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Abstract—As machine learning (ML) has been proven effective
in solving various problems, researchers in the real-time systems
(RT) community have recently paid increasing attention to ML.
While most of them focused on timing issues for ML applications
(i.e., RT for ML), only a little has been done on the use of ML
for solving fundamental RT problems. In this paper, we aim
at utilizing ML to solve a fundamental RT problem of priority
assignment for global fixed-priority preemptive (gFP) scheduling
on a multiprocessor platform. This problem is known to be
challenging in the case of a large number (n) of tasks in a task set
because exhaustive testing of all priority assignments (as many as
n!) is intractable and existing heuristics cannot find a schedulable
priority assignment, even if exists, for a number of task sets.
We systematically incorporate RT domain knowledge into ML
and develop an ML framework tailored to the problem, called
PAL. First, raising and addressing technical issues including
neural architecture selection and training sample regulation,
we enable PAL to infer a schedulable priority assignment of
a set of n tasks, by training PAL with same-size (i.e., with n
tasks) samples each of whose schedulable priority assignment
has already been identified. Second, considering the exhaustive
testing of all priority assignments of each task set with large n
makes it intractable to provide training samples to PAL, we derive
inductive properties that can generate training samples with large
n from those with small n, through empirical observation of
PAL and mathematical analysis of the target gFP schedulability
test. Finally, utilizing the inductive properties and additional
techniques, we propose how to systematically implement PAL
whose training sample generation process not only yields unbiased
samples but also is tractable even for large n. Our experimental
results demonstrate PAL covers a number of additional task sets,
each of which has never been proven schedulable by any existing
approaches for gFP.

I. INTRODUCTION

Recent years have witnessed studies related to Machine
Learning (ML) in real-time systems (RT). Starting with [1]
that optimizes ML workloads in a time-sensitive multi-tasking
environment, most of them have addressed timing issues for
ML applications (classified as RT for ML), while a little has
been done to solve fundamental RT problems (classified as ML

for RT).

Recognizing this imbalance, this paper aims at utilizing
ML to solve a fundamental, challenging RT research problem.
Targeting global fixed-priority preemptive (gFP) scheduling
that assigns a fixed priority to each task and schedules the m
highest-priority tasks in each time slot (where m is the number
of processors on the platform), we focus on the following
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priority assignment problem, associated with one of the high-
performance state-of-the-art schedulability tests of gFP [2], [3],
[4], [5]. Given a task set that is not deemed schedulable by
the target schedulability test with any existing heuristic priority
assignments on an m-processor platform, find at least one
schedulable priority assignment for the task set that is deemed
schedulable by the target schedulability test. The problem is
challenging (and its solution is useful) for a task set with a
large number (n) of tasks, because (a) there is no known opti-
mal priority assignment for gFP on a multiprocessor platform
(unlike the uniprocessor case [6]), (b) existing heuristic priority
assignments cannot discover a schedulable priority assignment,
if exists, for a number of task sets, and (c¢) it is intractable
to test all priority assignments (as many as n!) with large
n (e.g., 15! = 1,307,674, 368,000). Note that there exists a
technique that allows to find a schedulable priority assignment
without investigating all priority assignments [7], but it cannot
be applied to high-performance schedulability tests for gFP, to
be discussed in Section II-A.

To find a solution to this problem, we systematically
incorporate RT domain knowledge into supervised learning [8]
that maps an input to an output by training input-output pairs
(called samples), and develop an ML framework specialized
for the problem, called PAL (Priority Assignment Learning
Framework). The first goal of PAL is to infer a schedulable
priority assignment for a task set with n tasks on an m-
processor platform, by training with a sufficiently large number
of same-size (i.e., with n tasks on an m-processor platform)
training samples. To this end, we need to address the following
questions.

Ql. How can we design sample structure (i.e., input and
output), and which neural architecture is suitable for
the sample structure?

Q2. Among many schedulable priority assignments for a
given task set, which assignment forms a favorable
training sample for effective training/inference? What
is the criterion for finding such an assignment?

To answer Q1, we design the sample structure in the most
intuitive way: input as a sequence of task parameters, and
output as a sequence of task indexes, the position of each
of which indicates its priority, to be presented in Eq. (5). The
sample structure needs a neural architecture to be capable of
associating each task index in an output with its corresponding
task parameters in its input. This is because, such capability
is effective in training PAL with samples so as to infer a
schedulable priority assignment, compared to a neural archi-



tecture that interprets a sequence of task indexes in an output
as enumeration of integer numbers. To this end, we adopt a
neural architecture called pointer networks [9], which learn the
conditional probability of each output element that corresponds
to the position of an input element.

For Q2, since a task set tends to have multiple schedulable
priority assignments, we usually have many options in gen-
erating training samples each of whose input is a given task
set and output is its schedulable priority assignment. Among
these options, we argue that it is effective to use a single “best”
training sample for a given task set in inferring a schedulable
priority assignment of other task sets. To select the “best”
priority assignment, we adopt the notion of system hazard
[10], which captures how sufficiently (or barely) a task set
with a target priority assignment is schedulable. Since a task
set with a priority assignment that yields a smaller system
hazard is easier to maintain the schedulability of the task set
in the case of increase of any execution time, decrease of any
period or an addition of a new task, we define the premier
priority assignment for a task set as the priority assignment of
that task set which yields the smallest system hazard. Then,
a sample with the premier priority assignment guides PAL
toward a schedulable priority assignment of other task sets, by
offering the features of a schedulable priority assignment that
can be applied to the most number of task sets. By addressing
Q1 and Q2, PAL can infer a schedulable priority assignment
of a target task set, as long as we train PAL with samples, the
size of each of which is the same as the target task set and its
output is the premier priority assignment.

Despite its capability of inferring a schedulable priority as-
signment, PAL as of now cannot solve the priority assignment
problem for a task set with a large number of tasks (n). That
is, while we can generate a premier sample (whose output
is a premier priority assignment) by exhaustively testing all
priority assignments of a task set with small n, the same does
not hold for a target task set with large n. This raises the
following critical issue.

Q3. How can we design the sample-generation process that
is tractable for large n?

To address Q3, we first define a notion of a pseudo-premier
priority assignment for a task set, whose system hazard is
smaller than all known heuristic priority assignments for the
task set. This notion makes it tractable to determine whether
a given priority assignment of a task set with large n is a
pseudo-premier or not, as it only requires investigation of the
heuristic priority assignments. By utilizing the tractability, we
derive two types of inductive properties to generate candidates
for pseudo-premier samples with large n, from pseudo-premier
samples with small n: one from empirical observation for
PAL and the other from mathematical analysis of the target
schedulability test. Considering the two types of inductive
properties are complementary to each other in terms of un-
biased and tractable generation of samples, we propose how
to systematically implement the sample-generation process by
utilizing the two types of inductive properties and additional
techniques. Once PAL is trained with the generated samples,
PAL is capable of inferring a pseudo-premier (or at least
schedulable) priority assignment for a target task set with given
large n, thus solving the priority assignment problem.

Our ML framework is empirically shown to have two
salient features. First, it can solve the target priority assignment
problem effectively, as it can find a priority assignment schedu-
lable by the target schedulability test for a number of task sets.
Second, it covers a number of additional gFP-schedulable task
sets, each of which has not been proven schedulable by any
of existing approaches for gFP.

This paper makes the following contributions.

e The first attempt to utilize supervised learning for
solving the priority assignment problem — an impor-
tant fundamental problem in the RT research field;

e  Design of the ML framework specialized for the pri-
ority assignment problem, and proposal of a method-
ology for incorporating RT domain knowledge in the
ML framework development;

e  Success in solving the target priority assignment prob-
lem by the proposed ML framework; and

e  Discovery of a number of additional gFP-schedulable
task sets, each of which has not been proven gFP-
schedulable by any existing approaches.

The remainder of this paper is structured as follows.
Section II describes our priority assignment problem with its
target schedulability test. Section III develops the foundation
for PAL, and Section IV derives inductive properties for PAL.
Section V presents the implementation of PAL. Section VI
demonstrates our experimental results, and finally, Section VII
concludes the paper.

II. BACKGROUND AND GOAL

We first state our target priority assignment problem for
gFP, along with existing approaches that improve schedulabil-
ity of gFP. We then summarize our target schedulability test for
gFP, which is associated with the priority assignment problem.

