, it
requires the evaluation of second-order statistics of the
accumulated data rate across data streams.

7.2.3 Impact of Densification

To study the impact of densification, Fig. 6 plots the cover-
age probability versus \y. For \; = 107°, the highest cover-
age probability is achieved when )\, is around 107%. Fig. 6
also shows that for Ay < 1073, the coverage probability can
be improved by increasing the density of BSs in Tier 2.
In such cases, although excessive ICI is created due to densi-
fication, many of the Tier-2 BSs are close enough to the typi-
cal UE to have an LOS path-loss. Fig. 6 shows that the
excessive ICI is apparently dominated by the existence of

4. To see this, one needs to show that function \I'ZF(U, y;) defined in
(25) is a decreasing function of S;. Note that Wzr(v,y;) (1 +%
L-{,J (y,,))_sf. Therefore, the differentiation of the logarithm function in
the right-hand-side with respect to .S; (assuming that S; is continues) is

; v -,
always negative, i.e., Kd',l‘)g (1 + %L{IJ (yj)) ‘<o.
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many strong LOS Tier-2 BSs suitable for association. Fur-
thermore, association with a BS in Tier 2 might be preferred
to one in Tier las successful decoding of all S, =2 data
streams is more probable than that of S} = 4 data streams.

For A\, > 107?, increasing the density of Teir 2 might lead
to a significant decline of the coverage probability. This is
attributed to the growth of ICI, especially caused by many
LOS interferer BSs in Tier 2. In this case, even association
with a very close LOS BS cannot compensate the ICI growth.
In this case, Tier 1 remains less qualified for association due
to its high multiplexing gain. It is further shown in Fig. 6 that
the coverage probability is substantially degraded by increas-
ing A; to 2.5 x 1073. This is due to the increase of ICI as well
as Tier 1’s high multiplexing gain.

The bell-shaped curve observed in Fig. 6 can also be
explained as follows. In Appendix H, available in the online
supplemental material, we derive the following upper-
bound on the coverage probability:

. o]
AF-FC < ZQ;T)\i / TELi(r)eXp{ - 27‘(2 >\j/ EL; )
0 J 0

ek

P.S;Li(r)
O =220 ay bdr, (49)
'~’<Pjs7-Lj(y>ﬂi) y}
where
Q| =222 | =yF o | =222, (50)
J(PjSiny)ﬂi) i (Py»sinym

— e
and I ;zr (.) is the CCDF of random variable ——, the exact
J

7F tmin
shape of which is not important for our purpose. As shown in
(49), by increasing J;, the coverage probability increases propor-
tionally by a multiplicative scale, \;, while it is simultaneously
decreased exponentially. This conflicting behavior suggests that
by densification, depending on the system parameters, one of
the above phenomena becomes dominant and then the cover-
age probability can either grow or decline. By differentiating
(49) with respect to the densities \; and letting the resultants

equal to 0, a set of the following K equations are obtained:

>~ 225" N [CEp ()0 _()P,S,L;(") )dit/
/ TEL,,j('r) |:€ E] ! fo Lil)*"id P;S;Li(y)B;
0

x | 1—2m\ E; () Qii dr=0, Vielk.
( /0 L™ (L,(y)ﬁ))}

This suggests that there exist a set of densities maximizing
the coverage probability.

7.2.4 Impact of Interference Correlation

Our analysis in this paper is based on FC assumption. To
better understand the utility of this approximation, we
compare the coverage probability under FC assumption
with a manufactured scenario whereby for each data stream
l;; K independent sets of interferers denoted by <I>z-’7 with
given density A; are produced. To highlight this approach,
we call it No-Correlation (NC) assumption. Similarly to
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Fig. 7. Coverage probability versus g,, where S; =2, Sy =6, B, = 2.5,
A= 1074, and Ay = 1073,

Propositions 4 and 5, one can estimate the coverage proba-
bility via A-A and A-G methods, respectively.

