
S2-CAN: Sufficiently Secure Controller Area Network
Mert D. Pesé, Jay W. Schauer, Junhui Li, and Kang G. Shin

The University of Michigan

Ann Arbor, MI 48109-2121, USA

{mpese,jschauer,opheelia,kgshin}@umich.edu

ABSTRACT
As automotive security concerns are rising, the Controller Area Net-

work (CAN) — the de facto standard of in-vehicle communication

protocol — has come under scrutiny due to its lack of encryption

and authentication. Several vulnerabilities, such as eavesdropping,

spoofing, and replay attacks, have shown that the current imple-

mentation needs to be extended. Both academic and commercial

solutions for a Secure CAN (S-CAN) have been proposed, but OEMs

have not yet integrated them into their products. The main reasons

for this lack of adoption are their heavy use of limited computa-

tional resources in the vehicle, increased latency that can lead to

missed deadlines for safety-critical messages, as well as insufficient

space available in a CAN frame to include aMessage Authentication

Code (MAC).

By making a trade-off between security and performance, we

develop S2-CAN, which overcomes the aforementioned problems

of S-CAN. We leverage protocol-specific properties of CAN instead

of using cryptographic primitives and design a “sufficiently secure”

alternative CAN with minimal overhead on resources and latency.

We evaluate the security of S2-CAN in four real-world vehicles by an
automated vehicular attack tool. We finally show that CAN security

can be guaranteed by the correct choice of a design parameter while

achieving acceptable performance.

ACM Reference Format:
Mert D. Pesé, Jay W. Schauer, Junhui Li, and Kang G. Shin. 2021. S2-CAN:

Sufficiently Secure Controller Area Network. In Annual Computer Security
Applications Conference (ACSAC ’21), December 6–10, 2021, Virtual Event,
USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3485832.

3485883

1 INTRODUCTION
Since the advent of the first comprehensive automotive security

analysis in 2010 [11, 27], this field has attracted significant attention.

While the first generation of vehicle security (c. 2010-2015) focused

on exploiting physical interfaces, such as the OBD-II port [31], or

reverse-engineering Electronic Control Unit (ECU) firmware [29],

the second generation (c. 2015-now) has been focusing on scaling

attacks tomultiple vehicles by analyzing remote attack surfaces [30].

The most prominent and comprehensive attack of this generation

that led automotive cyber security to become amainstream research

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ACSAC ’21, December 6–10, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8579-4/21/12. . . $15.00

https://doi.org/10.1145/3485832.3485883

and engineering subject was the Jeep Hack [32] that allowed the

attacker to remotely compromise and steer the affected vehicles.

With further scaling in each generation, the risk of automotive

vulnerabilities towards driver/passenger safety and privacy, as well

as financial and operational damage potential increases [24]. All

attacks in each generation have (CAN) injection/spoofing as the

necessary (final) component of causing havoc in common. This

enables the compromise of the vehicle which can, in the worst case,

have a serious impact on driver safety, for instance, by electronically

disabling the brakes or accelerating the vehicle.

Unfortunately, CAN injection is the easiest part of the afore-

mentioned attacks. This can be explained by vulnerabilities in the

CAN design which dates back to 1987. Despite allowing a fast,

robust, and reliable communication, CAN was not designed with

security in mind, and vehicles can no longer be regarded as closed

systems due to an increased number of external interfaces with un-

predictable input. CAN is a broadcast bus without encryption and

authentication. Messages are sent in plain text and everyone who

has access to the CAN bus can inject arbitrary messages or spoof

existing ones. Encryption and authentication in a vehicle should

usually go hand in hand. In order for spoofed messages to cause

a visible impact on the compromised vehicle, the attacker needs

to (a) know the syntax and semantics of the crafted CAN payload,

and (b) be allowed to inject the targeted CAN message. In case of

(a), this is only possible by reverse-engineering unencrypted CAN

data traces since OEMs keep the aforementioned semantics secret

instead of disclosing them publicly (security by obscurity). Recently,
automated CAN reverse-engineering is shown to be achievable in

a few minutes [36], enforcing existing attack vectors and necessi-

tating an encrypted CAN. Finally, for case (b), authentication will

prevent unauthorized entities to perform the CAN injection.

To defend against vehicular attacks, we need a holistic, multi-

layer security approach. The authors of [45] propose 4 layers of

countermeasures which build on one another: access control, se-

cure on-board communication, data-usage policies and anomaly

detection/prevention (see Sec. 3). Here we assume OEMs follow

basic security practices such as access control and focus on the chal-

lenges of secure on-board communication. As we discuss in Sec. 4,

many researchers have attempted to apply the security properties

of confidentiality, authenticity, integrity, freshness, and availability

on the CAN bus. Almost all of them provide authentication and

replay protection — but no encryption — by deploying well-studied

cryptographic algorithms. A comparison of existing approaches is

provided in Table 1.

Althoughmechanisms such as encryption and authentication are

widely used and accepted in traditional computer communication

networks, their adoption in the automotive domain comes with

three major problems related to performance that currently limit

their deployment in commercial vehicles:

https://doi.org/10.1145/3485832.3485883
https://doi.org/10.1145/3485832.3485883
https://doi.org/10.1145/3485832.3485883

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Mert D. Pesé, Jay W. Schauer, Junhui Li, and Kang G. Shin

Table 1: Comparison with related approaches

Protection Algorithm HW/SW Bus Load Latency MAC Length Security Level

CaCAN [28]
Authenticity +

Freshness

SHA256-HMAC HW+SW +100% +2.2-3.2𝜇s 1 Byte 2
7

IA-CAN [21] Authenticity

Randomized CAN

ID + CMAC

SW +0%

8bit: +72ms

32bit: +150𝜇s
1-4 Bytes 2

7
-2

31

vatiCAN [33]
Authenticity +

Freshness

SHA3-HMAC SW +16.2% +3.3ms 8 Bytes 2
63

TESLA [34]
Authenticity +

Freshness

PRF+HMAC SW +0% +500ms 10 Bytes 2
79

LeiA [37]
Authenticity +

Freshness

MAC SW +100% N/A 8 Bytes 2
63

CANAuth [41]
Authenticity +

Freshness

HMAC HW+SW +0% N/A 10 Bytes 2
79

S2-CAN
Confidentiality +

Authenticity +

Freshness

Circular Shift +

Internal ID Match

SW +0% +75𝜇s N/A ∼ 2
49

(1) Cost: For cost reasons, ECUs in an in-vehicle network (IVN)

are resource-constrained. Since most safety-critical functionalities

require simple computations and do not need high-performance

hardware, these legacy ECUs are very simple and highly optimized

for repetitive control operations. For instance, current Engine Con-

trolModules can have 80MHz clock frequency, 1.5MB Flashmemory

and 72kB of RAM (Bosch [4]). Using cryptographic algorithms for

encryption and/or authentication would require more performant

hardware which drive up the cost for OEMs. Besides unit costs,

adding security protocols to certain legacy ECUs (especially in the

powertrain domain) that have been in use in cars for multiple years

or even decades due to lack of necessary software improvements

would increase the development cost [40].

(2) Latency: In order to guarantee functional safety in a vehicle,

there are stringent hard real-time requirements for certain safety-

critical control data. The maximum permitted end-to-end (E2E)

latency for cyclic control data transmitted on the CAN bus can

range from a few milliseconds to a second [16]. Since secure en-

cryption and authentication algorithms add a non-negligible delay

(see Sec. 7), as well as block CAN messages to be sent until fully en-

crypted (due to block size), message deadlines can be missed which

can endanger driver safety (imagine the car braking too late!).

(3) Bus Load: CAN messages contain only 8 bytes of payload.

Message Authentication Codes (MACs) to protect data integrity

have to be appended to the data, but due to lack of space, several

existing solutions [28, 33, 37, 42] send the MAC in a separate CAN

message. This increases the bus load which is an indicator for the

utilization of the network. A high bus load can lead to certain CAN

messages missing their (hard) deadlines, harming safety. To avoid

this, the average bus load must be kept under 80% at all times [3].

For the above reasons, encryption and authentication on the CAN

bus have not yet been adopted in commercial vehicles. Traditional

cryptography-based solutions — we will summarize these under

the generic term Secure CAN (S-CAN) — offer a medium to high

level of security (see the number of combinations to brute-force

MAC, labeled as Security Level, in Table 1) at the expense of per-

formance (i.e., CPU, latency, bus load). As the authors of [33] have

shown, brute-forcing a MAC would take too long for in-vehicle

ECUs, especially if keys are dynamically refreshed. As a result,

we would like to break away from traditional cryptography-based

solutions to address the aforementioned three problems while pro-

viding reasonable, albeit relaxed security guarantees. We propose

S2-CAN (Sufficiently Secure CAN) to enable a tradeoff between

performance and security to offer a feasible and secure real-world

solution for the automotive industry.

S2-CAN tries to protect the confidentiality, authenticity and fresh-
ness of CAN data during operation of the vehicle without using

cryptography. In particular, S2-CAN consists of two phases in its

core: a handshake and operation phase. In the former, it establishes

unique sessions of specific length and distributes necessary ses-
sion parameters to all participating ECUs. This phase resembles

the key management phase in traditional S-CAN approaches where

session keys are shared among the ECUs to both encrypt and au-

thenticate CAN messages in their respective operation phase. Since

S2-CAN avoids using cryptography in its operation phase, it uses

the session parameters from the handshake to (a) first include a

randomly generated internal ID and counter for authenticity and

freshness into the CAN payload before (b) each byte of the pay-

load is shifted cyclically by a random integer (encoding parameter)
in fixed time intervals. These two steps can be compared to (a)
appending a MAC to provide authenticity and (b) encrypting the
plain-text CAN message to provide confidentiality in S-CAN. Com-

pared to breaking traditional CAN authentication solutions that

only require brute-forcing the MAC, the cyclic shift encoding fur-

ther masks the plain-text by making it more difficult to decode

and thus provides confidentiality protection as well. Due to the

encoding, CAN reverse-engineering — which is the first essential

step of a CAN injection attack — has to be performed in real time

for the current encoding parameter and cannot be computed a pri-
ori to be used for the lifetime of the vehicle. Despite intentional

weaker security of S2-CAN, a frequent update of sessions with new

encoding parameters will render reverse-engineering very tedious,

if not impossible. Hence, session cycle is the crucial parameter to

provide security in S2-CAN. Furthermore, even after guessing the

encoding correctly, an attacker would still need to calculate the

S2-CAN: Sufficiently Secure Controller Area Network ACSAC ’21, December 6–10, 2021, Virtual Event, USA

internal ID and counter to bypass authentication. All in all, brute-

forcing S2-CAN would require ∼ 2
49

combinations for an ECU (see

Sec. 8 and 9) while it does not increase the bus load in the operation

phase, outperforms the E2E latency of the best comparable S-CAN
approach by 44x, as well as incurs less than 0.1% CPU overhead

as evaluated with our experimental setup (see Sec. 7). Finally, we

conduct a security evaluation in Sec. 8 to demonstrate that even an

intelligent attacker who leverages protocol-specific knowledge to

circumvent brute-forcing can be thwarted to show that S2-CAN can
be sufficiently secure.

2 CAN PRIMER
Vehicular sensor data is collected from in-vehicle ECUs. The latter

are typically interconnected via an in-vehicle network (IVN), with

the CAN bus being the most widely-deployed bus topology. Fig. 1

depicts the structure of the most common CAN 2.0A data frame.