A. Priority Assignment Problem and Related Work

In this paper, we consider the implicit-deadline sporadic
task model [6], [11]. Each task 7; in a task set 7 is modeled
by (T;,C;), where T; is the minimum separation (or period)
and C; is the worst-case execution time. Each task 7; invokes a
series of jobs, each separated from its predecessor by at least T
time units and supposed to finish its execution within 7; time
units after its release. We assume the quantum length is one
unit, so all task parameters (i.e., T; and C;) are integers. We
consider a multiprocessor platform consisting of m identical
processors.

We focus on gFP (global Fixed-Priority preemptive)
scheduling, which assigns a fixed priority to each task. In
each time slot, gFP chooses and executes m jobs whose
invoking tasks’ priority is the highest. A task set 7 is said
to be schedulable by gFP with a given priority assignment, if
there is no single job deadline miss for all possible (infinitely-
many) job sequences when they are scheduled by gFP with
the priority assignment. A schedulability test for gFP finds
sufficient condition(s) for schedulability of a target task set
with a given priority assignment. Then, the priority assignment
problem associated with a schedulability test for gFP is to find



TABLE 1. AVERAGE TIME TO TEST THE SCHEDULABILITY OF ALL
PRIORITY ASSIGNMENTS FOR A TASK SET OF 6 < n < 11 TASKS ON TWO
PROCESSORS BY THE SCHEDULABILITY TEST [3]

n_ | 6 | 7 [ 8 [ 9 [ 10 [ it |
[ Time (second) | 0.004 | 0.028 | 0.236 | 2.32 | 31.2 | 379 |

at least one priority assignment for a task set on m processors,
which is deemed schedulable by a target schedulability test
for gFP (called schedulable priority assignment). The priority
assignment problem is challenging for a task set with a large
number (n) of tasks, because of the three reasons (a), (b) and
(c) mentioned in Section I.

Regarding the reason (c) in Section I, we need to investigate
time to test the schedulability of every priority assignment of
a task set. Since there are n! priority assignments for a task set
with n tasks and it takes O(n? - max,,e, T;) to apply a high-
performance state-of-the-art schedulability test in [3] (also to
be used as our target schedulability test), the time-complexity
to check the schedulability of all priority assignments for a
task set by the schedulability test is O(n! - n? - max,,e, T}),
which is exponential in n. To confirm the intractability for
large n, we measure the actual time under a PC, when the
number of processors (m) is two and the number of tasks (n)
is 6 < n < 11; Table I records the average time for each n.
As shown in the table, the ratio between the time for (n — 1)
and that for n is no smaller than n; if we assume the ratio is
exactly n (that is smaller than the actual ratio), the time for
n = 15 is expected to be 12,416,040 seconds = 144 days.
Therefore, it is intractable to solve the priority assignment
problem by exhaustive testing of all priority assignments of a
task set with large n, although the criterion for large n depends
on the available computing power.

To improve the schedulability of gFP in spite of the in-
tractability of investigating all priority assignments, there have
been two categories of study: (S1) develop low-performance
OPA-compatible (optimal priority assignment) schedulability
tests [12], [13] and apply them to Audsley’s OPA [7], and
(82) develop high-performance OPA-incompatible schedulabil-
ity tests [2], [3], [4], [5] and apply them to heuristic priority
assignments [6], [14], [15]. Under the schedulability tests
for (S1), a task’s schedulability only depends on a set of
its higher-priority tasks, not on the relative priorities among
the higher-priority tasks. While this property enables finding
of a schedulable priority assignment without investigating all
priority assignments using Audsley’s OPA (which investigates
only O(n?) tasks), it prevents use of slack values, which
are generated by relative priorities of the higher-priority tasks
and used to reduce the interference to the task of interest.
Therefore, the schedulability tests for (S1) themselves without
OPA exhibit low schedulability performance.

On the other hand, schedulability tests for (S2) utilize the
slack values of higher-priority tasks, which yield high perfor-
mance in terms of schedulability, but cannot apply Audsley’s
OPA. Due to this inability, existing studies found the following
“good” heuristic priority assignment policies: the smaller T;,
the higher priority (DMPO) [6]; the smaller (T; — C;), the
higher priority (D-CMPO) [14]; and the smaller (T; — k- C;),
the higher priority, where k = m=1+v 5 m2—6-m+1 (DkC) [15].
Note that there are some other heurlstlc priority assignment
policies, but they are known to be dominated by DMPO, D-

CMPO and DkC [16], [13].

Due to the tradeoff between low-performance schedulabil-
ity tests applied to OPA and high-performance schedulability
tests applied to heuristic priority assignments, no dominance
between (S1) and (S2) exists. However, under a given priority
assignment, every low-performance schedulability test for (S1)
is dominated by its corresponding high-performance schedu-
lability test for (S2) (e.g, DA [12] dominated by RTA [2],
DA-LC [13] dominated by RTA-LC [3]). Hence, if we target a
task set that is deemed schedulable by neither any state-of-the-
art high-performance schedulability test with heuristic priority
assignments (e.g., RTA-LC with DMPO, D-CMPO and DkC)
nor any low-performance OPA-compatible schedulability test
with OPA (e.g., DA-LC with OPA), this task set, with a “good”
priority assignment, can be deemed schedulable by the state-
of-the-art high-performance schedulability test. Therefore, this
paper aims at solving the following problem with our ML
framework to be developed in Sections III and IV.

Problem 1: Given a task set 7, for which the existing
heuristic priority assignments (i.e., DMPO, D-CMPO, and
DKC) cannot be deemed schedulable by the target schedulabil-
ity test in [3]' (i.e., Lemma 1 to be presented in Section II-B,
called RTA-LC) on m processors, Find at least one priority
assignment for 7, which is deemed schedulable by the test on
M Processors.

After developing the proposed ML framework, Section VI
will evaluate its effectiveness in solving Problem 1 in com-
parison with existing approaches for gFP, including a hybrid
approach of S1 and S2 in [17]. Note that (iii) takes advantage
of both S1 and S2 in that it determines as many priorities
as possible using an OPA-compatible schedulability test in S1
(i.e., DA-LC [13]), and then assigns the remaining priorities
using an OPA-incompatible schedulability test in S2 (i.e., RTA-
LC [3]) with backtracking (by limiting the number of trials for
tractability).

There has been prior work on applying ML to solve
real-time scheduling problems [18], [19], [20], [21], [22],
[23], [24], [25]. Ae and Aibara [18] focused on shortening
the scheduling time in a hard real-time environment using a
processor made out of neural network. Chen and Huang [23]
used competitive learning rules on Hopfield neural network
to solve preemptive multitasking without task migrations, and
Guo and Baruah [25] solved a real-time scheduling problem on
a uniprocessor platform using a single layer RNN model. There
have also been approaches to scheduling problems by building
neural networks on the foundation of k-out-of-N rule [19],
[20], [21]. Attempts have been made to apply neural network to
a job-shop scheduling problem [22], [24]. Our work is different
from all of these in that (i) our target problem is different from
these prior studies, and (ii) we develop new approaches to the
priority assignment problem, including the generation of large-
size samples from small-size samples using properties of both
neural architecture and schedulability analysis.

'While the priority assignment problem associated with any of the state-of-
the-art high-performance schedulability tests for gFP in [2], [3], [4], [5] can
be applied to our ML framework to be developed in Sections III, IV and V,
we choose to apply the schedulability test in [3] (i.e., Lemma 1) for exploiting
lower time-complexity but high schedulability performance.



B. Target Schedulability Test

Now we explain the target schedulability test in Problem 1.
In a nutshell, the test calculates the response time of every task
7; € T (denoted by R;), meaning that every job of 7; finishes
its execution within R; time units from its release. If R; < T;
holds for every 7; € 7, the task set is deemed schedulable by
the target test. To this end, the test calculates the notion of
interference; let I, ;(¢) denote the cumulative interval length
where a job of 7, cannot execute due to execution of jobs of
7; (# T) in an interval of length ¢ that starts with the job of
71’s release. Considering a job cannot execute in a time slot
only when other m higher-priority jobs execute in the slot, a
job of 73 finishes its execution within Ry time units from its
release if the following holds under gFP [2]:

ZTieHlk Ik(—z(Rk)J

m

Ri =Cr + \‘ (D
where Hl; denotes a set of tasks in 7, each of which has a
higher priority than 7.