N S

Corollary 3. Define S; = (N" — S; + 1)!) &=5i+0, Under NC
assumption and based on the A-A method, the coverage proba-
bility is approximated as

A-A _ [
C —ZQJTA,,'/O T

ek

N"—S;+1 r_ Q.
me)( 3 <N lfzﬂ)

n;eL,N 1"=1
(2

SL
x (—1)44@;&(7«{)) dr;,
(1)
where \Tfﬁll_ (r;) is as given in Proposition 4.

Proof. See Appendix I, available in the online supplemental
material. ]

Corollary 4. Under NC assumption, and based on the G-A
method, the coverage probability is approximated as

o0
G-A _ ) . E (s
c E 2\ /0 T Pni(rz)

ek n;e{L,N}

S
00 hNTfSiefh ﬂ !
X a,bp—r~ dh | dr,
(A (N7 = 8!l (a) y( %L?Li(rz‘)h> )

where y(a, bx) is the CCDF of random variable Gamma(a, b).

(52)

Proof. See Appendix J, available in the online supplemental
material. O

Fig. 7 shows the coverage probability versus g;. The FC
assumption is shown to provide a much higher accuracy than
NC assumption. One may assume that the intrinsic received
diversity gain in adopting NC assumption overestimates the
coverage probability compared to the FC assumption. Surpris-
ingly, the opposite is observed in Fig. 7, showing that the cover-
age probability under NC is much smaller than that of FC. This
is due mainly to the existence of LOS component, as in the
NC case for each data stream, the typical UE is interfered with
by a new set of K independent PPP interferers. Therefore, it is
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highly likely for the typical UE to have a larger number of LOS-
dominated interfering links from the BSs. In contrast, under the
FC assumption across all data streams, the very same set of K
independent PPP interferes are interfering with the typical UE.
Compared to the FC assumption, this results in a significantly
higher interference and therefore a much lower coverage prob-
ability under the NC assumption. In other words, the improved
receive diversity due to no-correlated interference is compro-
mised by a larger number of LOS interfering links.

7.2.5 Nonhomogeneous Path-Loss Model

We study the non-homogeneous path-loss scenario as descri-
bed in Section 6. Fig. 8 shows the corresponding coverage
performance versus \; with the same system parameter con-
sidered in Fig. 6. G-A is shown to provide a higher level
of accuracy than that of A-A. For A\; =2.5x107% and
5x 1073 < Xy < 1072, the coverage probability obtained by
A-A is not reliable. Nevertheless, G-A preserves a consistent
accuracy and robustness. This justifies G-A’s higher numerical
complexity. Densification in Tier 2 is also shown to improve
the coverage probability. This is in contrast with what Fig. 6
shows. This can be explained by noting that under the non-
homogenous scenario, the path-loss exponents in Tier 1 are
increased, reducing the aggregated interference. Therefore,
even receiving a weaker signal power per each data stream is
enough to overcome the impact of the interference and estab-
lish a communication link with a BS in Tier 2. On the other
hand, as in the case of Fig. 6, densification in Tier 1 lowers the
coverage performance in a non-homogeneous path-loss envi-
ronment. In this case, larger path-loss exponents do not
improve the coverage probability because setting S; =4
makes it increasingly unlikely for a typical user to be associ-
ated with a BS in Tier 1.

7.3 Impact of Imperfect CSIT

In Fig. 11, we investigate the impact of imperfect CSIT on
the coverage performance based on the derivations in Sec-
tion 6.5 using QCA. As shown in Fig. 11, the QCA approxi-
mation closely follows the actual coverage performance.
Note that for clarity we only consider the G-A approxima-
tion in this simulation.

7.4 Area Spectral Efficiency (ASE)
Area spectral efficiency of the network is often considered

as a crucial performance metric in cellular communication
systems. ASE is defined as ASE”" = 3, \;S;c%log (1 + B;)
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nat/s/Hz/unit area [6], [7], [33], where cl.ZF is the coverage
probability from Tier i. Note that ASE is linearly propor-
tional to the multiplexing gain S;, but there is no guarantee
that increasing the multiplexing gains improves ASE, as it
may degrade the coverage probability.