1
bit

11
bits

1
bit

4
bits

0-64
bits

16
bits

2
bits

7
bits

SOF
Start of
Frame

CAN ID
Message
Identifier

RTR
Remote
Trans-

mission
Request

Reserved

2
bits

DLC
Data

Length
Code

Data CRC-15
Cylic

Redundancy
Check

EOF
End of
Frame

ACK
Acknow-

ledge-
ment

Figure 1: CAN2.0A data frame structure (adapted from [36])

The colored three fields are essential for the understanding of CAN:

• CAN ID: CAN is a multi-master, message-based broadcast

bus that is message-oriented. CAN frames do not contain

any information regarding their source or destination ECUs,

but instead each frame carries a unique message ID that rep-

resents its meaning and priority. Lower CAN IDs represent

higher priority or criticality.

• DLC and Data: Data is the payload field of a CAN message

containing the actual message data of length of 0–8 bytes

depending on the value of the DLC field.

The payload field consists of one or more “signals,” each repre-

senting information like vehicle speed. Messages transmitted with

the same CAN ID usually contain related signals. Raw CAN data is

not encoded in a human-readable format and does not reflect the

actual sensor values. In order to obtain the actual sensor values,

raw CAN data must first be decoded [13]. Letting 𝑟𝑠 ,𝑚𝑠 , 𝑡𝑠 , and

𝑑𝑠 be the raw value, scale, offset, and decoded value of sensor 𝑠 ,

respectively, the actual value can be determined as follows:

𝑑𝑠 =𝑚𝑠 · 𝑟𝑠 + 𝑡𝑠 . (1)

All recorded CAN data can only be interpreted using the trans-

lation tables for that particular vehicle. The most common format

used for this purpose is DBC [18] which contains information about

available signals in each CAN ID, their scale and offset, as well the

senders and receivers of CAN messages. In order to execute a suc-

cessful spoofing attack (i.e., with a visible outcome towards vehicle

operation), the CAN payload has to be carefully crafted by the at-

tacker. As a result, an adversary needs to determine the scale and

offset for the CAN signal they want to spoof. Furthermore, some

DBCs store if a CANmessage is periodic (including its cycle time) or

sporadic. Note that in the remainder of this paper, we will only mod-

ify the CAN payload/data field and NOT the CAN ID to preserve

backward-compatibility and not interfere with schedulability.

There are multiple CAN buses (e.g., powertrain, infotainment)

in the vehicle that are separated via a gateway ECU. It is possible

to physically tap into any CAN bus domain (after removing plastic

compartments) by using an Arduino with a CAN bus shield [47].

Another — more realistic — way of accessing the CAN bus is the

on-board diagnostics (OBD-II) interface under the steering wheel

which is mandatory for all gasoline cars in the US since 1996. OBD-

II tools are manifold and cheap [6, 19]. Theoretically, it is possible to

read and write the CAN traffic on all in-vehicle buses through the

OBD-II interface. In practice, however, not all buses are mirrored

out to it. This can be explained by access control [35] that OEMs

implement. Nevertheless, previous literature [29] has shown that

CAN injection through the OBD-II port is possible in numerous

cars.

3 THREAT MODEL
As briefly mentioned in Sec. 1, the common and final part of every

automotive attack — which is the main threat to protect against —

is to gain access to the CAN bus for a CAN injection attack which

can lead to various forms of vehicle misbehavior, including (safety-

critical) sudden acceleration. In general, there are two ways an

attacker can achieve CAN bus access: (a) by connecting a physical
CAN device/ECU to the IVN, e.g., an OBD-II dongle or by tapping

into the CAN bus, or (b) compromising an existing ECU remotely.
The former is relatively easy to accomplish as long as the attacker

has physical access to the target vehicle, while the latter is more

complicated and multi-layered (and thus less likely) as the attacker

has to usually leverage vulnerabilities in wireless interfaces of an

ECU to gain access to the device. We refer to the attacker in case of

(a) as an external attacker, whereas an internal attacker is capable
of (b). Furthermore, the aforementioned separation of domains

by a central gateway complicates a compromised ECU — which is

usually on a less safety-critical bus (e.g., infotainment) — to affect

more safety-critical domains such as powertrain which has no

remote attack surfaces. Finally, even if a proper S-CAN approach is

implemented, an internal compromise of an ECU (as in case (b))
will lead to exposure of secret keys which the attacker can use to

forge the desired message’s Message Authentication Code (MAC)

and/or encrypt the CAN payload.

Although remote attacks on vehicles have skyrocketed over the

last decade [8], a breakdown of attack vectors shows that most of

these remote attacks are targeting key fobs, OEM servers and mobile

companion apps. Remote attacks to compromise an ECU usually

exploit the In-Vehicle Infotainment (IVI) and require significant

effort (usually multiple months) as shown in the Jeep Cherokee

hack [32] to achieve CAN bus access and cannot be thwarted even

by a properly secured CAN bus (S-CAN). In contrast, OBD-II attacks

are the fourth most common attack vector and account up to over

10% of all attacks. Nevertheless, recent research [43] has shown

that remote attacks can also be launched by an external adversary
by exploiting vulnerabilities in wireless OBD-II dongles. Many

commercial OBD-II dongles feature Wi-Fi or Bluetooth capabilities

which open a new over-the-air attack surface. The researchers’

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Mert D. Pesé, Jay W. Schauer, Junhui Li, and Kang G. Shin

findings show that CAN injection can also be performed by remote,

external attackers. As a result, external attackers in scenario (a)
form the most crucial threat. In what follows, we will focus on

protection from this type of adversaries and describe their attack

capabilities.

Once CAN bus access has been achieved, the attacker will con-

tinue a CAN injection attack. The authors of [12] introduce three

possible CAN injection attacks as discussed next. Fabrication at-
tacks allow the adversary to fabricate and inject messages with

a forged CAN header and payload at a higher frequency to over-

ride cyclic CAN messages sent by legitimate ECUs that can render

safety-critical receiver ECUs inoperable [27]. Suspension attacks
on the compromised ECU prevent its broadcast of legitimate, po-

tentially safety-critical CAN messages to the intended recipient(s).

Finally, Masquerade attacks combine both of the above attacks by

suspending the CAN broadcast of one ECU and deploying another

ECU to fabricate malicious CAN messages. Only fabrication attacks
can be mounted by our adversary from scenario (a), since the others
require an internally compromised ECU. We would like to empha-

size that fabrication attacks can not only be mounted by attackers

having physical access to the car, but also by remote attackers [43]

which makes external attacks from scenario (a) an highy likely and

scalable threat.

As a result, we assume the (external) adversary to only be able

to perform fabrication attacks in our threat model. Even then, the

attacker can cause havoc for both vehicle and driver, as shown in

the Toyota Prius hack [29]. To prevent fabrication attacks, a solution

for secure CAN must have the following two security properties:

Authenticity. As outlined before, any CAN node can join the IVN.

There is no provision of verifying the authenticity of an added

malicious device to the CAN bus by default. So, device authentica-

tion is important, i.e., only pre-authorized ECUs will be allowed to

communicate. Furthermore, an attacker should not be able to spoof

legitimate CAN messages during a fabrication attack. This can be

prevented by adding aMAC to eachmessage to ensure integrity. The
latter also includes protection against replay attacks by adding a

counter to each message. The major drawback of protecting against

fabrication or replay attacks is the required additional space for

MACs and freshness values. This is challenging because CAN only

has an 8-byte payload field, with most of the space already occupied

by control data (see Sec. 5.2).

Confidentiality. CAN message data is not encrypted, and there-

fore, messages between ECUs can be eavesdropped and analyzed

by anyone accessing the IVN. To prevent this type of attack, mech-

anisms to guarantee confidentiality are required. As mentioned be-

fore, plaintext data can be recorded and used for reverse-engineering

the proprietary CAN message format (i.e., signal location, scale and

offset) which can be ultimately used to craft well-formed CAN

messages in a fabrication attack to cause visible damage. Encryp-

tion with symmetric session keys between participating ECUs is a

solution, although it will incur additional latency overhead.

In this paper, we want to protect against fabrication attacks

by leveraging a combination of confidentiality and authenticity

protection. Since we focus on the tension between security and

performance as previously discussed, S2-CAN uses a non-traditional
approach instead of cryptographic encryption and authentication

in order to optimize performance.

4 RELATEDWORK
4.1 Authenticity and Integrity
Most existing work on Secure CAN (see Table 1) focuses on the au-

thentication of sender ECUs, protecting the integrity of the payload,

as well as against replay attacks.

vatiCAN [33] offers backward-compatible sender and message

authentication, as well as protection against replay attacks for

safety-critical CAN messages via HMACs computed from prein-

stalled keys. The HMAC is sent in a separate message with a differ-

ent CAN ID. vatiCAN adds 3.3ms latency per CANmessage, a 16.2%

increase in bus utilization and 400 bytes of memory overhead.

IA-CAN [21] provides sender authentication via randomization

of CAN IDs on a per frame basis and payload data authentication us-

ing two different session keys. The receiver only accepts a message

if the MAC is correct and the CAN frame has the expected CAN ID

that changes with each frame using a function. The receiver’s filter

is updated accordingly when the next frame is accepted.

CaCAN [28] uses a hardware-modified central monitoring node

to perform the entire authentication on the CAN bus. As with

the general case of centralized authorities, if the monitor node

is compromised or removed, the entire network is compromised.

Furthermore, no encryption is used and the bus load is doubled.

TESLA [34] protocol is a lightweight authentication protocol,

relying on delayed key disclosure to guarantee message authen-

ticity. It provides authenticated broadcast capabilities, albeit with

additional latency during authentication.

CANAuth [41] uses out-of-band transmission of integrity and

freshness values to avoid bus load overhead. Its major drawback is

the lack of backward compatibility with regular CAN controllers.

LeiA [37] is a counter-based authentication protocol that uses

extended (29-bit) CAN IDs to include freshness values and a generic

MAC algorithm for authentication. The MAC is 8 bytes long and

transmitted in a separate CAN message, doubling the bus load. No

latency numbers are reported.

4.2 Confidentiality
The space-limited payload field of 8 bytes in CAN messages is a

major problem for encryption algorithms such as AES-128 that

depend on a 16-byte block size. As a result, multiple messages have

to be sent, increasing the bus load. Latency is another issue due to

the limited computational power on ECUs if implemented in soft-

ware to guarantee backward compatibility. [9] surveyed different

encryption methods for the CAN bus in terms of bus load, latency

and security. Existing approaches use AES-128 [17], AES-256 [38],

XOR [20, 23], Tiny Encryption Algorithm (TEA) [25] and Triple

DES (3DES) [22].

4.3 Key Management
Secret keys are necessary to generate and verify MACs, and to

encrypt and decrypt data. Instead of using a single long-term key

for the entire lifespan of a car — which is 12 years on average [10]

— session keys can be generated periodically that are only valid for

a certain period to limit their exposure.

In Secure CAN (S-CAN) solutions, there are two general ap-

proaches to in-vehicle key management. The first approach is to

S2-CAN: Sufficiently Secure Controller Area Network ACSAC ’21, December 6–10, 2021, Virtual Event, USA

deploy an OEM backend and request new keys periodically via

Over-the-Air (OTA) using the authenticated key exchange protocol
2 (AKEP2) [44]. Keys can be stored in the central gateway (acting

as the in-vehicle key master) in a Trusted Platform Module (TPM)

or Hardware Security Module (HSM). The second approach tries

to do the key management completely on-board without the need

for an OEM-provided backend which can reduce complexity, band-

width and cost [39]. The key distribution inside the vehicle can be

done in two ways. First, the key master generates and distributes

new session keys based on the Secure Hardware Extensions (SHE)
Key Update Protocol. Second, the key master triggers the ECUs to

derive session keys from a nonce and long-term keys installed at

manufacturing time. The first approach is superior if security is

the most important and waiting on startup time is acceptable. The

second approach can be used when speed is the most important

and no wait time for key distribution is acceptable.