The remaining issue is to upper-bound the summation term
of I ;(Ry) in Eq. (1) for every job of 7. Under gFP, a
higher-priority task 7; can interfere with a lower-priority task
T during any job execution of 7;. Therefore, we need to
calculate the maximum execution of jobs of 7; in an interval
of length ¢, which is calculated by [2]

Wi(€) = Ni(£) - C; + min (Ci,éJrTi 0~ Si — Ni(0) T)
2

where N;(¢) = | 41:2%=5: | 'and S; denotes the slack value
of 7;, meaning that evéry job of 7; finishes its execution no
later than S; time units ahead of its deadline; once R; is
calculated, S; is set to (T; — R;). Here we explain the job
execution/release pattern for W;(£). The first job of 7; executes
as late as possible, and the following jobs execute as early as
possible; the interval of interest starts when the first job starts
its execution. With the job execution/release pattern, N;(¢)
calculates the number of jobs of 7; whose deadline is within the
interval of interest of length ¢; such jobs contribute N;(¢) - C;
to W;(¢), and the last job whose deadline is after the interval
of interest (if exists) contributes the second term of the RHS
(right-hand-side) of Eq. (2) to W;(¢).

Then, Bertogna and Cirinei [2] judge the schedulability
of 7 by calculating Rj for 7, € 7 as follows. From the
highest-priority task to the lowest-priority task, we perform
the following process with setting S; = 0 for every task
7;. For each 7y, starting from R, = C}, we calculate the
RHS of Eq. (1) by replacing I, ;(Ry) to W;(Ry) for every
7; € Hlg. If the value is larger than Ry, we set Ry to the value,
and repeat the calculation until Ry, is larger than 7T}, (deemed
unschedulable) or Ry is converges (deemed schedulable). If
the task is deemed unschedulable, we conclude that 7 is
unschedulable; otherwise, we update Sy = T — Ry, and
proceed with the next task. If every task is deemed schedulable,
we conclude that 7 is schedulable.

Based on [2], Guan er al. [3] reduces the amount of
interference by deriving the following condition for a critical
instant [3]: under gFP, a critical instant of a job of a task
occurs only when there are at most (m — 1) higher-priority

tasks, each of which has a carry-in job in the interval of the
job of interest.”

For a task 7; that does not have any carry-in job in an
interval of interest of length ¢, we need to calculate the
maximum execution of jobs of 7; in the interval, which is
calculated by [3]

W/(0) = Ni(0) - G+ min (Co L= NI(O) T}, @)
where N/(¢) = | |. The job execution/release pattern for
W(¢) is explained as follows: every job of 7; executes as
early as possible, and the interval of interest starts when the
first job starts its execution. W/(¢) and N/(¢) correspond to
W;(£) and N;(¢), respectively.

Then, the sum of interference can be upper-bounded as
follows [3].%

S L) < 3D W)
T; €EHly T; €EHlg
>
7; EHI | largestm — 1
where [A]P denotes min{A, B}. In the RHS of Eq. (4), we
add W/ (¢) for every 7; € Hl;, and add the difference between
W;(£) and W (£) for (m—1) tasks in Hlj, that have the (m—1)
largest differences. Then, with any combination of up to (m —
1) tasks that have a carry-in job, the sum of interference of 7
is upper-bounded by the RHS of Eq. (4). Note that the reason
for upper-bounding W;(¢) and W/ (¢) as ({—Cj,+1) is proven
in [2]. Using the interference upper-bound, the schedulability
test in [3] can be stated in the following lemma.

Lemma 1 (From [3], called RTA-LC): A task set 7 is
schedulable by gFP with a priority assignment P, if Ry < Ty
holds for all 7, € 7, where Ry is calculated by finding Ry
that satisfies Eq. (1) with the summation term replaced by the
RHS of Eq. (4). Note that it is the same as [2] how to find Ry
that satisfies Eq. (1) and how to reclaim the slack value Sj.

The lemma holds by Eqs. (1) and (4); the full proof is
shown in [3]. The time-complexity for Lemma 1 is O(n? -
maxr,er 1;) [2], where n is the number of tasks in each task
set, because each of n tasks 7; performs a summation of up
to (n — 1) tasks up to (T; — C; + 1) times.

[Wi(0)] = — Wi (O~ @)

III. PAL: PRIORITY ASSIGNMENT LEARNING
FRAMEWORK

Utilizing supervised learning [8] that maps an input to
an output by training input—output pairs (called samples), we
develop PAL, a priority assignment learning framework. The
first goal of PAL is to infer the premier (or at least schedulable)
priority assignment for a task set with n tasks on an m-
processor platform, assuming we secure a sufficiently large
number of same-size (i.e., with n tasks on an m-processor
platform) samples each of whose premier priority assignment
has already been identified. To this end, we first propose our
sample structure design and neural architecture selection for

2A job is said to be carry-in in an interval if the job is released before the
interval and has remaining execution at the beginning of the interval.

3In [3], there is a minor optimization of W;(¢), which may deduct one unit
of execution from W (¢).



supervised learning tailored to our target priority assignment
problem (i.e., Problem 1). We then develop a strategy to
regulate training samples for effective training/inference, by
carefully selecting a criterion that finds the premier priority
assignment for a given task set.

A. Sample Structure Design and Neural Architecture Selection

To design the supervised learning framework for our pri-
ority assignment problem (i.e., Problem 1), we first need to
design the sample’s input/output structure and select a neural
architecture. We design the sample structure in the most
intuitive way: input as a sequence of task parameters, and
output as a sequence of task indexes, each of whose position
represents its priority. For example, the following sample
implies as follows: there are three tasks 71 (7T} = 5,Cq = 1),
72(Te = 3,0y = 2) and 73(T5 = 10,C5 = 5), and the 1%,
27 and 37 priority tasks are 75, 71 and T3, respectively.

Input|[5,1][3,2][10,5]] — Output|2,1,3] Q)

Then, we have to select a neural architecture suitable for
supporting the sample structure of our priority assignment
problem. Such a neural architecture should be capable of
interpreting each output element as an order of input elements.
To make an output embody the meaning of orders of tasks, we
need to find a way to combine an input element (i.e., each task
of a given task set) and an output element into a pair, which
can be achieved using attention-based encoder-decoder archi-
tectures [26]. This has been widely used in neural language
translation, where each input element represents a specific
word which, in turn, has an exact equivalent throughout the
output elements.

Among many neural architectures derived from encoder-
decoder architectures that employ the attention mechanism,
we select pointer networks [9] as a base neural architecture
for solving our priority assignment problem. Pointer networks
determine vectors by recurrently computing the hidden states
and trained values from the model accordingly. These vectors,
after going through a softmax function [27], are used directly
as pointers to indicate the input elements. This characteristic
not only makes it successfully associate an input element
[T;, C;] with its output element that is the corresponding order
of the input element in the task set, but also enables each
output element to have a distinct order; the latter is a necessary
condition for every feasible priority assignment. In addition,
pointer networks exhibit a capability in inferring an output
for a sample without including the same-size samples in the
training set (although the output accuracy is low), which can
be exploited to generate large-size training samples for our
priority assignment; see Section IV for a detailed explanation.

B. Training Sample Regulation

Once the sample structure and neural architecture are
decided, the next step is to determine which samples to use
for training. Suppose we test all n! priority assignments for a
set of n tasks, and identify s schedulable priority assignments.
For the task set, there are various choices to generate samples
in terms of how many samples (from 1 to s) and which
schedulability priority assignments to be used. These choices
are very important, as they determine the effectiveness of

training samples in inferring a schedulable priority assignment
for other task sets. As a naive choice, we may generate s
samples for the task set using all of s schedulable priority
assignments, as shown in the following example.

Example 1: Consider a set 7 of tasks 74 (77 = 5,C = 2),
72(5,2) and 75(10,1) to be scheduled on a platform with
m = 2 processors. According to Lemma 1, all 3! = 6
priority assignments are schedulable. Suppose we use all
priority assignments (as output) for the task set (as input),
generating 3! = 6 samples. Then, the samples cannot provide
any guidelines for finding a schedulable priority assignment for
other task sets. For example, consider another task set 7/ by
doubling C; of 7; € 7, 1.e., 7/ = {71 (5,4), 75(5,4), 74(10,2)}.
According to Lemma 1, only two priority assignments in which
74’s priority is the lowest are schedulable. No one can infer
the two schedulable priority assignments for 7/ from the six
samples for 7.