Here we consider two systems: system 1 (5YS1) wherein
both LOS and NLOS components exist, and system 2 (SYS2)
which has non-homogeneous path-loss model in which all
BSs are subject to the NLOS component. The density of BSs
in both SYS1 and SYS2 are the same.

7.4.1  Impact of o3, and Multiplexing Gain

Fig. 9 shows the impact of near-field path-loss exponent
in Tier 2, aQL, on the ASE. As expected, in SYS2 by
increasing o3, the ASE does not change. This is because
in the non-homogenous path-loss model, LOS/NLOS
path-loss exponents are considered equal in each tier,
and different across different tiers. Increasing S; =1 to
S1 =4 does not change ASE in both SYS1 and SYS2.
Thus, it may not be necessarily suitable to increase the
multiplexing gains, as it does not directly improve the
ASE while it may degrade coverage performance. Fig. 9
also shows that the ASE in SYS1 is higher than that in
SYS2 and a higher ASE gain is achieved for smaller of.
Therefore, unlike the cases with all NLOS links, the LOS
links can improve the ASE.
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7.4.2 Impact of Densification and Multiplexing Gain

Fig. 10 plots ASE versus 5. In general, G-A is shown to be
more accurate than A-A. Further, the figure shows that the
ASE is slightly reduced by increasing 5;. Recall the cover-
age performance from Fig. 5, showing that the coverage
probability is decreased by increasing multiplexing gains.
Thus, we conclude that in many cases adopting a diversity
only system (see Section 6) is justifiable.

Fig. 12 plots ASE versus X, for Sy =4 and S; =2.
Regardless of the multiplexing gains and the density of Tier
1, Fig. 12 shows that increasing A\ improves the ASE in both
systems. One should also note that densification of Tier 1
may not necessarily improve the ASE. In fact, in SYS2, ASE
is degraded by increasing the density of Tier 1. Further-
more, in SYS1, for Ay > 5 x 107, growing the density of
Tier 1 improves the ASE. In contrast, for Ay < 5 x 1073, the
ASE is not related to the density of Tier 1. For this setting
(A2 > 5 x 1073), the rate of ASE increase by increasing A is
smaller for higher Tier 1’s density. This is consistent with
the observation made in Fig. 6, where for S; = 4, densifica-
tion in Tier 1 lowers coverage performance.

Note that for As > 5 x 1075, \; = 2.5 x 1073, SYS1 out-
performs SYS2. This suggests that the existence of the LOS
component has a positive effect on the ASE. In contrast, for
Ao < 5x 1075, ASE in SYSI is, in fact, smaller than that in
SYS2 due to the LOS component.
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8 CONCLUSIONS

For open-loop multi-stream MIMO-ZFBF communications in
random networks subject to LOS/NLOS propagation, we
evaluated the coverage probability. Adopting the tool of sto-
chastic geometry, we derived two easy-to-compute approxi-
mations of the coverage probability, A-A and G-A methods,
as the function of densities of tiers, multiplexing gains, LOS/
NLOS parameters, the number of receiver antennas, and the
number of tiers. Our extensive simulation and numerical eval-
uations revealed that G-A is more accurate than A-A. Com-
pared to A-A, G-A is also more robust to various system
parameters and can accurately predict the best density respon-
sible for the peak of the coverage probability. We therefore rec-
ommend its use if one wants to investigate other aspects of the
system or carry out system design. Our results also showed
that, under certain scenarios, the existence of LOS mode can
render perceivable ASE performance boost over the case
where all communication links are in NLOS mode. To achieve
this, one must judiciously choose the density of BSs.

We also studied the cross-stream ICI correlation. Our
analysis showed that in the MIMO multiplexing system, the
ICI is highly correlated across data streams. This finding
can substantially ease the performance evaluation of multi-
stream systems, as shown in this paper.