5 SYSTEM DESIGN
We now present the system design of S2-CAN, which consists of

three phases: Key Management, Handshake, and Operation.
Although no cryptography will be used in the operation phase

(Sec. 5.3), establishing a session 𝑆𝑖 during the handshake (Sec. 5.2)

needs the distribution of keys which will be briefly discussed in

Sec. 5.1. In our prototype, we use 𝑁 = 2 slave ECUs and one master

ECU which is the central gateway. The master ECU will be responsi-

ble for establishing new sessions during the handshake phase. There

is no real value of expanding the testbed to more than 2 slave ECUs

since the benchmark in Sec. 7 shows that S2-CAN does not add any

communication overhead and is thus independent of traffic/bus load

during the operation phase, i.e., when operation-related CAN mes-

sages are exchanged between ECUs. S2-CAN is applied to each CAN

sub-bus independently. As a result, the OEM can choose which CAN

buses to protect. We will use the syntax𝑚 = (𝐶𝐴𝑁_𝐼𝐷, 𝑃𝑎𝑦𝑙𝑜𝑎𝑑)
for a CAN message𝑚 exchanged on the bus. Furthermore, we re-

quire a logical ordering of the slave ECUs for error handling and

timeout purposes during the handshake (Sec. 5.2), i.e., that 𝐸𝐶𝑈𝐴
transmits before 𝐸𝐶𝑈𝐵 . The ordering can be assigned randomly

(as in our case) or according to criticality/relevance of the ECU,

with the more safety-critical slave ECU being assigned as 𝐸𝐶𝑈𝐴 .

This knowledge of ordering can be stored as an additional one-byte

unsigned integer in each ECU’s non-volatile memory.

5.1 Phase 0: Key Management
S2-CAN refrains from using Message Authentication Codes (MACs)

and encryption based on cryptographic keys during the vehicle’s

operation mode (Sec. 5.3). During the handshake phase (Sec. 5.2),

we will distribute S2-CAN-specific session parameters from the mas-

ter ECU (gateway 𝐸𝐶𝑈𝐺𝑊) to the two slaves 𝐸𝐶𝑈𝐴 and 𝐸𝐶𝑈𝐵 on

a safety-critical CAN domain named 𝐶𝐴𝑁1. These session param-

eters establish a new S2-CAN session 𝑆𝑖 that is valid for a Session
Cycle 𝑇 . To distribute these parameters securely in each session, we

CANNOT avoid cryptography in the handshake phase and need to

ensure that the CAN payload is both authenticated and encrypted

to defend against spoofing and eavesdropping attacks on the hand-

shake. This requires the existence of pre-shared secret keys that

are provided by the key management system in a vehicle. Since

a detailed discussion of key management is not in the scope of

this paper, we use pre-installed symmetric keys on each ECU and

refer to the aforementioned best practices of in-vehicle key man-

agement (see Sec. 4.3). Note that it is transparent to the design of

S2-CAN of how these symmetric keys are obtained, i.e., if a backend

periodically provides them via OTA or they are derived from a

long-term key installed at manufacturing time. Nevertheless, the

use of short-lived session keys is recommended to limit exposure

of the long-term key which would allow eavesdropping attacks on

the handshake and thus fully compromise S2-CAN.

5.2 Phase 1: Handshake
Overview:Upon initialization, 𝐸𝐶𝑈𝐺𝑊 , 𝐸𝐶𝑈𝐴 and 𝐸𝐶𝑈𝐵 on𝐶𝐴𝑁1

will perform a 3-way handshake in order to exchange the infor-

mation about the aforementioned session parameters and agree

on "talking" in S2-CAN syntax. The session parameters consist of a

global (a) encoding parameter 𝑓 , (b) a slave ECU-specific integrity
parameter 𝑖𝑛𝑡_𝐼𝐷 𝑗 , (c) a slave ECU-specific integrity parameter
𝑝𝑜𝑠𝑖𝑛𝑡,𝑗 , and (d) a slave ECU-specific counter value 𝑐𝑛𝑡 𝑗 , with 𝑗 de-

noting the respective slave ECU. Parameter (a) will be distributed
in Stage 1, whereas the other three parameters (b)-(d) will be ex-
changed between ECUs in Stage 2. The handshake comprises three

stages and repeats for each new session 𝑆𝑖 in periodic fixed-intervals

𝑇 which represents the session cycle. In what follows, we will de-

scribe the handshake process for an arbitrary session 𝑆𝑖 . The com-

munication diagram for Phase 1 is depicted in Fig. 2 and separated

into the three stages. The CAN IDs used for messages during the

handshake are merely examples, but should have a low ID or high

priority.

Stage 1 (Initialization): The master ECU (𝐸𝐶𝑈𝐺𝑊) indicates

that it wants to start a new session 𝑆𝑖 . It randomly generates an

8-byte encoding parameter 𝑓0 = (𝑟0, 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6, 𝑟7), 𝑟𝑙 ∈ [0, 7].
𝑟𝑙 corresponds to the bit rotation number for the 𝑙𝑡ℎ byte in the

8-byte CAN payload. Each 𝑟𝑙 can be expressed with 3 bits for a total

of 3 bytes to include in the payload 𝑝 of the gateway initialization

message 𝑚𝐺𝑊 ,𝑖𝑛𝑖𝑡 = (0x010, 𝑝). As discussed before, due to the

sensitivity of handshake messages, each CAN message during the

handshake has to be both authenticated and encrypted to prevent

spoofing and eavesdropping, but also replay attacks. To achieve the

latter, we first add a 2-byte counter 𝑐𝑛𝑡0 (not to be confused with

the ECU-specific session parameter 𝑐𝑛𝑡𝑋) to defend against replay

attacks. In order to prevent spoofing attacks on this message, we

calculate the SHA256-HMAC of the previous 5 bytes (i.e., 𝑓𝑖 and

𝑐𝑛𝑡𝑖) to obtain a 32-byte output with the symmetric key 𝑘 from

Phase 0. Since the payload of𝑚𝐺𝑊 ,𝑖𝑛𝑖𝑡,𝑖 only has another 3 bytes

of free space to fit the MAC which would be too small to defend

against brute-force attacks, we have to truncate the HMAC (taking

the MSBs per definition). The truncation can be done safely since

the increased advantage of the attacker would be offset by the

limited availability of a CAN message due to the cyclic message

nature of CAN and the invalidation through the counter value 𝑐𝑛𝑡𝑖 .

Nevertheless, we believe that 3 bytes for a truncated HMAC is too

small. As a result, we split𝑚𝐺𝑊 ,𝑖𝑛𝑖𝑡,𝑖 into two consecutive CAN

messages 𝑚𝐺𝑊 ,𝑖𝑛𝑖𝑡,𝑖,0 and 𝑚𝐺𝑊 ,𝑖𝑛𝑖𝑡,𝑖,1 with respective payloads

𝑝1 and 𝑝2 to (a) utilize another 8 bytes for the truncated HMAC,

resulting to a total of 11 bytes, and (b) allow encryption with a

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Mert D. Pesé, Jay W. Schauer, Junhui Li, and Kang G. Shin

ECUGW ECUA
mGW,init,i,0=(0x010, encAES-128(k, p1||p2)

[MSB0-63]) ECUB

ECUAECUGWECUB
mA,ACK,i,0=(0x011, encAES-128(k, p1||p2)

[MSB0-63])

ECUBECUGWECUA
mB,ACK,i,0=(0x012, encAES-128(k, p1||p2)

[MSB0-63])
int_IDB=Rand(0,N-1)/int_IDA
posint,B=FS(𝕐𝕐B)

ECUGW ECUA
mGW,fin,i,0=(0x020, encAES-128(k, p1||p2)

[MSB0-63]) ECUB

fi cnti

HMACSHA-256(k, fi||cnti)[MSB0-23]

p1

HMACSHA-256(k, fi||cnti)[MSB24-87]

p2 ECUGW ECUAECUB
mGW,init,i,1=(0x010, encAES-128(k, p1||p2)

[MSB64-127])

int_IDA cnti

HMACSHA-256(k, PACK ||int_IDA ||posint,A ||cntA ||cnti)[MSB0-7]

p1

p2

cntAPACK posint,A

HMACSHA-256(k, PACK ||int_IDA ||posint,A ||cntA ||cnti)[MSB8-71]

Sym. Key k

ECUAECUGWECUB
mA,ACK,i,1=(0x011, encAES-128(k, p1||p2)

[MSB64-127])

int_IDA=Rand(0,N-1)
posint,A=FS(𝕐𝕐A)

int_IDB cnti

HMACSHA-256(k, PACK ||int_IDB ||posint,B ||cntB ||cnti)[MSB0-7]

p1

p2

cntBPACK posint,B

HMACSHA-256(k, PACK ||int_IDB ||posint,B ||cntB ||cnti)[MSB8-71]
ECUBECUGWECUA

mB,ACK,i,1=(0x012, encAES-128(k, p1||p2)
[MSB64-127])

ECUGW ECUA
mGW,fin,i,1=(0x020, encAES-128(k, p1||p2)

[MSB64-127]) ECUB

p1, p2 ∈ {0,1}64 ^ p1, p2 ∉ 064

Sym. Key k Sym. Key k

1

2

3

Figure 2: Handshake communication diagram

secure block cipher such as AES-128 which has a block size of 16

bytes.

In summary, two CAN messages with the following syntax are

broadcast sequentially on 𝐶𝐴𝑁1:

𝑚𝐺𝑊 ,𝑖𝑛𝑖𝑡,𝑖,0 = (0𝑥010, 𝑒𝑛𝑐𝐴𝐸𝑆128 (𝑘, 𝑝1| |𝑝2) [𝑀𝑆𝐵0 − 63])
𝑚𝐺𝑊 ,𝑖𝑛𝑖𝑡,𝑖,1 = (0𝑥010, 𝑒𝑛𝑐𝐴𝐸𝑆128 (𝑘, 𝑝1| |𝑝2) [𝑀𝑆𝐵64 − 127])
Stage 2 (Acknowledgment):Upon receiving both initialization

messages from 𝐸𝐶𝑈𝐺𝑊 , 𝐸𝐶𝑈𝐴 and 𝐸𝐶𝑈𝐵 first decrypt the cipher-

texts 𝑝★
1
and 𝑝★

2
using the symmetric key 𝑘 and extract the encoding

parameter 𝑓𝑖 into local memory. Eeach slave ECU will then broad-

cast an acknowledgment (ACK) message𝑚 𝑗,𝐴𝐶𝐾,𝑖 (which will be

split into two messages again due to AES-128 encryption), where

𝑗 ∈ [0, . . . , 𝑁 − 1], consisting of a 1-byte positive acknowledgment

code (PACK) and the three slave ECU-specific parameters (b)-(d)
in the CAN payload. Parameter (b) is a randomly generated unique

internal ID 𝑖𝑛𝑡_𝐼𝐷 𝑗 ∈ [0, 𝑁 − 1] representing 𝐸𝐶𝑈 𝑗 on 𝐶𝐴𝑁1 dur-

ing the current session 𝑆𝑖 . This parameter can be encoded with 1

byte since a CAN domain (or even vehicle in general) never has

more than 256 ECUs.

Next, parameter (c) specifies the random position 𝑝𝑜𝑠𝑖𝑛𝑡, 𝑗 of

where the internal ID (parameter (a)) will be located within the

CAN payload. Since space within the payload is limited and specific

positions are occupied by CAN signal data that cannot be over-

written, the internal ID has to be included in available free space.

The set of available free spaces for a CAN ID in a given vehicle is

defined asY𝑗 . Sec. 6 discusses the distribution of free spaces among

CAN IDs by analyzing the DBCs of 4 different vehicles. For instance,

Y𝑗 = 12, 13, 14, 25, 26, 54, 55, 63 states that the CAN ID belonging to

𝐸𝐶𝑈 𝑗 possesses only 8 bits of free space over 4 non-consecutive

"regions". This set of bits is then used by the Free Space (FS) function
to randomly determine the first bit 𝑝𝑜𝑠𝑖𝑛𝑡,𝑗 where 𝑖𝑛𝑡_𝐼𝐷 𝑗 will be

placed:

𝑝𝑜𝑠𝑖𝑛𝑡,𝑗 = 𝐹𝑆 (Y𝑗) (2)

In our example, if 𝑝𝑜𝑠𝑖𝑛𝑡,𝑗 = 54, the MSB of the one-byte internal

ID will be stored at bit position 54 and the LSB at bit position 26.