Example 1 shows the importance of selecting training
samples for a given task set, and necessitates identification of
the “best” sample for a task set, which is capable of preserving
the schedulability of the task set even if its task parameters are
changed towards an infeasible task set (e.g., increase of any
C;, decrease of any T, or an addition of a new task). To select
the “best” priority assignment that guides other tasks toward
a schedulable priority assignment, we adopt (and adapt) the
concept of system hazard [10] for a task set 7 with a priority
assignment PP on m processors as follows.

O(r,P,m) = max R;/T;, 6)

T, €T

where R; is calculated by Lemma 1 for 7 with P on m pro-
cessors. If there exists at least one task 7; € 7 whose R; larger
than T3, ©(7, P, m) > 1.0 holds. Therefore, ©(7, P, m) < 1.0
implies 7 with P is deemed schedulable on m processors by
Lemma 1, while ©(7, P, m) > 1.0 implies 7 with P is not.

Since the system hazard ©(7, P, m) is the maximum ratio
between the response time (R;) and the period (7;) for every
7, € T, a task set with a priority assignment that yields
a smaller system hazard is easier to preserve schedulability
even when any C}; increases, any 7; decreases, or a new
task is added. For example, consider a task set 7 with two
priority assignments P and P’, which yield ©(r, P, m) = 1.0
and ©(7,P’,m) = 0.5. Since the task set with P is barely
schedulable, increase of any C; or decrease of any 7; tends to
make the task set with P unschedulable. On the other hand, P’
is resilient to such task parameter changes, because the task
set with P’ is still schedulable even if every response time
is doubled. As shown in the example, a priority assignment
with a smaller system hazard can offer clues of a schedulable
priority assignment that can be applied to more (similar) task
sets.

Using the concept of O(7,P,m), we define the “best”
priority assignment as follows.

Definition 1: A priority assignment P for a task 7 on an
m-processor platform is said to be premier, if P yields a
system hazard ©(7,P,m), which is no larger than 1.0 and
the smallest among all the priority assignments for 7 on an
m-processor platform.



Then, we use a single sample for a given task set (i.e., a
given input), whose output is the premier priority assignment.
The following example shows the change of the situation in
Example 1 if we use such a single sample.

Example 2: Recall 7 and 7' in Example 1. For 7,
the premier priority assignment P* is Output[l,2,3] (or
Output|2,1,3]), which yields ©(r,P*,2) = 0.4; all other
priority assignments P yield ©(7,P,2) = 0.6. Then, the
sample that maps 7 to P* can guide other task sets into
a schedulable priority assignment. For example, the premier
priority assignment P* for 7 makes 7’ schedulable (i.e.,
O(r’,P*,2) = 1.0), while all other priority assignments P
for 7 make 7/ unschedulable (i.e., (7', P,2) > 1.0).

Using the concept of the premier priority assignment, we
can transform Problem 1 to the following problem which
exhibits a more suitable form for exploiting ML framework.

Problem 2: Given a task set 7 on m processors, Find the
premier priority assignment for 7 on m processors.

We can solve Problem 1 by solving Problem 2, as stated
in the following lemma.

Lemma 2: Suppose that we solve Problem 2 for a task set
7 for which the existing heuristic priority assignments cannot
be deemed schedulable by Lemma 1 on m processors. Then,
the solution of Problem 2 is also a solution of Problem 1.

Proof: Suppose that the solution of Problem 2 is not a
solution of Problem 1. Since ©(7,P,m) < 1.0 holds for a
premier priority assignment P by Definition 1, the premier
priority assignment as a solution of Problem 2 is deemed
schedulable by Lemma 1, implying that the assignment is
also a solution of Problem 1. The supposition contradicts, thus
proving the lemma. [ |

Once PAL is trained with premier samples with n tasks on
an m-processor platform using the sample structure design,
neural architecture selection and training sample regulation,
PAL becomes ready to infer the premier (or at least a schedu-
lable) priority assignment for a target task set with n tasks
on an m-processor platform, which allows to solve Problem 1
according to Lemma 2. Note that PAL is not always capable of
solving Problem 1 (or Problem 2) for all task sets (even though
premier samples are provided for training), as PAL tries to infer
the premier priority assignment of each task set. However, it
is useful/meaningful for PAL to solve Problem 1 even for a
few task sets, if the task sets are not deemed schedulable by
any prior work.

Then, the next issue is how to secure a number of premier
samples with large n, to be addressed in Sections IV and V.

IV. DERIVATION OF INDUCTIVE PROPERTIES FOR PAL

In this section, we first introduce a remaining challenge for
PAL, i.e., generation of premier samples for large n. To address
the challenge, we derive inductive properties that can generate
large-size samples from small-size samples, from empirical
observation of PAL and mathematical analysis of the target
schedulability test in Lemma 1.

A. Challenge for PAL

In spite of its capability of inferring a schedulable priority
assignment, PAL has not yet addressed a critical issue: how to
generate samples each of whose output is the premier priority
assignment? While it is tractable to find the premier priority
assignment for a task set with small n by calculating the system
hazard of all priority assignments for the task set by Lemma 1,
the same cannot be said to hold for a task set with large n.
According to Table I, we need 2.32 x 10000 seconds = 6.44
hours to test all priority assignments for 10,000 task sets with
n = 9. Considering some task sets have no schedulable priority
assignment (and therefore no premier priority assignments), it
takes about up to 1 day to generate 10,000 task sets each of
whose output is the premier priority assignment. Although the
time depends on computing power, every computing platform
eventually reaches some n* that makes it intractable to test
all priority assignments. Therefore, we face the following
challenges for large n to solve the priority assignment problem
with PAL: (i) it is intractable to generate premier samples
by exhaustively testing all priority assignments, and (ii) it is
also intractable to determine whether a priority assignment
is premier or not (even if we have some candidates for the
premier priority assignment). To address (i) and (ii), we assess
the time-complexity of calculating the system hazard of every
and one priority assignment of a task set, respectively.

Observation 1: For a task set with n tasks, it takes
O(n! - n? - max,,e, T;) to calculate the system hazard of
all priority assignments by Lemma 1, while it takes only
O(n? -max,,c, T;) to calculate the system hazard of a heuristic
priority assignment (e.g., DMPO, D-CMPO or DkC) by the
lemma.

To utilize Observation 1 and consider our target problem
(i.e., Problem 1) is to find a schedulable priority assignment for
a task set which is not deemed schedulable by existing heuristic
priority assignments, we define the notion of a pseudo-premier
priority assignment as follows.

Definition 2: A priority assignment P for a task 7 on
an m-processor platform is said to be pseudo-premier, if P
yields a system hazard ©(7, P, m), which is no larger than
1.0 and smaller than all the system hazards associated with the
existing heuristic priority assignments (i.e., DMPO, D-CMPO,
and DkC) for 7 on an m-processor platform.

We claim that a pseudo-premier priority assignment is
capable of forming a sample for effective training. That is,
by having a smaller system hazard, a pseudo-premier priority
assignment is better than all existing heuristic priority assign-
ments in terms of how accurately each assignment guides PAL
towards a schedulable priority assignment of other task sets.
Similar to premier samples, PAL gets ready to infer a pseudo-
premier priority assignment for a target task set, by training
it with pseudo-premier samples (whose output is a pseudo-
premier priority assignment) the set of which has the same
size as the target task set. Then, the target problem for PAL
to solve can be expressed in conjunction with the notion of a
pseudo-premier priority assignment as follows.

Problem 3: Given a task set 7 on m processors, Find a
pseudo-premier priority assignment for 7 on m processors.

Similar to Problem 2, we claim that solving Problem 3



implies solving Problem 1 as follows.

Lemma 3: Suppose that we solve Problem 3 for a task set
7 for which the existing heuristic priority assignments cannot
be deemed schedulable by Lemma 1 on m processors. Then,
the solution of Problem 3 is also a solution of Problem 1.

Proof: Suppose that the solution of Problem 3 is not
a solution of Problem 1. Since ©(7,P,m) < 1.0 holds for
a pseudo-premier priority assignment P by Definition 1, the
pseudo-premier priority assignment as a solution of Problem
3 is deemed schedulable by Lemma 1, meaning that the
assignment is also a solution of Problem 1. The supposition
contradicts, thus proving the lemma. ]

Using the notion of a (pseudo)premier priority assignment,
in Sections IV-B and IV-C we will derive two types of induc-
tive properties from empirical observation of PAL and from
mathematical analysis of Lemma 1, both of which can generate
(pseudo)premier samples with large n, from (pseudo)premier
samples with small n.