The analytical results in this paper can also facilitate
analysis of mmWave multiplexing for which researchers
commonly focused on the stream-level performance evalua-
tion instead of the link-level performance [56], [57].

ACKNOWLEDGMENTS

This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant 61671088, in part by the
Vanier Canada Graduate Scholarship, in part by the National
Engineering Laboratory for Big Data System Computing Tech-
nology at Shenzhen University, China, and in part by the Natu-
ral Sciences and Engineering Research Council of Canada.

REFERENCES

[11 M. G. Khoshkholgh and V. C. M. Leung, “Impact of LOS/NLOS
propagation on the coverage performance of multi-stream MIMO-
ZFBF cellular downlink,” in Proc. IEEE 86th Veh. Technol. Conf.,
Sep. 2017, pp. 1-5.

[2] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K.
Soong, and J. C. Zhang, “What will 5G be?” IEEE |. Sel. Areas Com-
mun., vol. 32, no. 6, pp. 1065-1082, Jun. 2014.

[3] F.Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski,
“Five disruptive technology directions for 5G,” IEEE Commun. Mag.,
vol. 54, no. 2, pp. 74-80, Feb. 2014.

[4] H.S. Dhillon, R. K. Ganti, F. Baccelli, and J. G. Andrews, “Modeling
and analysis of K-tier downlink heterogeneous cellular networks,”
IEEE ]. Sel. Areas Commun., vol. 30, no. 3, pp. 550-560, Apr. 2012.

[5] J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach
to coverage and rate in cellular networks,” IEEE Trans. Commun.,
vol. 59, no. 11, pp. 3122-3134, Nov. 2011.

[6] H. S. Dhillon, M. Kountouris, and J. G. Andrews, “Downlink
MIMO hetNets: Modeling, ordering results and performance
analysis,” IEEE Trans. Wireless Commun., vol. 12, no. 10, pp. 5208-
5222, Oct. 2013.

[71 C.Li J. Zhang, J. G. Andrews, and K. B. Letaief, “Success proba-
bility and area spectral efficiency in multiuser MIMO HetNets,”
IEEE Trans. Commun., vol. 64, no. 4, pp. 1544-1556, Apr. 2016.

[8] M. Haenggi, J]. G. Andrews, F. Baccelli, O. Dousse, and
M. Franceschetti, “Stochastic geometry and random graphs for
the analysis and design of wireless networks,” IEEE |. Sel. Areas
Commun., vol. 27, no. 7, pp. 1029-1046, Sep. 2009.

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

2059

H. ElSawy, A. Sultan-Salem, and M.-S. Alouini, “Modeling and
analysis of cellular networks using stochastic geometry: A
tutorial,” IEEE Commun. Surv. Tut., vol. 19, no. 1, pp. 167-203,
Jan.-Mar. 2017.

F. Baccelli and B. Blaszczyszyn, “Stochastic geometry and wireless
networks, vol. I,” Found. Trends Netw., vol. 4, no. 1-2, pp. 1-312, 2009.
W. Luand M. D. Renzo, “Stochastic geometry modeling of cellular
networks: Analysis, simulation and experimental validation,” in
Proc. 18th ACM Int. Conf. Model. Anal. Simul. Wireless Mobile Syst.,
Nov. 2015, pp. 179-188, [Online]. Available: http://arxiv.org/
abs/ 1506.03857

A. Guo and M. Haenggi, “Spatial stochastic models and metrics
for the structure of base stations in cellular networks,” IEEE Trans.
Wireless Commun., vol. 12, no. 11, pp. 5800-5812, Nov. 2013.

J. Liu, M. Sheng, L. Liu, and J. Li, “Effect of densification on cellu-
lar network performance with bounded pathloss model,” IEEE
Commun. Lett., vol. 21, no. 2, pp. 346-349, Feb. 2017.