The last parameter (d) is the initial value of an ECU-specific

counter 𝑐𝑛𝑡 𝑗 for replay protection and is also randomly generated.

This parameter consists of 2 bytes and is also included in available

free space together with 𝑖𝑛𝑡_𝐼𝐷 𝑗 by Eq. 2.

Besides including these functional handshake parameters, the

ACK messages will also include a 2-byte handshake counter 𝑐𝑛𝑡𝑖
and truncated HMAC for integrity and freshness protection, just

like in Stage 1. We obtain 2 consecutive CANmessages broadcast by

𝐸𝐶𝑈 𝑗 that are both authenticated and encrypted with the following

syntax:

𝑚𝐴,𝐴𝐶𝐾,𝑖,0 = (𝐼𝐷 𝑗 , 𝑒𝑛𝑐𝐴𝐸𝑆128 (𝑘, 𝑝1| |𝑝2) [𝑀𝑆𝐵0 − 63])

𝑚𝐴,𝐴𝐶𝐾,𝑖,1 = (𝐼𝐷 𝑗 , 𝑒𝑛𝑐𝐴𝐸𝑆128 (𝑘, 𝑝1| |𝑝2) [𝑀𝑆𝐵64 − 127])
Due to the aforementioned pre-determined order for all slave

ECUs, 𝐸𝐶𝑈𝐴 will first transmit with CAN ID 0x011 and 𝐸𝐶𝑈𝐵 needs

to wait until it has received both𝑚𝐴,𝐴𝐶𝐾,𝑖,0 and𝑚𝐴,𝐴𝐶𝐾,𝑖,1 from

𝐸𝐶𝑈𝐴 before it can broadcast 𝑚𝐵,𝐴𝐶𝐾,𝑖,0 and 𝑚𝐵,𝐴𝐶𝐾,𝑖,1. For the

latter two messages, the CAN ID can simply be incremented by

one as depicted in Fig. 2, as each ECU will use a distinct CAN

ID. Once 𝐸𝐶𝑈𝐵 receives the aforementioned ACK message, it first

extracts the received integrity parameters into its memory and then

repeats the ACK process for itself. To avoid collisions in internal

ID assignment, it needs to exclude 𝑖𝑛𝑡_𝐼𝐷𝐴 during the random ID

generation.

Stage 3 (Finalization): 𝐸𝐶𝑈𝐺𝑊 finalizes the handshake after

receiving ACKs from all slave ECUs. It sends 𝑚𝐺𝑊 ,𝑓 𝑖𝑛,𝑖 with a

random non-zero payload to signal that it has received well-formed

ACK messages from all slave ECUs and monitored a successful

handshake. The finalization message is again split into two CAN

messages and broadcast with CAN ID 0x020.

Security and Reliability Analysis: Due to authentication, an

adversary cannot spoof the contents of a handshake message. An

attacker cannot replay handshake messages due to the freshness

counter, and eavesdropping attacks can be mitigated by encryption.

If any ACK message takes too long due to bus or ECU errors,

the handshake times out and 𝐸𝐶𝑈𝐺𝑊 restarts the handshake with

S2-CAN: Sufficiently Secure Controller Area Network ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Stage 1. If the handshake is still unsuccessful even after repeating

it 𝑟 times, all ECUs on 𝐶𝐴𝑁1 can revert to regular CAN commu-

nication until the next start of the vehicle. Although this counter-

measure has been designed for non-adversarial reliability issues,

an adversary still cannot exploit it. An attacker could launch a

Denial-of-Service (DoS) attack through the OBD-II device by inject-

ing high-priority CAN IDs (e.g., 0x0) with the goal to circumvent

successful handshakes and downgrade to regular CAN communi-

cation. Since vehicles have a holistic security concept in place (as

discussed in Sec. 1), the gateway (which is directly connected to

the OBD-II port) can defend against this availability attack by dis-

carding injected CAN messages under a certain CAN ID threshold,

i.e., the lowest handshake CAN ID.

5.3 Phase 2: Operation
After the handshake for a session 𝑆𝑖 has been completed, slave ECUs

can start the Operation Mode exchanging regular data on 𝐶𝐴𝑁1.

To save space in the CAN payload field, we perform the following

operation on the 1-byte 𝑖𝑛𝑡_𝐼𝐷 𝑗 and 2-byte 𝑐𝑛𝑡 𝑗 that 𝐸𝐶𝑈 𝑗 stored

during the handshake to calculate the 2-byte parameter 𝑞 𝑗 :

𝑞 𝑗 = LEFTZEROPAD(𝑖𝑛𝑡_𝐼𝐷 𝑗 , 8) ⊕ 𝑐𝑛𝑡 𝑗 . (3)

First, the payload of a CANmessage is being logically ORed with

𝑞 𝑗 which includes the integrity parameters into the free space of a

CAN message. Second, a Circular Shift (CS) operation is performed

on the new payload using the stored encoding parameter 𝑓𝑖 which

does a byte-wise bit rotation to the 𝑙𝑡ℎ byte according to the value

of the 𝑙𝑡ℎ element of 𝑓𝑖 . Finally, the message is broadcast on 𝐶𝐴𝑁1.

For the next CAN message sent by 𝐸𝐶𝑈 𝑗 , its local counter will be

incremented.

On the receiver side, the respective slave ECU(s) need(s) to ex-

ecute the above process reversely, i.e., rotate each byte of the en-

crypted payload in the opposite direction according to 𝑟𝑙 , extract

the position information from 𝑝𝑜𝑠𝑖𝑛𝑡, 𝑗 , determine the internal ID

and finally the counter/freshness value by XORing it with 𝑖𝑛𝑡_𝐼𝐷 𝑗
of the sender.

Based on these extracted values, the receiver can then perform

an integrity and freshness check: (1) The extracted counter 𝑐𝑛𝑡 𝑗
is compared with the expected counter for the respective sender.

If the two values match, the local counter for sender 𝐸𝐶𝑈 𝑗 on

the receiver is incremented, and (2) the internal ID of the sender

𝑖𝑛𝑡_𝐼𝐷 𝑗 is compared with the stored internal ID for the respective

sender on the receiver ECU. Only if these two checks do not fail, the

receiver can assume that the message came from a legitimate sender

𝐸𝐶𝑈 𝑗 and start processing the data in the payload. Otherwise, it

may either suspect a replay attack or a message with fabricated

information from a malicious ECU and drop the CAN message.

The operation mode with the respective encoding and integrity

parameters ends once a new handshake has been completed. A new

session 𝑆𝑖+1 begins. The operation mode does not get interrupted

by the start of a new handshake to guarantee functionality and

safety.

Finally, we discuss what happens in the case of packet drops that

can happen naturally on the CAN bus. Since each CAN message

has a counter to prevent replay attacks and the receiver expects the

next message with an incremented counter value, a packet drop can

lead to inconsistencies with the local state counter on the receiver

side. In order to account for packet drops, the receiver ECU will

still accept CAN messages with counter values higher than the

previous message within a specific threshold. The latter depends on

the packet loss rate on the CAN bus which is usually very robust.

The authors of [46] suggested to setting this threshold to 1.

6 FINDING FREE SPACE
To gain a better understanding of how many signals are used in

a CAN ID and thus how much of free space (FS) is available to

include our integrity parameters 𝑖𝑛𝑡_𝐼𝐷 𝑗 and 𝑐𝑛𝑡 𝑗 , we analyzed the

DBC files of four passenger vehicles from a North American OEM

under NDA (see Sec. 8.1). Since we include a 2-byte parameter 𝑞 𝑗
into the CAN payload, only a maximum of 6 bytes may be used for

data. Among all CAN IDs in each DBC, we identified certain low-

priority non-operation-related CAN IDs that do not occur during

regular operation of the vehicle. Hence, we manually removed these

irrelevant CAN IDs for our purposes and analyzed the remaining

operation-related CAN IDs for available unused space.

0 10 20 30 40 50 60
Used Bits

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Vehicle A HS1
Vehicle A HS2
Vehicle B HS
Vehicle B MS
Vehicle C HS1
Vehicle C HS2
Vehicle D HS1
Vehicle D HS2

Figure 3: CDF of used bits

A Cumulative Distribution Function (CDF) for each vehicle is

plotted in Fig. 3. The vertical marker indicates that all vehicles —

with the exception of Vehicle B — contain between 60% and 80%

CAN IDs that have at least 16 bits of free space. As a result, we

can apply S2-CAN for the majority of CAN IDs, but would like to

analyze how to further improve this metric to maximize the number

of usable CAN IDs. Note that we are referring to the free space in

the CAN payload/data field and not the CAN ID field (see Fig. 1).

OEMs could re-balance the disparity of available space in a CAN

message with a more careful design of the CAN communication

matrix while still considering functional requirements. In what

follows, we present a possible re-balancing approach. CAN mes-

sages are differentiated by four types: fixed-periodic, event-periodic,

event-on-change and network management. First, we grouped CAN

IDs based on the sender ECU. As mentioned before, a sender can

transmit multiple CAN IDs with different cycle times if the CAN

ID is fixed-periodic or event-periodic. The latter message type is

similar to fixed-periodic except a CAN message is not necessar-

ily transmitted at every cycle time. Both message types cannot be

grouped together.

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Mert D. Pesé, Jay W. Schauer, Junhui Li, and Kang G. Shin

Table 2: Free space in DBCs

Veh. Bus #IDs #Rebalan-
cable IDs

#IDs
with FS

Usable
CAN IDs (%)

Veh.A

HS1 102 31 63 92.2

HS2 53 2 35 69.8

Veh.B

HS 81 5 26 38.3

MS 62 3 16 30.6

Veh.C

HS1 57 7 38 78.9

HS2 42 1 26 64.3

Veh.D

HS1 58 7 43 86.2

HS2 51 4 38 82.4

As an example, Fig. 4 depicts the number of used bits of fixed-

periodic CAN messages with exactly the same cycle time that a

sender ECU transmits on HS1-CAN (high-speed CAN 1) of Vehicle

A. Points above the red threshold line of 48 bits depict CAN IDs that

do not have sufficient free space for S2-CAN. Since all vertical dots
are grouped by sender ECU and cycle time, they can be re-balanced

by packing signals of their mean value per CAN ID (depicted with

marker x). For Veh. A HS1, there are a total of 101 fixed-periodic

CAN IDs. A mean value below 48 bits indicates that the CAN IDs in

the group can be re-balanced. 27 CAN IDs can be re-balanced this

way, besides those already under this threshold. We repeated this

experiment for all other vehicles and buses for both fixed-periodic

and event-periodic messages and summarized the number of re-

balancable and existing CAN IDs with free space in Table 2. The

sum of these two yields the number of usable CAN IDs for S2-CAN.
With the exception of Veh. B, around 79–92% of all CAN IDs can

be used with S2-CAN for the more safety-critical HS1-CAN. The

remaining non-periodic CAN IDs can be re-balanced further by

OEMs based on functionality — something that we cannot interpret.

0 5 10 15 20 25
Sender ECUs with Fixed Periodic CAN IDs

0

10

20

30

40

50

60

Us

ed
 B

its

Figure 4: Re-balancing Vehicle A HS1

Finally, no relationship between message priority and free space

can be derived. This analysis is depicted in Fig. 6 (in Appendix B).