B. Derivation of Inductive Properties from Lemma I

We analyze our target schedulability test (i.e., Lemma 1)
and derive two inductive properties from the schedulability
test, one of which is stated in the following lemma.

Lemma 4: The following inductive property makes it pos-
sible to generate a (pseudo)premier sample with (m=z,
n=y-+1)* from a (pseudo)premier sample with (m=x, n=y).

I1.  Suppose we know the premier priority assignment P
for 7 = {7}1<i<y on x processors. We construct
71 by adding a new task 7,41 to 7, and Pt by
adding 7,1 as the lowest priority to P. If we set
Cy+1 and T yq such that R, y1/T,1 is no larger than
O(r, P, z), then Pt is the premier priority assignment
for 7F on z processors. Note that it may be impossible
to set such Cy4q and Ty4q.
Also, the same holds for a pseudo-premier sample.

Proof: We prove the lemma by contradiction. Suppose
that I1 is true except that PT is not the premier priority
assignment for 7+ on x processors.

Since the priority of 7,41 is the lowest, R; under 71 with
PT is the same as R; under 7 with P, for all 1 < i < 3.
Therefore, (7", PT,z) = max (0(7,P,z), Ry41/Ty+1)
holds; by the condition of R 1/Ty+1 < O(7, P, z) in the sup-
position, (71, Pt z) = O(r,P,z) holds. Since PT is not
the premier priority assignment for 7 on z processors, there
exists a premier priority assignment Pt’ (£ P*) for 7t on
processors, which satisfies ©(71, P’ z) < ©(rF, PT,z) =
o(r, P, x).

We construct P’ for 7, by removing the priority of
Ty4+1 from Pt Once we remove a task from a task
set without changing every other task’s relative priority
and the number of processors, the response time of ev-
ery other task decreases or remains unchanged, and hence
O(r,P',x) < O(rt, P, x) holds. Therefore, O(7, P, z) <

4From now on, we will let a sample with (m, n) denote a sample with n
tasks on m processors; the same applies to a priority assignment with (m, n)
as well as a task set with (m, n).

o(rt, Pt z) < ©(rt,PT,z) = O(r,P,z) holds, which
means P is not the premier priority assignment for 7 on x
processors; this contradicts the supposition.

The proof of I1 for a pseudo-premier sample is similar to
that for the premier sample. In this case, we use the fact that
if a heuristic priority assignment (i.e., DMPO, D-CMPO and
DkC) yields its system hazard for 7 equal to ©, it cannot yield
the system hazard for 71 less than ©. ]

One may wonder how to set Cy; and Ty, such that
Ry41/Ty+1 is no larger than O(r,P,z) in I1. One simple
way is to randomly generate Ty 1, find the largest C'y; 1 using
binary search, and randomly set C; within the largest value.
In this case, we need to test at most O(log(T}11)) task sets by
Lemma 1. Note that it is possible for some (pseudo)premier
samples to have no feasible pair of Cy; and T}, ; in this
case, we cannot use I1 for the samples; therefore, we try other
(pseudo)premier samples to derive larger-size (pseudo)premier
samples.

We now introduce another inductive property derived from
mathematical analysis of Lemma 1 as follows.

Lemma 5: The following inductive property makes it pos-
sible to generate the premier sample with (m=xz+1, n=y+1)
from the premier sample with (m=x, n=y).

I2. Suppose that we know the premier priority assignment
P for 7 = {7;}1<i<y Oon x processors. We construct
71 by adding a new task 7,41, and P by adding
Ty+1 as the highest priority to P. If we set Cy;, to
be no smaller than maxi<;<,(T; —C; +1), and Ty 14
to Cy41/0(7, P, x), then PT is the premier priority
assignment for 7 on (z + 1) processors.

Proof: We prove the lemma by contradiction. Suppose
that 12 is true except that P is not the premier priority
assignment for 7 on (z + 1) processors.

Since the priority of 7,7 is the highest and Cy;q >
maxi<;<y(T; — C; + 1) holds, 7,41 always contributes the
maximum interference (i.e., Ry — C + 1) to all other tasks 74
(for 1 < k < y) in the calculation of the RHS of Eq. (4). For
7, Eq. (1)’s convergence for 7, implies the numerator sum in
Eq. (1) should be within [(Ry—Cy)-z, (R —Cj+1)-z). For
7, Iy yt1(Ri) = Ry — Ck, + 1 is added to the numerator
sum in Eq. (1), and then the numerator sum becomes within
[(Rp—Cp) (z+1)+1, (R —C+1)- (z+1)). After dividing
the sum by x 4 1 and applying the floor function according to
Eq. (1), we get Rj, — CY, yielding the convergence of Eq. (1)
for 7. Hence, Ry under 77 with P on (z+1) processors is
equal to Ry under 7 with P on x processors forall 1 < k < y.
Therefore, O(7+, P, z+1) = max (O(7, P, z), Ryt1/Ty+1)
holds. Considering the highest-priority task’s response time is
the same as its worst-case execution time, R, ;1 /Ty 1 is equal
to Cy41/Ty+1, which is the same as ©(7, P, x) in the suppo-
sition; hence, ©(77, P, 2 + 1) = O(1, P, z) = Cyy1/Ty+1
holds.

Since R; cannot be smaller than C; for every task ;,
any priority assignment P* for 7 on (x + 1) processors
cannot yield ©(7+, P*, z+1) smaller than C, 41 /Ty ;. Since
Cy+1/Ty+1 is equal to O(7, PT, z+1), this implies that P+



is the premier priority assignment for 7% on (z+1) processors,
which contradicts the supposition. ]

Although applying 12 to a pseudo-premier sample for 7 on
x processors does not always yield a pseudo-premier sample
for 7F on (z+ 1) processors, the resulting priority assignment
for 7t on (x + 1) processors is guaranteed to yield the
minimum system hazard among all priority assignments for 7
on (z+1) processors (which is Cyy11 /Ty 41 in the proof). This
means that 12 yields a pseudo-premier sample for 7+ on (z+1)
processors unless one of the heuristic priority assignments for
7% on (x + 1) processors yields the minimum system hazard.
Therefore, 12 can be used to generate a pseudo-premier sample
with larger m, from that with smaller m, as follows: applying
12 to a pseudo-premier sample, checking whether the resulting
priority assignment is pseudo-premier or not, and using the
assignment if it is pseudo-premier.

C. Derivation of Inductive Properties from PAL

We derive two other inductive properties from empirical
observation of PAL, which can generate large-size samples
from small-size ones. The first inductive property is given as
follows.

Observation 2: The following inductive property makes
it possible to generate (pseudo)premier samples with large
n from (pseudo)premier samples with small n, which was
observed in our experiments.

I3. If PAL is trained with a sufficiently large number
of (pseudo)premier samples with (m=x, n<y), it is
possible to infer a (pseudo)premier priority assignment
for a task set with (m=x, n=y+a), with a low
probability, where o > 1.

I3’.  If we add a small number of (pseudo)premier samples
with (m=x, n=y+a) to the training set for I3, the
probability of inferring a (pseudo)premier priority as-
signment for a task set with (m=x, n=y+a) increases
dramatically.

The inductive property of I3 comes from the benefit and
limitation of our base neural architecture (i.e., pointer net-
works). While it is possible for the neural architecture to infer
an output of a sample without including the same-size samples
in the training set, the probability for the result to be desirable
is low. Thus, it is not only effective but also mandatory to
derive and use Il in securing a number of (pseudo)premier
samples (and therefore in solving the target priority assignment
problem by our ML framework) by utilizing 13’.

We present example experimental results for I3 and 13 (our
implementation settings will be presented in Section V). First,
once we train PAL with a set of 500,000 training samples,
which consists of 500,000/13 pseudo-premier samples for each
pair of (m=4, 5<n<17), PAL succeeds in inferring 8 pseudo-
premier priority assignments out of 1,000 tested task sets with
(m=4, n=18). Second, we directly derive 100 pseudo-premier
samples of (m=4, n=18) from samples with (m=4, n=17)
using 11, add the 100 samples to the training set which now
consists of 500,100 samples, and re-train PAL with them. As a
result, PAL infers 148 pseudo-premier priority assignments out
of the same 1,000 tested task sets with (m=4, n=18), which is
a significant improvement over the inference without same-size

training samples generated by I1. Since it takes 168 seconds to
try 1,000 tested task set, the expected time to generate 10, 000
pseudo-premier samples in the former and that in the latter are
210,000 seconds (= 58.3 hours) and 11,351 seconds (= 3.2
hours), respectively.