M. G. Khoshkholgh and V. C. M. Leung, “Coverage analysis of
max-SIR cell association in HetNets under nakagami fading,”
IEEE Trans. Veh. Technol., vol. 67, no. 3, pp. 2420-2438, Mar. 2018.
X. Zhang and J. G. Andrews, “Downlink cellular network analysis
with multi-slope path loss models,” IEEE Trans. Commun., vol. 63,
no. 5, pp. 1881-1894, May 2015.

3GPP, “Technical specification group radio access network;
evolved universal terrestrial radio access (E-UTRA); further
advancements for E-UTRA physical layer aspects (Release 9).
TR 36.814,” 2010.

J. Arnau, I. Atzeni, and M. Kountouris, “Downlink cellular network
analysis with LOS/NLOS propagation and elevated base stations,”
IEEE Trans. Wireless Commun., vol. 17, no. 1, pp. 142-156, Jan. 2018.
C. Galiotto, N. K. Pratas, N. Marchetti, and L. Doyle, “Effect of
LOS/NLOS propagation on 5G ultra-dense networks,” Comput.
Netw., vol. 120, pp. 126-140, Jun. 2017.

J. G. Andrews, X. Zhang, G. D. Durgin, and A. K. Gupta, “Are we
approaching the fundamental limits of wireless network
densification?” IEEE Commun. Mag., vol. 54, no. 10, pp. 184-190,
Oct. 2016.

C.S. Chen, V.M. Nguyen, and L. Thomas, “On small cell network
deployment: A comparative study of random and grid top-
ologies,” in Proc. IEEE Veh. Technol. Conf., 2012, pp. 1-5.

M. D. Renzo, W. Lu, and P. Guan, “The intensity matching
approach: A tractable stochastic geometry approximation to sys-
tem-level analysis of cellular networks,” IEEE Trans. Wireless Com-
mun., vol. 15, no. 9, pp. 5963-5983, Sep. 2016.

R. V. T. Bai and R. W. Heath Jr., “Analysis of blockage effects on
urban cellular networks,” IEEE Trans. Wireless Commun., vol. 13,
no. 9, pp. 5070-5083, Sep. 2014.

M. Taranetz, R. W. Heath Jr., and M. Rupp, “Analysis of urban two-
tier heterogeneous mobile networks with small cell partitioning,”
IEEE Trans. Wireless Commun., vol. 15, no. 10, pp. 7044-2613,
Oct. 2016.

V. M. Nguyen and M. Kountouris, “Performance limits of net-
work densification,” IEEE |. Sel. Areas Commun., vol. 35, no. 6,
pp- 1294-1308, Jun. 2017.

M. Ding, P. Wang, D. Lopez-Perez, G. Mao, and Z. Lin,
“Performance impact of LoS and NLoS transmissions in dense cel-
lular networks,” IEEE Trans. Wireless Commun., vol. 15, no. 3,
pp- 2365-2380, Mar. 2016.

T. Ding, M. Ding, Z. L. G. Mao, D. Lopez-Perez, and A. Y.
Zomaya, “Uplink performance analysis of dense cellular networks
with LoS and NLoS transmissions,” IEEE Trans. Wireless Commun.,
vol. 16, no. 4, pp. 2601-2613, Apr. 2017.

T. T. Lam, M. D. Renzo, and J. P. Coon, “System-level analysis of
SWIPT MIMO cellular networks,” IEEE Commun. Lett., vol. 20,
no. 10, pp. 2015-2018, Oct. 2016.

M. D. Renzo, “Stochastic geometry modeling and analysis of
multi-tier millimeter wave cellular networks,” IEEE Trans. Wire-
less Commun., vol. 14, no. 9, pp. 5038-5057, Sep. 2015.

M. D. Renzo and W. Lu, “System-level analysis and optimization
of cellular networks with simultaneous wireless information and
power transfer: Stochastic geometry modeling,” IEEE Trans. Veh.
Technol., vol. 66, no. 3, pp. 22