7 EVALUATION
7.1 Experimental Setup
We have built a prototype with three CAN nodes, each of which

consists of an Arduino Mega 2560 board and a SeeedStudio CAN

shield [47]. This prototype was set up to operate at a 500 kBit/s baud

rate as in a typical high-speed safety-critical CAN bus. Note that

the entire evaluation is based on a simple scenario with the sender

ECU transmitting only one CAN message. In reality, multiple CAN

messages will be broadcast on the CAN bus in a relatively short time

and CAN scheduling will pick the highest-priority CAN message to

be broadcast first. This will inherently lead to blocking time 𝑡𝑏 for

lower-priority messages which depends on the number of higher-

priority messages that have to be transmitted first. Nevertheless,

using a simpler setup does not affect our evaluation metrics except

the operation latency which is discussed in Sec. 7.3.

Since we want to compare the performance of S2-CANwith prior

work, we implemented existing CAN bus encryption methods from

Sec. 4.2 with vatiCAN [33] for authentication. We chose vatiCAN

among various existing SW-only CAN authentication approaches

due to its decent performance for both latency and bus load, as well

as existing and well-documented Arduino implementation.

7.2 Handshake Latency
We measured the time it took to complete a handshake while vary-

ing the number of slave ECUs in a CAN domain. As outlined in

Sec. 5.2, the handshake process is repeated every𝑇 . The old session

still continues with the existing parameters until the handshake is

completed. As a result, no critical message exchange during the op-

eration mode of the previous session is interrupted. The handshake

of the new session will be executed in parallel with the operation

of the previous session. The only critical time when the handshake

latency can affect operations of the car is during the initial start-up

of the car since a session 𝑆0 of S2-CAN cannot start until the initial

handshake has been completed. We simulated a varying number of

slave ECUs by having our two prototype ECUs take turns to send

ACK of the handshake, in a ping-pong manner. We surveyed the

DBCs of four vehicles (see Sec. 8.1) to find that each CAN bus has

9–23 different ECUs. So, we consider a maximum of 25 slave ECUs

in our simulation. For two slave ECUs, the average total handshake

time stands at 303ms, for five at 529ms, for ten at 907ms and for the

maximum number of 25 slave ECUs, we achieve around 2 seconds

of handshake latency 𝑡ℎ𝑠 , i.e., the car starts talking S2-CAN after 2s

when it is powered on. Our calculations also show that each addi-

tional slave ECU on the bus will add an average of 75.5ms towards

the latency. Furthermore, the handshake process will be started at

𝑃 ·𝑇 − 𝑡ℎ𝑠 −𝑄 · 𝑡𝑏 before the current session expires to provide a

smooth transition to the next session. 𝑃 denotes the session number

and 𝑄 the average number of higher-priority CAN messages that

can be expected to cause the blocking of handshake messages.

7.3 Operation Latency
CANmessages have stringent deadlines, i.e., when they must arrive

at the receiver. Although the authors of [16] suggest deadlines of

cyclic safety-critical CAN messages standing at 2.5–10ms, this is

outdated. Modern HS-CAN buses have minimum cycle times (and

S2-CAN: Sufficiently Secure Controller Area Network ACSAC ’21, December 6–10, 2021, Virtual Event, USA

thus deadlines) of 10ms, as our manual inspection of the four DBCs

also confirmed. Latency measurements are averaged from a sample

of 1000 messages sent over 100 seconds, or one message every

100ms. We were interested in calculating the E2E latency 𝑡𝐸2𝐸 for

(1) Regular CAN with vatiCAN authentication ("NONE"),
(2) 3DES, TEA, XOR, AES-128 and AES-256 encrypted CAN

with vatiCAN authentication,

(3) and finally S2-CAN.

In the first case, E2E latency consists of processing delays of the

sender and receiver, the time to calculate theMAC on the sender and

check the MAC on the receiver, as well as the CAN bus network

latency. In the second case, encryption/decryption latencies are

added on the respective sides. S2-CAN uses the latter calculation

methodology as well, while the MAC and encryption/decryption

latencies are replaced by the delay to calculate/check the internal

ID and counter, and encode/decode through Circular Shift (CS).

107.5

108.0

108.5
Encryption Latency
Sender Latency
Network Latency
Calculating MAC Latency
Checking MAC Latency
Decryption Latency
Receiver Latency

53

54

55

La
te

nc
y

(m
s)

NONE 3DES TEA XOR S2 AES128 AES256
Encryption Algorithm

0

5

10

Figure 5: E2E latency for different "encryption" algorithms

Fig. 5 depicts the breakdown of the E2E latency for all three

aforementioned cases. Furthermore, the dotted horizontal line in-

dicates the aforementioned deadline of 10ms. It can be easily seen

that the encryption/decryption of 3DES takes much longer on Ar-

duinos than other encryption algorithms that can still satisfy the

10ms deadline. Tiny Encryption Algorithm (TEA) and XOR seem

to satisfy it although they are not considered secure [7, 26] and

are thus not recommended to be used in production. Furthermore,

in all experiments, we did not include any additional traffic, so

that the reported E2E latencies assume no blocking time due to

higher-priority CANmessages and can be considered a lower bound.

Hence, even AES-128 and AES-256 are likely to miss the 10ms dead-

line if they lose the CAN arbitration to a message with lower ID.

S2-CAN with 𝑡𝐸2𝐸 = 414𝜇𝑠 satisfies both deadlines and only adds

an overhead of 75𝜇𝑠 to the E2E latency of a regular CAN message

(i.e., no encryption or authentication).

Latency numbers for MAC operations by vatiCAN are lower

in Fig. 5 than the reported 3.3ms from Table 1. We used a sponge

capacity of 𝑐 = 8 instead of the original, more secure 𝑐 = 128 to

provide a lower bound for vatiCAN’s latency overhead.

Table 3: Benchmark of other metrics

Encr. Auth.
BL
(%)

CPUo (%)
S / R

RAM(kB)
S / R

Flash(kB)
S / R

None

None 0.25 0/0 1.24/1.29 10.1/11.96

VatiCAN 0.5 86.7/82.3 1.57/1.66 17.25/17.07

AES128

None 0.5 0.8/2.0 1.25/1.30 10.30/12.02

VatiCAN 1 87.0/82.8 1.60/1.67 17.35/17.13

AES256

None 0.5 1.0/2.5 1.27/1.31 10.31/12.04

VatiCAN 1 87.0/82.9 1.61/1.69 17.37/17.15

3DES

None 0.25 52.8/53.5 1.26/1.31 12.27/14.22

VatiCAN 0.5 93.8/90.8 1.60/1.69 19.38/19.33

TEA

None 0.25 0.5/0.5 1.27/1.32 10.55/12.50

VatiCAN 0.5 86.8/82.4 1.60/1.69 17.78/17.61

XOR

None 0.25 0.01/0.01 1.25/1.30 10.16/12.05

VatiCAN 0.5 86.7/82.3 1.57/1.67 17.31/17.17

S2 S2 Auth 0.25 0.04/0.03 1.25/1.30 10.24/12.10

7.4 Other Metrics
Besides the E2E latency, we measured bus load, CPU overhead,

and memory usage of each encryption method with and without

vatiCAN authentication. The results are summarized in Table 3. The

metrics are calculated for messages exchanged during Operation
Mode, unless noted otherwise.

Bus Load. The bus load (BL) 𝑏 is calculated as follows [2]:

𝑏 =
𝑠𝑓 𝑟𝑎𝑚𝑒

𝑓𝑏𝑎𝑢𝑑

∑
𝑚∈𝑀

1

𝑝𝑚
,

(4)

where we used 𝑓𝑏𝑎𝑢𝑑 = 500 𝑘𝐵𝑖𝑡/𝑠 as baud rate on the CAN bus,

and 𝑝𝑚 is the period/cycle time of message𝑚, and assuming each

CAN frame uses 125 bits, 𝑠𝑓 𝑟𝑎𝑚𝑒 = 125. With regular CAN (no

encryption and authentication), we send one message every 𝑝𝑚 .

AES has a block size of 16 bytes and the maximum size of the

payload is 8 bytes. Thus, we send two consecutive messages, each

with a period of 𝑝𝑚 . With vatiCAN authentication, an additional

MAC is sent after each message, effectively doubling the bus load.

Table 3 shows that only S2-CAN does not add any overhead to

the bus load of regular CAN during operation mode, but provides

protections against both confidentiality and integrity. Note that the

bus load does increase during each handshake due to additional

2(𝑁 + 2) exchanged messages. Nevertheless, the handshake adds

an overhead of merely 2.5% to the bus load.

CPU Usage. CPU overhead (CPUo) 𝑐𝑦 of 𝐸𝐶𝑈𝑦 is calculated by

measuring how many idle cycles pass per message. We establish

regular CAN to be the baseline, then calculate overhead 𝑐𝑦 for

𝑦 ∈ {S𝑒𝑛𝑑𝑒𝑟,R𝑒𝑐𝑒𝑖𝑣𝑒𝑟 } as follows:

𝑐𝑦 = 1 − 𝑐𝑦𝑐𝑙𝑒𝑠𝑖𝑑𝑙𝑒

𝑐𝑦𝑐𝑙𝑒𝑠𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
. (5)

We see in Table 3 that vatiCAN authentication accounts for the

largest CPU overhead. (with the exception of 3DES). The CPU

utilization on each ECU almost doubles. With S2-CAN, we have a
negligible CPU overhead that demonstrates the lightness of our

approach on computational resources.

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Mert D. Pesé, Jay W. Schauer, Junhui Li, and Kang G. Shin

Memory Consumption. Finally, Flash and RAM usage are re-

ported when our code compiles to the Arduinos. No dynamic mem-

ory is used. All approaches except S2-CAN add up to 30% more RAM

and 70–90% of Flash usage compared to the memory consumption

for regular CAN. The memory consumption (both RAM and Flash)

for S2-CAN is minimal.

8 SECURITY ANALYSIS
To measure the security level of S2-CAN, we need to determine

the time an attacker requires to correctly spoof a specific CAN

message. To be more concrete, we assume the adversary will try to

accelerate the vehicle by CAN injection through the OBD-II port.

Furthermore, we assume that the gateway blocks CAN messages

with IDs under a certain threshold to secure the handshake (see

Sec. 5.2) and no intrusion detection system is installed in the target

vehicle. Given the current state of commercial passenger vehicle

security, this is a very likely scenario. In order to affect the accel-

eration behavior by CAN message injection, the adversary needs

to know the message format (i.e., CAN ID, signal position, scale

and offset) of the signal they want to spoof. For regular CAN, this

is possible by existing automated CAN bus reverse-engineering

tools such as LibreCAN [36]. In the following security analysis, we

will deploy Phases 0 and 1 of LibreCAN with some modifications

to adapt to S2-CAN and try to measure the time an attacker would

need to determine the correct payload to inject into the CAN bus.

The modified attack tool is called LibreCAN+, consisting of three

stages that are discussed below.

8.1 Experimental Setup
All experiments were conducted using Python 3 on a computer

running 64-bit Ubuntu 18.04.4 LTS with 128 GB of registered ECC

DDR4 RAM and two Intel Xeon E5-2683 V4 CPUs (2.1 GHz with

16 cores/32 threads each). We evaluate the security of S2-CAN by
using one-hour real-world traces collected from four recent (2016-

2019) vehicles: Veh. A is a luxury mid-size sedan, Veh. B a compact

crossover SUV, Veh. C a full-size crossover SUV and Veh. D a full-

size pickup truck. Veh. A, C and D have at least two HS-CAN buses,

both of which are routed out to the OBD-II connector, whereas Veh.

B has at least one HS-CAN and one MS-CAN, with only the former

being accessible via OBD-II. All raw CAN data was collected with

the OpenXC VI [6].