In addition to I3, we observe another inductive property
from the experimental results of PAL.

Observation 3: The following inductive property makes
it possible to generate (pseudo)premier samples with large
m from (pseudo)premier samples with small m, which was
observed in our experiments.

I4. If PAL is trained with a sufficiently large number
of (pseudo)premier samples with (m=x, n<y), it is
possible to infer a (pseudo)premier priority assignment
for a task set with (m=x+3, n=y), with a low
probability, where 5 > 1.

I4’.  If we add a small number of (pseudo)premier samples
with (m=x+, n=y) to the training set for 14, the
probability of inferring a (pseudo)premier priority as-
signment for a task set with (m=x+ [, n=y) increases
dramatically.

Unlike I3, the inductive property of 14 comes not only
from the base neural architecture, but also from the target
schedulability test. Suppose that we have a task set 7 and its
pseudo-premier priority assignment P on a platform with x
processors. Let R; and R, denote the response time of 7; € 7
with P on x processors and (x + ) processors, respectively.
In Eq. (1), we can observe the difference between R; and R
according to the change of the denominator from z to (z+3).
Considering the fact that the change applies to all tasks, there
exist many task sets in each of which the task having the
largest R;/T; with P on x processors is the same as the task
having the largest R’ /T; with P on (z+ ) processors. In such
task sets, P tends to be a pseudo-premier priority assignment
for 7 even on (z 4+ B) processors. Therefore, it is possible
for features of pseudo-premier samples with (m=x, n=y) to
guide PAL towards a pseudo-premier assignment of other task
sets with (m=xz+3, n=y).

V. IMPLEMENTATION OF PAL

In this section, we describe how to systematically imple-
ment PAL in detail. We first present the neural architecture
settings then the task set generation process, which can be
used not only for generating training samples, but also for
evaluating PAL in Section VI. The sample generation process
addresses the following two important issues:

Gl. How to generate unbiased pseudo-premier samples,
and

G2. How to reduce time for the sample-generation process
and make the process tractable for large n.

Then, the training process will be described after the sample
generation process.
A. Setting Neural Architecture

To implement PAL, we use two PCs equipped with an Intel
Zeon Silver 4216 processor, a 32GB RAM, and an Titan RTX



GPGPU with 24GB memory. Our baseline neural architecture
of pointer networks [9] is set up as follows: encoder/decoder
built with LSTM [28] cells with 512 hidden units trained
with learning rate of 0.001 and batch size of 512 (empirically
chosen), which is optimized by Adam optimizer [29]. Sparse
categorical cross-entropy was used as a loss function. The input
data consists of numerical sequences of (7;,C;) and the order
of tasks as shown in Eq. (5). The number of training samples
for each (m, n) is empirically chosen as 500,000, to be detailed
in Section V-D.

B. Generating Target Task Sets

Since we aim to solve Problem 1, the qualification of
target task sets are (C1) not to be schedulable by Lemma 1
with one of the heuristic priority assignments (i.e., DMPO, D-
CMPO, DkC), and (C2) to be schedulable by gFP with some
priority assignment. The qualification is used for the entire
implementation of PAL: generating pseudo-premier samples
whose task sets satisfy the qualification, training PAL with
them, and inferring a pseudo-premier priority assignment for
each target task set that satisfies the qualification. Therefore,
we need to generate a large number of task sets that satisfy
the qualification.

To generate a target task set, we adapt a popular set gener-
ation method [30], [12], [31], and consider 10 distributions for
C;/T; to generate a variety of task sets: binomial distribution
with constants 0.1, 0.3, 0.5, 0.7 and 0.9, and exponential
distribution with constants 0.1, 0.3, 0.5, 0.7 and 0.9. Each task
set for given (m, n) is generated as follows. First, we randomly
choose one of the 10 distributions. Second, we generate n
tasks by repeating the following procedure n times for each
T;: to generate the period (7;) in [10,1000] according to the
log-uniform distribution [32], to generate C;/T; according to
the chosen distribution, and to calculate C; as a multiplication
between the generated T; and C;/T;. Third, we discard the task
set if (C1) or (C2) is violated. Since there is no exact known
condition for (C2), we apply a necessary test in [17], called
the C-RTA test. We also discard the task set if it is schedulable
by OPA with DA-LC [13], implying that a schedulable priority
assignment is already identified by OPA-compatible version of
Lemma 1. If the generated task set is not discarded in the third
step then we use it else we repeat the entire process until the
newly-generated task set passes the third step.

C. Securing Unbiased Samples with Reasonable Time

We generate pseudo-premier samples for the following
pairs of (m, n): (m=2, 5<n<15), (m=4, 5<n<20), and
(m=6, 7<n<25), where m is the number of processors and n
is the number of tasks in each task set. To generate a pseudo-
premier sample with each (m, n), whether n is larger than
n* or not is important; n* denotes the largest n that makes
it tractable to generate a given number of pseudo-premier
samples by exhaustively testing all priority assignments of
each task set by Lemma 1, and n* is set to 8 considering
our computing platform and the maximum number of samples
with each (m, n) to be generated. Due to the intractability, the
case of n > n* necessitates utilizing the inductive properties of
PAL to generate a large-size pseudo-premier sample. One may
consider the following two approaches: (i) directly deriving a

target-size pseudo-premier sample from an existing smaller-
size pseudo-premier sample (i.e., applying Il and/or 12 in
Section IV-B), and (ii) training PAL with smaller-size samples
only, trying to infer a priority assignment for a task set
generated as in Section V-B, and using the sample only if
the assignment is pseudo-premier (i.e., applying I3 and/or
I4 in Section IV-C). Although (i) is capable of immediately
generating each pseudo-premier sample without relying PAL’s
inference process, the task sets in the generated samples are
severely biased in terms of task utilization (i.e., favorable to
G2, not to G1). This because, I1 and 12, respectively, add
a task with low- and high-utilization to the task set of an
existing pseudo-premier sample. On the other hand, since (ii)
tries to infer a pseudo-premier priority assignment for task
sets randomly generated by Section V-B, (ii) can generate a
variety of pseudo-premier samples in terms of task utilization.
However, it takes a long time to generate a given number of
samples (i.e., favorable to GI1, not to G2); for example, if we
apply I3 only, it is expected to take 58.2 hours to generate
10,000 pseudo-premier samples with (4, 18) as mentioned in
Section IV-C.

To make the sample-generation process to achieve G1 and
G2 together, we systematically utilize the inductive properties
of PAL and additional techniques. For m = 2, we gener-
ate 100,000, 100,000/2, 100,000/3 and 100,000/4 pseudo-
premier samples (that are also premier) by exhaustively testing
all priority assignments of target task sets by Lemma 1, for
n = b5, 6, 7 and 8, respectively. We will explain later why
the number of generated task sets varies with n; in short,
training for n = 5 uses 100,000 task sets with n = 5, while
training for n = 6 uses 100,000/2 task sets with n = 5
and 100,000/2 task sets with n = 6. We then apply the
data augmentation technique with p = 5 (to be explained),
securing 100,000 x 5, 100,000/2 x 5, 100,000/3 x 5 and
100,000/4 x 5 pseudo-premier samples for n = 5, 6, 7 and
8, respectively. We then utilize I1 in Section IV-B and I3’
in Section IV-C to generate pseudo-premier samples for each
n = 9,10,11,... in a sequential manner as follows. First,
we select NU™Piased — 500 (00 generated unbiased pseudo-
premier samples, which consist of 500,000/(n — 5) samples
with (2, 5), those with (2, 6), ..., and those with (2, n—1); also,
we generate NP%ed — 100 biased pseudo-premier samples
with (2, n), by applying I1 to 100 unbiased pseudo-premier
samples with (2, n — 1). Second, we apply 13’ as follows:
train PAL with a set of the 500,000 unbiased pseudo-premier
samples and the 100 biased ones, and repeat to infer a pseudo-
premier priority assignment for a task set with (2, n) generated
by Section V-B until we have 100,000/ (n —4) pseudo-premier
samples with (2, n). Finally, we apply the data augmentation
technique with p = 5, securing 100,000/(n — 4) x 5 pseudo-
premier samples with (2, n). Note that although the generation
of pseudo-premier samples with n > n* = 8 requires at most
125,000 pseudo-premier samples for every 5 < n < 8, the
number of generated samples for n = 5, 6 and 7 is larger
than 125,000; the rest of the samples will be used for training
process for n = 5, 6 and 7 itself, to be detailed in Section V-D.