8.2 Stage 0: Generating S2-CAN Traces
The recorded traces from our four evaluation vehicles are in regu-

lar CAN-syntax. To enable S2-CAN-compliant communication, we

have to process the one-hour traces according to simulated hand-

shake parameters and convert them into S2-CAN-syntax. First, we
analyze the DBC file of the vehicle to determine the ECU nodes

that are present in the network, free space of each CAN ID payload,

and group CAN IDs based on the node that emits them since the

handshake assigns the parameters on a per-node basis. Then, we

randomly assign each node a unique internal ID ∈ [0, 𝑁𝐸𝐶𝑈 − 1].
The counter of each node is also initialized to a random number in

range [0, 216 − 1]. Third, we assign incrementing counter values for

each CAN message. After specifying values for the internal ID and

counter of each CAN message, we XOR the two values to obtain

𝑞 𝑗 , assign it to a free space in each CAN message (if possible) and

finally OR it with the original payload. In order to be compliant

with S2-CAN, the payload needs to have at least 2 bytes of free

space, but these do not have to be contiguous. We removed CAN

IDs from the trace that do not have the necessary free space. Finally,

we perform the byte-wise circular shift (CS) on each remaining

message according to the randomly generated encoding parameter

𝑓 .

8.3 Stage 1: Cracking the Encoding
First, the adversary can assume that the targeted CAN signal is two

bytes or less in size since this applies to most powertrain-related

signals. In all four vehicles the target signal is 13 bits long. Next, the

attacker can brute-force the CAN trace with each possible encoding

for each of the 7 pairs of contiguous bytes in the CAN message.

Our encoding scheme has 8 possibilities for each byte, so without

accounting for duplicates, there are 8 · 8 · 7 = 448 combinations an

attacker must try. However, because encodings for unconsidered

bytes are set to zero, we can reduce this to 400 combinations by

eliminating duplicates: One combination of all zeros, 7 · 8 = 56

combinations where all but one byte are zero, and 7 · 7 · 7 = 343

combinations where all but two contiguous bytes are zero. For

each potential encoding, the attacker decodes the trace and runs

it through Phases 0 and 1 of the original LibreCAN, resulting in a

list of three-tuples (candidate CAN ID, encoding, normalized cross-

correlation score). The pairs with the highest 𝑋 correlation scores

(𝑋 is a design parameter in Sec. 8.5) can then be used in Stage 2.

Note that we used multi-threading in this stage to calculate up to

50 combinations simultaneously.

8.4 Stage 2: Authenticating Correctly
For the adversary to successfully spoof a message, they must be

able to increment the message counter to the correct value. This

requires the knowledge of the position of the counter bits within

the message, the value of the counter, and the internal ID. After

determining the top 𝑋 CAN IDs by correlation score from Stage 1,

the adversary can extract a subtrace consisting of only the messages

for that candidate CAN ID.With the subtrace in hand, the adversary

calculates the frequency of bit flips for each bit in the subtrace’s

messages, and matches these flip frequencies to what frequency the

bits of a counter should be. This is done using Algorithm 1. Note

that only the lowest ⌊log
2
(trace length)⌋) bits of the counter can

be determined, since these are the only bits that are guaranteed to

flip at least once.

Algorithm 1 Determine Counter Position

procedure match-freqency(𝑓 𝑙𝑖𝑝_𝑓 𝑟𝑒𝑞𝑠, 𝑡𝑟𝑎𝑐𝑒_𝑙𝑒𝑛)

𝑐𝑜𝑢𝑛𝑡𝑒𝑟_𝑙𝑒𝑛𝑔𝑡ℎ ← min(16, ⌊log
2
𝑡𝑟𝑎𝑐𝑒_𝑙𝑒𝑛⌋)

𝑐𝑜𝑢𝑛𝑡𝑒𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 ← []
for 𝑖 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟_𝑙𝑒𝑛𝑔𝑡ℎ to 1 do

𝑚𝑎𝑡𝑐ℎ ← argmin({ |𝑓 − 2−(𝑖−1) | : 𝑓 ∈ 𝑓 𝑙𝑖𝑝_𝑓 𝑟𝑒𝑞𝑠 })
append(𝑐𝑜𝑢𝑛𝑡𝑒𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠,𝑚𝑎𝑡𝑐ℎ)

return 𝑐𝑜𝑢𝑛𝑡𝑒𝑟_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠

After determining the position of the counter bits, the internal

ID can be extracted. To do this, the adversary compares consecutive

messages in the subtrace, and sees if one of the counter bits flips in

S2-CAN: Sufficiently Secure Controller Area Network ACSAC ’21, December 6–10, 2021, Virtual Event, USA

the second message. If this occurs, the adversary knows the next

lowest bit of the counter must have been a 1 in the first message.

Then, to extract the internal ID, the adversary XORs the counter bit

with 1. This is repeated until all bits of the internal ID are known.

This procedure is summarized in Algorithm 2.

Algorithm 2 Determine Internal ID

procedure calculate-int-id(𝑐𝑜𝑢𝑛𝑡𝑒𝑟_𝑝𝑜𝑠, 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑒)
𝑐_𝑙𝑒𝑛𝑔𝑡ℎ ← length(𝑐𝑜𝑢𝑛𝑡𝑒𝑟_𝑝𝑜𝑠)
𝑖𝑑_𝑙𝑒𝑛𝑔𝑡ℎ ← min(8, 𝑐_𝑙𝑒𝑛𝑔𝑡ℎ − 1)
𝑖𝑛𝑡_𝑖𝑑 ← []
𝑜 𝑓 𝑓 𝑠𝑒𝑡 ← 𝑐_𝑙𝑒𝑛𝑔𝑡ℎ − 𝑖𝑑_𝑙𝑒𝑛𝑔𝑡ℎ
𝑐_𝑝𝑜𝑠 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟_𝑝𝑜𝑠 [𝑜 𝑓 𝑓 𝑠𝑒𝑡 : 𝑐_𝑙𝑒𝑛𝑔𝑡ℎ]
𝑝𝑟𝑒𝑣_𝑚 ← get(𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑒, 0)
for 𝑖 ← 0 to 𝑖𝑑_𝑙𝑒𝑛𝑔𝑡ℎ − 1 do

for𝑚 ∈ 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑒 do
if𝑚 [𝑐_𝑝𝑜𝑠 [𝑖]] ≠ 𝑝𝑟𝑒𝑣_𝑚 [𝑐_𝑝𝑜𝑠 [𝑖]] then

𝑖𝑛𝑡_𝑖𝑑 [𝑖] ← 𝑝𝑟𝑒𝑣_𝑚 [𝑐_𝑝𝑜𝑠 [𝑖 + 1]] ⊕ 1

break

return bits-to-integer(𝑖𝑛𝑡_𝑖𝑑)

Now, after obtaining the position of the counter and the internal

ID, the attacker can spoof a message. First, they use the encoding

determined in Stage 1 to decode the latest message from the desired

CAN ID. Next, the attacker replaces the value of the signal they are

spoofing with their own fabricated value in that message. Before

re-encoding the message with 𝑓 , the attacker extracts the counter

value from the latest real-time message on the CAN bus, increments

it by 1, and inserts it into their new message. This spoofed message

will then be injected through the adversary’s rogue node into the

CAN bus and accepted by the respective receiver ECUs.

8.5 Difficulty of Successful Cracking
The recorded traces of all evaluation vehicles were around 60 min-

utes long. We integrated the above procedure into LibreCAN —

creating a new version of LibreCAN, named LibreCAN+— and eval-

uated its success on those four traces using the ground truth DBC

files of each vehicle. The outcome is shown in the last column of

Table 4. The cracking success is dependent on finding the correct

CAN ID and encoding in Stage 1 (abbreviated at ST1 in the table)

by picking the top candidate in the sorted correlation list, as well

as determining the correct internal ID (ID) and counter (cnt). For

Vehicles A, B and C, cracking S2-CAN with LibreCAN+ works. Ve-
hicle D already failed in Stage 1 to determine the correct CAN ID

for spoofing the desired signal.

Furthermore, we wanted to analyze how a shorter recording

would affect this metric. We re-ran all three stages with 5%, 10%,

25%, 50% and 75% of full trace length. To avoid bias towards more

city or highway driving, we calculated the precision for all non-

overlapping segments of this trace. As can be seen in Table 4, traces

of 5% and 10% length fail in most cases. We color-coded the table to

indicate the number of split traces cracked correctly. If all split traces

can be cracked, we highlighted them in green color. Otherwise, if

under 2/3 of split traces are unsuccessful, we highlighted these in

red, with the remaining portion colored in orange.

Table 4 only considers those candidates in Stage 1 with the

highest correlation score (𝑋 = 1) that match the correct encoding

and CAN ID as successful. In many cases, we observed that the

Table 4: Cracking Success based on Trace Length (in %)

Trace Length 5 10 25 50 75 100

ST1 11/20 6/10 4/4 3/3 2/2 1/1

ID 10/20 6/10 4/4 3/3 2/2 1/1Veh. A
cnt 11/20 6/10 4/4 3/3 2/2 1/1

ST1 12/20 4/10 3/4 2/3 1/2 1/1

ID 11/20 3/10 3/4 1/3 1/2 1/1Veh. B
cnt 12/20 4/10 3/4 2/3 1/2 1/1

ST1 8/20 5/10 3/4 3/3 2/2 1/1

ID 8/20 5/10 3/4 3/3 2/2 1/1Veh. C
cnt 8/20 5/10 3/4 3/3 2/2 1/1

ST1 6/20 3/10 0/4 0/3 0/2 0/1

ID 6/20 3/10 0/4 0/3 0/2 0/1Veh. D
cnt 6/20 3/10 0/4 0/3 0/2 0/1

second-best candidate was ideal. As a result, we also wanted to

see if considering the top 𝑋 = {2, 3, 5, 10} candidates from Stage 1

would lead to success in cracking S2-CAN . If any of the candidates

in the top 𝑋 were correct, we would mark ST1 for the respective

vehicle and split trace as correct. Similar tables for the aforemen-

tioned values of𝑋 are presented in Appendix A. Based on these, we

summarize the cracking performance for varying 𝑋 in Table 5. The

values are reported as average numbers over all four vehicles. Note

that the color coding is different from Table 4. Green cells indicate

that the adjacent 𝑋 value to its right is identical and thus does not

provide a performance improvement. We suggest using at least a

trace of 25% length (15 minutes) and consider the Top 3 candidates

for optimal brute-forcing success.

Table 5: Brute-Forcing Success for Top 𝑋 Candidates

TL (%) Top 1 Top 2 Top 3 Top 5 Top 10

ST1 46% 58% 58% 61% 65%

ID 44% 54% 54% 58% 61%5
cnt 46% 58% 58% 61% 65%

ST1 45% 68% 68% 73% 78%

ID 43% 58% 58% 63% 68%10
cnt 45% 68% 68% 73% 78%

ST1 63% 81% 88% 88% 88%

ID 63% 81% 88% 88% 88%25
cnt 63% 81% 88% 88% 88%

ST1 67% 92% 92% 92% 92%

ID 58% 83% 83% 83% 83%50
cnt 67% 92% 92% 92% 92%

ST1 63% 88% 88% 88% 88%

ID 63% 88% 88% 88% 88%75
cnt 63% 88% 88% 88% 88%

ST1 75% 100% 100% 100% 100%

ID 75% 100% 100% 100% 100%100
cnt 75% 100% 100% 100% 100%

8.6 Determining Session Cycle 𝑇
So far, we observed that brute-forcing S2-CAN successfully is possi-

ble. The total time 𝑡𝑎 required by an attacker to crack S2-CAN is the
sum of the passive recording time 𝑡𝑟 , time 𝑡𝑠𝑡1 to crack the encoding

in Stage 1, time 𝑡𝑠𝑡2 to determine the integrity parameters in Stage

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Mert D. Pesé, Jay W. Schauer, Junhui Li, and Kang G. Shin

2 and time 𝑡𝑖 to inject a well-formed CAN message on the CAN bus:

𝑡𝑎 = 𝑡𝑟 + 𝑡𝑠𝑡1 + 𝑡𝑠𝑡2 + 𝑡𝑖 ≈ 𝑡𝑟 + 𝑡𝑠𝑡1 . (6)

Our timing analysis shows that the time to determine the two

integrity parameters 𝑖𝑛𝑡_𝐼𝐷 and 𝑐𝑛𝑡 on the full trace (60 minutes)

takes less than one second. The time to inject the correct CAN

message can also occur instantly with minimal network delay from

the workstation to the adversary’s CAN node (e.g., an Arduino).