The sample-generation process for m = 4 is the same as
that for m = 2. For m = 6, the difference is the smallest valid
n for the sample generation, which is m + 1 = 7. Note that a
set of n (< m) tasks is trivially schedulable on m processors,
making any priority assignment meaningless; therefore, a



sample with (m, n) is valid only if n > m + 1. Therefore,
we generate 100,000 and 100,000/2 pseudo-premier samples
by exhaustively testing all priority assignments by Lemma 1
for n = 7 and n = 8§, respectively; the remaining process is
similar to that for m = 2.

A data augmentation technique is used in the above sample-
generation process in order to reduce the time to generate
a given number of pseudo-premier samples, and it operates
as follows. For a given generated pseudo-premier samples,
we shuffle the order of tasks and the corresponding priority
assignment together, yielding a new pseudo-premier sample,
which is logically the same as the original one. For example,
if Eq. (5) is a pseudo-premier sample, we may generate
the following duplicated sample: Input|[3,2][5,1][10,5]] —
Output[l,2,3] by changing the position of the first and
second elements in both input and output. Note that despite the
logical equivalence, PAL can interpret the duplicated sample
as different due to their different input/output order. Let p
denote how many samples we can secure from an original
pseudo-premier sample; for PAL, we empirically choose p = 5,
securing five samples from every original sample.

Our implementation for the sample generation can achieve
G1 and G2 at the same time as follows. First, when we apply
I3’ for generating samples with (m, n), we add NP@sed — 100
biased samples with (m, n) derived from I1. While the biased
same-size samples accelerate the probability of inferring a
pseudo-premier priority assignment for a set of n tasks (thus
achieving G2), the number of such samples is far smaller
than the number of unbiased different-size samples (i.e.,
NbPiased — 100 << yunbiased — 500 000), thus helping
achieve G1. Second, when we generate samples with (m,
n), we reuse the generated samples with (m, n’) for every
n’ < n. This implementation helps the sample generation
process to be scalable to large n in that the number of
samples to be generated by 13’ with I1 decreases as n increases
(achieving G2). For example, in case of m = 4, the number
is 100,000/5 20,000 for n = 9, while the number is
100,000/16 = 6,250 for n 20. Third, by applying the
data augmentation technique with p, we reduce the time for
generating samples to 1/p, which helps achieve G2. We would
like to stress that our implementation of the sample generation
is designed to overcome an inherent disadvantage of supervised
learning, needing a number of unbiased samples even for
large n. Note that NP@sed — 100 and NU"Piased — 500,000
are empirically set for better schedulability performance of
PAL. For example, if we increase N biased it makes training
sets more biased, yielding less schedulability performance of
PAL for large n eventually.

D. Training Generated Samples

To infer a pseudo-premier priority assignment for a target
task set with n tasks on m processors, we train PAL with a
set of Nunbiased — 500,000 unbiased pseudo-premier samples,
which varies with (m, n) as follows. If m = 2 or m = 4,
for every 5 < y < n, we select 500,000/(n — 4) samples
with (m, y) among the unbiased pseudo-premier samples with
(m, y) generated as described in Section V-C. For example,
the set for (4, 5) consists of 500,000 unbiased pseudo-premier
samples with (4, 5) only, while the set for (4, 20) consists of
500,000/16 = 31,250 unbiased pseudo-premier samples with
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(4, y) for every 5 < y < 20. When it comes to m = 6, the set
consists of 500,000/(n — 6) unbiased pseudo-premier samples
with (6, y) for every 7 < y < n. In fact, the sample-generation
process in Section V-C was already designed to provide the
required number of unbiased pseudo-premier samples to the
training process for each (m, n).

E. Discussion

Suppose we have completed the sample-generation process
for all pairs of (m, n) mentioned at the beginning of Sec-
tion V-C, but later we need to find a pseudo-premier priority
assignment for a task set with (z, y) which does not belong
to (m, n) pairs of the generated samples. We describe how to
utilize the proposed inductive properties and sample-generation
process for each of the following three cases: (i) samples with
(z, y') for ¢y < y have already been generated; (ii) case (i)
does not hold, but samples with (z — 1, ') for 3/ < y have
already been generated; and (iii) neither (i) nor (ii) holds.

For (i), we continue generating samples for up to (x, y)
as described in Section V-C. For example, if (z, y) = (2, 17),
we first generate 500,000/12 unbiased pseudo-premier samples
with (2, 16) by applying I3’ with I1 and the data augmentation
technique, and then generate 500,000/13 unbiased pseudo-
premier samples with (2, 17) in the same way. Second, we
train PAL with a set of 500,000 samples, which consist of
500,000/13 unbiased pseudo-premier samples with (2, y") for
every 5 < gy < 17. Finally, we let PAL infer a priority
assignment for the target task set with (2, 17).

As to (ii), it is inefficient to generate all the samples
with (z, y') for every 5 < 3’ < 1y in a sequentially
manner. Instead, we utilize 12 in Section IV-B and 14’ in
Section IV-C as exdplained below for (z, y) = (3, 15). First,
we select NumPiased — 500 000 generated unbiased pseudo-
premier samples, which consist of 500,000/11 samples with
(2, /) for every 5 < ¢/ < 15; we also generate NP@sed — 100
biased pseudo-premier samples with (3, 15), by applying 12
to 100 unbiased pseudo-premier samples with (2, 14). Second,
we apply 14’ as follows: train PAL with a set of the 500,000
unbiased pseudo-premier samples and the 100 biased ones, and
repeat the inference of a pseudo-premier priority assignment
for a task set with (3, 15) generated as in Section V-B until
we have a sufficiently large number of pseudo-premier sam-
ples with (3, 15); we thereafter apply the data augmentation
technique. Finally, we train PAL with the generated samples
with (3, 15) only, and let PAL infer a priority assignment for
the target task set with (3, 15).

To resolve the case (iii), we need to exploit the strategy
for (i) and that for (ii) together. For example, if (z, y) = (3,
20), we generate samples with (2, 16), those with (2, 17), ...,
and those with (2, 20) in a sequential manner by applying the
strategy for (i). Then, using the strategy for (ii), we generate
samples with (3, 20), train PAL with them, and infer a priority
assignment for the target task set with (3, 20).

VI. EVALUATION

We generate 1,000 task sets as described in Section V-B
for the following pairs of (m, n): (m=2, 6<n<15), (m=4,
11<n<20), and (m=6, 16<n<25). Note that task sets for
training and those for evaluation are separated without any
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overlap. We count the number of task sets proven schedulable
by the following techniques among the 1,000 generated task
sets for each (m, n): (i) the priority assignment by PAL
with Lemma 1, (ii) a limited backtracking technique to find a
schedulable priority assignment with Lemma 1 [17] (denoted
by DaBu), and (iii) the three heuristic priority assignments
with the schedulability test in [5] that is known to domi-
nate other OPA-incompatible tests in [2], [3], [4] including
Lemma 1 (denoted by ZLL). We would like to remind that all
tested task sets are schedulable by neither the three heuristic
priority assignments with Lemma 1 nor OPA with DA-LC [13],
according to Section V-B; therefore, (ii) and (iii) are the only
existing studies that may deem each tested task set gFP-
schedulable.

Since (ii) is the only existing study that finds a schedulable
priority assignment subject to Lemma 1 for the tested task
sets, we first compare (i) with (ii) in Section VI-A, which
shows the effectiveness of PAL in solving our target priority
assignment problem. We next analyze how much the solution
helps cover additional task sets each of which has not been
proven schedulable by any existing approaches for gFP, i.e.,
(ii) and (iii), in Section VI-B. Finally, we discuss the time
required for sample generation, model training and inference
of priority assignment by PAL in Section VI-C.