Hence, 𝑡𝑠𝑡2 and 𝑡𝑖 are negligible and the main contributing factors

are 𝑡𝑟 and 𝑡𝑠𝑡1.

Table 6: Timing analysis for full traces (minutes:seconds)

CAN (LibreCAN) S2-CAN (LibreCAN+)

Veh. A 0:27 10:33

Veh. B 0:36 18:32

Veh. C 0:26 10:42

Veh. D 0:26 10:52

As shown in Table 6, the total time stands at around 𝑡𝑎 = 70 min

for full traces (i.e., 𝑡𝑟 = 60 min). Since our threat model stipulates

that the attacker can also physically tap into one specific CAN bus

(and thus only has access to one bus), we run LibreCAN+ with mes-

sages from Bus 1 only. Unfortunately, due to architecture specifics

of Vehicle B, all messages are logged on Bus 1, which makes the

trace longer and thus affects cracking time. The attacker can only

perform a CAN injection attack on a bus equipped with S2-CAN if

the session cycle𝑇 is larger than 𝑡𝑎 since with each new handshake,

new parameters will be generated and the attacker has to re-do

the entire attack. As a result, we can deem S2-CAN secure if the

following condition is met:

𝑡𝑎 ≈ 𝑡𝑟 + 𝑡𝑠𝑡1 > 𝑇 . (7)

In Sec. 8.5 an attacker was shown to succeed cracking S2-CAN
with less passive recording time 𝑡𝑟 . Since less messages have to be

processed, 𝑡𝑠𝑡1 will also be proportionally smaller. With the mini-

mum recording time 𝑡𝑟,𝑚𝑖𝑛 to have a successful outcome, we can

now set the maximum session cycle 𝑇𝑚𝑎𝑥 . We already determined

that a trace length of 𝑡𝑟 = 15 minutes is sufficient to succeed. The

Top 𝑋 consideration does not affect the timing since Stage 2’s con-

tribution is negligible. If the attacker doesn’t achieve the desired

outcome (i.e., vehicle malfunction), they can repeat the process

with the second and third candidates immediately. For Vehicles A,

C and D, 𝑡𝑠𝑡1 stands at less than 3 minutes and for Vehicle B at less

than 5 minutes. Hence, the maximum session cycle𝑇𝑚𝑎𝑥 will stand

at 18-20 minutes.

9 DISCUSSION AND CONCLUSION
Based on the results from the previous section, we can guarantee

that S2-CAN is secure if the cycle time𝑇 does not exceed 18-20 min-

utes. The experiments were conducted on a machine with relatively

good specs (see Sec. 8.1). Nevertheless, a determined attacker can

use an even more powerful setup to brute-force S2-CAN faster. The

feasibility of such an attack depends on the attacker’s incentive,

i.e., tradeoff between monetary cost and dedication towards the

outcome.

To be flexible, an attacker could rent computational resources on-

line. Both Amazon and Google provide cloud computing resources

called AWS EC2 [14] and Google Cloud [5]. The main bottleneck of

brute-forcing is the time required in Stage 1. Due to multi-threading

the combinations, these can be linearly scaled with multiple in-

stances. We obtained the cost of running a comparable instance to

our experimental setup on AWS. Their pricing calculator [1] sug-

gested an on-demand hourly cost of US$1.088 for an EC2 instance

with 32 vCPUs and 64 GB RAM. In our experiments from Sec. 8, the

peak RAM usage stood at 16 GB, but with the configured number

of cores, EC2 did not provide any smaller instance. To brute-force

S2-CAN with a passive recording time 𝑡𝑟 = 15 minutes in less than

20 seconds, 10 EC2 instances have to be rented. This sums up to a

monthly cost of $7,972.40 for the attacker. Given that the attacker

only spends 𝑡𝑎 ≈ 15 minutes per attempt (if 𝑇 > 𝑡𝑎), they could

conduct 2880 attempts per month at an average cost of $2.77 and

still fail, if 𝑇 is set smaller than the minimum recording time 𝑡𝑟,𝑚𝑖𝑛 .

Although the actual cracking (i.e., 𝑡𝑠𝑡1) can be sped up, 𝑡𝑟,𝑚𝑖𝑛 acts

as a lower bound to the total attack time 𝑡𝑎 and thus the attacker

will have no chance of cracking S2-CAN.
Finally, we would like to briefly compare S2-CAN’s security with

S-CAN approaches. For instance, vatiCAN [33] discusses how long it

would take to forge the SHA3-HMAC which depends on the length

of the MAC tag. On average, it requires 2
𝑀𝐴𝐶_𝐿𝑒𝑛𝑔𝑡ℎ−1

combina-

tions to brute-force the MAC which is depicted in the last column

of Table 1. The authors mentioned that it would still take a day

to brute-force all combinations on a powerful in-vehicle ECU, but

due to their nonce update interval of 50ms (comparable to our ses-

sion cycle 𝑇), it would be impossible for the attacker to calculate a

correct HMAC. Although the same calculation cannot be directly

applied to S2-CAN due to lack of MAC and changing position for

each CAN message, an online attacker (i.e., on an in-vehicle ECU)

would require

(
64

16

)
≈ 2

49
combinations to spoof the valid 2-byte

integrity parameters which allows a fair comparison with the other

numbers in Table 1. Given modern GPUs’ capabilities [15] (also

considering advances since this paper’s publication), an attacker

with similar cost assumptions from above could brute-force S2-CAN
in multiple hours due to its 49-bit entropy. Such an attacker would

still fail if 𝑇𝑚𝑎𝑥 ≈ 15 minutes.

In this paper, we have developed S2-CAN by making a trade-off

between performance and security, and verified its performance

on Arduinos mimicking real ECUs on a CAN bus. with regards

to multiple metrics. It performs better for all metrics than each

surveyed S-CAN approach, especially reducing E2E latency. Then,

we have tried to brute-force S2-CAN by using a modified version of

the existing CAN reverse-engineering tool LibreCAN. Although the

total attack time can be minimized to roughly 15 minutes, by setting

the session cycle properly, our approach is deemed secure. Due to

both favorable performance and practically acceptable security

guarantees, we envision S2-CAN to finally be a compelling and

practical security solution for OEMs to be deployed in their vehicles

in the near future.

ACKNOWLEDGMENTS
The work reported in this paper was supported in part by an Intel

Labs grant and Ford Motor Company.

S2-CAN: Sufficiently Secure Controller Area Network ACSAC ’21, December 6–10, 2021, Virtual Event, USA

REFERENCES
[1] [n.d.]. AWS Pricing. https://calculator.aws/.

[2] [n.d.]. CAN Bus Load Calculation. https://kb.vector.com/entry/1519/.

[3] [n.d.]. CAN bus Load Calculator. http://www.canbusacademy.com/resources/can-

bus-load-calculator/.

[4] [n.d.]. Electronic engine control unit for commercial vehicles. https:

//www.bosch-mobility-solutions.com/en/products-and-services/commercial-

vehicles/powertrain-systems/natural-gas/electronic-engine-control-unit/.

[5] [n.d.]. Google Cloud. https://cloud.google.com/.

[6] [n.d.]. The OpenXC Platform. http://openxcplatform.com/.

[7] 2020. One-time pad. https://en.wikipedia.org/wiki/One-time_pad

[8] Emad Aliwa, Omer Rana, Charith Perera, and Peter Burnap. 2020. Cyberattacks

and Countermeasures For In-Vehicle Networks. arXiv preprint arXiv:2004.10781
(2020).

[9] Mehmet Bozdal, Mohammad Samie, Sohaib Aslam, and Ian Jennions. 2020. Eval-

uation of CAN Bus Security Challenges. Sensors 20, 8 (2020), 2364.
[10] Ken Budd. 2018. How Long Do Cars Last? A Guide to Your Car’s Longevity. https:

//www.aarp.org/auto/trends-lifestyle/info-2018/how-long-do-cars-last.html

[11] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav

Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, Ta-

dayoshi Kohno, et al. 2011. Comprehensive experimental analyses of automotive

attack surfaces.. In USENIX Security Symposium, Vol. 4. San Francisco, 447–462.

[12] Kyong-Tak Cho and Kang G Shin. 2016. Fingerprinting electronic control units

for vehicle intrusion detection. In 25th {USENIX} Security Symposium ({USENIX}
Security 16). 911–927.

[13] CSS Electronics. [n.d.]. CAN Bus Explained - A Simple Intro (2019). https:

//www.csselectronics.com/screen/page/simple-intro-to-can-bus/language/en.

[14] Donald J. Daly. 1987. Economics 2: EC2. https://aws.amazon.com/ec2/.

[15] Tomoiagă Radu Daniel and Stratulat Mircea. 2011. AES algorithm adapted on

GPU using CUDA for small data and large data volume encryption. International
journal of applied mathematics and informatics 5, 2 (2011), 71–81.

[16] Robert I Davis, Alan Burns, Reinder J Bril, and Johan J Lukkien. 2007. Controller

Area Network (CAN) schedulability analysis: Refuted, revisited and revised.

Real-Time Systems 35, 3 (2007), 239–272.
[17] Tri P Doan and Subramaniam Ganesan. 2017. CAN Crypto FPGA Chip to Secure

Data Transmitted Through CAN FD Bus Using AES-128 and SHA-1 Algorithms
with A Symmetric Key. Technical Report. SAE Technical Paper.

[18] CSS Electronics. [n.d.]. CAN DBC File - Convert Data in Real Time (Wireshark,

J1939). https://www.csselectronics.com/screen/page/dbc-database-can-bus-

conversion-wireshark-j1939-example/language/en.

[19] Elm Electronics, Inc. [n.d.]. OBD. https://www.elmelectronics.com/products/ics/

obd/.

[20] Wael A Farag. 2017. CANTrack: Enhancing automotive CAN bus security using

intuitive encryption algorithms. In 2017 7th International Conference on Modeling,
Simulation, and Applied Optimization (ICMSAO). IEEE, 1–5.

[21] Kyusuk Han, André Weimerskirch, and Kang G Shin. 2015. A practical solution

to achieve real-time performance in the automotive network by randomizing

frame identifier. Proc. Eur. Embedded Secur. Cars (ESCAR) (2015), 13–29.
[22] Adam Hanacek and Martin Sysel. 2016. Design and Implementation of an Inte-

grated System with Secure Encrypted Data Transmission. In Computer Science
On-line Conference. Springer, 217–224.

[23] Assaf Harel and Amir Hezberg. 2019. Optimizing CAN Bus Security with In-Place
Cryptography. Technical Report. SAE Technical Paper.

[24] Olaf Henniger, Ludovic Apvrille, Andreas Fuchs, Yves Roudier, Alastair Rud-

dle, and Benjamin Weyl. 2009. Security requirements for automotive on-board

networks. In 2009 9th International Conference on Intelligent Transport Systems
Telecommunications,(ITST). IEEE, 641–646.

[25] M Jukl and J Čupera. 2016. Using of tiny encryption algorithm in CAN-Bus

communication. Research in Agricultural Engineering 62, 2 (2016), 50–55.

[26] John Kelsey, Bruce Schneier, and David Wagner. 1997. Related-key cryptanalysis

of 3-way, biham-des, cast, des-x, newdes, rc2, and tea. In International Conference
on Information and Communications Security. Springer, 233–246.

[27] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno,

Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav

Shacham, et al. 2010. Experimental security analysis of a modern automobile. In

2010 IEEE Symposium on Security and Privacy. IEEE, 447–462.
[28] Ryo Kurachi, Yutaka Matsubara, Hiroaki Takada, Naoki Adachi, Yukihiro

Miyashita, and Satoshi Horihata. 2014. CaCAN-centralized authentication system

in CAN (controller area network). In 14th Int. Conf. on Embedded Security in Cars
(ESCAR 2014).

[29] Charlie Miller and Chris Valasek. 2013. Adventures in automotive networks and

control units. Def Con 21 (2013), 260–264.

[30] Charlie Miller and Chris Valasek. 2014. A survey of remote automotive attack

surfaces. black hat USA 2014 (2014), 94.

[31] Charlie Miller and Chris Valasek. 2015. Car hacking: for poories. Technical Report.
Tech. rep., IOActive Report.

[32] Charlie Miller and Chris Valasek. 2015. Remote exploitation of an unaltered

passenger vehicle. Black Hat USA 2015 (2015), 91.

[33] Stefan Nürnberger and Christian Rossow. 2016. –vatican–vetted, authenticated

can bus. In International Conference on Cryptographic Hardware and Embedded
Systems. Springer, 106–124.

[34] A. Perrig, R. Canetti, J. Tygar, and D. Song. 2000. Approaches for secure and

efficient in-vehicle key management. In Proceedings of the IEEE Symposium on
Security and Privacy (SP 2000). 56Ű73.

[35] Mert D Pesé, Karsten Schmidt, and Harald Zweck. 2017. Hardware/software
co-design of an automotive embedded firewall. Technical Report. SAE Technical

Paper.

[36] Mert D Pesé, Troy Stacer, C Andrés Campos, Eric Newberry, Dongyao Chen,

and Kang G Shin. 2019. LibreCAN: Automated CAN Message Translator. In

Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. 2283–2300.

[37] A.-I. Radu and F.D. Garcia. 2016. LeiA: a lightweight authentication protocol for

CAN. Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016
878 (2016).

[38] Ali Shuja Siddiqui, Yutian Gui, Jim Plusquellic, and Fareena Saqib. 2017. Secure

communication over CANBus. In 2017 IEEE 60th International Midwest Symposium
on Circuits and Systems (MWSCAS). IEEE, 1264–1267.

[39] Takeshi Sugashima, Dennis Kengo Oka, and Camille Vuillaume. 2016. Approaches

for secure and efficient in-vehicle key management. SAE International Journal of
Passenger Cars-Electronic and Electrical Systems 9, 2016-01-0070 (2016), 100–106.

[40] A. S. Thangarajan, M. Ammar, B. Crispo, and D. Hughes. 2019. Towards Bridging

the Gap between Modern and Legacy Automotive ECUs: A Software-Based

Security Framework for Legacy ECUs. In 2019 IEEE 2nd Connected and Automated
Vehicles Symposium (CAVS). 1–5. https://doi.org/10.1109/CAVS.2019.8887788

[41] A. Van Herrewege, D. Singelee, and I. Verbauwhede. 2011. CANAuth – a simple,

back-ward compatible broadcast authentication protocol for CAN bus. ECRYPT-
Workshop on Lightweight Cryptography (2011).

[42] Qiyan Wang and Sanjay Sawhney. 2014. VeCure: A practical security framework

to protect the CAN bus of vehicles. In 2014 International Conference on the Internet
of Things (IOT). IEEE, 13–18.

[43] Haohuang Wen, Qi Alfred Chen, and Zhiqiang Lin. 2020. Plug-N-pwned: Com-

prehensive vulnerability analysis of OBD-II dongles as a new over-the-air attack

surface in automotive IoT. In 29th {USENIX} Security Symposium ({USENIX}
Security 20). 949–965.

[44] Zhihong Wu, Jianning Zhao, Yuan Zhu, Ke Lu, and Fenglue Shi. 2019. Research

on In-Vehicle Key Management System under Upcoming Vehicle Network Archi-

tecture. Electronics 8, 9 (2019), 1026.
[45] Michael Ziehensack. 2015. Safe and Secure Communication with Automotive

Ethernet.

[46] Qingwu Zou,Wai Keung Chan, Kok Cheng Gui, Qi Chen, Klaus Scheibert, Laurent

Heidt, and Eric Seow. 2017. The Study of Secure CAN Communication for

Automotive Applications, In SAE Technical Paper. https://doi.org/10.4271/2017-

01-1658

[47] Baozhu Zuo. [n.d.]. CAN-BUS Shield V2.0. https://wiki.seeedstudio.com/CAN-

BUS_Shield_V2.0/.

https://calculator.aws/
https://kb.vector.com/entry/1519/
http://www.canbusacademy.com/resources/can-bus-load-calculator/
http://www.canbusacademy.com/resources/can-bus-load-calculator/
https://www.bosch-mobility-solutions.com/en/products-and-services/commercial-vehicles/powertrain-systems/natural-gas/electronic-engine-control-unit/
https://www.bosch-mobility-solutions.com/en/products-and-services/commercial-vehicles/powertrain-systems/natural-gas/electronic-engine-control-unit/
https://www.bosch-mobility-solutions.com/en/products-and-services/commercial-vehicles/powertrain-systems/natural-gas/electronic-engine-control-unit/
https://cloud.google.com/
http://openxcplatform.com/
https://en.wikipedia.org/wiki/One-time_pad
https://www.aarp.org/auto/trends-lifestyle/info-2018/how-long-do-cars-last.html
https://www.aarp.org/auto/trends-lifestyle/info-2018/how-long-do-cars-last.html
https://www.csselectronics.com/screen/page/simple-intro-to-can-bus/language/en
https://www.csselectronics.com/screen/page/simple-intro-to-can-bus/language/en
https://aws.amazon.com/ec2/
https://www.csselectronics.com/screen/page/dbc-database-can-bus-conversion-wireshark-j1939-example/language/en
https://www.csselectronics.com/screen/page/dbc-database-can-bus-conversion-wireshark-j1939-example/language/en
https://www.elmelectronics.com/products/ics/obd/
https://www.elmelectronics.com/products/ics/obd/
https://doi.org/10.1109/CAVS.2019.8887788
https://doi.org/10.4271/2017-01-1658
https://doi.org/10.4271/2017-01-1658
https://wiki.seeedstudio.com/CAN-BUS_Shield_V2.0/
https://wiki.seeedstudio.com/CAN-BUS_Shield_V2.0/

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Mert D. Pesé, Jay W. Schauer, Junhui Li, and Kang G. Shin

A CRACKING SUCCESS

Table 7: Top 2 Cracking Success based on Trace Length (in %)

Trace
Length 5 10 25 50 75 100

ST1 14/20 9/10 4/4 3/3 2/2 1/1

ID 13/20 8/10 4/4 3/3 2/2 1/1Veh. A
cnt 14/20 9/10 4/4 3/3 2/2 1/1

ST1 12/20 4/10 3/4 2/3 1/2 1/1

ID 11/20 3/10 3/4 1/3 1/2 1/1Veh. B
cnt 12/20 4/10 3/4 2/3 1/2 1/1

ST1 8/20 7/10 3/4 3/3 2/2 1/1

ID 8/20 7/10 3/4 3/3 2/2 1/1Veh. C
cnt 8/20 7/10 3/4 3/3 2/2 1/1

f 12/20 7/10 3/4 3/3 2/2 1/1

ID 11/20 5/10 3/4 3/3 2/2 1/1Veh. D
cnt 12/20 7/10 3/4 3/3 2/2 1/1

Table 8: Top 3 Cracking Success based on Trace Length (in %)

Trace
Length 5 10 25 50 75 100

ST1 14/20 9/10 4/4 3/3 2/2 1/1

ID 13/20 8/10 4/4 3/3 2/2 1/1Veh. A
cnt 14/20 9/10 4/4 3/3 2/2 1/1

ST1 12/20 4/10 4/4 2/3 1/2 1/1

ID 11/20 3/10 4/4 1/3 1/2 1/1Veh. B
cnt 12/20 4/10 4/4 2/3 1/2 1/1

ST1 8/20 7/10 3/4 3/3 2/2 1/1

ID 8/20 7/10 3/4 3/3 2/2 1/1Veh. C
cnt 8/20 7/10 3/4 3/3 2/2 1/1

ST1 12/20 7/10 3/4 3/3 2/2 1/1

ID 11/20 5/10 3/4 3/3 2/2 1/1Veh. D
cnt 12/20 7/10 3/4 3/3 2/2 1/1

Table 9: Top 5 Cracking Success based on Trace Length (in %)

Trace
Length 5 10 25 50 75 100

ST1 14/20 9/10 4/4 3/3 2/2 1/1

ID 13/20 8/10 4/4 3/3 2/2 1/1Veh. A
cnt 14/20 9/10 4/4 3/3 2/2 1/1

ST1 13/20 5/10 4/4 2/3 1/2 1/1

ID 12/20 4/10 4/4 1/3 1/2 1/1Veh. B
cnt 13/20 5/10 4/4 2/3 1/2 1/1

ST1 8/20 7/10 3/4 3/3 2/2 1/1

ID 8/20 7/10 3/4 3/3 2/2 1/1Veh. C
cnt 8/20 7/10 3/4 3/3 2/2 1/1

ST1 14/20 8/10 3/4 3/3 2/2 1/1

ID 13/20 6/10 3/4 3/3 2/2 1/1Veh. D
cnt 14/20 8/10 3/4 3/3 2/2 1/1

Table 10: Top 10 Cracking Success based on Trace Length (in
%)

Trace
Length 5 10 25 50 75 100

ST1 15/20 10/10 4/4 3/3 2/2 1/1

ID 14/20 9/10 4/4 3/3 2/2 1/1Veh. A
cnt 15/20 10/10 4/4 3/3 2/2 1/1

ST1 13/20 5/10 4/4 2/3 1/2 1/1

ID 12/20 4/10 4/4 1/3 1/2 1/1Veh. B
cnt 13/20 5/10 4/4 2/3 1/2 1/1

ST1 8/20 7/10 3/4 3/3 2/2 1/1

ID 8/20 7/10 3/4 3/3 2/2 1/1Veh. C
cnt 8/20 7/10 3/4 3/3 2/2 1/1

ST1 16/20 9/10 3/4 3/3 2/2 1/1

ID 15/20 7/10 3/4 3/3 2/2 1/1Veh. D
cnt 16/20 9/10 3/4 3/3 2/2 1/1

B REBALANCING CAN MESSAGES

10 20 30 40 50 60 70 80 90 100
Chunks (in %)

30

35

40

45

50

55

60

65
M

ea
n

of

 U
se

d
Bi

ts

Vehicle A HS1
Vehicle A HS2
Vehicle B HS
Vehicle B MS
Vehicle C HS1
Vehicle C HS2
Vehicle D HS1
Vehicle D HS2

Figure 6: Relationship between Free Space and Message Pri-
ority

	Abstract
	1 Introduction
	2 CAN Primer
	3 Threat Model
	4 Related Work
	4.1 Authenticity and Integrity
	4.2 Confidentiality
	4.3 Key Management

	5 System Design
	5.1 Phase 0: Key Management
	5.2 Phase 1: Handshake
	5.3 Phase 2: Operation

	6 Finding Free Space
	7 Evaluation
	7.1 Experimental Setup
	7.2 Handshake Latency
	7.3 Operation Latency
	7.4 Other Metrics

	8 Security Analysis
	8.1 Experimental Setup
	8.2 Stage 0: Generating S2-CAN Traces
	8.3 Stage 1: Cracking the Encoding
	8.4 Stage 2: Authenticating Correctly
	8.5 Difficulty of Successful Cracking
	8.6 Determining Session Cycle T

	9 Discussion and Conclusion
	Acknowledgments
	References
	A Cracking Success
	B Rebalancing CAN Messages