A. Evaluation of Solving the Priority Assignment Problem

In this subsection, we evaluate how effectively PAL solves
Problem 1—finding a priority assignment deemed schedulable
by Lemma 1. To this end, we compare the number of task
sets deemed schedulable by PAL with that by DaBu, which
is the only existing study that may find a priority assignment
schedulable by Lemma 1 for our tested task sets. We also
count the number of task sets each of which has at least one
priority assignment schedulable by Lemma 1 among 1,000
tested task sets for each pair of (m, n). This is possible by
exhaustively testing all priority assignments of each task set
by Lemma 1; we denote the number as Exhaustive. Due to
time-intractibility of investigating all priority assignments of
the tested task sets with large n, we can have the results of
Exhaustive only for n < 9.

If we focus on the ratio between the number of task sets
deemed schedulable by PAL and that by Exhaustive for each
pair of (m, n), the ratio is 424/441=96.1%, 306/345=88.7%,
294/324=90.7%, and 255/296=86.1%, respectively for n =
6,7,8 and 9 with m 2 as shown in Fig. 1(a). That is,
PAL can identify a schedulable priority assignment for most
(i.e., 86.1%-96.1%) of task sets with n < 9, which have at
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least one priority assignment schedulable by Lemma 1 but are
schedulable by none of the three heuristic priority assignments
with Lemma 1. Also, if we consider that Exhaustive tends to
decrease as n increases, we expect a similar trend holds for
10 <n <15 with m = 2.

While we analyze PAL’s performance compared to the
absolute standard (i.e., Exhaustive) only for m = 2, we can
discuss PAL’s performance by comparing PAL and DaBu as
shown in Fig. 1. For m = 2 and m = 4, PAL exhibits far better
schedulability performance than DaBu; the ratio between the
number of task sets schedulable by PAL and that by DaBu
is between 201.9% (424/210 for n = 6) and 497.2% (179/36
for n = 13) for m = 2, and between 118.5% (192/162 for
n = 20) and 221.6% (246/111 for n = 15) for m = 4. On
the other hand, PAL is comparable to DaBu for m = 6 in
that the ratio is between 87.8% (129/147 for n 21) and
112.6% (197/175 for n = 19). Note that PAL can improve
the schedulability of gFP even in case that the number of task
set schedulable by PAL is smaller than that by DaBu, as long
as PAL can cover some additional gFP-schedulable task sets
which are not deemed schedulable by other existing studies
including DaBu; this will be discussed in Section VI-B.

In summary, the evaluation results demonstrate that our
ML framework succeeded in solving the target priority assign-
ment problem as PAL finds a schedulable priority assignment
for most of task sets covered by Exhaustive and exhibits
schedulability performance superior or at least comparable to
DaBu, which is the only existing study capable of yielding
a schedulable priority assignment subject to Lemma 1 for the
tested task sets.

B. Evaluation of Schedulability Improvement of gFP

We now evaluate the effectiveness of PAL in covering ad-
ditional gFP-schedulable task sets, which are deemed schedu-
lable by none of the existing studies. Fig. 2 shows the number
of task sets schedulable by PAL, DaBu, ZLL and PAL*,
respectively, normalized by the number of task sets schedulable
by at least one of them, for each pair of (m, n), where the
number of task sets schedulable by PAL* means the number
of task sets schedulable by PAL, but not by both of DaBu
and ZLL. The effectiveness can be demonstrated by the bar
for PAL*, as the bar represents the ratio between the number
of task sets schedulable by PAL only and that schedulable by
at least one of PAL, DaBu and ZLL. As shown in Fig. 2, the
bar for PAL* is 17.7%-29.3% for m = 2, 11.8%-29.2% for
m = 4, and 8.5%—-16.2% for m = 6. The evaluation results
confirm that PAL can be a good alternative if a task set is
proven schedulable by none of existing studies for gFP.
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Next, we show that PAL outperforms DaBu and ZLL under
many settings including large-size task sets, of which it is time-
intractible to test all possible priority assignments. As shown
in Fig. 2, the bar for PAL is the largest for 6 < n < 10
with m =2,° 11 <n <19 with m =4, and 16 <n < 20 &
22 < n < 23 with m = 6. Unlike the bar for PAL*, the relative
schedulability performance of PAL compared to the maximum
of DaBu and ZLL tends to decrease as n increases. Note that
the figure shows DaBu and ZLL cannot always outperform
each other, which has never been presented before.

In summary, PAL can improve gFP-schedulability by cov-
ering additional gFP-schedulable task sets, which have been
deemed schedulable by none of existing studies. Also, the
schedulability performance of PAL is superior to that of
existing studies under many settings.

C. Time Taken to Implement and Use PAL

The time taken to implement PAL can be divided into three
parts: (i) generation of all necessary samples, (ii) training PAL
with the samples for every pair of (m, n) separately, and
(iii) priority assignment inference of each tested task set by
PAL. For (i), it takes around two weeks to secure the required
number of task sets for every pair of (m, n). For example, it
takes 1,868, 12,238 and 20,864 seconds to secure 500,000/6,
500,000/11, 500,000/16 samples with (m=4, n=10), (m=4,
n=15) and (m=4, n=20), respectively. For (i), it takes a few
minutes to train PAL with 500,000 samples with given (m,
n), e.g., 525, 608 and 610 seconds, respectively for (4, 10),
(4, 15) and (4, 20). For (iii), it takes a few seconds for PAL
to output the resulting priority assignment of a target task set.
For example, it takes 0.59, 1.72 and 2.78 seconds to make
the resulting priority assignment of a task set, respectively for
(4, 10), (4, 15) and (4, 20). The times for (i), (ii) and (iii) are
mostly dependent of n. Note that it takes 0.08 and 0.45 second
to check whether a task set is gFP-schedulable by DaBu and
ZLL, respectively for (4, 20).

Therefore, once we complete (i) and (ii) in around two
weeks, we can infer a priority assignment for a task set within
a few seconds. We would like to stress that we need to perform
(1) and (ii) only once regardless of the number of task sets

5The schedulability performance of ZLL is much higher than that of PAL
under m = 2 with 14 < n < 15. We conjecture that it is because the
schedulability test of ZLL can deem a task set schedulable even though the task
set cannot be deemed schedulable by Lemma 1 with any priority assignment.
For example, out of 225, 177, 187 and 220 task sets schedulable by ZLL for
m = 2 with n = 6,7,8 and 9, respectively, 84, 74, 73 and 90 task sets
cannot have any priority assignment schedulable by Lemma 1, and this trend
is expected to stand out for m = 2 with 14 < n < 15.
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tested by PAL to infer their priority assignments. It should be
noted that the times for (i), (ii) and (iii) highly depend on
the underlying computing system. The time can be reduced
significantly if we use a cluster of high-performance servers.
For example, considering that (i) and (ii) can be parallelized
with some overhead to divide computation workloads (i.e.,
partitions of task sets) and combine results, the times for (i)
and (ii) can be reduced to a few hours, if we use a cluster
consisting of 100 PCs each of which is the same as the one
we used.

VII. CONCLUSION AND LIMITATION

In this paper, we have developed the ML framework PAL,
specialized for the priority assignment problem for gFP. Our
implementation of PAL succeeded in finding a schedulable pri-
ority assignment for a number of task sets, each of which has
not yet been proven schedulable by any existing approach for
gFP. We expect the incorporation of RT domain knowledge in
the ML framework will help solve other challenging problems
in the RT research field.

Thanks to the proposed novel concepts and techniques
tailored to solve the priority assignment problem using super-
vised learning, PAL is found more effective than prior work
for task sets with some range of large n, whose schedulable
priority assignment cannot be found via exhaustive search of
all priority assignments. However, we could not completely
resolve the scalability issue as (i) PAL needs to construct
the pseudo-premier samples incrementally and (ii) in general,
it becomes more difficult to guess a schedulable priority
assignment for a set with n tasks as n increases. Unlike
existing non-ML techniques, (ii) in turn affects the time to
generate samples for PAL.

There are two directions to extend this paper: one for
accommodating a more general task model, and the other for
improving schedulability performance. First, we consider ex-
tending this framework to the constrained-deadline task model
in which each task’s relative deadline is no larger than its
period (or the minimum separation). This is more challenging
because a constrained-deadline task needs three parameters
to express while an implicit-deadline one needs only two.
We can develop ways to adapt PAL to be effective for more
task parameters. Second, we may investigate other criteria
that select the “best” priority (than the system hazard), which
are effective to implicit-deadline task sets and/or constrained-
deadline task sets. For example, it would be interesting to apply
the scaling factor, by which all task execution times can be
multiplied without compromising the task set’s schedulability.
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